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Abstract

A generalization of the generalized inverse Weibull distribution the so-called transmuted gen-
eralized inverse Weibull distribution is proposed and studied. We will use the quadratic rank
transmutation map (QRTM) in order to generate a flexible family of probability distributions tak-
ing the generalized inverse Weibull distribution as the base value distribution by introducing a new
parameter that would offer more distributional flexibility. Various structural properties including
explicit expressions for the moments, quantiles, and moment generating function of the new dis-
tribution are derived. We propose the method of maximum likelihood for estimating the model
parameters and obtain the observed information matrix. A real data set are used to compare the
flexibility of the transmuted version versus the generalized inverse Weibull distribution.

Keywords: generalized inverse Weibull distribution, order statistics, transmutation map, maximum
likelihood estimation, reliability function.

1. Introduction

The inverse Weibull distribution is another life time probability distribution which can be used in the
reliability engineering discipline. The inverse Weibull distribution can be used to model a variety of
failure characteristics such as infant mortality, useful life and wear- out periods. It can also be used
to determine the cost effectiveness, maintenance periods of reliability centered maintenance activities
and applications in medicine, reliability and ecology. Keller, Goblin, and Farnworth (1985) obtained
the inverse Weibull model by investigating failures of mechanical components subject to degrada-
tion. Drapella (1993); Mudholkar and Kollia (1994), and de Gusmão, Ortega, and Cordeiro (2011)
introduced the generalized inverse Weibull distribution, among others. The cumulative distribution
function (cdf) of the generalized inverse Weibull (GIW) distribution can be defined by

G(x, α, γ, θ) = e−γ(αx)
−β
, α > 0, γ > 0, β > 0, x ≥ 0 , (1)

where α is a scale parameter and β, γ are shape parameters, respectively. The corresponding proba-
bility density function (pdf) is given by

g(x, α, γ, θ) = αβγ(αx)−β−1e−γ(αx)
−β
. (2)

In this article we present a new generalization of the generalized inverse Weibull distribution called
the transmuted generalized inverse Weibull distribution. We will derive the subject distribution using
the quadratic rank transmutation map studied by Shaw and Buckley (2009).
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A random variable X is said to have transmuted distribution if its cdf is given by

F (x) = (1 + λ)G(x)− λG(x)2 , |λ| ≤ 1 , (3)

where G(x) is the cdf of the base distribution, which on differentiation yields

f(x) = g(x) [1 + λ− 2λG(x)] , (4)

where f(x) and g(x) are the corresponding pdf’s associated with the cdf’s F (x) and G(x), respec-
tively. An extensive information about the quadratic rank transmutation map is given in Shaw and
Buckley (2009). Observe that at λ = 0 we have the distribution of the base random variable.

Many authors deal with the generalization of some well-known distributions. Aryal and Tsokos (2009)
defined the transmuted generalized extreme value distribution and they studied some basic mathemat-
ical characteristics of the transmuted Gumbel probability distribution and it has been observed that the
transmuted Gumbel can be used to model climate data. Also Aryal and Tsokos (2011) presented a new
generalization of the Weibull distribution called the transmuted Weibull distribution. Recently, Aryal
(2013) proposed and studied various structural properties of the transmuted log-logistic distribution.
Khan and King (2013) introduced the transmuted modified Weibull distribution which extended re-
cent developments on the transmuted Weibull distribution by Aryal and Tsokos (2009). They studied
the mathematical properties and the maximum likelihood estimation of the unknown parameters. In
the present study we will provide the mathematical formulation of the transmuted generalized inverse
Weibull distribution and some of its properties. We will also provide possible areas of applications.

The rest of the paper is organized as follows. In Section 3 we demonstrate the transmuted probability
distribution. In Section 4 we find the reliability functions of the subject model. The statistical prop-
erties including quantile functions, moments and moment generating functions are derived in Section
5. The minimum, maximum, and median order statistics models are discussed in Section 6. Least
squares and weighted least squares estimators are discussed in Section 7. In Section 8 we demon-
strate the maximum likelihood estimates and some asymptotic confidence intervals for the unknown
parameters. In Section 9, the TGIW distribution is applied to a real data set. Finally, we provide some
conclusion in Section 10.

2. Transmutation map

In this section we consider the transmuted probability distribution. Let F1 and F2 be the cdf’s of two
distributions with a common sample space. The general rank transmutation as given in Shaw and
Buckley (2009) is defined as

GR12(u) = F2(F−1
1 (u)) , GR21(u) = F1(F−1

2 (u)) .

Note that the inverse cdf is also known as the quantile function an is defined as

F−1(y) = infx∈R {F (x) ≥ y} for y ∈ [0, 1].

The functions GR12(u) and GR21(u) both map the unit interval I = [0, 1] onto itself, and under
suitable assumptions they are mutual inverses and satisfy GRij(0) = 0 and GRij(1) = 1. A quadratic
rank transmutation map (QRTM) is defined as

GR12(u) = u+ λu(1− u) , |λ| ≤ 1 , (5)

from which follows that the cdf’s satisfy the relationship

F2(x) = (1 + λ)F1(x)− λF1(x)2 , (6)

which after differentiation yields

f2(x) = f1(x)[1 + λ− 2λF1(x)] , (7)
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where f1(x) and f2(x) are the corresponding pdf’s associated with the cdf’s F1(x) and F2(x), re-
spectively. An extensive information about the quadratic rank transmutation map is given in Shaw
and Buckley (2009). Observe that at λ = 0 we have the distribution of the base random variable. The
function f2(x) in (7) satisfies the property of a pdf.

3. Transmuted generalized inverse Weibull distribution

In this section we study the transmuted generalized inverse Weibull (TGIW) distribution and sub-
models of this distribution. Now using (1) and (2) we have the cdf of the transmuted generalized
inverse Weibull distribution

FTGIW (x) = e−γ(αx)
−β
[
1 + λ− λe−γ(αx)−β

]
, (8)

where α is a scale parameter and β and γ are shape parameters representing the different patterns
of the transmuted generalized inverse Weibull distribution, and λ is the transmuted parameter. The
corresponding pdf of the transmuted generalized inverse Weibull distribution is given by

fTGIW (x) = αβγ(αx)−β−1e−γ(αx)
−β
[
1 + λ− 2λe−γ(αx)

−β
]
. (9)

Figures 1 and 2 illustrate some of the possible shapes of the pdf and cdf of a TGIW distribution for
selected values of the parameters β, γ, and λ by keeping α = 1, respectively.

The transmuted generalized inverse Weibull distribution is a very flexible model that approaches to
different distributions when its parameters are changed. The flexibility of the transmuted generalized
inverse Weibull distribution is explained in the following. If X is a random variable with pdf (9), then
we have the following cases:

(a) If γ = 1, we get the transmuted inverse Weibull.

(b) If λ = 0 and γ = 1, we get the inverse Weibull.

(c) If β = 1 and γ = 1, we get the transmuted inverse exponential distribution.

(d) If β = 1, γ = 1, and λ = 0, we get the inverse exponential distribution.

(e) If β = 2 and γ = 1 we get transmuted inverse Rayleigh distribution.

(f) If β = 2, γ = 1, and λ = 0 we get the inverse Rayleigh distribution.

(g) If α = 1 we get the transmuted Frechet distribution.

(h) If α = 1 and λ = 0 we get the Frechet distribution.

4. Reliability analysis

The reliability function R(x), which is the probability of an item not failing prior to some time t, is
defined by R(x) = 1 − F (x). The reliability function of a transmuted generalized inverse Weibull
distribution RTGIW (x) can be a useful characterization of life time data analysis. It is defined as

RTGIW (x) = 1− FTGIW (x)

= 1− e−γ(αx)−β
[
1 + λ− λe−γ(αx)−β

]
. (10)

It is important to note that RTGIW (x) + FTGIW (x) = 1. The other characteristic of interest is the
hazard rate function defined by hTGIW (x) = fTGIW (x)/(1 − FTGIW (x)), which is an important
quantity characterizing life phenomenon. It can be loosely interpreted as the conditional probability
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Figure 1: The pdf’s of various TGIW distributions.
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Figure 2: The cdf’s of various TGIW distributions.

of failure, given it has survived to the time t. The hazard rate function for a transmuted generalized
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inverse Weibull distribution is defined by

hTGIW (x) =
fTGIW (x)

1− FTGIW (x)

=
αβγ(αx)−β−1e−γ(αx)

−β
[
1 + λ− 2λe−γ(αx)

−β
]

1− e−γ(αx)−β
[
1 + λ− λe−γ(αx)−β

] . (11)

Figures 3 and 4 illustrate some of the possible shapes of the hazard rate function and the survival
function of the TGIW distribution for selected values of the parameters β, γ, and λ by keeping α = 1,
respectively.

It is important to note that the unit for hTGIW (x) is the probability of failure per unit of time, distance
or cycles. These failure rates are defined with different choices of parameters.The cumulative hazard
function of the transmuted generalized inverse Weibull distribution is denoted by

HTGIW (x) = − log
∣∣∣e−γ(αx)−β [1 + λ− λe−γ(αx)−β

]∣∣∣ . (12)

It is important to note that the unit for HTGIW (x) is the cumulative probability of failure per unit of
time, distance or cycles.

5. Statistical properties

In this section we discuss the statistical properties of the transmuted generalized inverse Weibull dis-
tribution. Specifically we are interested in quantiles, a random number generation function, moments
and the moment generating function.

5.1. Quantiles

The quantile xq of the TGIW (α, β, γ, λ, x) distribution is the solution of the equation

xq =
1
α

[
1
γ

log

(
1 + λ− λe−γ(αxq)−β

q

)]− 1
β

. (13)

The above equation has no closed form solution in xq, so we have to use a numerical technique such
as a Newton-Raphson method to get the quantile. If we put q = 0.5 in equation (13) one gets the
median.

5.2. Random number generation

A random variate X from TGIW (α, β, γ, λ, x) can be generated as xU according to (13), where q is
replaced by U ∼ U(0, 1).

5.3. Moments

The following theorem gives the rth moment µ′r of the TGIW (α, β, γ, λ, x) distribution.

Theorem 4.1. If X is from the TGIW (α, β, γ, λ, x) distribution with |λ| ≤ 1, then the rth non central
moments are given by

µ′r = E(Xr) =
γr/βΓ(1− r/β)

αr

[
1 + λ− λ2r/β

]
. (14)
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Figure 3: The hazard function of various TGIW distributions.
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Figure 4: The survival function of various TGIW distributions.

Proof: Starting with

µ′r =
∫ ∞

0
xrfTGIW (α, β, γ, λ, x)dx

=
∫ ∞

0
xrαβγ(αx)−β−1e−γ(αx)

−β
[
1 + λ− 2λe−γ(αx)

−β
]
dx

=
αβγ

αr
(1 + λ)

∫ ∞
0

(αx)r−β−1e−γ(αx)
−β
dx− 2λαβγ

αr

∫ ∞
0

(αx)r−β−1e−2γ(αx)−βdx .(15)
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Now let γ(αx)−β = t, then x = 1
αγ

1/βt−1/β , therefore

µ′r =
1 + λ

αr
γr/βΓ(1− r/β)− λ

αr
(2γ)r/βΓ(1− r/β)

=
γr/βΓ(1− r/β)

αr

[
1 + λ− λ2r/β

]
, (16)

which completes the proof.

Based on Theorem 4.1 the coefficients of variation (CV), skewness (CS), and kurtosis (CK) can be
obtained according to the following well-known relations as

CVTMIW =
√
µ2

µ1
− 1

CSTMIW =
µ3 − 3µ2µ1 + 2µ3

1

(µ2 − µ1)3/2

CKTMIW =
µ4 − 4µ3µ1 + 6µ2µ

2
1

(µ2 − µ2
1)2

.

5.4. Moment generating function

In this subsection we derive the moment generating function (mgf) of the transmuted generalized
inverse Weibull distribution.

Theorem 4.2. IfX has the TGIW (α, β, γ, λ, x) distribution with |λ| ≤ 1, then the moment generating
function (mgf) of X is given as

MX(t) =
∞∑
r=0

trγr/βΓ(1− r/β)
r!αr

[
1 + λ− λ2r/β

]
. (17)

Proof:

MX(t) =
∫ ∞

0
etxfTGIW (α, β, γ, λ, x)dx

=
∫ ∞

0

∞∑
r=0

tr

r!
xrfTGIW (α, β, γ, λ, x)

=
∞∑
r=0

tr

r!
µ′r . (18)

By using equation (14) in result (18) we get

MX(t) =
∞∑
r=0

trγr/βΓ(1− r/β)
r!αr

[
1 + λ− λ2r/β

]
,

which completes the proof.

6. Order statistics

In fact, the order statistics have many applications in reliability and life testing. The order statistics
arise in the study of reliability of a system. Let X1, . . . , Xn be a simple random sample from the
TGIW (α, β, γ, λ, x) distribution with cdf and pdf as in (8) and (9), respectively. Let X(1:n) ≤ · · · ≤
X(n:n) denote the order statistics obtained from this sample. In reliability literature, X(i:n) denotes
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the lifetime of an (n − i + 1)-out-of-n system which consists of n iid components. Then, the pdf of
X(i:n), 1 = 1, . . . , n is

fi:n(x) =
1

Beta(i, n− i+ 1)
[F (x,Φ)]i−1 [1− F (x,Φ)]n−i f(x,Φ) , (19)

where Φ = (α, β, γ, λ). Also, the joint pdf of (X(i:n), X(j:n)), for i = 1, . . . , n, is

fi:j:n(xi, xj) = C [F (xi)]
i−1 [F (xj)− F (xi)]

j−i−1 [1− F (xj)]
n−j f(xi)f(xj) , (20)

where

C =
n!

(i− 1)!(j − i− 1)!(n− j)!
.

We define the first order statistics as X(1) = min(X1, . . . , Xn), the last order statistics as X(n) =
max(X1, . . . , Xn), and the median order as Xm+1, if n = 2m+ 1. .

6.1. Distribution of minimum, maximum, and median

Let X1, . . . , Xn be independently identically distributed random variables from the transmuted gen-
eralized inverse Weibull distribution. The first, last, and median order pdf’s are given by

f1:n(x) = n [1− F (x,Φ)]n−1 f(x,Φ)

= n
{

1− e−γ(αx)−β
[
1 + λ− λe−γ(αx)−β

]}n−1

×αβγ(αx)−β−1e−γ(αx)
−β
[
1 + λ− 2λe−γ(αx)

−β
]

(21)

fn:n(x) = n [F (x,Φ)]n−1 f(x),Φ)

= n
{
e−γ(αx)

−β
[
1 + λ− λe−γ(αx)−β

]}n−1

×αβγ(αx)−β−1e−γ(αx)
−β
[
1 + λ− 2λe−γ(αx)

−β
]

(22)

fm+1:n(x) =
(2m+ 1)!
m!m!

(F (x))m(1− F (x))mf(x)

=
(2m+ 1)!
m!m!

{
e−γ(αx)

−β
[
1 + λ− λe−γ(αx)−β

]}m
×
{

1− e−γ(αx)−β
[
1 + λ− λe−γ(αx)−β

]}m
×αβγ(αx)−β−1e−γ(αx)

−β
[
1 + λ− 2λe−γ(αx)

−β
]
. (23)

6.2. Joint distribution of the ith and jth order statistics

The joint distribution of the the ith and jth order statistics from the transmuted generalized inverse
Weibull is

fi:j:n(xi, xj) = C [F (xi)]
i−1 [F (xj)− F (xi)]

j−i−1 [1− F (xj)]
n−j f(xi)f(xj)

= C {hi [1 + λ− λhi]}i−1

×{hj [1 + λ− λhj ]− hi [1 + λ− λhi]}j−i−1

×{1− hj [1 + λ− λhj ]}n−j

×αβγ(αxi)−β−1hi [1 + λ− 2λhi]
×αβγ(αxj)−β−1hj [1 + λ− 2λhj ] , (24)

where
hi = e−γ(αxi)

−β
.
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For the special case i = 1 and j = n we get the joint distribution of the minimum and maximum as

f1:n:n(x1, xn) = n(n− 1) [F (xn)− F (x1)]n−2 f(x1)f(xn)
= n(n− 1) {hn [1 + λ− λhn]− h1 [1 + λ− λh1]}n−2

×αβγ(αx1)−β−1h1 [1 + λ− 2λh1]
×αβγ(αxn)−β−1hn [1 + λ− 2λhn] . (25)

7. Weighted least squares estimators

In this section we provide the regression based method estimators of the unknown parameters of
the transmuted generalized inverse Weibull distribution, which was originally suggested by Swain,
Venkatraman, and Wilson (1988) to estimate the parameters of the beta distribution. It can be also
used for some other cases. Suppose X1, . . . , Xn is a random sample of size n from a cdf G(·) and
suppose X(i), i = 1, . . . , n, denotes the ordered sample. The proposed method uses the distribution
of G(X(i)), which is Beta(i, n). Hence, for a sample of size n, we have

E
(
G(X(j))

)
=

j

n+ 1

var
(
G(X(j))

)
=

j(n− j + 1)
(n+ 1)2(n+ 2)

cov
(
G(X(j)), G(X(k))

)
=

j(n− k + 1)
(n+ 1)2(n+ 2)

, for j < k,

see Johnson, Kotz and Balakrishnan Johnson, Kotz, and Balakrishnan (1994). Using the expectations
and the variances, two variants of the least squares methods can be used.

Method 1 (Least Squares Estimators) Obtain the least squares estimators by minimizing

n∑
j=1

(
G(X(j))−

j

n+ 1

)2

, (26)

with respect to the unknown parameters. Therefore, in case of the TGIW distribution the least squares
estimators of α, β, and λ, say α̂LS , β̂LS , and λ̂LS , can be obtained by minimizing

n∑
j=1

[
e−γ(αx(j))

−β
[
1 + λ− λe−γ(αx(j))

−β
]
− j

n+ 1

]2

,

with respect to α, β, and λ.

Method 2 (Weighted Least Squares Estimators) The weighted least squares estimators can be ob-
tained by minimizing

n∑
j=1

wj

(
G(X(j))−

j

n+ 1

)2

, (27)

with respect to the unknown parameters, where

wj =
1

var
(
G(X(j))

) =
(n+ 1)2(n+ 2)
j(n− j + 1)

.

Therefore, in case of the TGIW distribution the weighted least squares estimators of α, β, and λ, say
α̂WLS , β̂WLS , and λ̂WLS can be obtained by minimizing

n∑
j=1

wj

[
e−γ(αx(j))

−β
[
1 + λ− λe−γ(αx(j))

−β
]
− j

n+ 1

]2
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with respect to the unknown parameters.

8. Maximum likelihood estimators
Now we derive the maximum likelihood estimators (MLEs) and discuss inference under the TGIW (α, β, γ, λ, x)
distribution. Let X1, . . . , Xn be a random sample of size n from the TGIW distribution then the like-
lihood function can be written as

L(α, β, γ, λ, x) =
n∏
i=1

αβγ(αxi)−β−1e−γ(αxi)
−β
[
1 + λ− 2λe−γ(αxi)

−β
]
. (28)

Taking the logarithm results in the log-likelihood function

logL = n log(αβγ)− (β + 1)
n∑
i=1

log(αxi)

−γ
n∑
i=1

(αxi)−β +
n∑
i=1

log
[
1 + λ− 2λe−γ(αxi)

−β
]
. (29)

Differentiating equation (29) with respect to α, β, γ, and λ results in

∂ logL
∂α

=
n

α
− (β + 1)

n

α
+ γβ

n∑
i=1

xi(αxi)−β−1

−
n∑
i=1

2λαxi(αxi)−β−1e−γ(αxi)
−β

1 + λ− 2λe−γ(αxi)−β
, (30)

∂ logL
∂β

=
n

β
−

n∑
i=1

log(αxi) + γ
n∑
i=1

(αxi)−β log(αxi)

+
n∑
i=1

−2λγe−γ(αxi)
−β

(αxi)−β log(αxi)
1 + λ− 2λe−γ(αxi)−β

, (31)

∂ logL
∂γ

=
n

γ
−

n∑
i=1

(αxi)−β +
n∑
i=1

2λe−γ(αxi)
−β

(αxi)−β

1 + λ− 2λe−γ(αxi)−β
, (32)

∂ logL
∂λ

=
n∑
i=1

1− 2e−γ(αxi)
−β

1 + λ− 2λe−γ(αxi)−β
. (33)

We can find estimates of the unknown parameters by the maximum likelihood method equating all
the above nonlinear terms to zero and solving these equations simultaneously. The solutions are the
MLE’s α̂, β̂, γ̂, and λ̂. For the three parameter transmuted generalized inverted Weibull distribution
all second order derivatives exist. Thus we have(

α̂, β̂, γ̂, λ̂
)T
∼ Normal

(
(α, β, γ, λ)T , V −1

)
(34)

with the symmetric matrix

V = −E


Vαα Vαβ Vαγ Vαλ

Vββ Vβγ Vβλ
Vγγ Vγλ

Vλλ

 ,
where Vθ1θ2 = ∂2L/∂θ1∂θ2 denotes the second derivative of L with respect to θ1 and θ2. The matrix
V −1 represents the asymptotic variance/covariance matrix of the MLE’s. Based on (34), approximate
100(1− δ)% confidence intervals are determined as

α̂± z1−δ/2
√
V̂αα , β̂ ± z1−δ/2

√
V̂ββ , γ̂ ± z1−δ/2

√
V̂γγ , λ̂± z1−δ/2

√
V̂λλ ,
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where z1−δ is the 100(1 − δ)% percentile of the standard normal distribution and V̂·· denotes the
element of V·· evaluated in the MLE’s.

We can compute the maximized unrestricted and restricted log-likelihood functions to construct the
likelihood ratio test (LRT) statistic for testing some transmuted GIW sub-models. For example, we
can use the LRT statistic to check whether the TGIW distribution for a given data set is statistically
superior to the GIW distribution. In any case, hypothesis tests of the type H0 : θ = θ0 versus
H1 : θ 6= θ0 can be performed using a LRT. In this case, the LRT statistic is ω = 2(logL(θ̂, x) −
logL(θ̂0, x)), where θ̂ denotes the unrestricted MLE and θ̂0 is the MLE under H0. The LRT statistic
ω is asymptotically (as n → ∞) distributed as χ2

k, where k is the number of parameters specified
under H0. The LRT rejects H0 if ω > χ2

k;1−δ, where χ2
k;1−δ denotes the 100δ% quantile of the χ2

k

distribution.

9. Application
Now we use real data to show that the TGIW distribution might fit better than a model based on the
GIW distribution. The data set given in Table 1 is taken from Murthy, Xie, and Jiang (2004) page 180
and represents 50 items put into use at t = 0 and failure times are in weeks.

Table 1: 50 items put into use at t = 0 and their failure times in weeks.

0.013 0.065 0.111 0.111 0.163 0.309 0.426 0.535 0.684 0.747
0.997 1.284 1.304 1.647 1.829 2.336 2.838 3.269 3.977 3.981
4.520 4.789 4.849 5.202 5.291 5.349 5.911 6.018 6.427 6.456
6.572 7.023 7.087 7.291 7.787 8.596 9.388 10.261 10.713 11.658

13.006 13.388 13.842 17.152 17.283 19.418 23.471 24.777 32.795 48.105

Table 2: Parameter estimates of the GIW and TGIW distribution for 50 items put into use at t = 0
and their failure times in weeks.

Model Parameter Estimate − logL(·;x)
GIW α̂ = 0.854, β̂ = 0.479 168.638

γ̂ = 1.044
TGIW α̂ = 2.383, β̂ = 0.530 166.387

γ̂ = 1.143, λ̂ = −0.747

Table 3: Goodness of fit criteria.

Model K-S −2 logL AIC AICC
GIW 0.199 337.276 343.276 343.797
TGIW 0.192 332.774 340.774 341.662

The LRT statistic to test H0 : λ = 0 versus H1 : λ 6= 0 gives ω = 4.502 > 3.841 = χ2
1;0.95, so

we reject the null hypothesis. In order to compare the two distribution models we consider criteria
like the Kolmogorov-Smirnov test statistic, −2 logL, the AIC (Akaike information criterion) as also
the AICC (corrected AIC). The better distribution corresponds to smaller criterion values of AIC =
−2 logL + 2k and AICC = AIC + 2k(k+1)

n−k−1 , where k is the number of parameters in the statistical
model, n denotes the sample size and logL is the maximized value of the log-likelihood function
under the considered model. Table 2 shows the MLEs under both models, Table 3 contains the values
the Kolmogorov-Smirnov test statistic,−2 logL, AIC and AICC. These values indicate that the TGIW
distribution leads to a better fit than the GIW model.
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10. Conclusion

Here we propose a new model, the so-called transmuted generalized inverse Weibull distribution
which extends the generalized inverse Weibull distribution in the analysis of data with real support.
An obvious reason for generalizing a standard distribution is because the generalized form provides
more flexibility in modeling real data. We derive expansions for moments and for the moment gen-
erating function. The estimation of parameters is approached by the method of maximum likelihood,
also the information matrix is derived. An application of the TGIW distribution to real data show that
the new distribution can be used quite effectively to provide better fits than the GIW distribution.
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