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The Transport of Vorticity and Heat through Fluids in Turbulent
Motion.

By G. 1. Tavror, F.R.8.
(Received November 24, 1931.)

In Reynolds’ well-known theory of turbulent flow the effect of turbulence
on the mean flow of a fluid is conceived as the same as that of a system of
stresses which, like those due to viscosity, may have tangential as well as
normal components across any plane element. Taking the case of laminar
mean flow, that is when the mean flow is, say, horizontal and constant in
direction and magnitude at any given height, the components of stress over
a horizontal plane at height z are ¥, and Fy where F, = — puw, F, = — pow,
and u, v, w are the components of turbulent velocity parallel to two horizontal
axes z and y and the vertical axis z. The bar denotes that mean values have
been taken over a large horizontal area and p is the density of the fluid. The
stress F, is therefore due to the existence of a correlation between % and w.
In the extension of Reynolds’ theory due to Prandtl this correlation depends
on the rate of change in mean velocity. In its most simplified form the theory
may be expressed as follows. A portion of fluid possessing the mean velocity
of a level z, may be conceived to move upwards to a layer of height z, -1
preserving the mean velocity Uy of the layer from which it originated. At this
height it is conceived to mix with its surroundings. If 7 is small the mean

velocity of this layer is U, -1 Q, U being the mean velocity at height 2, so

that u = — ld—U-, and hence
dz

F,= pw_l“li—lzj. (1)

The quantity pwl is therefore of the same dimensions as viscosity and in
Prandtl’s theory it is treated as though it were in fact a coefficient of viscosity,
though not necessarily as one which has the same value at all points in the
field.

In deriving the expression (1) it is assumed that the pressure gradients on
the fluid which accompany the eddying motion have no effect on the final
result, so that each particle continues moving with the horizontal momentum
of the layer from which it originated till at some stage it mixes with the fluid
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at the level to which it penetrates. Without knowing how wi depends on the
boundary conditions and on the law of variation of U with z it is not possible
to apply any direct test to the theory by analysing observations of mean
velocity in two dimensions. All that can be done is to make plausible assump-
tions about wl and thus calculate a corresponding distribution of mean velocity
which can be compared with the observed distribution: or, alternatively, to
calculate values of wl corresponding with an observed distribution of mean
velocity.

Some years ago, at a time when I was ignorant of the work of Prandtl, I
put forward a somewhat similar theory.* but it differed in one very significant
feature. I supposed that each particle of fluid retained the vorticity, but not
the momentum, of the layer from which it started. Otherwise the theories
are identical, the mixture length I serving the same purpose in both theories.
My object in concentrating attention on the transference of vorticity rather
than momentum was that if the motion is limited to two dimensions the local
differences in pressure do not affect the vorticity of an element, whereas
Prandtl has to neglect them or to assume arbitrarily that they do not affect
the mean transfer of momentum even though they certainly affect the
momentum of individual elements of fluid. To illustrate the difference between
the two theories we may consider the case in which the mean flow is parallel
to the axis of z and the whole motion is limited to two dimensions, # horizontal,
and z vertical. According to Prandtl’s theory the tangential stress F is

olw L and the rate at which momentum is communicated to unit area of a

dz
layer of thickness 8z is

s0 that if the flow is that due to a uniform pressure gradient dp/de the equation
for U is

d {—- aU) 1 dp

dz dz) pdx @)
and if the motion is the shearing motion which would occur in the space
between two horizontal planes in relative movement

Tw au _ constant. (3)

dz

* ¢ Phil. Trans.,” A, vol. 215, p. 1 (1915).
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In order to express the idea that vorticity rather than momentum is conveyed
from one level to another by means of eddies, the equation of motion, neglecting
viscosity, may be written

1 @1) u ou , ou
el T T a
(0w ow
sand writing 7 HE — (;) for the vorticity, (3) becomes
S
» o (p s g ou
2 o 18) = 2 Lo
2 81;&9—*_%“ + v ) 7=t 2am,

9 Au

Taking mean values, and supposing that the eddying motion is on the average
(@) . . . . .
qumform in the direction of #, this becomes

Ldp_ o
ST 2w, (1)

g.org/ o

Now make the hypothesis, which is known to be true in the case of a non-
viscous fluid moving in two dimensions, that the vorticity is conveyed without
hange by eddies just as Reynolds and Prandtl assume that horizontal
omomentum is carried. In this case the correlation between 7 and » might

ubhshm

tyg

ci

Sarise in exactly the same manner as the correlation between » and w in Prandtl’s
Etheory, a portion of fluid which has come through a vertical distance / since it
epossessed the mean vorticity of the layer from which if originated has a
wvortlclty greater than that of the layer to which it has penetrated by an amount

oy

g ;l% ( ‘fg) for the vorticity of the mean motion at any layer is | {TL

&  Hence

i .. __ =d*U

z =SS

Zand (5) becomes - .

s 168 . Y. (5)
2 o du dz*

Comparing (b) with (2) it will be seen that the two formulw appear at a first
glance to be very similar. In the particular case when wl does not vary with
z they are identical.

In considering how it would be possible to devise experimental tests to find
out which, if either, of the two theories is correct, it will be seen that measure-
ments of the distribution of velocity alone arc not in general capable of dis-
tinguishing between them. If the mean velocity and pressure are measured
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at every point in a field of turbulent flow it is possible to deduce M, the rate
at which momentum is communicated to unit volume. According to Prandtl’s
theory
d (— dU
M=oz (W)

while according to the vorticity transport theory in two dimensions

—d*U

M =p 'wlzz-,

so that each theory enables wl to be determined from the observations as a
function of z, but they would in general be different functions of z in the two
cases.

On the other hand, if at the same time experiments on the distribution of
temperature were carried out, another estimate of the value of wl would be
found, for if Q be the rate at which heat is transferred across unit area per-
pendicular to the axis of 2z, and o is the specific heat

— db
Q= pcwl dz’
where 0 is the mean temperature at any point, so that measurements of
Q and d6/dz would enable us to obtain an independent value of wl. This
could be compared with those deduced from the distribution of mean velocity
by applying the two theories.

In the simple form presented above, the vorticity transport theory deals
only with cases where the turbulent velocities as well as the mean velocity
are confined to two dimensions. Some recent observations by Fage and
Townend* have shown that near a solid surface the component of turbulent
velocity parallel to the surface but perpendicular to the direction of mean flow
is considerably greater than either of the other two components, so that the
flow is certainly not two-dimensional. Experiments on the distribution of
temperature near a heated surface past which a turbulent stream is flowing are
therefore not suitable for our purpose. On the other hand, it seems possible
that the turbulence which occurs in the wake behind a cylindrical obstacle
with its axis perpendicular to the direction of the wind may be largely two-
dimensional. This might be anticipated on theoretical grounds because the
distribution of mean velocity in the wake behind an obstacle is of a type which
for a non-viscous fluid is unstable for two-dimensional disturbances.

* ¢ Proc. Roy. Soc.,” A, vol. 135, p. 656 (1932).
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There is little experimental evidence as to the character of the turbulent
motion in the wake behind an obstacle. The hypothetical Kédrmén street of
vortices is, of course, a two-dimensional motion and experiments which confirm
the existence of such a system may therefore be regarded as being in favour
of a tendency to a two-dimensional character in the eddying flow in the wake.
For this reason it seemed desirable to examine both theoretically and experi-
mentally the connection between the distributions of temperature and velocity

N in the wake behind a heated obstacle placed i a stream of wind.

Diffusion of Momentum in the Wake behind a Cylindrical Obstacle.

The distribution of velocity in the wake behind a cylindrical obstacle has
recently been examined theoretically and experimentally by H. Schlichting.*

It is well known that the width of the wake behind an obstacle placed in a
steady stream increases as the distance from the obstacle increases, while at
he same time the difference between the velocity in the wake and that in
he stream outside it decreases. Schlichting found that at some distance
behind a cylindrical obstacle (more than 30 diameters) the expanding wake
settles down to a steady regime in which the velocity at its centre is proportional
to 2%, while the width is proportional to z!, x being the distance down stream
from the obstacle.

If U, is the velocity of the stream in the absence of the obstacle and Uy — u, v
are the components of velocity in the wake, Schlichting’s experimental results
show that u can be expressed in the form

u/Ug =71 f (), (6)
where 7 = yz~* and y is the distance of any point from the centre line of the
wake. The corresponding expression for » which satisfies the equation of

> 1
t

continuity, = (U —u) + g_”y —0,is
v/Up= — s~ f(n). (7)

1f the wake is assumed to be narrow so that in it y is small compared with z,
and if u is small compared with Uy, the dynamical equation of motion repre-
senting Prandtl’s theory of momentum transport is

ou\ :
—an—“=—3<~—}. (8)
ox oy \ oy

* H. Schlichting, * Ueber das ebene Windschatten problem,” * Ingenieur Archiv.,’
(1930). Seealso  Turbulente Stromungen,”’ W, Tolmien, ‘ Handbd. Exp. Physik.,’ vol. 4,
p. 328, Leipzig, where a figure showing comparison of Schlichting’s theory with
observation is reproduced.
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where x is written for the coefficient of diffusion by turbulence, z.e., lTvg-'-‘
Y

according to equation (2). If it is assumed that the turbulent as well as
the mean motion is confined to two dimensions, the dynamical equation of the
vorticity transport theory is

o o%u
—Uo%’—:—K (:}72. (9)

Expressing these equations in terms of 7

1 [ou — 1,82 P (s Y e Y S 32 4

T, (52 ] connes = — 127 () — 35720 f" () = — b 7@} (10)
and since the wake is assumed to be narrow

ou = du —1

T = U= f (),

ay e ll'l'] [Oa’ f (Q)
Hence (8) becomes

p & PRSIy g
te (/%) dn{f ()}

This may be integrated, the constant of integration being omitted because

S (n) =0 when 7 = 0 so that

R Infm) = —«f" (). (11)
Similarly (9) becomes
d g et G

It will be seen that (11) and (12) contain » only so that Schlichting’s experi-
mental result mentioned above implies that « is a function of = only.

In Schlichting’s experiments » was found from his measurements with a
Pitot tube in the wake, so that f(n) was determined. It will be seen that
according to Prandtl’s theory

[ () 1
T ) G

and according to the vorticity transport theory of turbulence

In either case « can be found as a function of 4 from the observed distribution
of velocity in the wake, but it is not possible from these measurements alone
to distinguish which theory, if either, is correct.
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Heat Transport.

Suppose now that Schlichting’s obstacle had been heated. The heat would
be spread out in the wake and the equation of heat transport is
00 _ 0 [ 20,

B2 (.2, (13
where 0 is the difference in temperature between any point in the wake and
that in the main stream. This equation is identical with (8) except that 6
replaces u so that 6 must be of the form

0 =a7* (). (16)
and substituting this expression in (15) it will be seen that
s 2 M), (17)
2¢" (n)
We are now in a position to compare the distribution of temperature which

might be expected according to Prandtl’s theory and according to the vorticity
transport theory. According to Prandtl’s theory of transport of momentum

g __n_f&
¢ (n) 2« f(n)

¢ (n)/f (n) = constant, (18)

1.e., the distribution of velocity and temperature across the wake should be

so that

identical, as is obvious a priori.
According to the vorticity transport theory
) o W e
b (1) 2 fn)+af ()
& !" ( ) d"’i
S @) +0f" (n)
From the measured distribution of velocity in the wake the distribution of
temperature can therefore be predicted, but in this case it is not identical with
the distribution of velocity.

8o that

log {¢ (9)} = [ + constant. (19)

Distribution of Velocity in the Wake.
In order to predict the distribution of velocity in the wake behind an obstacle
Schlichting used Prandtl’s hypothesis that

g (20)

— Al? .
K A i




Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

692 G. I. Taylor.

where A is a constant and ! is a “ mixture length,” and the straight bars

surrounding % indicate that the absolute valueis taken. As a further special

hypothesis he assumed that ! is constant over any given section of the wake
and that it is proportional to #* so that l is always a given fraction of the width

of the wake. Taking | = aa? it will be seen that Schlichting’s assumed value
of k is

k= — Aa*f’ (). (21)

« is thus a function of 7 only so that it satisfies the condition which is necessary
in order that the breadth of the wake may be proportional to 2! and thus be
in accordance with Schlichting’s observations. Making this assumption, the

equation (11) becomes

o nf(n) =2Aa*[f" () (22)
The integral of (22) i1s

[f ()] = (18a%A) 7! + constant. (23)

If 7, is the value of 7 at the edge of the wake, which in this theory is entirely
enclosed within the parabola % = 7, then f(n) = 0 at = 7,. If £ written for
/Mo (23) becomes

f () = (18Aa%)~17,® (1 — E32)2 (24)

If uy is value of u at the centre of the wake in any given section at distance z
from the obstacle, (24) may be written

'Nv/u.o -] (1 — 53/2)2. (25)

Schlichting’s observations provide a remarkable confirmation of the accuracy
of this formula, and experiments recently made by Messrs. Fage and Falkner
at my request in the National Physical Laboratory also confirm its substantial
accuracy in the two cases which they examined.* The comparison between
the observed values of u/u, and £ and Schlichting’s relationship (25) is shown
in figs. 3 and 4.f It will be seen that the agreement is good. At first sight
this might be taken as indicating that Prandtl’s theory of momentum transport
is correct, and that consequently the theory of vorticity transport is incorrect ;
such an inference, however, is not justifiable, for the vorticity transport theory
predicts exactly the same distribution if the same assumption is made regarding

* Observations made in a tunnel specially designed to be free of turbulence gave rather
different results, but it seems probable that the final steady regime had not been attained.
The matter is being investigated further.

1 See appendix, p. 702.
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x. To prove this, substitute x = — Aa®’ (1) in (12). The differential equation

for f () is then
s () LA (0. @
The integral of (26) is
nf (n) = Aa®*[f" (). (27)
It will be seen that (27) is the same as (22) except that the constant 2Aa? in
(22) has become Aa?®in (27). The integral of (27) is
£ () = (OAa) 1 ngd (1 — 253, 28)
and if u, is the value of w at the centre of the wake, (28) becomes
wfug = (1 — E32)2, (29)

which is identical with (25). It will be seen, therefore, that with the particular
assumption that x is proportional to f'(n) (or for constant =, to du/dy) both
theories lead to the same predicted distribution of velocity in the wake and
this distribution is very closely verified by experiment.

Distribution of Temperature in the Wake when wjuy = (1 — Z3/2),
According to the momentum transport theory of turbulence the distribution
of temperature and velocity are identical, so that if 0, is the value of 0 at the

centre of the wake
0/0, = (1 — £32)% (30)

The distribution of temperature which would be expected according to the
vorticity transport theory is found by putting

f () = no® (9Aa®) ™ {1 — (/no)}*
in (19). Using this expression for f (1) and putting Z = n/7,

f nf" (n)dq
S () + nf (n)

( —— ; E.‘ L 652 dE
JT—58 148

becomes

the integral of which is
log (1 — £%2) 4 constant. (31)
Henece from (19)
log ¢ () = log (1 — %£*2) 4 constant,

or o ‘
0/0y = 1 — E92, (32)
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At first sight it seems a paradox that the two theories should lead to identical
distributions for velocity but different distributions for temperature, though
the equations governing the velocity distribution are different in the two
theories while the same equation for heat flow is used in each case. The
explanation is that the parameter Aa® necessary to produce a given distribution
of velocity in the wake, according to the vorticity transport theory, is twice
as great as the parameter necessary to produce the same distribution according
to the momentum transport theory. This parameter Aa? determines the
thermal conductivity due to turbulence, so that for a given distribution of
velocity the distribution of temperature in the wake of a heated obstacle is
determined by a thermal conductivity which the vorticity transport theory
predicts to be twice as great as that required by the momentum transport
theory., It may be noted that the effect of the local pressure gradients
which were neglected in Prandtl’s theory is in this case to increase the rate
of diffusion of heat compared with the rate of diffusion of momentum.
Previous workers who have considered the effect in a qualitative way have
predicted a decrease.®

Comparison with Experiment.

With a view to testing which (if either) of these two theories is correct,
measurements of the distribution of velocity and temperature in the wake of
a heated cylindrical obstacle were made at the National Physical Laboratory
by Messrs. Fage and Falkner. These experiments are described in their note
at the end of this paper. The velocity distribution was measured by means
of a Pitot tube traversed across a section situated some 25 to 40 diameters of
the obstacle down stream. From these measurements the width (2b) of the
wake and the position of its centre were determined. The diagram, fig. 1,
shows the scheme, the shaded portion representing the observed distribution
of velocity. The non-dimensional variable £ = y/b measuring the distance
from the centre of the wake was next calculated for each position where
measurements were made.

The differences 0 in temperature, and « in velocity between the heated wake
and the main air stream were measured, and these were reduced to non-

dimensional form by dividing by 6y, u, the values of 0 and  at the centre of
the wake.

*Cf. V. W. Ekman, “Meeresstromungen,” < Handbd. Phys. and Tech. Mech.’
(Auerbach and Hort), p. 203.
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The results of these observations are shown in figs. 3 and 4 where the values
of u/ug and 0/0, are plotted against £. Since the wake is symmetrical only
half of it is shown, positive and negative values of % being represented on the
same side of the axis. In each case the curves whose ordinates are (1 — £8/2)2
and 1 — Z%?2 are shown by broken lines.

In fig. 3, which represents the results of experiments with a §-inch circular
cylinder in a 3-feet open wind tunnel with parallel walls, it will be seen that the

Qpoints representing wu/u, fall very close to the curve (1 — £%2)2. This is the
Selationship which would be expected both on the vorticity transport and on the
‘gnomentum transport theories of turbulence when Prandtl’s special assumption
2% made for k. The points representing 0/6,, on the other hand, are scattered
;E:g'ound the curve 1 — £%2 as predicted by vorticity transport theory and are
od/ery far indeed from the curve (I — Z%2)2 which is predicted by the momentum
&ransport theory.
%f) The scatter of the points representing 6/0, in this experiment is rather
_gﬁrge, and it was suspected that this might be due to casual variations in
itemperature of the building in which the open tunnel was situated ; accordingly
%xperiments were made in a 1-foot open jet tunnel of the return flow type.
glxperiments with an }-inch eylinder in this tunnel showed that much greater
-Bteadiness of temperature could be obtained, but the smallness of the diameter
Sf the jet (1 foot) made the flow behind an }-inch cyclinder lose its two-dimen-
%ional character at a distance of 30 diameters down stream.*
X To regain the two-dimensional character of the wake it was necessary to
Blecrease its width, and for this purpose the }-inch circular cylinder was replaced
-%y a lenticular cylinder 0-53 inch thick by 2-6 inches wide. With this obstacle
%he results shown in fig. 4 were obtained. It will be seen that the scatter of
q.a)oint's representing 60/0, has disappeared. The points representing w/u,
'%re now not so close to Schlichting’s curve (1 — E%2)2 as before : there is a
%ystematic variation which may be due to the fact that the width of the wake
58 only five times that of the obstacle so that the flow may not have settled
Rlown to its permanent regime. The same kind of systematic variation of the
points representing 6/6, from the curve 1 — £%2 will be seen, but in spite of
this variation the confirmation of the vorticity transport theory of turbulence

* That the mean flow in the 3-feet tunnel was two-dimensional in the central part of
the tunnel is shown by the fact that there is no systematic difference between the points
marked (9 which were taken along a line distant 3 inches from the centre of the tunnel
and those marked (5) which were taken along a line passing through the centre of the
tunnel.
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is strikingly verified for, even at its greatest, this variation is small compared
with the difference between 1 — 232 and (1 — E%2)2

Proof that * Momentum Transport Theory s untrue when Motion is confined to
Two Dvmensions.

Though Prandtl’s theory is usually expressed in a mathematical form into
which only two dimensions enter, it is possible to give a mathematical proof
that it would be untrue if the turbulence as well as the mean motion were
limited to two dimensions. If ¢ is the stream function at any instant of any
two-dimensional motion of a viscous incompressible fluid, then the whole
system may be rotated with uniform angular velocity € about an axis
perpendicular to the plane of motion, and a motion relative to the rotating
axes identical in every respect with the original motion is possible, If p
is the pressure corresponding with the original motion, the pressure when the
whole system is rotated is p - 2p Qd + $p Q%2 where 7 is the distance from
the centre of rotation. The stresses due to viscosity are unaltered by the
rotation as also are the stresses due to turbulence.

Prandtl’s expression for the tangential stress due to turbulence in the case
where the mean flow is in circles is

vt Ln]

where V is the tangential velocity. A rotation of the whole system about the
centre merely adds to V an amount Qr without altering wl. Prandtl’s expres-
sion therefore involves an increase in F of amount 2pwl Q due to the rotation.

As we have seen, the assumption that the whole fluid motion is limited to
two dimensions necessarily implies that a rotation of the whole system makes
no difference to anything but the pressure, so that the tangential stresses are
unaltered by rotation. This conclusion would also follow from the vorticity
transport theory because the addition of a constant vorticity to all parts of
the field leaves the transport of vorticity unchanged.

One must therefore conclude that the reason why Prandtl’s theory does not
apply to two-dimensional flow is that he neglects the effect of the local pressure
distribution in a turbulent system in altering the momentum of the portions
of fluid which act as transporters of momentum from one layer to the next.

This source of error must also exist in all cases of turbulent flow except those
in which the turbulence is confined to planes perpendicular to the mean fow.*

* i.e., cases where lines of particles parallel to the direction of mean flow remain parallel
to that direction.
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In the case of flow between concentric circular cylinders for instance, Prandt!’s
theory might be expected to apply if the turbulence consisted entirely of the
ring-shaped vortices symmetrical about the common axis, which do occur
under certain conditions of rotation of the inner and outer cylinders.

Eztension of * Vorticity Transport * Theory to Three Dimensions.

The equations of steady mean motion of a non-viscous fluid may be expressed

Qn the form
o

10P oU ou oU o ——e—
> X —====U=—= —— ——a— —_ 2 9 R .
7 o5~V t Vg TV tig@t20m—1) @3
en

<=wvith two similar equations. In these equations X, Y, Z are the components
St external force acting on unit mass of the fluid, U, V, W are the components
Sf mean velocity and P is the mean pressure. The velocity at .any point
\%'% U+ u, V4o, W+ w,¢®=u?+ 2+ w? and &, 7/, w’ are the components
gt vorticity of the turbulent motion so that

=

E g (=2,

é \ Oy 0z/

te, and since u =v=w=0,8 =9"={" =0.

§ Equations (33) are the three-dimensional analogy of (4). It is not possible,
'§\10wever, to proceed quite in the manner previously adopted and thus deduce
soa three-dimensional version of (5), because the vorticity of an element only

dremains unchanged when the motion is limited to two dimensions. Using
Ethe equations of vorticity in the Lagrangian form we may express the com-

nents of vorticity at any point in terms of its vorticity components at some
gprevious time in the form*
Q

e e O o S B D R
"§ ;‘f—a*—aoa—a‘*"’lo‘a‘b“l Coac
E % 4., %% :
s e oo M 3
Q% 1+9 =Bzt +log (34)
v r a.’.’ ! 8:4 v a_z
Z‘}‘s —eo;—;l‘"[‘ ’]n‘a—,‘)‘{‘kaoac 5

where Z, 7, { are the components of vorticity of the mean motion, (a, b, ¢) are
the co-ordinates of the particle of fluid at time ¢, which at time ¢ occupies the
position (z, ¥, z). Zg» Ny Lo are the values of £, «, L at the point (a, b, ¢) at

* See Lamb, * Hydrodynamics,” 4th ed., p. 197.
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time ¢, The assumption previously made in the case of two-dimensional
motion, namely that inherent in the idea of a “ mixture length,” may now be
made. This is that the portion of fluid which at time ¢ occupies the position
z, i, z, had at some previous time ¢, the same components of vorticity as its
surroundings, namely the mean vorticity at the point a, b, ¢. Under these
circumstances if the mixture length be supposed small and the mean motion
steady, we may expand £, in terms of £ using only the first order terms of the
Taylor series so that

G=E— - —h =0 (33)

0z

with similar expressions for 7,, .

Inserting these expressions in (34) wn’ — T’ therefore becomes

(w?" ) (e >+t< A3

ab oc
+(m—a)( oo wggra’m )(va—,;—w-éi,j\a +@—a)(v 54'-’)';3,—’;
+@—a)o )2+ =0 (v Z—w) S+ a0 §—«?)g—<.

(36)
This expression, together with the two similar ones obtained by permuting
cyclically xyz, abe, ZnC, represents the effect of turbulent motion on the mean
motion according to the vorticity transport theory. In general it is so com-
plicated that it is of little practical use, but in certain special cases considerable
simplifications may oceur.

Case of Laminar Mean Flow.

Let us now take the case previously discussed for which the mean velocity
U is parallel to the axis of z and is a function of z only. InthatcaseZ =¥ =0

au .= X :
and 7 =} = and since ¢* may be assumed a function of z only, equation (33)

becomes
_1%P_dU( 5y G\ _d&U, . ‘
poz dz <“ ™. a_c> 7z &9 ( Wiy ac) : (37)

It will now be shown that the equation (37) includes Prandtl’s momentum
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transfer equation and my simple vorticity transfer equation for two-dimensional
turbulent motion as special cases.

Case A. Two-dimensional Turbulent Motion Parallel to the Plane (zz).—
In this case » = 0, dy/0b = 1, so that (37) becomes

L
—_———— = — c%{(z—c)(w). (38)
S In this equation z — ¢ represents the same physical quantity as [ in equation
(8) so that (38) is identical with (5).
EOC'ase B. Turbulence confined to the Plane (yz).—This is the case to which
ﬁrandtl’s momentum transfer theory must apply because there can be no
pl'essm‘e gradients to alter the momentum of lines of particles parallel to the
zﬁns of .
&DSmce y, z are functions of b, ¢, ¢, we can also consider b, ¢ as functions of
pz, t. Remembering that the equation of continuity for an incompressible
hid in Lagrangian co-ordinates is

= o0 oy

= e =1 3

= %3 0 9)

2

@ will be found that the equations for transformation are

=

g B_%& %_ _ = k_uy B__ 2y )

= oy 0oc Oy ob’ o0z ob oz de

Bence

= ¢ . de de

5 " T ® ez ' oy

=

= de oc 2 S

Baking the average value of w = + v = over a great breadth L in the direction

] oz oy .

(g the axis of y, then since

2 L 4

(@ Bc;_‘ac____l_s’ [ 0(z—c¢) , O(z—e)l

A ] wdy~o0 wgtim=—gl e g %

()(~——- ) -—_l[ g ] 4 = p— ﬂd

—1 y=—Ltloe—a] +1[ e—oaw.

oy

Since v (z — ¢) does not increase as L increases

1
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and since
o _ _ ow
oy oz’
L
[ (e — o) L 2y ——.[ (z—c)—dy,
Jo oy
hence

fw%g—'vgc—z= —lij:{w—(z—c)+(z—c)—}dy

= — gzw(z—-c). (41)
Transforming the coefficient of d*U/dz® in (37) in the same way it is found that

@ —vZ)= —c—a(wZ+03),

and

B E——Jua—0) —WE =0 =hwg (—P—uE—0)

—e—pE=—ovl 0 =dog (o

oy
= Ltisw [2—L [v(z — c)’]l j- (z—c)’—dy

=LtL_,m— (a—c)z—dy—-i(z—c)—

9L,
Hence ‘
— (e —o) (w%%—-v?—j):—w(z—c)—l—%%w(z—c)’. (42)

Now in deriving (36) and (37) it was assumed that the mixture lengths z — ¢
are small so that terms in (2 — ¢)* can be neglected compared with terms
containing (z — ¢). To this order of approximation therefore the equation
of motion (37) becomes

1 oP dur o SR SR
T o & [aﬂ” =0 |- azz2 s wE—o
so that
1 0P d[——dU
81' - [w (z— o) d;]
or in the notation of (2),
d /— dU)\
= &:z(wlﬂ ). (43)

This is identical with Prandtl’s momentum transfer equation.
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Concluding Remarks.

The only other case besides that discussed in this paper in which a complete
set of measurements of the distribution of temperature and velocity in a
turbulent fluid seems to have been made is that of the air near a heated flat
plate in a wind stream. The very careful experiments of F. Elias* have shown
that the distributions of velocity and temperature are then very nearly
g’dentical, as would be expected according to Reynolds’ and Prandtl’s theory
Qf momentum transfer. We have seen that there is one type of turbulence
Tor which the momentum transport theory is identical with the vorticity
ransport theory, namely when the turbulence is confined to the plane per-
}endicular to the direction of the mean flow (see (43) above). In a recent

otef I have shown that the observations carried out a short while ago by
Fage and Townend on the maximum values of the components of turbulent
%D)otion in a pipe suggest that the motion near the surface of the pipe is
gpproximately of this type. More observations are required before it can
'—Se known definitely whether this is the true cause of the agreement between
.Tghe observed distributions of temperature and velocity near a heated plate.
S The theory of vorticity transport was developed in the essay for which
Bhe Adams Prize was awarded in 1915, but the experimental confirmation
Eﬁorded by the experiments here described results from a study of Schlichting’s

cq-w,per
é). 2

/

https:/

Sumimnary.
The theory that the dynamics of turbulent motion should be regarded as an
gffect of diffusion of vorticity rather than as a diffusion of momentum was put
Forward by the present writer in 1915, and the particular case when the whole
Thotion is limited to two dimensions was then discussed, though so briefly that
%- appears to have escaped notice. The analysis is now extended to three-
imensional motion and it is shown that the “ momentum transport >’ theory
8f Reynolds and Prandt] agrees with the * vorticity transport ™ theory in one
case only, namely when the turbulent motion is of a two-dimensional type,
being confined to the plane perpendicular to the mean motion.
When the turbulent motion as well as the mean motion is confined to two
dimensions the vorticity transport theory yields results which are quite different
from those predicted by the momentum transport theory.

* ¢ Tje Warmenbegang einen gleitzten Platte an Stromende Luft,” ® Abh. Aerodyna-

mischen Institut Aachen,” vol. 9, p. 10 (1930).
1 ¢ Proc. Roy. Soc.,” A, vol. 135, p. 678 (1932).
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A searching test of the comparative merits of the two theories is provided
by comparing the distribution of temperature and velocity in the wake behind
a heated obstacle. According to the momentum transport theory they should
be identical, at any rate at some distance down stream, while according to the
vorticity transport theory they should be related to one another by an equation
which is given. Measurements made at the National Physical Laboratory
show a large difference between the distributions of temperature and velocity
and confirm the aceuracy of the theoretical distributions given by the vorticity
transport theory for the case of two-dimensional motion when the turbulent
motion is confined to the plane of the mean motion.

APPENDIX,

Note on Experiments on the Temperature and Velocity in the Wake of
a Heated Cylindrical Obstacle.

By A. Face and V. M, FALKNER.
(Communicated by G. I. Taylor, F.R.S.—Received November 24, 1931.)

Description of Obstacles.

For the experiments, the results of which are shown in fig. 3, a solid carbon
cylindrical rod of diameter §-inch was mounted in a 3-feet wind tunnel of the
N.P.L. type. The length of the rod was 3 feet. The rod was directly heated
by passing through it a current of about 70 amps.

po— x ’-
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Fra. 1.

The experiments, results of which are given in fig. 4, were made with a thin-
walled copper cylinder having a lenticular section (2-60 inches by 0-53 inch)



