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We considered the problem on transversal oscillations of two-layer straight bar, which is

under the action of the lengthwise random forces. It is assumed that the layers of the bar

were made of nonhomogenous continuously creeping material and the corresponding

modulus of elasticity and creeping fractional order derivative of constitutive relation of

each layer are continuous functions of the length coordinate and thickness coordinates.

Partial fractional differential equation and particular solutions for the case of natural vi-

brations of the beam of creeping material of a fractional derivative order constitutive

relation in the case of the influence of rotation inertia are derived. For the case of natural

creeping vibrations, eigenfunction and time function, for different examples of boundary

conditions, are determined. By using the derived partial fractional differential equation of

the beam vibrations, the almost sure stochastic stability of the beam dynamic shapes, cor-

responding to the nth shape of the beam elastic form, forced by a bounded axially noise

excitation, is investigated. By the use of S. T. Ariaratnam’s idea, as well as of the averaging

method, the top Lyapunov exponent is evaluated asymptotically when the intensity of

excitation process is small.

Copyright © 2006 Katica (Stevanović) Hedrih. This is an open access article distributed

under the Creative Commons Attribution License, which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The use of composite beams is now a real trend in many engineering applications. This

trend calls for the development of efficient tools, suitable for the analysis of beams ex-

hibiting three-dimensional effects, for which the classical beam theory assumptions are

no more valid.

Transversal vibration beam problem is classical, but in current university books on

vibrations we can find only Euler-Bernoulli’s classical partial differential equation (see

[24, 31]) for describing transversal beam vibrations. In some monographs [25–27], we

can find a nonlinear partial differential equation for describing transversal vibrations of
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2 Creeping vibrations of a nonhomogeneous beam

the beam with nonlinear constitutive stress-strain relation of the beam ideal elastic ma-

terial. Recently new models of the constitutive stress-strain relations of the rheological

new beam materials [10] were found in books [5] and as applications in journal papers

[2, 4, 19–22]. In the university book by Rašković [31], extended partial differential equa-

tion of the transversal ideally elastic beam vibration is presented with members by which

influences of the inertia rotation of the beam cross-section and shear of the cross-section

by transversal forces are presented.

In the paper by Tabaddor [36], compare the experimentally and theoretically obtained

single-mode responses of a cantilever beam. The analytical portion involves solving an

integro-differential equation via the method of multiple scales. For the single-mode re-

sponse, a large discrepancy is found between theory and experiment for an assumed ideal

clamp model.

Bypassing the complexity of a full three-dimensional elasticity analysis, Crespo da Silva

derived nonlinear equations governing the dynamics of 3D motions of beams.

The purpose of the paper by Fatmi and Zenzri [6] was to simplify the numerical im-

plementation of the exact elastic beam theory in order to allow an inexpensive and large

use of it. A finite element method is proposed for the computation of the beam operators

involved in this theory. The discretization is reduced since only one element is required in

the longitudinal direction of the beam. The proposed method is applied to homogeneous

and composite beams made of isotropic materials and to symmetric and antisymmet-

ric laminated beams made of transversely isotropic materials. Structural beam rigidities,

elastic couplings, warpings, and three-dimensional stresses are provided and compared

to available results.

The integral theory of analytical dynamics of discrete hereditary systems is presented

in the monograph by Goroshko and Hedrih [10] and their applications are published in

the following papers by Hedrih (Stevanović) [12, 13, 16–20].

In the paper by Machado [37] we learn that the papers by Gemant [8] and Oldham

[28], among other cited papers, contain the basic aspects of the fractional calculus theory

and the study of its properties can be addressed in these references, while research results

can be found in papers by Osler [29], Ross [32], Campos [3], Samko [33], and others. We

must also refer to Gorenflo and Mainardi’s [9].

In [9, 34] fractional calculus is mathematically based on corresponding integral and

fractional order differential equations and in [5] fractional calculus is coupled with con-

stitutive relation of real creeping material. In [2, 4] the authors presented new results of

the stability and creeping and dynamical stability of viscoelastic column with fractional

derivative constitutive relation of rod material. Papers by Hedrih (Stevanović) [19, 20]

are in relation to the transversal vibrations of the beam of the hereditary material and the

stochastic stability of the beam dynamic shapes, corresponding to the nth shape of the beam

elastic form. Also, in [19] the transversal vibrations of the beam of the new models of the

constitutive stress-strain relations material in the form of a fractional derivative order con-

stitutive relation beam are studied, and as well, the stochastic stability of the beam dynamic

shapes, corresponding to the nth shape of the beam elastic form, is examined by using ideas

of S. T. Ariaratnam [1]. By Isayev and Mamedov [23] some results on dynamic stability

of nonhomogenous bars are presented.
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Foster and Berdichevsky [7] apply the quantitative method to estimate the violation of

Saint-Venant’s principle in the problem of flexural vibration of a two-dimensional strip.

A probabilistic approach is used to determine the relative magnitude of the penetrating

stress state and the results of computations are presented as a function of frequency. The

results are not dependent on material properties except for the Poisson ratio. The ma-

jor conclusion of these papers is that over a wide range of frequencies, the maximum

propagating stress is always small compared with the maximum applied stress; hence,

Saint-Venant’s principle may be said to apply to this problem. An interesting outcome

of the study is that the accuracy of engineering theories for flexural vibrations is much

higher than for longitudinal vibrations.

In [1] the stochastic stability of viscoelastic systems under bounded noise excitation

by S. T. Ariaratnam is investigated and some new interesting results for applications

are found. The paper by Parks and Pritchard [30] is a contribution on the construc-

tion and the use of the Lyapunov functionals. The monograph by Stratonovich [35] is

the monograph with topics in the theory of random noise used in [1] and in this paper.

Asymptotic method of averaging applied to the nonstationary nonlinear processes and

to the nonlinear vibrations of deformable bodies is the topic of the three monographs

[25–27]. Krilov-Bogolyubov-Mitropol’skiı̆’s method is presented in the book by Hedrih

(Stevanović) [14, 15]. This paper contains new results on transversal vibrations on non-

homogeneous beams based on the contents of the cited references and books.

2. Model of creeping rheological body

For modeling processes of solidification and relaxation, models of Kelvin’s viscous-elastic

material and Maxwell’s ideal-elastic-viscous fluid are being used. In their paper, Goroshko

and Puchko [11] have used model of standard hereditary body to modeling dynamics of

mechanical systems with rheological links. Studying elements of mechanics of heredi-

tary systems in their monograph, G. N. Savin and Yu. Ya. Ruschisky gave survey of both

structure and analysis of the rheological models of simple and complex laws for linear de-

formable hereditary-elastic media, as well as theory of growing old of hereditary-elastic

systems.

Recently, there is a noticeable interest in using fractional derivatives to describe creep

behavior of material. In solid mechanics particularly for describing problems related to

material creep behavior including viscoelastic and viscoplastic effects, fractional deriva-

tives have a longer history (see [5, 9]). Mathematical basis of the fractional derivative and

short complete of fractional calculus are presented in the monograph paper by Gorenflo

and Mainardi [9].

The paper by Dli et al. [4] contains the consideration of dynamical stability of vis-

coelastic column with fractional derivative constitutive relation. The paper by Bačlić and

Atanacković [2] considered stability and creep of a fractional derivative order viscoelastic

rod.

We introduce that material of the one layer beam is a creeping material. Parameters of

the beam creep material are the following: α is proper material constant of the character-

istic creep law of material, E0 and Eα are modulus of elasticity and creeping properties of

material.
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By using stress-strain relation from the cited references, a single-axis stress state of the

creep hereditary-type material is described by fractional order time derivative differential

relation in the form of three-parameter model. For line element of beam creep material,

constitutive stress-strain state relation is expressed by fractional derivative constitutive

relation in the following form:

σz(z, y, t)= y
{
E0

∂ϕ(z, t)

∂z
+EαD

α
t

[
∂ϕ(z, t)

∂z

]}
, (A)

where Dα
t [·] is notation of the fractional derivative operator defined by the following

expression:

Dα
t

[
y
∂ϕ(z, t)

∂z

]
=

y

Γ(1−α)

d

dt

∫ t

0

[
∂ϕ(z,τ)/∂z

]

(t− τ)α
dτ = yDα

t

[
∂ϕ(z, t)

∂z

]
, (B)

where α is ratio number from interval 0 < α < 1; σz(z, y, t) is normal stress in the point of

cross-section of the line element, at distance z from the left beam end and at point with

distance y from neutral axis—bending beam axis; ϕ(z, t) is turn angle of the beam cross-

section for pure bending; and εz(z, y, t)= y(∂ϕ(z, t)/∂z) is dilatation of the line element.

3. Partial fractional differential equation

The formulation of the problem of stochastic stability of nonhomogenous creeping bars

of a fractional order derivative constitutive relation of material is assumed to be a con-

tinuous function of the length coordinate. Let us consider the problem on transversal

oscillations of two-layer straight bar, which is under the action of the lengthwise random

forces. The excitation process is a bounded noise excitation.

It is assumed that the layers of the bar were made of continuously creeping non-

homogenous material and the corresponding modulus of elasticity and creeping frac-

tional order derivative constitutive relation of each layer are continuous functions of the

length coordinate and thickness coordinates and are changed under the following laws

(see Figure 3.1):

E(1)
e (z, y)= E(1)

0 f (1)
e (z) f (11)

e (y),

E(2)
e (z, y)= E(2)

0 f (2)
e (z) f (22)

e (y),

E(1)
α (z, y)= E(1)

0α f (1)
α (z) f (11)

α (y),

E(2)
α (z, y)= E(2)

0α f (2)
α (z) f (22)

α (y),

0≤ α≤ 1, 0≤ z ≤ ℓ, −h1 ≤ y ≤ h2.

(3.1)

In this case connection between increments of stresses and deformations in each layer

is represented in view:

∆σ (1)
z = E(1)

e ∆ε(1)
z +E(1)

α Dα
t

[
∆ε(1)

z

]
, −h1 ≤ y ≤ 0,

∆σ (2)
z = E(2)

e ∆ε(2)
z +E(2)

α Dα
t

[
∆ε(2)

z

]
, 0≤ y ≤ h2,

(3.2)
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Figure 3.1

where

Dα
t

[
εz(t)

]
=

dαεz(t)

dtα
= ε(α)

z (t)=
1

Γ(1−α)

d

dt

∫ t

0

εz(τ)

(t− τ)α
dτ. (3.3)

Here h1 and h2 are thicknesses of the corresponding layers.

Dilatations are

εz = y
∂ϕ(z, t)

∂z
, ∆εz = y

∂∆ϕ(z, t)

∂z
, (3.4)

where ϕ(z, t) is angle of pure bending. The normal stress of pure bending is

dσ (1)
z =E(1)

0 f (1)
e (z) f (11)

e (y)dy
∂ϕ(z, t)

∂z
+E(1)

0α f (1)
α (z) f (11)

α (y)Dα
t

[
dy

∂ϕ(z, t)

∂z

]
, −h1≤ y≤0,

dσ (2)
z = E(2)

0 f (2)
e (z) f (22)

e (y)dy
∂ϕ(z, t)

∂z
+E(2)

0α f (2)
α (z) f (22)

α (y)Dα
t

[
dy

∂ϕ(z, t)

∂z

]
, 0≤ y ≤ h2.

(3.5)

From the equilibrium conditions we can write

N∑

i=1

�Fi = 0,
N∑

i=1

�M
�Fi
0 = �M f x = �M

�Fi
f x (3.6)

or
∫∫

A′′
σ (1)
z dxdy +

∫∫

A′′
σ (2)
z dxdy = 0,

∫∫

A′′
σ (1)
z xdxdy +

∫∫

A′′
σ (2)
z xdxdy ∼= 0,

∫∫

A′′
σ (1)
z ydxdy +

∫∫

A′′
σ (2)
z ydxdy =M f x

(3.7)

or

∫ b/2

−b/2

∫ 0

−h1

{
E(1)

0 f (1)
e (z) f (11)

e (y)y
∂ϕ(z, t)

∂z
+E(1)

0α f (1)
α (z) f (11)

α (y)Dα
t

[
y
∂ϕ(z, t)

∂z

]}
dxdy

−

∫ b/2

−b/2

∫ h2

0

{
E(2)

0 f (2)
e (z) f (22)

e (y)y
∂ϕ(z, t)

∂z

+E(2)
0α f (2)

α (z) f (22)
α (y)Dα

t

[
y
∂ϕ(z, t)

∂z

]}
dxdy = 0,



6 Creeping vibrations of a nonhomogeneous beam

∫ b/2

−b/2

∫ 0

−h1

{
E(1)

0 f (1)
e (z) f (11)

e (y)y2 ∂ϕ(z, t)

∂z
+E(1)

0α f (1)
α (z) f (11)

α (y)Dα
t

[
y2 ∂ϕ(z, t)

∂z

]}
dxdy

−

∫ b/2

−b/2

∫ h2

0

{
E(2)

0 f (2)
e (z) f (22)

e (y)y2 ∂ϕ(z, t)

∂z

+E(2)
0α f (2)

α (z) f (22)
α (y)Dα

t

[
y2 ∂ϕ(z, t)

∂z

]}
dxdy =M f x.

(3.8)

If we introduce the following notations:

a(1)(1)
e =

∫ 0

−h1

f (11)
e (y)ydy, a(2)(1)

e =

∫ h2

0
f (22)
e (y)ydy,

a(1)(1)
α =

∫ 0

−h1

f (11)
α (y)ydy, a(2)(1)

α =

∫ h2

0
f (22)
α (y)ydy,

a(1)(2)
e =

∫ 0

−h1

f (11)
e (y)y2dy, a(2)(2)

e =

∫ h2

0
f (22)
e (y)y2dy,

a(1)(2)
α =

∫ 0

−h1

f (11)
α (y)y2dy, a(2)(2)

α =

∫ h2

0
f (22)
α (y)y2dy,

(3.9)

or set the following form:

a(1)(n)
α =

∫ 0

−h1

f (11)
α (y)yndy, a(2)(n)

α =

∫ h2

0
f (22)
α (y)yndy, n= 0,1,2, (3.10)

we can write the previous equilibrium conditions in the following relations:

a(1)(1)
e E(1)

0 f (1)
e (z)− a(2)(1)

e E(2)
0 f (2)

e (z)= 0=⇒ f (2)
e (z)= f (1)

e (z)
E(1)

0

E(2)
0

a(1)(1)
e

a(2)(1)
e

,

a(1)(1)
α E(1)

0α f (1)
α (z)− a(2)(1)

α E(2)
0α f (2)

α (z)= 0=⇒ f (2)
α (z)= f (1)

α (z)
E(1)

0α

E(2)
0α

a(1)(1)
α

a(2)(1)
α

(3.11)

and write the following expression for bending moment:

M f x(z, t)= b
∂ϕ(z, t)

∂z

{
E(1)

0 a(1)(2)
e f (1)

e (z) +E(2)
0 a(2)(2)

e f (2)
e (z)

}

+ bDα
t

[
∂ϕ(z, t)

∂z

]{
E(1)

0α a
(1)(2)
α f (1)

α (z) +E(2)
0α a

(2)(2)
α f (2)

α (z)
}

,

(3.12)
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also with respect to the relations (3.10) we can write (3.12) in the following form:

M f x(z, t)= E(1)
0 b

∂ϕ(z, t)

∂z
f (1)
e (z)

{
a(1)(2)
e + a(2)(2)

e
a(1)(1)
e

a(2)(1)
e

}

+E(1)
0α b f

(1)
α (z)Dα

t

[
∂ϕ(z, t)

∂z

]{
a(1)(2)
α + a(2)(2)

α
a(1)(1)
α

a(2)(1)
α

}
.

(3.13)

We take into account the rotatory inertia of cross-section and we can write the following

equations of bar dynamics:

dJx
∂2ϕ(z, t)

∂t2
=−dM f (z, t) +FT(z, t)dz+FN (Ξ,z, t)dv(z, t),

dm
∂2v(z, t)

∂t2
= dFT(z, t).

(3.14)

If we introduce

dm= ρ1A1 + ρ2A2, dJx =
[
ρ1I(1)

x + ρ2I(2)
x

]
dz, (3.15)

we can write

[
ρ1I(1)

x + ρ2I(2)
x

]∂2ϕ(z, t)

∂t2

= E(1)
0 b

[
a(1)(2)
e + a(2)(2)

e
a(1)(1)
e

a(2)(1)
e

]
∂

∂z

[
∂ϕ(z, t)

∂z
f (1)
e (z)

]

+E(1)
0α b

[
a(1)(2)
α + a(2)(2)

α
a(1)(1)
α

a(2)(1)
α

]
∂

∂z

{
f (1)
α (z)Dα

t

[
∂ϕ(z, t)

∂z

]}
+ FT +FN

∂v(z, t)

∂z
,

(
ρ1A1 + ρ2A2

)∂2v(z, t)

∂t2
=

∂FT(z, t)

∂z
.

(3.16)

After applying derivative with respect to time, we can write

∂ϕ(z, t)

∂z
=

∂2v(z, t)

∂z2
,

∂3ϕ(z, t)

∂z∂t2
=

∂4v(z, t)

∂z2∂t2
, (3.17)

[
ρ1I(1)

x + ρ2I(2)
x

]∂3ϕ(z, t)

∂t2∂z

= E(1)
0 b

[
a(1)(2)
e + a(2)(2)

e
a(1)(1)
e

a(2)(1)
e

]
∂2

∂z2

[
∂ϕ(z, t)

∂z
f (1)
e (z)

]

+E(1)
0α b

[
a(1)(2)
α + a(2)(2)

α
a(1)(1)
α

a(2)(1)
α

]
∂2

∂z2

{
f (1)
α (z)Dα

t

[
∂ϕ(z, t)

∂z

]}

+
∂FT

∂z
+

∂

∂z

[
FN

∂v(z, t)

∂z

]
.

(3.18)
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By introducing derivatives (3.17) into (3.18) we obtain the following partial fractional

differential equation:

[
ρ1I(1)

x + ρ2I(2)
x

]∂4v(z, t)

∂t2∂z2

= E(1)
0 b

[
a(1)(2)
e + a(2)(2)

e
a(1)(1)
e

a(2)(1)
e

]
∂2

∂z2

[
∂2v(z, t)

∂z2
f (1)
e (z)

]

+E(1)
0α b

[
a(1)(2)
α + a(2)(2)

α
a(1)(1)
α

a(2)(1)
α

]
∂2

∂z2

{
f (1)
α (z)Dα

t

[
∂2v(z, t)

∂z2

]}

+
(
ρ1A1 + ρ2A2

)∂2v(z, t)

∂t2
+

∂

∂z

[
FN

∂v(z, t)

∂z

]
,

∂2v(z, t)

∂t2
+
E(1)

0 b
[
a(1)(2)
e + a(2)(2)

e
(
a(1)(1)
e /a(2)(1)

e
)]

(
ρ1A1 + ρ2A2

) ∂2

∂z2

[
∂2v(z, t)

∂z2
f (1)
e (z)

]

+
1(

ρ1A1 + ρ2A2

) ∂

∂z

[
FN

∂v(z, t)

∂z

]
+
E(1)

0α b
[
a(1)(2)
α + a(2)(2)

α
(
a(1)(1)
α /a(2)(1)

α
)]

(
ρ1A1 + ρ2A2

)

×
∂2

∂z2

{
f (1)
α (z)Dα

t

[
∂2v(z, t)

∂z2

]}
+

[
ρ1I

(1)
x + ρ2I

(2)
x
]

(
ρ1A1 + ρ2A2

) ∂4v(z, t)

∂t2∂z2
= 0.

(3.19)

By introducing the following notations:

c̃ 2
0x =

Ẽ (1)
0

ρ
ĩ 2
xe =

E(1)
0 b
[
a(1)(2)
e + a(2)(2)

e
(
a(1)(1)
e /a(2)(1)

e
)]

(
ρ1A1 + ρ2A2

) ,

c̃ 2
0xα =

Ẽ (1)
0α

ρ
ĩ 2
xα =

E(1)
0α b
[
a(1)(2)
α + a(2)(2)

α
(
a(1)(1)
α /a(2)(1)

α
)]

(
ρ1A1 + ρ2A2

) ,

ĩ 2
x =

[
ρ1I

(1)
x + ρ2I

(2)
x
]

(
ρ1A1 + ρ2A2

) , î 2
x =

[
ρ1I

(1)
x + ρ2I

(2)
x
]

Aρ
,

ĩ 2
xe =

b
[
a(1)(2)
e + a(2)(2)

e
(
a(1)(1)
e /a(2)(1)

e
)]

A
, ĩ 2

xα =
b
[
a(1)(2)
α + a(2)(2)

α
(
a(1)(1)
α /a(2)(1)

α
)]

A
,

(3.20)

we obtain the following partial fractional differential equation of transversal vibrations

of creeping of two-layer straight bar, which is under the action of the lengthwise random

forces:

∂2v(z, t)

∂t2
+ c̃ 2

0x
∂2

∂z2

[
∂2v(z, t)

∂z2
f (1)
e (z)

]
+

1(
ρ1A1 + ρ2A2

) ∂

∂z

[
FN

∂v(z, t)

∂z

]

+ c̃ 2
0xα

∂2

∂z2

{
f (1)
α (z)Dα

t

[
∂2v(z, t)

∂z2

]}
− ĩ 2

x
∂4v(z, t)

∂t2∂z2
= 0.

(3.21)
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We study the following special case: from (3.21), we exclude members which contain

axial forces, or we suppose that axial forces are equal to zero, and we solve the following

equation:

∂2v(z, t)

∂t2
+ c̃ 2

0x
∂2

∂z2

[
∂2v(z, t)

∂z2
f (1)
e (z)

]
+ c̃ 2

0xα
∂2

∂z2

{
f (1)
α (z)Dα

t

[
∂2v(z, t)

∂z2

]}
− ĩ 2

x
∂4v(z, t)

∂t2∂z2
= 0

(3.22)

when

f (1)
e (z)= f (1)

α (z)= f (z) (3.23)

and we can write

∂2v(z, t)

∂t2
+ c̃ 2

0x
∂2

∂z2

[
∂2v(z, t)

∂z2
f (z)

]
+ c̃ 2

0xα
∂2

∂z2

{
f (z)Dα

t

[
∂2v(z, t)

∂z2

]}
− ĩ 2

x
∂4v(z, t)

∂t2∂z2
= 0.

(3.24)

4. Solution of the partial fractional differential equation of the beam transversal

vibrations with creep material properties

By using Bernoulli’s method for obtaining solution and for solution of the partial frac-

tional differential equation (3.24), we can write a product of the two functions depending

on separate coordinate z and time t in the following form:

v(z, t)= Z(z)T(t). (4.1)

By introducing this solution into (3.24) we obtain

Z(z)T̈(t) + c̃ 2
0xT(t)

d2

dz2

[
Z′′(z) f (z)

]
+ c̃ 2

0xα
d2

dz2

{
Z′′(z) f (z)

}
Dα

t

[
T(t)

]
− ĩ 2

x Z
′′(z)T̈(t)= 0

(4.2)

or

Z(z) +
d2

dz2

[
Z′′(z) f (z)

]{
c̃ 2

0x
T(t)

T̈(t)
+ c̃ 2

0xα
1

T̈(t)
Dα

t

[
T(t)

]}
− ĩ 2

x Z
′′(z)= 0 (4.3)

or we obtain two equations

c̃ 2
0x
T(t)

T̈(t)
+ c̃ 2

0xα
1

T̈(t)
Dα

t

[
T(t)

]
=−

1

k4
,

Z(z)−
d2

dz2

[
Z′′(z) f (z)

] 1

k4
− ĩ 2

x Z
′′(z)= 0

(4.4)

or

T̈(t) + ω̃2
αxD

α
t

[
(t)
]

+ ω̃2
0xT(t)= 0, (4.5)

d2

dz2

[
Z′′(z) f (z)

]
+ ĩ 2

x k
4Z′′(z)− k4Z(z)= 0, (4.6)
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where

ω̃2
0x = k4c̃ 2

0x = k4 E
(1)
0 b
[
a(1)(2)
e + a(2)(2)

e
(
a(1)(1)
e /a(2)(1)

e
)]

(
ρ1A1 + ρ2A2

) ,

ω̃2
αx = k4c̃ 2

0xα = k4 E
(1)
0α b
[
a(1)(2)
α + a(2)(2)

α
(
a(1)(1)
α /a(2)(1)

α
)]

(
ρ1A1 + ρ2A2

) ,

ĩ 2
x =

[
ρ1I

(1)
x + ρ2I

(2)
x
]

(
ρ1A1 + ρ2A2

) .

(4.7)

We can obtain the solution of the fractional differential equation of system (4.5) by

using the Laplace transform, and by having in mind that, in initial moment, dα−1T(t)/
dtα−1|t=0 = 0. Solutions for special cases when α = 0 and α = 1, and for beam kinetic

parameters: ω0 > (1/2)ω2
1 for soft creep and ω0 < (1/2)ω2

1 for strong creep, are solutions

of classical ordinary differential equation. It is the same for α= 1 and ω0x = (1/2)ω2
1x.

For the general case when ω2
0x �= 0, the Laplace transform of the solution L{T(t)} of

the fractional differential equation of system (4.5) can be developed, in two steps, into

series with respect to binoms (pα +ω2
0x/ω

2
αx), and with respect to pα. Then we obtain the

following expression:

L
{
T(t)

}
=

(
T0 +

Ṫ0

p

)
1

p

∞∑

k=0

(−1)kω2k
αx

p2k

k∑

j=0

(
k

j

)
pαjω

2( j−k)
αx

ω
2 j
ox

. (4.8)

By using inverse of the Laplace transform of the solution L{T(t)}, for general case,

when beam material parameter is from interval 0≤ α≤ 1, for solution of the fractional-

differential equation of system (4.5), we obtain the following expression in the form of

potential series of the time t:

T(t)= L−1
{
T(t)

}

=

∞∑

k=0

(−1)kω2k
αxt

2k
k∑

j=0

(
k

j

)
ω

2 j
αxt−αj

ω
2 j
ox

[
T0

Γ(2k+ 1−αj)
+

Ṫ0t

Γ(2k+ 2−αj)

]
.

(4.9)

And in that case there are special cases when ω2
0x = 0 for α= 0 and for α= 1.

In Figure 4.1 numerical simulations and graphical presentation of the solution of the

fractional differential equation of system (4.5) are presented. Time functions T(t,α) sur-

faces for the different beam transversal vibrations kinetic and creep material parameters

in the space (T(t,α), t,α) for interval 0≤ α≤ 1 are visible in (a) for (ωαx/ω0x)= 1, (b) for

(ωαx/ω0x)= 1/4, (c) for (ωαx/ω0x)= 1/3, and (d) for (ωαx/ω0x)= 3.

In Figure 4.2 the time functions T(t,α) surfaces and curves families for the different

beam transversal vibrations kinetic and discrete values of the creeping material parame-

ters 0≤ α≤ 1 are presented in (a) and (c) for (ωαx/ω0x)= 1, (b) and (d) for (ωαx/ω0x)=

1/4, (e) for (ωαx/ω0x)= 1/3, and (f) for (ωαx/ω0x)= 3.
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Figure 4.1. Numerical simulations and graphical presentation of the results. Time functions T(t,α)

surfaces for the different beam transversal vibrations kinetic and creep material parameters: (a)

(ωαx/ω0x)= 1, (b) (ωαx/ω0x)= 1/4, (c) (ωαx/ω0x)= 1/3, and (d) (ωαx/ω0x)= 3.

5. The S. T. Ariaratnam idea applied to the stochastic stability of the creep beam

transversal vibrations dynamic shapes under axial bounded noise excitation

In the case

f (z)= 1 +m
z

ℓ
(5.1)

equation (3.21) transforms to the form

∂2v(z, t)

∂t2
+ c̃ 2

0x
∂2

∂z2

[
∂2v(z, t)

∂z2
f (1)
e (z)

]
+

1(
ρ1A1 + ρ2A2

) ∂

∂z

[
FN

∂v(z, t)

∂z

]

+ c̃ 2
0xα

∂2

∂z2

{
f (1)
α (z)Dα

t

[
∂2v(z, t)

∂z2

]}
− ĩ 2

x
∂4v(z, t)

∂t2∂z2
= 0

(5.2)
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Figure 4.2. Numerical simulations and graphical presentation of the results. Time functions T(t,α)

surfaces and curves families for the different beam transversal vibrations kinetic and discrete values

of the creeping material parameters 0≤ α≤ 1: (a) and (c) (ωαx/ω0x)= 1, (b) and (d) (ωαx/ω0x)= 1/4,

(e) (ωαx/ω0x)= 1/3, and (f) (ωαx/ω0x)= 3.



Katica (Stevanović) Hedrih 13

and (4.6) transforms to the form

d2

dz2

[
Z′′(z)

(
1 +m

z

ℓ

)]
+ ĩ 2

x k
4Z′′(z)− k4Z(z)= 0. (5.3)

In the case of hinge fixing of the ends of the bar, solution of (5.1) into first unperturbed

form is found in a view

v(z, t)= T(t)sin
nπz

ℓ
. (5.4)

By introducing (5.4) into (5.2) and applying the Bubnov-Galerkin method, we obtain

the following equations:

T̈(t)sin
nπz

ℓ
+ c̃ 2

0xT(t)
d2

dz2

{
−

(
nπ

ℓ

)2(
1 +m

z

ℓ

)
sin

nπz

ℓ

}

−
FN (t)(

ρ1A1 +ρ2A2

)
(
nπ

ℓ

)2

T(t)sin
nπz

ℓ
+c̃ 2

0xα
d2

dz2

{
−

(
nπ

ℓ

)2(
1+m

z

ℓ

)
sin

nπz

ℓ

}
Dα

t

[
T(t)

]

+ ĩ 2
x

(
nπ

ℓ

)2

T̈(t)sin
nπz

ℓ
= 0,

T̈(t) +
c̃ 2

0x(nπ/ℓ)4[1 +m/2][
1 + ĩ 2

x (nπ/ℓ)2
]
{

1−
F̃N (t)(nπ/ℓ)2

c̃ 2
0x(nπ/ℓ)4[1 +m/2]

}
T(t)

+
c̃ 2

0xα(nπ/ℓ)4[1 +m/2][
1 + ĩ 2

x (nπ/ℓ)2
] Dα

t

[
T(t)

]
= 0.

(5.5)

We pointed out the following notations:

ω̃2
0xn =

c̃ 2
0x(nπ/ℓ)4[1 +m/2][

1 + ĩ 2
x (nπ/ℓ)2

] ,

hxnξ(t)=
F̃N (t)

c̃ 2
0x(nπ/ℓ)2[1 +m/2]

,

ω̃2
0xαn =

c̃ 2
0xα(nπ/ℓ)4[1 +m/2][

1 + ĩ 2
x (nπ/ℓ)2

]

(5.6)

and we obtain the following fractional differential equation with respect to the time func-

tion:

T̈(t) + ω̃2
0xn

{
1−hxnξ(t)

}
T(t) + ω̃2

0xαnD
α
t

[
T(t)

]
= 0. (5.7)

To solve the previous equation we can apply Ariaratnam’s idea [1]. The random

bounded noise axial excitation ξ(t) is taken in the following form:

F(t)= F0ξ(t)= F0 sin
[
Ωt+ σB(t) + γ

]
, (5.8)
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where B(t) is the standard Wiener process, and γ is a random uniformly distributed vari-

able in interval [0,2π], then ξ(t) is a stationary process having autocorrelation function

and spectral density function:

R(τ,Ω)=
1

2
h2
one

−σ2τ/2 cosΩτ,

S(ω,Ω)=

∫ +∞

−∞
R(τ,Ω)eiωτdτ =

1

2
h0nσ

2 ω2 +Ω2 + σ2/4[(
ω2−Ω2− σ2/4

)2
+ σ2ω2

] .
(5.9)

Stochastic process |ξ(t)| ≤ 1 is bounded for all values of time t.
The next idea of Ariaratnam is to apply the averaging method, and for that reason

we must introduce the amplitude an(t) and the phase Φn(t), which are time unknown

functions, by means of the transformation relation of Tn(t):

Tn(t)= an(t)cosΦn(t), Ṫn(t)=−an(t)ω0n sinΦn(t). (5.10)

Substituting these relations in (5.7) and using (5.8) as well as Φn(t)= (Ω/2)t+ φ̃n(t) and

∆n = ω0xn−Ω/2, we can write the following system fractional differential equation with

respect to the amplitude an(t) and the phase Φn(t), exactly equivalent to (5.7):

ȧn(t)=−
1

2
ω0xnan(t)h0n sin(Ωt+ψ)sin

(
Ωt+ 2φ̃n

)
+
ω2
αxn

ω0xn
sinΦn(t)Dα

t

[
an(t)cosΦn(t)

]
,

(5.11)

˙̃
φn(t)= ∆n(t)−

1

2
ω0xnh0n sin(Ωt+ψ)

[
1 + cos

(
Ωt+ 2φ̃n

)]

+
ω2
αxn

an(t)ωoxn
cosΦn(t)Dα

t

[
an(t)cosΦn(t)

]
, ψ̇(t)= σḂ(t),

(5.12)

where

Dα
t

[
an(t)cosΦn(t)

]
=

1

Γ(1−α)

d

dt

∫ t

0

an(τ)cosΦn(τ)

(t− τ)α
dτ. (5.13)

By applying the averaging method, we assume that excitation and beam kinetic pa-

rameters values h0n, ω2
αxn, ∆n(t) are small depending on small parameter ε (see [12, 16])

as βn =O(ε), ∆n =O(ε) and µ=O(ε), where 0 < ε ≤ 1. The assumption or the condition

∆n = O(ε) shows that frequencies of external random bounded excitation Ω are in the

vicinity of the frequency 2ω0xn of fundamental parametric resonance in the nth form of

perturbed parametric resonance state.

We introduce the following notations:

∫ +∞

0
R(τ)eiωτdτ =Hc(ω) + iHs(ω), where the kernel is in the form R(τ)= τ−α.

(5.14)
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Having in consideration that (see [5])

Dα
t

[
f (t)

]
=

1

Γ(1−α)

d

dt

∫ t

0

f (τ)

(t− τ)α
dτ =

1

Γ(1−α)

∫ t

0

f ′(τ)

(t− τ)α
dτ + f

(
0+
) t−α

Γ(1−α)
,

Dα
t

[
an(t)cosΦn(t)

]
=

1

Γ(1−α)

∫ t

0

−an(τ)ω0xn sinΦn(τ)

(t− τ)α
dτ + an

(
0+
)

cosΦn
(
0+
) t−α

Γ(1−α)
(5.15)

and after averaging the right-hand side of (5.12) with respect to total phase Φn and taking

that Ωt = 2Φn− 2φ̃n, we obtain the averaged equations:

ȧn(t)=−
1

4
ω0xnan(t)h0n cos

(
ψ− 2φ̃n

)
−

ω2
αxn

2Γ(1−α)
an(t)Hen

(
Ω

2

)
,

˙̃
φn(t)= ∆n(t)−

1

4
ω0xnhon sin

(
ψ− 2φ̃n

)
+

ω2
αxn

2Γ(1−α)
Hen

(
Ω

2

)
,

ψ̇(t)= σḂ(t),

(5.16)

where limT→∞(1/T)
∫ T

0 eiΦn(t)t−αdt = 0.

By introducing the change of the variables by the relations ρn(t) = lnan(t) and θn =

φ̃n − ψ/2 into the previous pair of the stochastic differential equations, we obtain the

system

dρn(t)=
[
−

1

4
ω0xnh0n cos2θn−

ω2
αxn

2Γ(1−α)
(t)Hen

(
Ω

2

)]
dt,

dθn(t)=
[
∆n(t) +

1

4
ω0xnh0n sin2θn +

ω2
αxn

2Γ(1−α)
Hsn

(
Ω

2

)]
dt−

1

2
σdB(t).

(5.17)

6. The Lyapunov exponent and stochastic stability

The Lyapunov exponent (see [1]) of the creeping beam stochastic transversal vibrations

in the nth form of perturbed parametric resonance state given by the averaged stochastic

equations system (5.17) may be defined by the following expression:

λn = lim
t→∞

1

2t
ln

{[
Tn(t)

]2
+

1

ω2
on

[
Ṫn(t)

]2
}
=⇒ λn = lim

t→∞

1

t
ln
[
an(t)

]
= lim

t→∞

1

t
ρn(t). (6.1)

Now, the Lyapunov exponent is a measure of the average exponential growth of the

amplitude process an(t) of the creep beam transversal vibrations in the nth form of per-

turbed parametric resonance process. λn is a deterministic number with probability one

(w.p.1) for the system given by (5.17). Solutions of the averaged differential equations

depending on initial values Tn(t0) and Ṫn(t0), in general, are two values of the Lyapunov

exponent λn in the corresponding nth form of perturbed parametric resonance process.

If both Lyapunov exponents are negative, the trivial solution in the corresponding nth

form of perturbed parametric resonance process are stable processes.
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In order to calculate λn, we must integrate both sides of (5.17) and we obtain the

following expression:

λn = lim
t→∞

1

t
ρ(t)=−

1

4
ω0xnh0nE

[
cos2θn

]
−

1

2

ω2
αxn

Γ(1−α)
Hen

(
Ω

2

)
. (6.2)

By using corresponding results obtained by Stratonovich [35] and Ariaratnam [1] for

the Lyapunov exponent we obtain the following asymptotic result:

λn =−
1

4
ωoxnhonF

(
honωoxn

σ2
,
4∆n

σ2

)
−

1

2

ω2
αxn

Γ(1−α)
Hen

(
Ω

2

)
. (6.3)

In the previous expressions and calculations we used invariant (stationary) probability

density function satisfying the periodicity condition when

∆0n(t)= ωon−
Ω

2
+

1

2

ω2
αxn

Γ(1−α)
Hsn

(
Ω

2

)
= 0. (6.4)

For the Lyapunov exponent we obtain

λn =−
1

4
h0nω0xn

I1

(
h0nω0xn/σ2

)

I0

(
h0nω0xn/σ2

) − ω2
αxnn

2Γ(1−α)
Hcn

(
Ω

2

)
, (6.5)

where I0, I1 are Bessel functions of real argument, and F(v · q) is a function of Bessel

functions of imaginary argument.

7. Concluding remarks

From the obtained analytical and numerical results for natural transversal creeping vi-

brations of a fractional order derivative hereditary rod with two layers, it can be seen

that fractional order derivative hereditary properties are convenient for changing time

function depending on material creep parameters, and that fundamental eigenfunction

depending on space coordinate is dependent only on boundary conditions and geomet-

rical properties of layers.
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[2] B. S. Bačlić and T. M. Atanacković, Stability and creep of a fractional derivative order viscoelastic
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[31] D. Rašković, Teorija oscilacija [Theory of Oscillations], Naučna knjiga, Belgrade, 1965 (Serbian).
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