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THE TRANSMISSION PROPERTY

GERD GRUBB and LARS HORMANDER

Introduction.

A pseudo-differential operator P in a C® manifold X is said to have the
transmission property with respect to an open subset Y with C* boundary, if

Pyu = ryPeyu

has a C* extension to ¥ whenever u e ryCF(X). (Here ry denotes restriction to Y;
and ey denotes extension by 0 on X\Y, ie., eyu =u on Yand eyu = 0 on X\Y
when u is a function on Y.)

For the case where P has a polyhomogeneous (classical) symbol, Boutet de
Monvel [ 1] has given a necessary and sufficient condition on the symbol of P for
the transmission property to hold. An extended version is proved in Hérmander
[7, Th. 18.2.18]. Related conditions are studied in works of Visik and Eskin, cf.
e.g. Eskin [4]. The purpose of this note is to study the transmission property for
more general classes of pseudo-differential operators, with symbols in S7 5 (see [7,
p. 94] for a definition).

For symbolsin ST , a condition was given in Boutet de Monvel {2, (2.2)] which
assures that P has the transmission property with respect to both Yand X\ ¥ (or,
equivalently: P as well as its adjoint P* have the transmission property with
respect to Y; cf. Corollary 1.8 below). We shall introduce a weaker condition
below in Section 1, that we show is necessary and sufficient for the transmission
property with respect to Y alone, for general symbols in S} ,(R" x R") with
0 £ 6 < g £ 1 when Yis a halfspace in R". A characterization of operators with
the two-sided transmission property is obtained as a corollary.

In Section 2, we determine the mapping properties of Py in Sobolev spaces
H,(Y), when P has the transmission property. To get global estimates over
Y= R", we assume a certain uniformity in the condition for the transmission
property (this covers local estimates also). It is found that the customary continu-
ity of P from Hg™(X) to H’®,.(X) only generalizes to Py with a loss of
(1 — @) (s — 3) derivatives for s > 4 (see Theorem 2.5). This stems from a related
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274 GERD GRUBB AND LARS HORMANDER

property (Theorem 2.4) of the associated Poisson operator K, : v+ ryP(o(x') ®
d(x,)), that we study in detail.

1. C® mapping properties.

We shall denote ry C3(X) by C%)(¥) and ry C*(X) by C*(¥). Since the question
of whether Pyu has a C* extension to ¥, whenever ue Cg(Y), is local and
invariant under diffecomorphisms, it is clear that results for general manifolds will
follow from results for the case

X=R"Y=R, ={xeR"(x, > 0}.

(When X = R", Y=R%, R = {xeR"|x, <0}, we usually write r* and e*
instead of rgs and egn, respectively; and we write P, for Pgrs.) We can then
consider an arbitrary P = p(x, D) = Op{p(x, {)) with p(x,{)e S, ;(R" x R") for
some 0 £ 6 < ¢ £ 1 (although this class is not invariant under a change of
variables unless in addition 6= 1 —g). Recall that the condition
p(x, &) ST (R™ x R™) means that with (&) = (1 + |¢?)*

P& (x, &)l < C,p<EY™ 7=+ for all xe N™, fe N™,
where p{3)(x, &) = 830%p(x, &), and recall that for pe S7,(R" x R") and ue #(R"),

(L1 p(x, Du = (2m)™" ”e“"_”'ép(x, Qu(y)dyds

(further details are given in [7, Section 18.1]). S 5° = N, S} ; = S1 ¢ isalso called
§7 .1t is well known that for each (x, &), where & = (&,,.. ., &, ), the distribu-
tion in z,

1 .
(1.2) Px,2,, ) = E;Je""é"dx, Hdé, = F. L. px

is C* for z,€ R\{0} and rapidly decreasing for z, — + oo; for
7D DIDEp = F L. (—De Y EGDiDEp

is a bounded continuous function when gk = j + m + J|f| — ¢lo'| + 2, since
0% &5080% p has an integrable majorant then. The sufficient condition of [2] for
the transmission property in case ¢ = 1, § = 0 amounts primarily to requiring
that j(x',0, z,, £') is C* for z, — +0 and for z, = —0. (The formulation used in
[2] and [5] is more complicated but was reduced to this in Grubb [6].) However,
as observed already in [1, Remarque (2.3.3)], [2, p. 23] and [4], the transmission
property is only related to smoothness for z, - +0; the condition when z, - —0
was added in [2, 5, 6] to obtain a calculus closed under adjoints. We shall here
make this precise for general S} ; symbols. To do so we introduce the following
spaces of symbols on R"~! x R:
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DerFINITION 1.1. For meR, ¢,0€[0,1], 87, (R"~! x R) denotes the space of
symbols a(x',&,)e Sy (R"~ ' x R) such that r*a(x’,x,) =r*#; L, a(x',¢,) ex-
tends to a C* function of (x/, x,)e R",..

When a(x’,¢,)€S5 5, (R"™! x R), then the expressions x) D4r*a(x’,x,) will
generally only be bounded locally in x". This is of no importance in the discussion
of the transmission property, which is local, but for the study of global Sobolev
estimates in Section 2 it will be convenient to have a uniform version of the
estimates, and we shall then use the following symbol space:

DerINITION 1.2. FormeR, 0,6,€[0, 1], 875 ..(R" ! x R)denotes the space of
symbols a(x’, &,)€ S 5(R" ™! x R)such that x) Dér* d(x’, x,,) is bounded on R", for
all NeN, BeN", hence a(x’, &,)eS™"; (R"~! x R).

p.o,tr

An example of a symbol in 8} o,,\S} . is &X', &) = {&Dx(E,/{x'D) where
xe CF(R) and x(0) # 0.
The definitions are elucidated by the following:

LemMaA 1.3. aeS7; .. if and only if a has a decomposition a = ay + a, where
ageS ®(R""! x R) and a,eST,R""! x R) with supp a = R".. The map
aws (i, — 1)a is an isomorphism S5 ; ., (R"~' x R) > S¥'; L (R"™! x R) for every
m, and this is also true if utr is replaced by tr.

ProoF. If we define d, as a Seeley extension (see [8]) of r*a to R", the first
statement is obvious and the decomposition is in fact provided by linear oper-
ators. It is clear that if b(x’,&,) = (i&, — Da(x’, &,), then B(x) = (8, — 1)d(x), so
aeSlsu(R"" ! x R) implies beSy; L (R""! x R). On the other hand, if
beS"iL(R"' xR), suppb=R", and a is defined by a(x,¢,)=
(&, — D™ 'b(x', &,), then suppd = R™ since 4 is small when x,— oo and
(0, — 1)d = 0 in R".. This proves the second statement, and the variant for the

non-uniform spaces is an immediate consequence.

We shall also need that the symbol spaces S ;,, as well as their uniform
versions admit asymptotic sums as usual:

LemMA 1.4. Let0 <@ S 1,0 <6 < 1,and let b;je $%; (R"™! x R), ;> — o0
as joo. If b~Yb; in Sns(R""! x R) for some m, it follows that
be SR -1 x R),

p.d,tr
ProoF. It is no restriction to assume that p; is decreasing, and that
p; < —2 — j. This implies that each distribution b; = #; % b; belongs to C/;
cutting b; off sufficiently far away as in the proof of [ 7, Prop. 18.1.3] we can make

sure that

DB <279, |o| <5,
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andthatb = Z b;exists and is an asymptotic sum in the sense defined there. Since
r+B,- extends to a C> function on R" for every j, it follows that
b=Y5b;=#,1, balso has this property.

Ifue #(R")and u, = r*u, then

a(x" 6") = ‘%‘n"ﬁne+u+(xlﬁ X,,) ~ Z aj(x’)(ién - 1)—j—1 in S;é(R"_l X R),
(1.3)

jel
with a;{x") = d(u(x)e ™ ™), = o;

asis seen by integration by partsin a(x’, £,) = J e Benintxn(p = Xny(x'| x,))dx,, using
o]

that ™ & **n = (1 — j£,) 719, e~ "+ *» (We could of course take an expansion
in powers of £, — 1 forany Ae C\R, but A = i will allow us to use Lemma 1.3 later
on) It is shown in [7, (18.2.16)] that the partial Fourier transform
b(x', &) = #, g Peu, of Pe*u, is a symbolin S7;'(R"™! x R) satisfying

(14) b(xl’ én) ~ ;‘ (<iDy'5 Dé') - li,.Dg,,)iP(X, é)a(y,, én)/j”y'=x’,x,,=0,§’=0-
Jje

The proof given in detail for ¢ = 1, § = 0, extends without difficulty to general g,
o with 0 £ J < ¢ = 1. Note that the application of (D, D> to p(x, )a(y’, £,) in
(1.4) lowers the degree by at least g, while application of D, D, lowers it by at
least ¢ — 8,50 (1.4) defines a symbolin S35 '(R" ™' x Rymodulo S™*(R"~! x R).
By separating the terms in (1.4) we shall now prove a necessary condition for the
transmission property:

THEOREM 1.5. Let 0 <6 <@ <1 and let meR. If pe S} ,(R" x R") and the
asymptotic sum (14) is in S5;(R"™' x R) for every a given by (1.3) with
ue C3(R"), it follows that for all « and feN",

(1.5) P(x,0,0,8,)e 875 " WI(R"1 x R).

ProoF. Throughout the proof, S} ;. stands for S, (R"~! x R) and S},
stands for S7,(R"~! x R). Ifve CF(R"™'), k is a positive integer, and we choose
ue CP(R")such that u(x) = v(x')x* ~te*~/(k — 1)! when |x,| < 1, then the function
ain(1.3)is ~ o(x'Yi&, — 1)~*. The symbol (1.4)is in S ;* by the calculus, and it is
in S35 by hypothesis, hence it is in S} ;%. Since we can take v =1 on any
compact set, and Definition 1.1 is a local condition in the x’ variables, we may

take v = 1. The product by (i, — 1)* is in ST, ,,, that is,

(lén - l)kj (—li,,Df,,)](p(xa fxlén - 1)~k)/j!|x,.=0,§’=0eszl,d,tr'

(The sum, as all the following ones, is of course an asymptotic one.) Since iD,_
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only acts on p, we can write this condition in the form

Y ¥ (D Y(—=Dg ) *px,0,0,¢ ). ..
(1.6) Jj OSvsj
(k+v— 1)L, — )G — N eShs,

This holds for any positive integer k. Note that each term in (1.6) is a polynomial
in k of degree < v < j and lies in 875 /¢ 9.

We claim that (1.6) is true for any value of k if it is true for infinitely many. To
prove this, we fix a large integer N, and choose N distinct values k,.. ., ky of k for
which (1.6) is known to hold. By the Lagrange interpolation formula one has for
all polynomials q of degree < N and all ke C:

Kk—k

i

N
a9 = Y ak)Lid, L= [ =%
i=1 tgjsNjFi MKy

For fixed x we consider the linear combinationin S , ,, obtained by taking k = k;
in (1.6), multiplying by L;(x) and adding for i = 1,...,N. The terms with j < N
give the corresponding expressions with k replaced by «, and the terms with
j 2 Narein 87579 s0(1.6) is valid, modulo ST ;% 9", with k replaced by «.
Letting N — oo, we conclude from Lemma 1.4 that (1.6) is valid with k replaced
by any «. In particular, we have for x = 0:

(17) Z (— li,,D;,.)jP(x/, Oa O, én)/]' € Szl,d,tr'
j=0

If a pseudo-differential operator P in a C® manifold X has the transmission
property with respect to an open subset Y with C* boundary, then any product
Q,PQ, with differential operators Q, and @, has the weaker transmission
property that ryQ, PQ,eyu has a C® extension to ¥ whenever ueC("(‘,’,(Y) and
u vanishes of order m, on 8Y, where m, is the order of Q,; for Q,eyu = eyQ,u then.
Since

(18) p(j)(xs D) = [iDj’ P(x, D)] and p(j)(xy D) = [p(x’ D)9 ile

if follows that p{3)(x, D) for arbitrary « and § has this weakened transmission
property, for functions vanishing of order f, when x,, = 0. The functions » used in
the first part of the proof vanish of order k — 1 at x,, = 0. Hence (1.6) is valid with
p replaced by p(3) and m replaced by m — gla| + d|p| if k > B, + 1,50 (1.7)is also
valid with these substitutions for pand m. If we apply (1.7) to(—iD,, D¢ }p5)(x, &)
it follows that

Y. (=iD, Dy Y *pE(x,0,0,&,)/jl € S yko o slai 18l
j=0
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We multiply by (— 1)*/k! and sum for k = 0, 1,..., noting that

Y (=Kl =1 =D/ =0 if I>0.

k+j=1
In view of Lemma 1.4 again it follows that p{3)(x’,0,0, &,) € ST #ld +4181,

THEOREM 1.6. Let 0 £ 6 <1 and let meR. The following conditions on
pe Sy s(R" x R") are equivalent:
(i) p(x, D) has the transmission property with respect to R", .
(ii) (1.5) is valid for all o, Be N".
(i) (1.5) is valid when ' = 0, a,, = 0.
(iv) For all a, BeN",

1.9) r*# L, p8(x,0,0,8,)e C(R").

(v) (1.9) is valid when §' =0, a,, = 0.
(vi) For everyjeN,o' e N"~1, and every fixed &' e R" 1,

(1.10) (x', &) 8%, 0% p(x',0, ¢, &) e Sy 3 4P I(R™ ™! x R).

PrOOF. We have proved in Theorem 1.5 that (i) implies (ii). (ii) and (iii) are
equivalent since 8% 8 S% ; (R"~! x R) = S454* W (R"~1 x R)in view of Defi-
nition 1.1, and (iv) and (v) are just reformulations of (ii) and (iii). To see that (ii)
implies (i), let u, € C("B,(F_(",r) and insert a from (1.3) into (1.4). This gives

ForaPetus ~ T (D, De) —iDy D PP, 0,0 60 — 1)l e,
JkeN
where Lemma 1.3 and (iii) show that each termis in S ; {(R"~* x R). The order
goes to — oo so that by Lemma 1.4 the asymptotic series defines a symbol is
Srsk(R*™* x R). Then P u, =r*Pe*u, isin C*(R")in view of Definition 1.1.
We shall finally show that & can be taken ¥ 0in (1.10). By Taylor’s formula,
the function in (1.10) is for fixed ¢ an asymptotic sum,

(1.11) 0L 0 p(x,0,8,8) ~ Y 0L 08 b p(x',0,0,5,)¢7 /B,

BeNn—1
where & 0% 08 p(x',0,0,&,)e S™ Pl +FI+3i(Rr "1  R). Then it follows from
Lemma 1.4 that (ii) implies (vi). When &' = 0 the condition (1.10) is the condition
(iii), which completes the proof.

We shall say that p(x, {) has the transmission property with respect to R, when
the conditions in Theorem 1.6 are satisfied. In preparation for Section 2 we also
introduce (cf. Definition 1.2):
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DEFINITION 1.7. p(x, D) (as well as p(x, £)) is said to have the uniform trans-

mission property with respect to R%, if the conditions in Theorem 1.6 are
satisfied with S, ; ., replaced by S, ;5 .-

An example of a symbol with the transmission property which lacks the
uniform transmission property is a(x, &) = {(E>x(<€>/(xD) where ye CZ(R) and
x(0) + 0.

If p(x,&) vanishes for x' outside a compact subset of R"™!, the uniform
transmission property is of course equivalent to the transmission property, so
estimates over compact sets for operators having the transmission property
follow from estimates for operators with the uniform transmission property.

Theorem 1.6 has an easy consequence concerning two-sided transmission:

CoroLLARY 1.8. The following conditions on pe S}, 5(R" x R") are equivalent:
(i) p(x, D) has the transmission property with respect to R", and R"..
(i) p(x, &) and p(x, — &) satisfy the conditions in Theorem 1.6.
(iii) p(x, &) and j(x, &) satisfy the conditions in Theorem 1.6,
(tv) p(x, D) and its adjoint have the transmission property with respect to R", .
(v) For every jeN and o/ e N"" 1,

(1.12) rEF L, 0 0% p(x,0,0,&,)e C(RY).

Proor. Clearly, Op(p(x, £)) has the transmission property with respect to R if
and only if U Op(p(x, £))U has the transmission property with respect to R",,
where U is the mapping

U u(x) > u( — x);

and here U Op(p(x, &)U = Op(p(—x, - &), cf. (1.1). Note also that if
Fo A (X, E) = g(x, x,), then F. L f(x', —¢&,) = g(x', —x,). Then the equival-
ence of (i), (i) and (v) follows from the equivalence of (i), (iii) and (v) in Theorem
1.6, in view of the fact that (1.5) takes place at x,, = 0. Now (iii) is included in the

equivalences by the observation that (cf. (1.1))
Op(p(x, — &)u = Op(p(x, i,

and (iv) is included in view of the usual formula for the symbol of the adjoint of
a pseudodifferential operator (cf. [7, (18.1.11)]), together with Lemma 1.4.

Also in this corollary, the conditions on the set of &, 0%-derivatives can be
replaced by conditions on the full set of 94 #5-derivatives. In particular, the
conditions (i}(v) are equivalent to the Jf-condition in [6], stating that
PE(x',0,&, &,)is in A as a function of £, locally uniformly with respect to x' for -
all o, B and &. Here o is the space of symbols a({,) having an asymptotic
expansion a(&,) ~ Y ez j<a@iC) as |&,) = 00, for some de Z; this is equivalent to
rtdaert & (R).
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2. Sobolev space estimates and Poisson operators.

For any pe §7 ,(R" x R") the operator
2.1 ursr*p(x,D)e*u = p(x,D)gn u = p(x, D), u

is continuous from H,)(R") to H,_ ., (R%)if —} < s < 3. This follows by combi-
nation of the well known facts that u+>e*u is continuous from H(R") to
H,(R") when —4 <s <4 and that p(x,D) is continuous from H(R") to
Hi, . m(R" for all se R. For symbols in ST , satisfying the transmission condition
of [2], the conclusion has been extended to arbitrary s = . We shall show here
that the result extends to S}, ; symbols having the uniform transmission property,
with a certain loss of differentiability depending on g. Let us begin with some
preliminary remarks.

The first step is to lift the information from the case —} < s < } to slightly
larger values of s, by estimating D;p(x, D)..u for j = 1,...,n. Observing that

2.2) D,e*u = e™Du — iyou(x') ® d(x,), where you = ul, o,
and defining
(2.3) Kjv=r"Kw, K,v=px,D)v(x)® dx,)),

we have (cf. (1.8))
Dyr* p(x,D)e*u = r*([D;, p(x, D)]e*u + p(x, D)e* Dju — i ;,p(x, D)(you ® 9))
2.4 = —ipy(x,D)+u + p(x, D)+ Dju — i6;,K, vous;

and we shall discuss the continuity of the terms separately. Since p;, is of order
m + ¢ and pis of order m, the contributions from the first two terms are estimated
by
(2.5) ”p(j)(x’ D)+ u”(}-z—é-—m) é C”u”(s)’ for s g l’ alle > 0’

Ip(x, D) Djulls— 1 —my < Clluly, fory<s<3.

The first estimate is even better than the second if $ < s < 3 — . The third term
(for j = n) contains the trace operator yo: Hy)(R"%) = H(,_4)(R"™!) and the Pois-
son operator —iK, and it turns out that the continuity properties of the latter

are decisive. They will now be studied.
We can write p(x, D) in the form

p(x, Dyu = (27)~" j e 8G(x, yu, Eu(y) dyde,

R2n
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where ge S} ; is related to p by

@59~ T (=D, DeYp(x. D,

(cf. [7, Theorem 18.5.10]); clearly g also has the uniform transmission property.
Then, writing %}, q(x',0,¢) = §(x',0,x,, &) as usual (cf. (1.2)), we have for
ve P(R"™Y,

K7 olx',x,) = 2m)~"r* J =™ Eg(x', yu, E)0(y)0(yn) dydé

R2n

(2.6) =(2m)"r" J e*¢q(x',0,8)%(¢&) d¢

RN

=(2m' ™" f ™ r* g(x', 0, x,, &YWNE) dE';
R'I—l

as in the case of ST, symbols studied in [2,5,6]. We may therefore in the
following restrict the attention to symbols p(x’, £) independent of x,.

Recall that the uniform transmission property then means that 2. p(x', 0, £,) is
the sum of a symbol is S”°(R"~! x R) and one with inverse Fourier transform
vanishing in R% (Lemma 1.3). To use this in the study of K, one considers
Taylor expansions for large N,

2.7 p(x', &, &) = pa(x', &, &) + T (X, 8, ,),  with

(28) pN(x" 6,9 én) = Z az: p(x,’ Oa én)éw’/’y’!a

17’[<N

1
(2.9) ry(x, 8, &) = Z ;—V,‘ & J(l — W71 3% p(x', hE', &,)dh.
ly'l=N 7" 4
The terms in py are O((E,>™*11|&|!7) but in general no better, so the Taylor
expansion is only useful where |&'] is O((&,)*). Using a cutoff function we shall
essentially only have to consider the Taylor expansion in this set.
We begin by studying K, in the special case where

(2.10) 3% p(x,0,&,)eS™ (R x R), foralla’eN""1.

(2.10) is much stronger than (1.9) and we shall therefore be able to estimate the
operator K, without the restriction r*. In the study of the continuity of K, we
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can consider the operator %, .. K, as a vector valued pseudo-differential
operator on R" ™1, going from CP(R" " !) to C*(R""!; X) where X = I?(R), with
symbol k,(x',&) = p(x’, &, &,)e L% (R). Sobolev space continuity properties of
S}s ps.d.os extend to the Hilbert space valued case (cf. [7, p. 169]). If
keC®(R* ! x R"%;X), and X is a Hilbert space, then the estimates

2.11) IkGAX', ENix S Cor, g KEY™ PP for o/, e N,

imply continuity of k(x', D) from H,,(R"~*) to Hy,(R"~*; X). We recall that it
suffices to have the estimates for |«'| and || in a finite set. For a recent account of
precise results see Coifman and Meyer [3, p. 30], where it is shown that for
050 29 =1,6 < 1,it suffices to have the estimates for ||, || < [3] + L

PROPOSITION 2.1. Let meR and 0 £ 6 < ¢ £ 1. Let p(x',§)e S} 4(R" x R") be
independent of x,, and assume that (2.10) holds. Then K, defined by (2.3) is
continuous:

(2.12) " K, Hy(R" 1) > Hy,(R",

wheret =gs —m—4%if s> 0,t =s—m—3if s <O0. For s = 0, the continuity
holds witht = —m — }if g =1 (and witht = —m — 3 — ¢, anye > 0,if ¢ < 1).
Hence K; =r* K, is continuous

2.13) K;: Hy(R* 1) — A, (RY),

for the same values of s and t.

For each s, there exist My and M, € N such that the continuity statements above
remain valid if instead of (2.10) it is only assumed that p{3}(x',0,&,) is O({&,> ™)
Jor |}, 18] = M,.

Proor. We shall first consider the case ¢t = 0, and use afterwards that {D>" =
Op(&)Y) is a homeomorphism of Hy, onto L2 for all te R, and that {D)'p(x’, D)

satisfies the hypotheses with m replaced by m + ¢.
If ye CF(R), x = 1 in a neighborhood of 0, then for x = 1,

(2.14) X(En/<E D) EST 0

In fact, in the support of a derivative of order $+0 we have |£,| ~ <", so
E ~ EDF + (&) ~ (&> ~ |&,| there; and differentiation brings out a deriva-
tive of a factor &,/{&")* which gains at least a factor (') ™! ~ (&) 71/,

We split p into a sum of three terms, p = p, + p, + p; where

p1 = &/ &P, P2 = (1 — x(C/<ED D,

@13) P3 = (U&/<ED") — 2En/EODP,
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taking x = 1/g; note that
16l £ €< insupppy, &, 2 Co{¢'>" in supp py,
Ci<&D £ 1al £ C3{¢)" in supp p;

For p, we have immediately

(2.16)

1 1
(ﬁpaﬁ,z»(x: 3k d¢n>’ < ( f <c>2<'"""°"+5"’">d£,)’
1Eal £C1 <8

S Gy p @y AR,

which implies that K, is continuous from Hg, . 4)(R"™!) to [*(R").
For p, we have by Taylor expansion up to order N, cf. (2.7),

Ip2(x', &, &l = P2, (X', &, &a) + ran(x, &, Sl S CRKEINCEI™ PN,

where we used that 0lp,(x',0,&,) is O(KE,>™ *Y) for any N, and that
EY ~ w4+ (&) ~ &> + |&alP ~ K&y in supp p,. Similarly, we have

PS5 (X, N £ Cor pr wCEDN (Gym P11 AE 0N,
Taking N so large that the exponent of ({,> is < —13, i.e.,
(2.17) N> (m+3—elx| +d181)/e,

we obtain in view of (2.16),

1
(jlp(;("}’)(x/’ é)'zdin)f < C;"ﬁl<§r>x(m+t"9la’l+6|ﬂ’|)
= C,, ﬂ,<f’>'¢(m+%)—la’|+m’lﬁ'|'

Note that 0 £ ké = d/p < 1. By the continuity properties of operators of type
1,8/0, we can conclude that K, is continuous from Hgm+ 4,(R" ) to L*(R").

Consider finally p;. For each fixed £,, we may regard v+ p3(x', D', &, )v as
a pseudodifferential operator in R"~*, Since |&,| ~ (&) in supp ps in view of
(2.16), the symbol has the bounds

PS5, & Enl S Cir g 1EaIm o110,
If U is the unitary dilation operator (U f)(x") = A®~ "2 f(dx"), for some 4 > 0, then
U ta(x',D)U = a(A™*x, AD’).
Thus p;(x’, D', &,) is unitarily equivalent to p4(x’, D', £,) defined by
Palx', &, &) = Pa(¥ <& T4 ELEY", &)
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Since
(2.18) P (X, € 8 S Cy g |G MO < C, o EIM,

the Calderon-Vaillancourt theorem on continuity of operators of type 0,0 proves
that the norm of p4(y', D', £,) as an operator in L>(R"~ ) is < C|&,|™; the unitarily
equivalent operator p5(x’, D', £,) has the same norm. Thus

J Ipa(x', D', Eu)o(x')|? dx’ < CI&,*™ J 162 dg,
CiE> Sl SCED*
for we can replace §(£') by 0 in the set where the symbol vanishes. Hence

1Kp, 0l 22mm = 2m) 7! J 1p3(x’, D, Eu(x)? dx’ dE,
(2.19)

A

c J J 1Eal2mB(E)? dE' .
CiKE) S 1&nl SCEDH"

Ifm + { > 0, the integral with respect to £, can be estimated by (&' >*?™*V so the
right-hand side is bounded by C’ llvllfx(mﬁ,,. If m + } < O we getinstead a bound
by C'l[9l1Z,+ 4.

Altogether, this shows that K, is continuous from H(R""!) to [*R") for
s =k(m + %) > 0 resp. for s = m + 4 < 0, proving the main statement of the
proposition for ¢ = 0. Applying this to {(D)'K,, we find that (2.12) holds when
s=1k(m+t+3% >0hencet=gs—m—4, resp. whens=m +t + } <0and
hence ¢t = s — m — }. This completes the proof of (2.12) for s # 0. The statement
for s = O follows by interpolation if g = 1 and is obvious otherwise. (2.13)follows
immediately by restriction.

The last observation is seen by inspection of the proof (cf. (2.17)), using the
remarks before the proposition.

It will be shown below in Example 2.6 that these estimates are generally best
possible, at least when s + 0.

When studying general symbols p(x’, {)e S} ; satisfying the uniform trans-
mission condition, we must cut off the terms in the Taylor expansion (2.8)
without destroying the vital information on them given by the uniform trans-
mission condition. To do so we shall construct a cutoff function with suitable
properties in the next lemma.

LEMMA 2.2. 1° The analytic function

(2.20) f@=exp(~(1 -2 texp(=(1L +2)7H), Iz <1,
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where the square roots are taken in the right half plane, extends to a C* function in
the closed unit disc such that f and 1 — f vanish of infinite order at 1 and at —1
respectively.

2° There is an analytic function ¥(t), Im ¢t > 0, with a C* extension to
{teC|Imt = 0}, such that x(t) vanishes of infinite order when t — 0, and x(t) =
1+ O(lt]™™), x9¢) = O(t| =), for j > 0 and every N as|t| - o in {te C|Imt = 0}.
x is the Fourier-Laplace transform of 5 + i, where € #(R) and supp ¢ < R_.

Proor. We just have to examine f at + 1. The function g(w) = exp(— 1/\/;v—),
Rew > 0, extends to a C* function in the right half plane vanishing of infinite
order at 0, for lexp(— l/ﬁ)l < exp(—1/./2|w}), and differentiation of g pro-
duces at most negative powers of w. This shows the statement at — 1, since
(1 — 2)* is close to ./2 when z is close to —1. When z is close to 1 then
exp(—(1 + z)7%) is close to exp(— 1/\/5) > 0 so this factor does not affect the
infinite order vanishing at 1. This proves 1°.

To prove 2°, we can choose x(t) = f((1 + it)/(1 — it)), where f is given by (2.20).
The last statement follows from the Paley-Wiener theorem since y is analytic
when Im¢ > 0.

The cutoff function is used as follows:

LEMMA 2.3. Let g(x', £,)eSm5?I(R"~! x R), where y’e N"~*, and let x be the
function given by Lemma 2.2. Let x = 1/g. Then

(2.21) 41(x', &) = x&u/<EDAx, E)E €Sy 4(R" ™ x R7),

and q,(x', &) — q(x', &,)E" and all its derivatives with respect to & are of order — oo
when & = 0. If #,.3,. q vanishes for x, > 0, then this is also true for F,_1, q;.

Proor. We have proved (2.21) before when y = 1 and y = 0 in a neighbor-
hood of oo and of 0 respectively (see (2.14) ff.) — which we cannot require now
since y must be analytic when Im &, > 0. Since |x(t)] £ Cylt|" for every N 2 0, we
have

lg1(x', O £ Ca<Eud™~PNEIE,/CEHM.

With N = g|y'| we get an estimate by C{{, )™ < C'(&™ if either m2 0 or
(&> Z (€. Assume now that m < 0 and that (&,) < {&'>. Then |£,|/{&H" <
(EYY* If g < 1 then 1 — k < 0, and taking N large we get an estimate by any
negative power of (&'). If ¢ = 1 we just take N = |y’| — m(recall that m < Onow)
and obtain the bound C{&H™ £ C'(EO™.

Differentiations of ¢, with respect to x’ act directly on g, so it is sufficient to
estimate ¢, |«| & 0. The terms where y is not differentiated are O({¢)™~*1*!) by
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our estimates of g, above. Let us now estimate a term of the form
O M/ <EY 0 4, &) BT 7, 0V £ 0,00 + o 4 aP =

Here y is differentiated, and a derivative of x(t) can be estimated by |¢] raised to
any positive or negative power. Differentiation of &,/{&>* will remove a factor
&¢,, which is equivalent to a factor {¢') ~* in the estimates because of the presence
of derivatives of y, or else we gain a factor 1/{&>. Altogether we can estimate the
term by

CN'C,,/({’)"|N<€'>'WI - |atD)) "I““)l(é")m—ﬂl}"l — pla®|
for any NeR. When N = (|| — [a™| — |®)]) this is bounded by
CIE N pmPI=pla®l < g gym=slal

if |&,| > (&), If |&,] £ &) we can estimate by any power of 1/{&> if o < 1. If
¢ =1 this is still true if |£,| < 1, so we may replace |£,] by (&,> in the
estimates and take N = —m + |y'| + |¢®| to complete the proof that
1g®(x', &) € C, &Y™ *1%. The remaining statements are obvious consequences
of the properties of y.

We can then finally estimate the Poisson operator K, in general:

THEOREM 2.4. LetmeRand0 £ 6 < ¢ £ 1. Let p(x, )€ S 5(R" x R") have the
uniform transmission property with respect to R".. Then K, defined by (2.3) is
continuous:

K; tHg(R™ - E(:)(R'l),
wheret =gs —m—%if s>0,t=s—m—4%if s<0. For s = 0, the continuity
holds witht = —m — if o = 1(and witht = —m — 3 — ¢, any e > 0, if g < 1).

ProoF. In view of (2.6), we may assume that p(x, &) = p(x’, &) is independent of
x,. The Taylor expansion (2.7)«2.9) will be used for large N in the following way:
Let p = py; n + P25, Where

Pi,n =P — XPn> P2,n = XPn>
with y = x(&,/<E>"), xt) as in Lemma 2.2. Then p, 5 and p, y are in
S7s(R*™! x R") by Lemma 2.3. Moreover, since p = py + ry,
pin=(1—xpy+rn,

where (1 — y)py and all its derivatives are of order — oo at &’ = Q, by Lemma 2.3,
while 8% 9% ry = O when ¢ = 0if |«’| < N. Then we can apply Proposition 2.1 to
p1,~and find that for each s, N can be taken so large that K, yand K, y have the
continuity property described there.
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By Lemma 1.3 we can write 0} p(x,0,¢,) = q,(x,&,) + r.(x',&,) where
g, €S~ and F,(x', x,) vanishes in R" ; and by Lemma 2.3, these properties are
preserved under multiplication by & y. Then if we set

a=x Y ¢, x.&E"N!
7l <N
it follows (cf. (2.6) and (2.8)) that K, y = K and that geS™>. Here K, is
continuous from H,(R"™!) to Hy,(R") for any ¢ if s > —3.
Altogether we get the statement in the theorem by taking N large enough
adapted to each s.

We now have the ingredients to treat (2.1).

THEOREM 2.5. Let0 £ 6 < ¢ £ 1andmeR, and let p(x, {)e S} ;(R" x R") have
the uniform transmission property with respect to R",. Then the operator
p(x, D)+ = p(x, D)gn is continuous:

222 p(x, D). : Hy(R%) » Hy(R?)

wheret=s—m—(1—g—~3=3-m+os—Difs>%andt=s—mif
~41 < s< 4 Fors=4%222)holdswitht = s — mwheng = landt < s — mwhen
o<1l

ProOF. The statement is true for —} < s < , even without the transmission
condition, as was observed at the beginning of the section, If s > 1 then in view of
(2.4),

Ip(x, D)+““(z+ n = C1 Z (”P(i)(x, D)+“”(t) + | p(x, D)+Dju"(t))

(2.23) =iz .
+ Cllp(x, D)+ ullqy + CIK, youllg.
By Theorem 2.4,
2.24) K} youllps-p-m-p = Clyoull—y = Cllullg, fors> 4

The estimate in the second line of (2.5) is at least equally strong since ¢ < 1; and
the same holds for the estimate in the first line of (2.5) when

j—d-m>es-H-m—3,

i.e., when s < § + (1 — d)/o (where (1 — 8)/g > 0); recall that (2.5) also requires
s <1+ 1. Inserting t = g(s —3) — m — § in (2.23), we find that the desired
estimate holds for § < s < § + 1, where

2.25) v =min{(1 — 8)/o,1}.
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We shall show that the estimate extends to all s > by an inductive argument
that increases s by t in each step. Assume that the desired estimate has been
shown for all ps.d.o.s of type g, 6 with the uniform transmission property when
5 < 50, for some sy > . Again we use (2.23), where Theorem 2.4 and the inductive
hypothesis imply:

”Kp‘)’()u"(p(s—-})~m~}) £ Cllully, fors> 117,
"Pu)(xa D)+““(p(s—g)—m~o+§) < Cllull g, for% < = So,
p(x, D)+ Djullpis - 3y -m+ 3y S Cllutll (g5 for;j<s<so+1,s%3

The third line gives an estimate which is at least as strong as the first when
s < 5o + 1, and this is also true for the second line when

os—H-m—34<olso—%—m—05+3ie., when
s E 50 + (1 — d)o.

Inserting t = g(s —3) —m — % in (2.23), we find the desired estimate for
s < 8¢ + 7, cf. (2.25). This shows the induction step, so we can conclude that the
asserted estimate holds for all s > }. The last statement in the theorem follows by
interpolation.

The following example shows that the result is the best possible in general.

ExaMpLE 2.6. Take p equal to x(&,/{(&'D>") as in (2.14), with yeCZ, xy =1
in a neighborhood of 0 and k = 1/g > 1. Then peSg,o even satisfies (2.10). We
shall show that if p(D). is continuous from H,(R",) to H,(R") for some s > 3,
then t<s—(1—g@(s—3=4%+0os—3. It is sufficient to do so when
4 < s < 3,for if a better estimate is valid for some s > } it follows by interpolation
that this is true for every s > 1. In the proof we may assume that t < s.

Since p(D) is of order 0, p(D). is continuous from H,_(R%) to
H,-(R%) c H,_1)(R%). If p(D). is continuous from H,(R") to H,(R"), then
D,p(D). is continuous from H,(R%) to H,_,,(R%), so it follows from (2.3) with
j = nthat K} y, is continuous from H,(R%) to H,_;,(R"). Since y, is surjective
from Hg(R%) to H,-y3)(R""!), this implies that K; is continuous from
He- )R Y to H,_1(R%). Recall that Kjv=r*pD)(v® x,) when
ve#(R""1). Set v =t — 1. Then

1K vl = supI<K; o, W)I/I1wl—y

where we & and suppw < R",. We take a function o CP(R,) and test with
w defined by W(&) = GE,/CEYW(E), Yy e . Since 21 < 1 and suppw c R", we
have:

QryiwliE-, = ~[‘|<i’(€../<é’)")‘lf(é')l’(é)'Z'dE’ a,=C JI¢(¢’)I2<€’>“’2"“ d¢’,
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<K, v,w> = {pD)v® ), w>
=(2m)™" Jx(é‘,./(é’)")t‘)(é’)fﬁ(é»/(é’>")-/7(f’) d¢' dg,
= fﬁ(é’)d_f(é’)@’)"dé', C=Qn™" Jx(f..)q‘?(f..) dg,.

We have C’ # 0 for a suitable choice of ¢. It follows that

- 1
f HEWH(ENWED™ dé‘” < CIK, vllg-yy < JN/(C')|2<€'>“ 20K dé')I,
hence
JIM’)P(C')"“”" d&¢ < CHK olli-yy S Clvlid -y,

which proves the claim that x(t — ) £ s — }. Note that the example shows also
that the auxiliary results Proposition 2.1 and Theorem 2.4 are precise.

The results on p(x, D), and K, may be useful in a study of boundary problems
for hypoelliptic operators.
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