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THE TRANSPOSITION OF LOCALLY COMPACT, 

CONNECTED TRANSLATION PLANES 

Thomas Buchanan and Hermann H~hl 

This note deals with the transposition of translation 
planes in the topological context. We show that a topo- 
logical congruence C of the real vecto~ space R 2n has 
the property that every hyperplane of ~zn contains a 
component of C. This makes it possible to define the 
transpose P~ of the topological translation plane P 
associated with C; it is proved that the translation 
plane pT is topological also. The relationship between 
collineation groups and the relationship between coordina- 
tizing quasifields of P and pT are also discussed. 

w 

Before we formulate our main results, we recall some facts 

and definitions. 

The affine point set of a locally compact, connected, 

topological translation plane P can be identified topo- 

logically with a finite dimensional real vector space V 

(in its usual topology) in such a manner that the lines 

through the origin of V are linear subspaces ([3, p.12-13]). 

These lines form a congruence of V; and the translation 

plane P is the translation plane associated with this 

congruence in the sense of Andr@ [I]. Any congruence of a 

real finite dimensional vector space V which can be ob- 

tained in this manner will be called a topological con- 

gruence of V. It is known that the only possible dimen- 

sions of V are 2, 4, 8 and 16 ([3, p.47 Satz I]). 

By V* we denote the dual space of V consisting of 
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2 BUCHANAN and H~HL 

all linear forms V , ~; by the polar of a linear sub- 

space C of V we mean as usual the annihilator C ~ = 

{~ 6 V* / ~(C) = O} of C in V*. 

Using results of Breuning [3] we shall prove 

THEOREM. Let C be a topological congruence of a 

real finite dimensional vector space V. Then 

(a) C has the property that any hyperplane Of V 

contains a component of C, and 

(b) the set C ~ : {C ~ / C 6 C} of the polars of the 

components of C, which by (a) i8 a congruence of 

V ~, is a topological congruence. 

Remark: The topological hypothesis of our theorem cannot 

be omitted, since by [2, Teorema 2.2] there exist (neces- 

sarily nontopological) congruences of V which do not 

have the hyperplane property of part (a). 

COROLLARY. Let P be a locally compact, connected, 

topological translation plane, and let C be the 

associated topological congruence of the underlying 

real vector space V. Then the translation plane 

pT associated with the corresponding polar con- 

gruence C b is also a locally compact, connected, 

topological translation plane. 

The plane pT is called the transpose I) of P. 

Proof of the Theorem. 

(a) Identify V with ~2n and give C the finest topo- 

logy such that the map 

(I) R2n\{o} , C: x ; ~ C , 
x 

which sends each nonzero vector x to the unique compo- 

nent C of C containing x, is continuous. By Satz 2 
x 

of [5, p.14] C is homeomorphic to the n-sphere S n. 

I) The authors are indebted to Dr. Rainer L6wen for 
calling their attention to this elegant description 
of the transpose using polars. 
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Moreover, if we consider C as a subset of the Grassmann 

manifold Gn(N2n) of  n - d i m e n s i o n a l  s u b s p a c e s  o f  N 2 n  

then the topology of C is the topology induced from 

Gn(~2n) ([5, p.50 Satz I and p.17]). 

Let H be an arbitrary but fixed hyperplane in ~2n. 

Arguing indirectly, we assume that H does not contain a 

component of C. Then obviously n Z 2. Moreover, every 

component of C would intersect H in a linear subspace 

of dimension n-l. Thus 

CIH = {C nH / C 6 C} 

would be a s u b s e t  o f  the  Grassmann m a n i f o l d  Gn_I (H) .  By 

looking at the Grassmann manifolds as quotient spaces of 

Stiefel manifolds it is easy to see that the map 

(2) C ---+ Gn_I(H): C I ~ CA H 

would be continuous. Thus CIH as a subspace of Gn_I(H) 

would be homeomorphic to S n. 

Consider the canonical (n-l)-dimensional vector bun- 

dle xn-l(H) over Gn_l(H) as defined for example in 

Milnor-Stasheff [6, P.59 ff.]. By restricting yn-l(H) to 

the subspace CIH of Gn_I(H) and by removing the zero 

vector from each fiber, we would obtain a locally trivial 

fiber bundle over the n-sphere CIH with fiber Hn-l\{o}, 

total space 

E : {(CAll,x) 6 (CIH)• (H-{O}) / x 6 C}, 

and bundle projection E - , CIH given by the projection 

onto the first factor. The total space E would be home- 

omorphic to H\{0} = ~2n-l\{O} by the map H\{O} ~ E: 

x I, (CxD H,x), which can be expressed using maps (I) 

and (2) to check continuity. We now note an inconsist- 

ency when we examine the following part of the exact homo- 

topy sequence of this fiber bundle: 

~ nn_2(~n-l\{o } ) --+ (~2n-l~{O}) __+ --+ ~n_l(S n) nn_ 2 " 

since n Z 2, the homotopy groups (or sets) nn_l(S n) and 

nn_2(~2n-1\{0}) are zero, whereas Un_2(~n-l\{0}) is not 

zero. This contradiction proves part (a) of the theorem. 
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(b) By [6, P.57 Lemma 5.1] the map C ~-+ C ~ from C 

into the Grassmann manifold Gn(V*) is continuous, since 

after appropriate identification of the vector spaces V 

and V*, the polar C ~ of C is nothing more than the 

orthogonal complement C • Therefore C ~ is homeomorphic 

to S n too. 

Thus to complete the proof of part (b) it suffices 

to apply the following lemma, which is implicit in [3]. 

LEMMA. Let C be a congruence of ~2n having line- 

ar subspaces as components. Then C is topological 

if and only if C is compact as a subset of Gn(~2n). 

The "only if" part of this lemma has already been used in 

part (a) of the proof; it follows immediately from 

[3, p.14 Satz 2, p.30 Satz I and p.17]. For the "if" 

part, we look at the canonical n-dimensional vector bundle 

n(~2n) restricted to C having the total space 

E = {(C,x) �9 C • / x �9 C} 

and the projection E ~ C: (C,x) I , C. This vector 

bundle admits (in the terminology of [3, p.22]) the effec- 

tive Gauss map E ---+ ~2n: (C,x) i ~ x. We can then apply 

[3, p.27 Satz, p.28 Korollar and p.34 Satz 1]. 

w 

In this section we make a few remarks about the effects of 

transposition of a locally compact, connected translation 

plane as far as the collineation groups and coordinatizing 

quasifields are concerned. 

Recall that a quasifield which coordinatizes a local- 

ly compact, connected translation plane P is a locally 

compact, connected, topological quasifield in the sense of 

Salzmann [7, w conversely, any plane coordinatized by 

such a quasifield is a locally compact, connected trans- 

lation plane. The kernel K of P is isomorphic as a 

topological field to ~, C or the quaternion field 

([3, p.8 Satz 3]). 
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V K , = 

over K' 

0 
CK, : {~ 6 VK, 

and the family 
O 0 

CK, : {CK, / 

We first claim that the transpose pT of P can be 

constructed equally well using K instead of R as the 

base field. 

More generally let P be a (not necessarily topolo- 

gical) translation plane which is finite dimensional over 

its kernel K. By [I] the affine point set~ V of P may 

be considered as a one-sided vector space over K in such 

a manner that the components of the congruence C associ- 

ated with P are K-linear subspaces. (In the case where 

P is locally compact and connected, the R-linear struc- 

ture which we have been considering up to now is, of 

course, simply given by restriction to the closed subfield 

of K.) Given any subfield K' of K, we can regard 

V as a K'-vector space and form its dual 

HomK,(V,K') 

For C e C consider the K'-polar 

I r = O} 

cec}. 

PROPOSITION 1. Suppose K' is a subfield of K and 

F a central subfield of K' such that V has fi- 

nite dimension over all these fields. Then there ex- 

ists an F-linear isomorphism V , ~ V F which maps 

o for every C 6 C. In particular, if C~, onto C F 

0 and o is a congruence, one of the families C F CK, 

the other i8 also. 

Proof: If 6: K' ~ F is any nonzero F-linear form, let 

A: VK, ' VF: ~ ~ ' ~ 

be the induced map, which is F-linear, since F is cen- 
o 

tral in K'. The map A is injective, and A(C ,) ~ C F 

for every C E C. Since the F-dimensions of V F and 

V K, are equal, and the F-dimensions of C ~ CoO F and are 
K' 

equal, a must be an isomorphism, and A(C~,) = C F . 

COROLLARY. Let P be a locally compactj connected 
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translation plane, K its kernel and C the congru- 
o 

ence associated with P. Then C K is a topological 

congruence, and the translation plane associated with 

o is topologically isomorphic to the transpose pT C K 

described in the Corollary on page ~. 

This follows from the Theorem on page 2 using Proposition 

1 with F = 8 and K' = K. 

Maduram [5] has described the relationships between 

some collineation groups and between coordinatizing quasi- 

fields of finite translation planes and their transposes. 

His general results as well as his proofs carry over to 

locally compact, connected translation planes. We give 

topological analogues of three of his propositions, which 

are of particular interest in this context, together with 

indications of proofs using our notation. 

PROPOSITION 2 (cf. [5, Prop. 3]). Let P be a lo- 

cally compact, connected translation plane, let F 0 

denote the isotropy subgroup of the affine colline- 

ation group of P with respect to the origin, and 

let ~0 denote the subgroup of continuous colline- 

�9 * * be the analogously ation8 in F0; let r 0 and E 0 

defined groups of collineations of the transpose pT. 

Then F 0 and P 0 are isomorphic--viewed as trans- 

formation groups of the congruences associated with 

P and pT respectively--via an isomorphism which 

�9 The action of gO on the trans- maps E 0 onto E 0 . 

lation group of pT is the contragredient represen- 

tation of the R-linear action of ~0 on the trans- 

lation group of P. 

For the proof, recall that r 0 consists of all K-semi- 

linear automorphisms of V which respect the congruence 

C ([1, p. IZ8 Satz 19]). For A 6 r 0 with a 6 Aut K its 

companion automorphism, define a K-semilinear transforma- 

tion A v of V~ by 

(3) AV(~) = ao~oA -I (~ 6 V~). 
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A straightforward calculation shows that A v respects the 
o 

congruence C K , and thus by the corollary on page 5 may 
@, 

be considered as an element of F O. One easily checks 
@ 

that A e--+ AV: F , 0 F 0 is a group isomorphism; this 

o. C : o together constitute and the bijection C .+ C K. ~ C K 

a transformation group isomorphism 

v 0 
*,C~): (A,C) ~ (A ,C K) . (4) ( to ,C)  ~ (r o 

Since the companion automorphism of A v is again a, the 

continuity of A, a and A v are equivalent. 

To compare the actions of E 0 and EO, take the 

R-linear form 8: K ---* R which associates to each z 6 K 

its real part 6(z) : Re z (K is either ~, C or ~), 
@ @ 

and identify V K and V~ by the induced isomorphism A 

as defined in the proof of Proposition I. We shall inter- 

prete formula (3) in V~: Making use of the fact that 

~oa = 6 when a is a continuous automorphism of K, we 

have 

@ 
AoAMoA-I(e) = ~oao(A-le)oA -I = ~oA -I (AE n0, ~ 6V~), 

which is the expression defining the contragredient repre- 

sentation. 

PROPOSITION 3 (cf. [5, Prop. 4 and 5(3)]). Let Q 

be a locally compact, connected quasifield (or a real 

finite dimensional division algebra), and let P be 

the translation plane coordinatized by Q. Then 

there i8 a locally compact, connected quasifield 

(respectively, a real division algebra) Q', which 

coordinatizes the transpose pT and thus has the 

same dimension as Q, such that the middle nucleus 

and the left nucleus of Q' are topologically iso- 

morphic to the left nucleus and the middle nucleus 

of Q respectively. 

Remark: Note that Dembowski, Andr~ and Maduram consider 

quasifields with the distributive law (a + b)c = ac + bc, 

whereas the distributive law used by Breuning and Salzmann 

is c(a + b) = ca + cb. Proposition 3 is formulated ac- 

90 



8 BUCHANAN and H~HL 

cording to the latter convention; in particular, the left 

nucleus here plays the role of the right nucleus in [4, p. 

134] and [5]. 

For the proof of the proposition, let C 1 and C 2 

denote the first and second coordinate axes in the coor- 

dinatization of P over Q, and call their respective 

points at infinity Pl and P2" Take Q' to be a lo- 

cally compact, connected quasifield which coordinatizes 

o o (i : 1,2) pT with respect to the K-polars (Ci) K 6 C K 

as first and second coordinate axes. To simplify nota- 
o. 

tion we write these axes as C i, denote their respective 
o 

points at infinity by Pi (i = 1,2). 

By straightforward calculation we see that the trans- 
o 

formation group isomorphism (F0,C) ~ (F0,C K) of (4) re- 

stricts to an isomorphism between the group r(Pi,C ~) of 
V 

central collineations of P with center Pi and axis C. 

and the group r*( o cO, pj, i ) of central collineations of P TJ 

o C? (i,j 6 {1,2}). These with center pj and axis i 

groups of central collineations are K-linear ([I, p. 180 

Satz 22]); hence the groups carry the obvious topology, 

and the isomorphisms above are clearly continuous. The 

proof proceeds by using the well-known relationships of 

these groups to substructures of the coordinatizing quasi- 

fields (cf. [4, p.134, 3.1.30 ff.]): The left-middle in- 

terchange in the assertion regarding the nuclei of Q and 

Q' follows from the isomorphisms F(PI,C2) ~ F*(P2,Cl~ o) 
o o 

and F(P2,C I) m F*(Pl,C 2) and the relationships of these 

strain groups to nuclei. Moreover, Q' is a semifield 

when Q is, since the shears group s is transi- 

tive on C ~{C 2} if and only if the corresponding group 
r * (  o o o o P2,C2) is transitive on C K \{C2}. Finally, a local- 

ly compact, connected semifield is a real finite dimen- 

sional (not necessarily associative) division algebra, 

because by the arguments of [5, p.8 Satz 3] it contains 

in its center. 

The contribution of the second author to this paper 
is part of his work on a program sponsored by the Deutsche 
Forschungsgemeinschaft, and he would like to thank the DFG 
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