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ABSTRACT

Magnetohydrodynamic (MHD) kink waves have now been observed to be ubiquitous throughout the solar
atmosphere. With modern instruments, they have now been detected in the chromosphere, interface region, and
corona. The key purpose of this paper is to show that kink waves do not only involve purely transverse motions of
solar magnetic flux tubes, but the velocity field is a spatially and temporally varying sum of both transverse and
rotational motion. Taking this fact into account is particularly important for the accurate interpretation of varying
Doppler velocity profiles across oscillating structures such as spicules. It has now been shown that, as well as
bulk transverse motions, spicules have omnipresent rotational motions. Here we emphasize that caution should be
used before interpreting the particular MHD wave mode/s responsible for these rotational motions. The rotational
motions are not necessarily signatures of the classic axisymmetric torsional Alfvén wave alone, because kink
motion itself can also contribute substantially to varying Doppler velocity profiles observed across these structures.
In this paper, the displacement field of the kink wave is demonstrated to be a sum of its transverse and rotational
components, both for a flux tube with a discontinuous density profile at its boundary, and one with a more realistic
density continuum between the internal and external plasma. Furthermore, the Doppler velocity profile of the kink
wave is forward modeled to demonstrate that, depending on the line of sight, it can either be quite distinct or very
similar to that expected from a torsional Alfvén wave.
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1. INTRODUCTION

The aim of this paper is to show that the motion of a mag-
netic flux tube due to a magnetohydrodynamic (MHD) kink
wave is the sum of a spatially constant transverse and a non-
axisymmetric rotational motion. Thus far in the corona, Extreme
Ultra-Violet (EUV) imagers such as the Transition Region and
Coronal Explorer and the Atmospheric Imaging Assembly on
board the Solar Dynamics Observatory have only permitted us to
observe the bulk transverse motions associated with kink waves
in thin coronal structures which have a greater EUV intensity
relative to the background plasma, e.g., coronal loops. Although
thus far they have not been identified directly in the corona, the
kink wave’s rotational motions could certainly contribute to the
observed non-thermal line widths (e.g., McIntosh & De Pontieu
2012). So far, the identification of these rotational motions in
the corona via Doppler shift using spectrometers has been ham-
pered by limited EUV spatial resolution. However, in cooler
chromospheric spectral lines, e.g., Hα and Ca ii H, kink waves
propagating along spicules/fibrils/mottels can be observed with
much finer resolution from both ground-based telescopes and
space-borne instruments (e.g., De Pontieu et al. 2012; Morton
et al. 2012, 2013, 2014; Kuridze et al. 2012, 2013). Note also,
in these cooler lines, omnipresent kink waves have been discov-
ered in solar prominences (e.g., Lin et al. 2009). Using both the
TRIPort Polarimetric Echelle-Littrow spectrograph (TRIPPEL)
and the CRisp Imaging SpectroPolarimeter (CRISP) based at
the Swedish Solar Telescope (SST), De Pontieu et al. (2012)
have now discovered Doppler signals of ubiquitous rotational
motions occurring in these thin, dense chromospheric structures,

which are concurrent with transverse kink motions. De Pontieu
et al. (2012) suggested that the rotational motions are predomi-
nantly signatures of the m = 0 torsional Alfvén wave.

Since spicules display such obvious transverse kink motion,
their Doppler signals should also contain evidence of the m = 1
rotational motions to which they are coupled. It is a key
purpose of this paper to investigate what the actual Doppler
signatures of these coupled transverse and rotational m = 1
kink motions look like. This is particularly important since De
Pontieu et al. (2012) have now actually managed to resolve
varying trends in Doppler blue and red shift normal to the axes
of spicules in which ubiquitous kink waves are propagating.
This means that for the first time we will not only be able to
analyze the propagation of kink waves purely from their bulk
transverse motion (as is usually done for kink waves observed
in poorer resolution EUV lines in the corona), but we will
also be able to observe this highly Alfvénic MHD wave in
finer detail to see how the coupling between the transverse
and rotational components develop with height in the lower
solar atmosphere. This is especially timely since there is now
evidence that the damping length for propagating kink waves
in the lower atmosphere (less than heights of 15–20 Mm) is
only about 10% of estimated coronal loop damping lengths
(Morton et al. 2014). Mode conversion through the process of
resonant absorption could play a dominant role in this, see,
e.g., Terradas et al. (2010), Verth et al. (2010) and review
by Goossens et al. (2011). To fully understand the dynamics,
mode coupling, conversion, and damping of MHD waves
in the chromosphere, detailed comparison of the transverse
and rotational velocity components with height is crucial.
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This would lead to a great advance in understanding the structure
and dynamics of, e.g., spicules, fibrils, and mottles. It is hoped
that the current work will lead to more accurate interpretations
of Doppler signal trends being resolved across these thin, dense,
magnetic structures by these and other modern high resolution
instruments, e.g., Interferometric BIdimensional Spectrometer
(IBIS) at the Dunn Solar Telescope (DST), the Interface Region
Imaging Spectrograph (IRIS), and the forthcoming Advanced
Technology Solar Telescope (ATST).

To study the possible MHD wave modes that can propagate
along thin, dense, chromospheric structures such as spicules,
fibrils, and mottles, it is instructive to model these waveguides
as axisymmetric magnetic cylinders. MHD wave modes which
propagate along such structures are characterized by two wave
numbers, the azimuthal wave number m, and the axial wave
number kz. In addition, particular modes can also have different
nodes in the radial direction, and this number can be used to
further classify the modes. For the particular type of MHD wave
modes which have m = 1, i.e., the kink mode, the wavelength is
nearly always observed to be much greater than the actual width
of solar waveguide. In this regime, the fundamental radial mode
is the only trapped kink mode and is therefore the mode most
relevant to solar applications. Goossens et al. (2009, 2012) have
shown that the fundamental radial mode can be considered as a
surface Alfvén wave. The MHD kink wave has a phase velocity
between the internal, vA,i , and external vA,e Alfvén speeds and
is the only mode that displaces the axis of the magnetic flux tube
and the tube as a whole, which is why is it one of the easiest
MHD wave modes to identify in observations.

A popular conception of a MHD kink wave is that it is a
wave that displaces the magnetic flux tube as a whole in the
transverse direction with no other motion involved. However,
we shall show that this concept is only correct when considering
the actual plasma motion inside a sufficiently thin homogeneous
flux tube that has a piece-wise variation between the internal and
external plasma density. In that configuration, inside the flux
tube the radial component ξr and the azimuthal component ξϕ

have the same amplitude, and the azimuthal component ξϕ is a
quarter of a period ahead of the radial component ξr . The result
is then a transverse periodic displacement within the flux tube.
However, even in such a simple configuration, the velocity field
for the MHD kink wave outside of the tube is actually dipolar
in character and not purely transverse at all. It is only purely
transverse motion within the tube boundary.

The popular model with a piece-wise, constant density is in-
structive but has its clear limitations. It fails to describe the
fundamental properties of MHD waves that are due to non-
uniformity present in more realistic solar flux tube models.
Examples are (1) the fast damping of kink waves with fre-
quencies between the internal and external values of the Alfvén
frequency because of resonant absorption (see, e.g., Goossens
et al. 1992, 2002; Ruderman & Roberts 2002; Van Doorsse-
laere et al. 2004); (2) the presence of vorticity in kink waves
(Goossens et al. 2012); and (3) MHD waves with mixed prop-
erties (see, e.g., Goossens 2008; Goossens et al. 2002, 2009,
2011). The degree to which the classic properties are present
in a given MHD wave depends on the particular background
through which the wave travels. An MHD wave mode that is
characterized by the same wave numbers has different proper-
ties for different backgrounds. The displacement and velocity
fields of the fundamental radial mode of kink MHD waves are
different for different equilibrium distributions of density. In
particular, the displacement and velocity fields for a model with

non-uniform density are different from those for a model with a
piece-wise constant density. Hence, it can be anticipated that the
motion of a non-uniform magnetic cylinder due to a kink wave
will be more complicated than the simple transverse motion of
a thin, magnetic cylinder with a piece-wise constant density.

The paper is organized as follows. In the following section we
recapitulate the equations for linear motions superimposed on
a straight, axisymmetric magnetic cylinder. Section 3 considers
what we mean by the thin flux tube approximation in relation
to the kink mode wave variables, and Section 4 shows the dis-
placement field for a thin tube (TT) with a density discontinuity
at the boundary. In Section 5, we demonstrate how the kink
wave displacement field is the sum of both transverse and rota-
tional motion, and in Section 6, we consider the consequences
of this for interpreting the line-of-sight (LOS) Doppler velocity
profiles across oscillating magnetic flux tubes observed in the
solar atmosphere. This idea is developed further in Section 7,
where the Doppler velocity profiles across such oscillating flux
tubes are forward modeled by integrating intensity along the
LOS. In Section 8, we investigate the time/space evolution of
the transverse and rotational components of the kink wave dis-
placement field in flux tubes that have a continuous variation
in density between their interior and exterior. In relation to this
more realistic plasma configuration, the idea of a “quasi-mode”
is discussed and the linearized, ideal MHD equations are solved
numerically to provide insight into the dynamic process of mode
conversion that naturally occurs in the presence of a resonant
layer in such a flux tube. This physical process, known as reso-
nant absorption, channels the kink wave energy from its trans-
verse motion into predominantly non-axisymmetric rotational
motion and therefore has important consequences for interpret-
ing observed Doppler velocity profiles across solar magnetic
waveguides.

2. MHD KINK WAVES IN A MAGNETIC CYLINDER

Our interest is in the motion of an axisymmetric magnetic
cylinder with a straight magnetic field due to the fundamental
radial mode of kink waves:

B0 = B0 1z. (1)

In order to determine this motion, we need expressions for
components of the Lagrangian displacement ξ and the frequency
of the wave ω. The background model is independent of the
spatial coordinates ϕ, z, and time, t. However, it is variable
in the radial direction. Hence, the perturbed quantities are put
proportional to

exp (i(mϕ + kzz − ωt)) . (2)

In Equation (2), m is the azimuthal wave number, kz is the
longitudinal wave number, and ω is the frequency. Since the
background is variable in the radial direction, there is not a
constant radial wave number. If we insist, we can use the
number of nodes in the radial part of the eigenfunctions to
distinguish between radial fundamental and overtone modes.
Since our primary concern is studying the MHD kink mode
on magnetically dominated solar atmospheric flux tubes, we
treat the plasma as pressureless so that v2

S = 0 with vS the
local speed of sound. The equations for linear MHD waves
on a one-dimensional, pressureless cylinder with a straight
field can be obtained from the more general equations by,
e.g., Appert et al. (1974), Sakurai et al. (1991), Goossens
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et al. (1992), and Goossens et al. (1995) by putting the
local speed of sound vS and the azimuthal component of
the equilibrium magnetic field Bϕ equal to 0. The resulting
equations are given by, e.g., Goossens et al. (2009) and Goossens
(2008). The solutions for an equilibrium with a piece-wise
constant density can be given in terms of Bessel functions
Jm(x) (x = kir) in the internal part of the flux tube and
Km(y) (y = ker) in the exterior region (see, e.g., Wentzel 1979;
Wilson 1979, 1980; Spruit 1982; Edwin & Roberts 1983). The
internal and external radial wavenumbers ki and ke, respectively,
are defined as

k2
i = Γi(ω

2) =
ω2 − ω2

Ai

v2
A,i

, k2
e = −Γe(ω2) = −

ω2 − ω2
Ae

v2
A,e

.

(3)
The solutions are

ξϕ,i(r) = α
im/r

ρi(ω
2 − ω2

Ai)
Jm(x),

ξr,i(r) = α
ki

ρi(ω
2 − ω2

Ai)
J ′

m(x),

ξϕ,e(r) = β
im/r

ρe(ω2 − ω2
Ae)

Km(y),

ξr,e(r) = β
ke

ρe(ω2 − ω2
Ae)

K ′
m(y), (4)

where x = kir and y = ker . An accent denotes a derivative with
respect to the argument x or y. α and β are constants. Continuity
of total pressure and the radial component of the Lagrangian
displacement leads to the dispersion relation

F
J ′

m(x0)Km(y0)

Jm(x0)K ′
m(y0)

= 1 (5)

with the quantity F given by

F =
ki

ke

ρe(ω2 − ω2
Ae)

ρi(ω
2 − ω2

Ai)
, (6)

where x0 = kiR and y0 = keR. The dispersion relation (5) can
be solved numerically. This was done for real frequencies by,
e.g., Wentzel (1979), Wilson (1979, 1980) and Edwin & Roberts
(1983), and for complex frequencies by, e.g., Spruit (1982) and
Cally (1985).

As we shall see later, the nature of the motion of the flux tube
depends on the relative importance of the components ξr and ξϕ .
The ratio of the azimuthal component to the radial component
of the Lagrangian displacement for kink waves with m = 1 in
the interior part (0 � r � R) of the magnetic tube, is

ξϕ(r)

ξr (r)
= i

1

x

J1(x)

J ′
1(x)

. (7)

The factor i means that ξϕ is a quarter of a period ahead of ξr .
For the fundamental radial mode 0 � x � x0 � xDJ1,1 < xJ1,1

where xDJ1,1 is the first zero of J ′
1(x) and xJ1,1 is the first zero

of J1(x). In order to better understand the result in Equation (7),
realize that the function

1

x

J1(x)

J ′
1(x)

(8)

Figure 1. To illustrate the behavior of Equation (15), f (x) is plotted against x,
where f (x) = J1(x)/[xJ ′

1(x)] and the asymptote shown by the vertical, dashed
line at x = xDJ 1,1 ≈ 1.84, the first zero of J ′

1(x).

is strictly increasing for x ∈ [0, xDJ1,1], and that for x ∈
]0, xDJ1,1[ we have

J1(x)

xJ ′
1(x)

> 1,

lim
x→0

J1(x)

xJ ′
1(x)

= 1,

and lim
x→xDJ1,1

J1(x)

xJ ′
1(x)

= ∞. (9)

This means that the amplitude of the azimuthal component
is always bigger than that of the radial component with the ex-
ception of limx0→0 which corresponds to the TT approximation.
The function defined in Equation (8) is plotted in Figure 1.

Even for flux tubes with constant density, the amplitudes of
the radial and azimuthal components are not equal. If we insist
this to be the case in the whole flux tube, then we need to use
the limit R → 0.

3. THIN TUBE APPROXIMATION

The concept of the motion of a magnetic cylinder due to
a kink wave to be a transverse motion finds its root in the
displacement field pattern that emerges when the width of the
tube is small compared to the wavelength. This regime is the so-
called TT approximation. The Bessel functions Jm(x) and Km(y)
in Equation (5) are replaced with their first order asymptotic
expansions. The dispersion relation (5) is reduced to

1 + F
ke

ki

= 0. (10)

The solution for the frequency is

ω2 =
ρiω

2
Ai + ρeω

2
Ae

ρi + ρe

=
2

ρi + ρe

k2
z

B2
0

µ0

= ω2
k (11)

and for the radial wave numbers ki and ke,

k2
i = k2

e = k2
z

ρi − ρe

ρi + ρe

= k2. (12)

In the TT approximation, the fundamental radial mode is the
only trapped mode. The higher radial overtones in this regime
are all leaky. This is why this fundamental mode is so relevant to
observed solar atmospheric kink waves, where wavelengths are
seen to be much larger than waveguide widths. The right-hand
side of Equation (11) is almost invariably called the square of the
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kink frequency and denoted as ω2
k . In the TT approximation, the

frequency is independent of the wave number, m � 1 as already
noted in Goossens et al. (1992). Hence, all fluting modes with
m � 2 have the same frequency as the kink mode with m = 1.
The radial wave numbers ki and ke depend, in a simple way,
on the density contrast. As the density contrast decreases, the
nature of the MHD wave becomes gradually more Alfvénic, as
explained in Goossens et al. (2009). Since we are only interested
in the kink mode, in what follows, we fix m = 1.

The TT approximation to the eigenfunctions in the interior of
the loop, i.e., 0 � r � R, are

ξr,i(r)

R
= C,

and
ξϕ,i(r)

R
= i C. (13)

In the exterior part, i.e., r ∈ [R, ∞[, the TT eigenfunctions
are

ξr,e(r)

R
= C(kR)2 dK1(y)

dy
,

and
ξϕ,e(r)

R
= −i C(kR)

K1(y)

r/R
. (14)

Note that ξϕ,e(R) = −ξϕ,i(R) = −i C. As explained in

Goossens et al. (2009), terms of order (kzR)2 and of higher
order have been omitted when deriving Equation (13) unless the
terms of order (kzR)2 are the first non-vanishing contribution
to the expression under study. For example, the expressions
for ξr,i(r)/R and ξϕ,i(r)/R mean that these two quantities

have equal amplitudes up to differences of order (kzR)2. The
eigenfunctions are determined up to a multiplicative constant C,
which can be used to specify, e.g., the radial displacement of the
boundary of the flux tube. The radial and azimuthal components
are π/2 out of phase, but they have equal magnitudes and inside
the flux tube they are constant. In the TT approximation, for
0 � r � R, Equation (7) can be replaced with

ξϕ(r)

ξr (r)
= i (15)

in agreement with Equation (9).
Apart from ξϕ , the wave quantities are continuous at r = R. ξϕ

varies in a discontinuous manner at r = R with opposite values
at the two sides of the interface. This discontinuous behavior is
due to the change of sign of the factor ω2 − ω2

A when we move
from the interior to the exterior of the loop. When the jump
in ωA is replaced by a continuous variation of ωA, new and
valuable physics are introduced to the system. The local Alfvén
frequency ωA(r) is function of position r and defines the Alfvén
continuum. In addition to the Alfvén continuum modes that give
rise to uncoordinated motions in time, the system supports a
damped coordinated motion. Since complex eigenvalues cannot
exist in ideal MHD, this coordinated motion is called a quasi-
mode. This quasi-mode is often a remnant of an eigenmode
that, for a uniform plasma system, has its eigenvalue in between
the extremal values of the Alfvén frequency. The fundamental
radial mode of kink waves on solar flux tubes is a well-known
example of this situation.

Soler et al. (2013) have shown how to deal with the mathe-
matical intricacies of quasi-modes of cylindrical flux tubes, and
have given a general, analytical method for the computation of

their eigenfunctions and complex frequencies (see earlier inves-
tigations for planar geometry by, e.g., Hollweg 1990). In the
present paper, we shall use this method for computing eigen-
functions in Section 8.

For thin transitional layers, the behavior is only quasi-
singular, i.e., large but finite values are generated. For thicker
transitional layers, there is not a hint of singularity or quasi-
singularity. Instead, what happens is that the displacement
jumps logarithmically at the resonance position, with the jumps
remaining finite. Physically, introducing a transitional layer with
a continuous variation of ωA causes damping of the MHD
wave by resonant absorption. This process results in azimuthal
components of displacement and magnetic field perturbation
that are far larger in absolute value than the corresponding
radial components in the non-uniform layer around the resonant
position, i.e., ξϕ eventually overpowers ξr . How this process
affects the time and space evolution of the transverse and
rotational components of the kink wave displacement field is
addressed in more detail in Section 8.

4. TRANSVERSE MOTION OF A THIN
MAGNETIC FLUX TUBE

Equation (13) tells us that for 0 � r � R

ξ (r)

R
=

ξ i(r)

R
= C (1r + i 1ϕ). (16)

Let us recall that from Equation (2) to this point, we have
suppressed the dependence on the spatial variables ϕ, z, and
time t. Now is the time to reintroduce the dependence on the
angle ϕ. Since Re exp(iϕ) = cos(ϕ) and i = exp(iπ/2), we can
use the following real representation of ξ for 0 � r � R,

ξ (r, ϕ)

R
=

ξ i(r, ϕ)

R
= C (cos ϕ 1r − sin ϕ 1ϕ). (17)

The interpretation of this motion is best done in a system of
Cartesian coordinates with the xy plane normal to the axis of
the cylindrical magnetic tube that is the z axis in our system
of cylindrical coordinates (r, ϕ, z). The unit vectors (1x, 1y) in
the Cartesian system and the unit vectors in the polar system
(1r , 1ϕ) are related by

1x = 1r cos ϕ − 1ϕ sin ϕ (18)

1y = 1r sin ϕ + 1ϕ cos ϕ (19)

and

1r = 1x cos ϕ + 1y sin ϕ (20)

1ϕ = − 1x sin ϕ + 1y cos ϕ. (21)

From here on, we drop the factor 1/R in the expression for
the Lagrangian displacement field ξ . In Cartesian coordinates,
Equation (17) is

ξ =
[

ξx

ξy

]

= C

[

1
0

]

= ξTR, (22)

where ξTR denotes classic transverse kink motion, where the
entire movement of the internal plasma is unidirectional along
the x axis with constant amplitude. We have added the subscript
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Figure 2. Kink wave (m = 1) displacement field (arrows) in a piece-wise
uniform tube. The circle represents the discontinuous boundary.

(TR) to emphasize this property. However, this rather simple,
uniform displacement field is only true of a TT which has
constant density values inside and outside the flux tube, and
a discontinuity in these values at the boundary. This elementary
result relies on the fact that inside the flux tube the radial and
the azimuthal components have equal amplitudes, and that the
azimuthal component is a quarter of a period ahead of the radial
component. To reiterate, this situation only occurs for a magnetic
flux tube that is uniform, has a piece-wise constant density, and is
sufficiently thin. Any deviation of one of these three conditions
results in a more complicated behavior than a pure transverse
motion. The question is: how does the motion look when the
amplitudes are different, and in particular, when the amplitude
of the azimuthal component is larger than that of the radial
component? Note also that the motion of the exterior plasma,
even in the TT approximation, is not a pure, transverse motion
as can be seen from the displacement vector field in Figure 2.

In view of the discussion of the following section, we wish
to point out the classic view of the transverse motion associated
with the kink mode is a unidirectional motion that is independent
of angle ϕ. The motion defined in Equation (22) has this
particular property, which we label as ξTR.

5. UNEQUAL AMPLITUDES, TRANSVERSE AND
ROTATIONAL MOTIONS

In this section, we consider the displacement field of an
m = 1 kink wave which has radial and azimuthal components
with different amplitudes. It turns out that the interpretation of
this motion is rather straightforward if we are familiar with its
Cartesian representation. We shall focus on the dependence of
the displacement on the angle ϕ. In view of what follows, it is
instructive to first consider the simple case of the displacement
field of an m = 0 torsional Alfvén wave, i.e.,

ξTAW = C 1ϕ . (23)

In Cartesian coordinates this is equivalent to

ξTAW =
[

ξx

ξy

]

= C

[

− sin ϕ
+ cos ϕ

]

. (24)

Figure 3. Top panel: from Equation (23), the ξTAW displacement field an
m = 0 axisymmetric (or torsional) Alfvén wave is shown by bold arrows
on a constant magnetic surface. From Equation (24), the relation between the
polar ξϕ component and the Cartesian ξx and ξy components is also shown.
Bottom panel: from Equation (25), the azimuthal component of the m = 1
non-axisymmetric kink wave, denoted ξKAZ, is shown by bold arrows on a
constant magnetic surface. From Equation (26), the relation between the polar
ξϕ component and the Cartesian ξx and ξy components is also shown.

The subscript T refers to torsional and AW to Alfvén wave.
The displacement field of an axisymmetric or torsional Alfvén
wave is shown on the top panel of Figure 3.

Let us now turn to the azimuthal component of the displace-
ment field of a kink wave. Recall that kink refers to a non-
axisymmetric motion with m = 1. The phase relation between
the azimuthal and radial components in the previous section
was determined by ξϕ/ξr = i. Since Re(i exp(iϕ)) = − sin ϕ,
we choose as representation of the kink azimuthal motion

ξKAZ = −CAZ sin ϕ 1ϕ . (25)

Here the subscript K refers to kink (m = 1) and AZ to the
azimuthal component. In Cartesian coordinates,

ξKAZ =
[

ξx

ξy

]

= CAZ sin ϕ

[

sin ϕ
− cos ϕ

]

. (26)

The ξKAZ azimuthal displacement field of the m = 1 kink
wave is shown at a constant magnetic surface in bottom
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panel of Figure 3. From Equation (26), it is clear that the
azimuthal displacement has a transverse component. However,
this transverse component is a function of the angle ϕ. It differs
from the classic transverse motion associated with a kink mode
that is independent of the angle ϕ.

Let us now consider a displacement field with radial and
azimuthal components with different amplitudes, respectively,
CTR and CAZ. CTR and CAZ are both positive, and CTR � CAZ.
This is a step toward understanding what happens in a non-
uniform plasma cylinder. Note that the amplitudes CTR and CAZ

depend on position in a non-uniform plasma.
The displacement field in polar coordinates is

ξ = CTR cos ϕ 1r − CAZ sin ϕ 1ϕ . (27)

CTR and CAZ are the amplitudes of, respectively, the radial and
azimuthal components.

The aim now is to rewrite (27) as the sum of spatially constant
transverse motion and a remaining part that depends on the
angle ϕ. The recipe to do that is given by Equation (17). Hence,
we rewrite (27) as

ξ = CTR (cos ϕ 1r − sin ϕ 1ϕ)

− (CAZ − CTR) sin ϕ 1ϕ

= CTR 1x − CROT sin ϕ 1ϕ, (28)

where
CROT = CAZ − CTR (29)

is the amplitude of the non-axisymmetric, rotational mo-
tion. The interpretation of (28) follows immediately from
Equations (17), (22), and (25). The first term of the right hand
side of Equation (28) is the unidirectional transverse motion with
amplitude CTR, the second term is the non-axisymmetric kink
rotational motion. For completeness, Equation (28) in Cartesian
coordinates is equivalent to

ξ =
[

ξx

ξy

]

= CTR

[

1
0

]

− CROT sin ϕ

[

− sin ϕ
cos ϕ

]

. (30)

Let us reiterate: the first term on the right-hand side of either
of Equation (28) or Equation (30) is the classic, pure transverse
motion expected for a TT with piece-wise constant density. It
is spatially constant and represents a uniform translation of the
whole flux tube. This is consistent with the common view of
the transverse motion associated with a kink mode. The second
term is a non-axisymmetric kink rotational motion. The relative
importance of the two terms depends on how much bigger CAZ

is compared to CTR. In all its simplicity, Equation (30) is an
important result. It shows that the motion is the sum of a pure
transverse motion and a non-axisymmetric, rotational motion.
This result could have been anticipated as Goossens et al. (2012)
showed that kink waves do have vorticity.

Let us point out that the second term in Equation (30) also
contains a transverse component. This transverse component,
CROT sin2 ϕ, varies with the angle ϕ as sin2 ϕ. For CROT > 0 it
enhances the classic, constant transverse motion. It is zero for
ϕ = 0, π and maximal for ϕ = π/2, 3π/2. For CROT < 0 this
transverse motion counteracts the spatially constant transverse
motion, It can change the direction of the full transverse
motion if |CROT| > CTR. This change of direction occurs
ϕ = arcsin (CTR/ |CROT|).

Note also that Equation (30) tells us that there is a
component perpendicular to the constant transverse motion,

i.e., −CROT sin ϕ cos ϕ. This motion vanishes for ϕ =
0, π/2, 3π/2, π and is extremal for ϕ = π/4, where it is equal
to −CROT/2.

Equation (28) has simple applications. First, we apply it to the
kink motion in the external plasma in the case of a thin flux tube,
in order to better understand Figure 2. The relevant amplitudes
are now a function of position. They follow from Equation (14)
as follows:

CTR = C(kR)2 dK1(y)

dy
, (31)

CAZ = −C(kR)
K1(y)

r/R
,

and CROT = CAZ − CTR.

On the boundary r = R the amplitudes are

CTR = C, CAZ = −C, CROT = −2C (32)

and the displacement is

ξ e(R, ϕ) = C 1x + 2 C sin ϕ 1ϕ . (33)

Let us use Equation (33) to illustrate our previous comments
on the effect of the second term on the right hand side of
Equation (30) on transverse and perpendicular motion. We
rewrite Equation (33) as

ξ e(R, ϕ) =
(

C − 2C sin2 ϕ
)

1x + 2 C sin ϕ cos ϕ1y . (34)

The motion due to the second term on the right hand side
of Equation (34) counteracts the classic constant motion. It
changes the direction of total transverse motion when ϕ =
arcsin

√
2/2 = π/4. For ϕ ∈] − π/4, π/4[, the total transverse

motion is directed along the positive x axis. For ϕ ∈]π/4, 3π/4[,
the total transverse motion is in the opposite direction. Note also
that there is perpendicular motion,

ξy = 2C sin ϕ cos ϕ, (35)

which is positive for ϕ ∈]0, π/2[ and negative for ϕ ∈]−π/2, 0[.
It is maximal for ϕ = ±π/4 and is equal to ±C.

Equation (34) can also help us to understand dissipationless
damping of transverse motions, if we use the following toy
model. Starting with a pure transverse motion with CTR =
CAZ = C and letting kinetic energy in the radial motions decay
in time by a transfer of energy to azimuthal motions according
to

CTR = C exp(−t/τD) (36)

and believing that energy is conserved by adopting

C2
TR + C2

AZ = 2C2

so that

CROT = C(2 − exp(−2t/τD))1/2 − exp(−t/τD)). (37)

The motion changes from a purely transverse motion ξTR, as
defined in Equation (22), to a purely rotational motion ξKAZ,

as defined by Equation (26) with CAZ replaced with
√

2C
if we adopt the simple rule for the conservation of energy.
This is the dissipationless damping of transverse waves that
operates in resonant absorption. We are aware that matters
are more complicated with the wave variables depending on
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Figure 4. Top panel: in (x, y) Cartesian coordinates, since the Doppler profile
of the m = 0 torsional Alfvén wave is independent of the LOS, this is chosen to
be along the positive x axis, perpendicular to a flux tube of radius R oscillating
with a torsional Alfvén wave (m = 0) of velocity amplitude v defined in
Equation (38). The unit vectors for ϕ and r are also shown. Bottom panel: the
extremal values of LOS Doppler velocity (the vx component of v) shown by
dashed and solid lines.

spatial position, and energy of the azimuthal motions being
concentrated in a layer around the point of resonance as will
be shown in more detail by the numerical, linearized MHD
simulation described in Section 8. Nevertheless, this toy model
captures the essence of the mechanism. The transverse motions
undergo dissipationless damping because of a transfer of energy
of radial motions to azimuthal motions.

6. EFFECT OF UNEQUAL AMPLITUDES OF
TRANSVERSE AND ROTATIONAL COMPONENTS ON

DOPPLER VELOCITY PROFILES

In Sections 2–5, we only considered the displacement vector
ξ . In this section, we want to consider the possible Doppler
velocity profiles across flux tubes oscillating with either m = 0
torsional Alfvén waves or m = 1 kink waves. Therefore, we
introduce the velocity vector v which is simply proportional
to ξ . As a natural continuation from the previous section, we
want to show the effect of unequal amplitudes, transverse and
rotational, on various LOS Doppler velocity profiles.

6.1. Torsional Alfvén Wave

Since there is no preferred direction in the horizontal plane
(B0 = B01z) for viewing the m = 0 torsional Alfvén wave, we
can choose the direction toward the observer in the direction of

Figure 5. Here a flux tube is centered on the origin of (x, y) Cartesian coordinates
such that the classic kink transverse motion, vTR defined in Equation (22),
is aligned with the x axis. The angle measured anticlockwise from the positive
x axis is ϕ. An arbitrary LOS makes an angle ϕ0 with the positive x axis. A new
Cartesian coordinate system, (x̃, ỹ), is introduced such that the x̃ axis is aligned
with the LOS. The angle relative to the positive x̃ axis is labeled as ϕ̃.

the x axis (see top panel of Figure 4). Then we have that

v = v 1ϕ, (38)

where v is the maximum velocity amplitude for the torsional
Alfvén wave, and the ϕ unit vector given in terms of the x and y
Cartesian unit vectors is given by Equation (21). Then the LOS
velocity component along the x axis is simply

vx = v · 1x = −v sin ϕ. (39)

Now on the tube boundary r = R,

x = R cos ϕ, (40)

y = R sin ϕ, (41)

and

x2 = R2 − y2. (42)

Insert Equation (41) in Equation (39) and find

vx = −v
y

R
for − R � y � R. (43)

Equation (43) tells us how the Doppler velocity changes
across the flux tube. Hence, for an observer, the variation of
the Doppler velocity with respect to y is linear, independent of
the LOS (see bottom panel of Figure 4).

6.2. Kink Wave

Kink motions are non-axisymmetric and therefore the
Doppler velocity profile is not independent of the LOS. In this
section, we choose the classic kink transverse motion, vTR, as
defined in Equation (22), to be fixed along the direction of the
x axis and allow the LOS to vary with respect to this direction.
We define a new coordinate system (x̃, ỹ) such that the LOS is
along the positive x̃ axis and the anticlockwise angle from the
positive x axis and x̃ axis is ϕ0. We can now define a new angle ϕ̃
which is measured anti-clockwise from the positive x̃ axis (see

7
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(a)

(b)

(c)

(d)

Figure 6. Choosing the LOS to be parallel to vTR, i.e., ϕ0 = 0, the LOS Doppler
velocity component is given by vx . Four distinct Doppler signatures are shown
for various values of CROT. In all cases CTR > 0.

Figure 5). Hence, we have the following relations,

ϕ = ϕ0 + ϕ̃, (44)

x̃ = R cos ϕ̃, (45)

ỹ = R sin ϕ̃, (46)

and
x̃2 = R2 − ỹ2. (47)

6.2.1. Special Case I (ϕ0 = 0)

When ϕ0 = 0, the LOS is along the x axis and
aligned with the classic kink transverse motion. Hence, in

Figure 7. Choosing the LOS to be perpendicular to vTR, i.e., ϕ = π/2, the
LOS Doppler velocity component is given by vy . The Doppler signature is now
independent of CTR and only depends on CROT.

Equations (44)–(47), ϕ̃ = ϕ, x̃ = x, and ỹ = y. In this scenario,
only the vx component contributes to the observed Doppler ve-
locity signal, and this is governed by the following equation,

vx = CTR + CROT sin2 ϕ. (48)

For this particular LOS, Equation (46) is equal to
Equation (41). Using Equation (41), Equation (48) can be writ-
ten as

vx = CTR + CROT

(
y

R

)2

. (49)

Equation (49) shows that the variation of the Doppler velocity
across the flux tube is now controlled by a quadratic function
of the coordinate y. Its graphical representation is a parabola.
Depending on the sign and magnitude of CROT relative to CTR,
this quadratic equation results in the four distinct parabolic
Doppler velocity profiles shown in Figures 6(a)–(d). In Figure 6,
we choose CTR > 0 in all four cases. Note for ϕ0 = 0,
the Doppler velocity profile is always even about the tube
center (y = 0). In Figure 6(a), CROT has the same sign as
CTR, i.e., rotational and transverse motions are in phase. In
Figures 6(b)–(d), CROT has the opposite sign as CTR, i.e.,
rotational and transverse motions are in anti-phase.

6.2.2. Special Case II (ϕ0 = π/2)

When ϕ0 = π/2, the LOS is aligned with the y-axis and is
therefore perpendicular to the classic kink transverse motion.
In Equations (44)–(47) we have ϕ̃ = ϕ − π/2, x̃ = y, and
ỹ = −x. From this particular LOS, the classic kink transverse
motion does not contribute anything to the observed Doppler
velocity. Only the vy component of rotational motion does this.
This is governed by

vy = −CROT sin ϕ cos ϕ. (50)

For this particular LOS, Equation (46) is equivalent to
Equation (40), and Equation (47) takes the same form as
Equation (42). Using Equations (40) and (42) in Equation (50)
gives

vy = −CROT

x

R

[

1 −
( x

R

)2 ]1/2

. (51)

Hence, the Doppler velocity signal is zero at x = 0 and

x = ±R. The extremal values are at x = ±R
√

2/2 and have
magnitude |CROT|/2. Note that these extremal values are in
anti-phase (see Figure 7). Hence, for ϕ0 = π/2, the Doppler
velocity profile is always odd about the tube center (x = 0).

8
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Note that this has a very important consequence in accurately
interpreting the presence of torsional Alfvén waves or kink
waves from observed Doppler velocity profiles. Comparing the
Doppler velocity profile of the kink wave in Figure 7, between

x = ±R
√

2/2, there is practically no difference in the Doppler
signature of the torsional Alfvén wave shown in the lower panel
of Figure 4. This ambiguity is further discussed in Section 7
where the LOS Doppler velocity is forward modeled, also taking
into account integrated intensity.

6.2.3. General Case

For any LOS, i.e., an arbitrary value of ϕ0, the observed
Doppler velocity profile is governed by

vx̃ = CTR cos ϕ0

+ CROT(sin2 ϕ cos ϕ0 − sin ϕ cos ϕ sin ϕ0). (52)

We use Equations (44) and (46) and elementary trigonometric
identities to rewrite Equation (52) in a form that describes the
Doppler velocity amplitude from an arbitrary LOS in terms the
LOS angle ϕ0 relative to the positive x axis and y∗ = ỹ/R only,
i.e.,

vx̃ = CTR cos ϕ0
︸ ︷︷ ︸

1st term

+ CROT

⎡

⎣y2
∗ cos ϕ0

︸ ︷︷ ︸

2nd term

+ y∗(1 − y2
∗)1/2 sin ϕ0

︸ ︷︷ ︸

3rd term

⎤

⎦ .

(53)

It can be seen that Equation (53) is a linear superposition
of three distinct terms. Our toy model assumes fixed values of
ϕ0, CTR, and CROT, hence the first term is simply a constant
proportional to CTR. The first term represents the LOS Doppler
velocity component of the classic kink transverse motion as
defined in Equation (22). The second and third terms are both
proportional to CROT, and are even and odd functions about
y∗ = 0, respectively. When the LOS is aligned with the classic
kink transverse motion, i.e., ϕ0 = 0 or ϕ0 = π , then the third
term is zero and only the first and second terms contribute to the
LOS Doppler velocity component, in agreement with Special
case I in Section 6.2.1. When the LOS is perpendicular to the
classic kink transverse motion, i.e., ϕ0 = π/2 or ϕ0 = 3π/2,
then the first and second terms are zero, and only the third
term contributes to the LOS Doppler velocity component, in
agreement with Special case II in Section 6.2.2. However,
for an LOS that is neither aligned nor perpendicular to the
classic kink transverse motion, all three terms are non-zero.
The sum of the first and second terms produces a parabolic
variation as discussed in Special case I in Section 6.2.1. The
third term adds a variation, as discussed in Special case II
in Section 6.2.2. Equation (53) clearly shows the continuous
change in the Doppler velocity as function of y as the LOS varies
between the two extremes of being aligned with (ϕ0 = 0, π ), and
perpendicular to (ϕ = π/2, 3π/2), the classic kink transverse
motion. To illustrate the different possible types of Doppler
velocity profiles in this scenario we choose ϕ0 = π/4. In fact

for ϕ0 = π/4, cos ϕ0 = sin ϕ0 =
√

2/2 and Equation (53)
becomes

vx̃ =
√

2

2

{

CTR + CROT

[

y2
∗ + y∗

(

1 − y2
∗
)1/2

]}

. (54)

(a)

(b)

(c)

(d)

Figure 8. Choosing the LOS along ϕ0 = π/4, the Doppler velocity is given by
vx̃ given in Equation (54). The combinations of CTR and CROT are chosen to be
the same as Figures 6(a)–(d) to illustrate how much the LOS Doppler velocity
profile varies between ϕ0 = 0 and ϕ0 = π/4.

Equation (54) is plotted in Figures 8(a)–(d) for the same
combinations of CTR and CROT shown in Figures 6(a)–(d) to
compare how different the Doppler velocity profiles look with
a π/4 difference between the viewing angles. Hence, the LOS
angle relative to the direction of the classic transverse kink
motion can have a crucial effect on accurately interpreting the
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Doppler velocity signatures of the kink wave. A forward model
of Doppler velocity for both the torsional Alfvén and kink
waves, taking into account both LOS and integrated intensity, is
described in the next section.

7. FORWARD MODEL FOR DOPPLER VELOCITY

In this section, we study the observability as Doppler sig-
natures of the torsional Alfvén and kink waves by integrating
intensity and allowing the LOS to vary. To that end, we choose to
model chromospheric spicules, in which ubiquitous transverse
and rotational motions have been observed. As in the previous
sections, we model such a spicule as a plasma cylinder. Since
spicules are observed to be overdense relative to the ambient
plasma, we fix ρi/ρe = 10 (e.g., Beckers 1968). First, we only
consider a piece-wise constant density profile. We take 10,000 K
as the temperature for the system to mimic the formation tem-
perature of the Ca ii H line in which spicule transverse and
rotational motion are clearly observed (e.g., He et al. 2009a,
2009b; Verth et al. 2011; Okamoto & De Pontieu 2011; De
Pontieu et al. 2012).

We numerically implement the velocity field given by
Equations (4)–(5) on a grid, with a velocity amplitude of
20 km s−1. At each grid point, we then specify the emission
as a Gaussian, with a spectral line width taken as the thermal
velocity of the plasma (corresponding to calcium ions at the
given temperature). The height of the Gaussian is taken pro-
portional to the local density. This approximation is often made
in estimating spicule plasma density from metallic line inten-
sity, e.g., Makita (2003), Bjølseth (2008) and Okamoto & De
Pontieu (2011). The emission is then integrated along the LOS.
The procedure used is based upon the work of Van Doorsselaere
& Nakariakov (2008) and similar to the procedure outlined in
Antolin & Van Doorsselaere (2013), but the CHIANTI atomic
data has not been used and an artificial spectral line is generated.
Also, in Van Doorsselaere & Nakariakov (2008) and Antolin &
Van Doorsselaere (2013), the intensity is taken to be propor-
tional to the density squared (rather than linearly proportional
in the current forward model) because, in these particular papers,
coronal emission lines were studied.

Since spicules are optically thick, only the plasma up to an
optical depth of τ = 1 at the front of the spicules is taken to
contribute to the emission line. In this very simple model, we
have mimicked this effect by integrating the emission from the
cylinder only over the half facing the observer. We believe that
the proper treatment of the optically thick emission would result
in only minor changes.

The results of the computation are shown in Figure 9. We
choose the same convention for the LOS angle as described in
Figure 5, i.e., ϕ0 is the angle between the LOS and the direction
of the classic kink transverse motion. The top window shows
the emission for the kink wave. In top window (bottom panel),
we have ϕ0 = 0◦, i.e., the LOS is along the direction of the
classic kink transverse motion of the spicule. This is the same
LOS as Special case I in Section 6.2.1, so it also results in a
Doppler velocity profile, which is symmetric about the center of
the spicule. The bright emission of the internal plasma (that is
10 times denser than the surrounding) is redshifted to 20 km s−1,
because the classic kink transverse motion is aligned with the
LOS. The counterstreaming motion of the plasma outside the
cylinder results in blueshifted, fainter wings (y � 800 km and
y � 1200 km). This is similar in appearance to the Doppler
velocity profile shown in Figure 6(a), although the toy model
in that particular case did not consider the external plasma. The

Figure 9. Integrated intensity of the transverse kink mode (top window) and
the torsional mode (bottom window). In both windows, the intensity is shown
as a function of the Doppler shift (horizontal axis) and the position across the
cylinder (vertical axis). The color scale of light pink to dark pink indicates
increasing emission, and white is no emission. The top window contains several
panels corresponding to different viewing angles between the LOS and direction
of classic kink transverse motion (indicated in the top left of each panel). The
contour lines in the top window are shown for 1%, 5%, and 20% of the maximum
intensity when the LOS angle is 90◦ relative to the direction of the classic kink
motion.

(A color version of this figure is available in the online journal.)

reason for the change of Doppler sign from the center to the
boundary of the tube in Figure 6(d) was because CROT was
chosen to be larger in magnitude and opposite in sign to CTR at
the tube boundary.

The top panel (top window) considers Special case II in
Section 6.2.2, i.e., the LOS is perpendicular to the direction of
the classic kink transverse motion (ϕ0 = 90◦). As expected, the
emission from the cylinder is not Doppler shifted, because the
velocity inside the cylinder has no component along the LOS.
However, the counterstreaming motion around the cylinder is
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Figure 10. Same as Figure 9, but with a smooth density profile l/R = 1.

(A color version of this figure is available in the online journal.)

still observed as an anti-symmetric blue and redshift close to
the cylinder edge. (y � 7000 km and y � 7500 km). This
is similar in appearance to the anti-symmetric Doppler velocity
profile shown in Figure 7, but, again, the external plasma was not
considered in that particular toy model. The reason for the anti-
symmetric Doppler velocity profile in Figure 7 was that CROT

was chosen to be non-zero at the tube boundary. The cases for
an angle of ϕ0 = 45◦ and ϕ0 = 60◦ are shown for intermediate
angles where an asymmetric pattern is formed in the emission,
see case of ϕ0 = 45◦ with same LOS angle in Figure 8(d).

For comparison, the emission for the torsional Alfvén wave
is shown in the lower window of Figure 9. To obtain this
Doppler velocity profile, we have taken a static plasma outside
the cylinder, and imposed a periodic solid body rotation inside
the cylinder (with a maximum amplitude of 20 km s−1 at the
edge of the cylinder). This would be representative for torsional
Alfvén oscillations that are in phase at every radial position in
the cylinder. The emission is characterized by a diagonal band
in the wavelength-space domain, as shown in Equation (42)
and illustrated in the bottom window of Figure 4. With this
current, simple, forward model of the emission, the kink wave
can produce a varying red/blue shift profile between the internal
and external plasma that also changes with LOS angle. It can
be seen, especially for an LOS angle of ϕ0 = 90◦, the emission
could be easily confused with the emission of a torsional Alfvén
wave (see also Figure 7).

More realistically, we do not expect a plasma density discon-
tinuity at the flux tube boundary, but a layer of plasma of some

Figure 11. Kink “quasi-mode” displacement field (arrows) in a non-uniform
tube with l/R = 1. The annulus represents the non-uniform layer between the
internal and external plasma.

finite thickness that changes in value from the internal to ex-
ternal densities, i.e., an inhomogeneous layer. In Figure 10, we
do the same forward model with a smoothly changing density
layer. To do so, the sharp boundary of the magnetic cylinder at
r = R is replaced by a smooth transitional layer of thickness
l that continuously connects the internal plasma density to the
external plasma density. The non-uniform layer extends in the
interval [R− l/2, R + l/2]. The integrated intensity and Doppler
velocity from this configuration is equivalent to that expected
from the kink “quasi-mode” shown in Figure 11 (with the same
l/R = 1 ratio). The physical origin of the “quasi-mode,” which
naturally arises in magnetic flux tubes which have a continuous
variation in density between the internal and external plasma,
is explained in the following section. Purely from the point of
view of observed intensity, quite simply, the inhomogeneous
layer would boost the strength of the Doppler velocity signal
from the external velocity field. Compared with the top win-
dow in Figure 9, the blue-shifted wings (for the ϕ0 = 0◦ case)
in Figure (10) are more pronounced, and the intensity is more
smoothed out over the symmetric Doppler velocity profile. Sim-
ilarly, for the ϕ0 = 90◦ case, the intensity is smoothed out over
the diagonal created by the cylinder and the anti-symmetric
wings. This generates a picture that is even more alike to the
bottom window in Figure (9) for the torsional Alfvén wave, and
would be even more difficult to distinguish observationally.

In De Pontieu et al. (2012), they forward-modeled the Doppler
velocity produced by spicule motion based on a Monte Carlo
approach. Although De Pontieu et al. only assumed the presence
of m = 0 rotational motion in their particular model, they did
not discount the occurrence of m > 0 values in observational
data. In this section, we have highlighted where the Doppler
signatures of m = 0 and m = 1 motion look similar or distinct
depending on the LOS. Certainly, the most distinct signatures
of the m = 1 combined transverse and rotational motion
should be searched for in the observational data, i.e., when the
LOS is closely aligned with the classic kink transverse motion
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(e.g., bottom panel of top window in Figure 9 and bottom
panel in Figure 10). In the next section, we consider the
complexity in the time/space variation in the transverse and
rotational components of a kink wave when a more realistic,
inhomogeneous density layer is introduced between the internal
and external plasma.

8. MOTIONS IN A TRANSVERSELY
NON-UNIFORM FLUX TUBE

Certainly a magnetic flux tube with a piece-wise constant
density is a crude approximation to the waveguides observed
in the solar atmosphere. In this section, following on from the
Doppler velocity forward model shown in Figure 10, which
added a smoothly varying density layer between the internal
and external plasma, we now investigate the effect of transverse
density inhomogeneity on the kink wave displacement field in
more detail. As in Section 7, the non-uniform layer of width
l extends in the interval [R − l/2, R + l/2]. A continuum of
Alfvén frequencies appears due to the presence of the non-
uniform layer. The kink mode frequency, which is necessarily
between the internal and external Alfvén frequencies, lies now
within the frequency continuum, and so the kink mode becomes
resonantly coupled to Alfvén continuum modes. The kink mode
energy is ideally transferred to the continuum modes and, as a
consequence, the transverse motion linked to the kink mode is
damped in time (see, e.g., Goossens et al. 2011).

As explained in Section 5, the kink mode has both radial and
azimuthal components of the displacement, whereas the Alfvén
continuum modes are essentially polarized in the azimuthal
direction. As the energy from the kink mode is resonantly
transferred to the Alfvén continuum modes, the flux tube motion
changes from a purely transverse motion to a purely rotational
motion in a timescale τD that depends on the properties of the
equilibrium. This change of polarization was represented by the
toy model in Section 5 by Equations (36) and (37).

A detailed study of the resonant absorption process beyond
this simple but instructive toy model requires advanced analytic/
numerical MHD modeling. An attempt to incorporate the effect
of resonant absorption from the analytic point of view is based
on the assumption that a global kink normal mode still exists
in the non-uniform case. In other words, it is possible to find
in the non-uniform case a mode that is the direct descendant
of the kink mode in a piece-wise uniform tube. The effect
of resonant absorption would then be to add an imaginary
part to the frequency of the kink mode, i.e., to introduce a
damping timescale. Soler et al. (2013) used the method of
Frobenius to express the perturbations in the non-uniform layer
as a combination of a regular and singular series around the
Alfvén resonance position (a similar approach was previously
used by Hollweg 1990, in a Cartesian interface). The series
expansion was used to connect through the non-uniform layer
the perturbations in the internal plasma to those in the external
plasma (see the full details of this procedure in Soler et al. 2013).
This process allowed Soler et al. (2013) to find a dispersion
relation for the kink mode in the non-uniform case. The study
of the dispersion relation reveals that it is a multi-valued function
and that there are no solutions on its principal Riemann sheet.
The complex solution that can be related to the descendant of
the kink mode in a piece-wise uniform tube is located on the
next Riemann sheet. This result indicates that the kink mode in
the non-uniform case is not a true, normal mode of the flux tube.
Instead, the damping time of this kink “quasi-mode” has to be
physically understood, not as a dissipation timescale, but as the

timescale for which most of the energy of the flux tube global
transverse motion is transferred to the azimuthally polarized
continuum modes.

A simple mathematical expression for the transverse motion
damping timescale can be derived assuming that the transverse
inhomogeneity is confined to a layer much thinner than the
radius of the tube, i.e., the thin boundary approximation or
l/R ≪ 1 (see, e.g., Hollweg & Yang 1988; Ruderman &
Roberts 2002; Goossens et al. 2002). This condition is required
to make the analysis mathematically simple although it may
not be physically realistic for applications to actual solar
atmospheric waveguides (Soler et al. 2014). In the thin boundary
approximation, the kink “quasi-mode” damping timescale due
to resonant absorption is

τD = F
R

l

ρi + ρe

ρi − ρe

P, (55)

where P is the kink mode period (the same as in a piece-wise
uniform tube) and F is a numerical factor that depends on the
specific density profile considered in the non-uniform layer. This
simple dependence on the density profile does not hold for thick
transitional layers (Soler et al. 2014).

The displacement field of the kink “quasi-mode” in a non-
uniform tube obtained by Soler et al. (2013) is plotted in
Figure 11, which can be compared to that of the kink mode
in a piece-wise uniform tube displayed in Figure 2. It is clear
from Figure 11 that the motion in the non-uniform layer is
mainly rotational due to the presence of the resonance. As
happens for the interpretation of the damping timescale, special
caution is needed when physically interpreting the LOS Doppler
velocity profile that one would obtain from the displacement
field displayed in Figure 11. The reason is that the “quasi-mode”
primarily accounts for the global transverse and rotational
motion generated by the kink wave, and does not describe
the localized plasma motions linked to the Alfvén continuum
modes. As time increases, more and more energy is transferred
to the continuum modes and their contribution to the total
displacement field becomes important when their amplitudes
grow. Therefore, the displacement field of the “quasi-mode”
may be interpreted as an approximation to the actual motion of
the plasma at a sufficiently early stage of the oscillation only.

In order to better understand the polarization of the plasma
motions as the oscillations progress through time, we have
solved the full time-dependent problem. This allows us to
advance without the inherent limitations of the approximate
analytical modeling described in Sections 5–6. The linearized
ideal MHD equations are numerically solved in a Cartesian
coordinate system in the x and y directions (in z direction we
perform a Fourier analysis). We use the same numerical method
as in Terradas et al. (2008). Since the aim here is to study the
evolution of the flux tube displacement, we impose at t = 0
an impulse in the x direction mostly localized inside the tube

(0 <
√

x2 + y2 < R + l/2).
The evolution of the displacement field is plotted in Fig-

ure 12 at different times. In this plot the size of the arrows is
proportional to the amplitude of the displacement. Since the
loop is oscillating around the equilibrium position, the direction
of the displacement field changes periodically with time and,
more importantly, the spatial distribution of the displacement
also changes. We clearly see how the transverse motions inside
the tube decrease in amplitude as time increases while at the
same time the azimuthal displacements inside the inhomoge-
neous layer keep growing. This is the mechanism of resonant
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Figure 12. Snapshots showing the time and spatial evolution of the displacement field (arrows) in a non-uniform tube with l/R = 1 as the process of resonant
absorption develops in a time-dependent numerical simulation. The time evolution is shown in units of Alfvén transit time, τA, where τA = R/vA,i . The annulus
represents the non-uniform layer between the internal and external plasmas.

(An animation of this figure is available in the online journal.)

absorption and the final result is that all the energy becomes
localized in anti-symmetric, azimuthal motions around the res-
onant layer, which is located at r ≈ R in our case. In essence,
this is the process described using the simple toy model of
Equations (36) and (37).

In connection to the accuracy of the “quasi-mode” model-
ing, now we can compare the “quasi-mode” displacement field
of Figure 11 with the full numerical displacement field of
Figure 12. The “quasi-mode” is a reasonably good approxi-
mation to the actual displacement field in the first few peri-
ods of the oscillation after the initial excitation. For instance,
the “quasi-mode” displacement field qualitatively agrees with
that shown in the upper right panel of Figure 12, which cor-
responds to the displacement field after almost two periods of
the transverse oscillation. However, the displacement fields in
the lower left and right panels of Figure 12, which roughly cor-
respond to three and five periods of oscillation, respectively,
are already significantly different from the “quasi-mode” dis-
placement field. The plasma motions displayed in the lower
left and right panels of Figure 12, especially those in the lower
right panel, are mostly dominated by azimuthal motions in the
non-uniform layer. These azimuthal motions localized in the
non-uniform layer can be theoretically related to the contribu-

tion of the Alfvén continuum modes, which is not captured by
the “quasi-mode” approximation. In relation to actual Doppler
velocity data, the relative amplitudes between the transverse and
rotational velocities would depend on what stage of the mode
conversion process was being observed. It would certainly be a
great step forward to identify this process of mode conversion
directly, e.g., in propagating kink waves by measuring the trans-
fer of energy from transverse to rotational motion with height
in the solar atmosphere.

9. CONCLUSIONS

It is hoped that this current work will go some way toward
dispelling the widely held notion that only the axisymmetric
torsional motion has rotational motion. It has been demon-
strated that the velocity field of the kink wave is naturally a
sum of both transverse and rotational motion, and due to its
non-axisymmetric nature, its observed Doppler velocity profile
varies with LOS. This is particularly timely since we now have
modern, high temporal/spatial resolution spectroscopic instru-
ments, e.g., TRIPPLE/SST, CRISP/SST, IBIS/DST, IRIS and
the forthcoming ATST, that are capable of detecting variation
of Doppler velocity trends across fine scale oscillating plasma
structures such as chromospheric spicules/fibrils/mottels.
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We have shown that when the LOS is perpendicular to the direc-
tion of the classic kink transverse motion, the resultant Doppler
velocity profile due to the presence of the kink wave’s rotational
motion can look very similar to that expected from a torsional
Alfvén wave. Taking this fact into account is particularly impor-
tant, e.g., to accurately interpret the varying Doppler velocity
profiles across spicules in which ubiquitous transverse and rota-
tional motions are observed to be present. We have also shown
that the relative amplitudes of the transverse and rotational ve-
locities in kink waves and their time/space evolution depend
on the length scale of the transverse plasma density inhomo-
geneity and what stage of the mode conversion process is being
observed. It is hoped that the latest high temporal/spatial res-
olution spectroscopic instruments will provide new and much
sought after insight into this mode coupling, conversion, and
time/space evolution as the waves propagate through the Sun’s
atmosphere.
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768, 17
Morton, R. J., Verth, G., Hillier, A., & Erdélyi, R. 2014, ApJ, 784, 29
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