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Abstract

In combinatorial optimization it is not rare to find problems whose mathematical structure is nearly the same, differing only in
some aspect related to the motivating application. For example, many problems in machine scheduling and vehicle routing have
equivalent formulations and only differ with respect to the optimization objective, or particular constraints. Moreover, while some
problems receive a lot of attention from the research community, their close relatives receive hardly any attention at all. Given
two closely related problems, it is intuitive that it may be effective to adapt state-of-the-art algorithms—initially introduced for the
well-studied problem variant—to the less-studied problem variant. In this paper we provide an example based on the travelling
salesman problem with time windows that supports this intuition. In this context, the well-studied problem variant minimizes the
travel time, while the less-studied problem variant minimizes the makespan. Indeed, the results show that the algorithms that we
adapt from travel-time minimization to makespan minimization significantly outperform the existing state-of-the-art approaches for
makespan minimization.
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1. Introduction

As in the classical travelling salesman problem (TSP), the
travelling salesman problem with time windows (TSPTW) re-
quires the specification of a Hamiltonian cycle through a graph
of nodes, but adds the requirement that each node must be vis-
ited within a predefined time window. For a routing application,
the TSPTW represents the problem of finding an efficient route,
starting and ending at a specified depot, that visits a set of cus-
tomers, each one in his predefined time window. In the machine
scheduling environment, the TSPTW can be used to model the
problem of sequencing jobs on a single machine where the
setup time of each job depends on the previous job, and each
job has a release time and a deadline. In the routing context,
the TSPTW objective is typically to minimize the sum of the
travel times. In the machine scheduling context, the TSPTW
objective is to minimize the makespan. Both versions of the
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TSPTW are proven to be NP-hard, and even finding feasible
solutions is an NP-complete problem [1]. For convenience we
henceforth refer to the TSPTW with travel-time minimization
by TSPTW-TT, and to the TSPTW with makespan minimiza-
tion by TSPTW-M.

1.1. Contribution of this Paper
Among the two above-mentioned problem versions, the

TSPTW-TT has been more closely studied in the literature.
In fact, very few algorithms have been proposed for the
TSPTW-M. In this paper, we adapt two state-of-the-art algo-
rithms for the TSPTW-TT, compressed annealing (CA) [2] and
the Beam-ACO algorithm [3], to the TSPTW-M. These algo-
rithms, by virtue of being metaheuristics, can be easily adapted
to different variants of the same problem. Moreover, in this
case, the structure of the problem remains the same despite
the change in the objective function. We do not attempt to
adapt other algorithms developed for the TSPTW-TT to the
TSPTW-M. First, some of these algorithms heavily rely on
heuristics specific to the TSPTW-TT. Second, since Beam-
ACO and CA are the state-of-the-art for the TSPTW-TT, there
is no a priori indication that other algorithms could become bet-
ter than them when adapted to the TSPTW-M.

Concerning the experimental results, we present an exhaus-
tive comparison between both adapted algorithms on a compre-
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hensive set of benchmark instances available in the literature.
This, as such, is a useful contribution because existing algo-
rithm proposals for the TSPTW-M have only been applied to
rather small subsets of the available benchmark instances. Fur-
thermore, both algorithms are compared to current state-of-the-
art algorithms developed specifically for the TSPTW-M.

Concerning the comparison between Beam-ACO and CA,
we were able to detect—for all considered sets of benchmark
instances—a statistically significant advantage of Beam-ACO
over CA. With respect to the comparison of Beam-ACO and
CA with existing state-of-the-art algorithms, the following con-
clusions can be drawn. First, for the benchmark set proposed by
Dumas et al. [7], Beam-ACO is able to improve the best-known
results from [12] in five out of 22 cases. In the remaining cases,
the same results as in [12] are achieved. Currently, the state-
of-the-art algorithms for the TSPTW-M are ACS-TSPTW and
ACS-Time [16]. Both algorithms are based on the metaheuris-
tic ant colony optimization. In [16], both algorithms were ap-
plied to the benchmark set proposed by Potvin & Bengio [22].
A comparison of Beam-ACO and CA with the two ACO algo-
rithms on this benchmark set reveals that Beam-ACO outper-
forms ACS-TSPTW in 17 out of 24 cases and ACS-Time in 20
out of 24 cases. While in the remainder cases both algorithms
obtain the best-known solution in every run, Beam-ACO is from
40 to more than one hundred times faster than the other algo-
rithms. The results of CA are similar to those of Beam-ACO.

1.2. Organization of the Paper

The remainder of the paper is organized as follows. In Sec-
tion 2, we provide a technical description of the TSPTW. We
review the history of both problem variants in Section 2.1. In
Section 3, we briefly describe CA and Beam-ACO as well as
providing a description of the changes that were necessary for
adapting them to makespan optimization. The benchmark in-
stances considered in this work are described in Section 4. Af-
ter outlining the tuning process, we provide comprehensive re-
sults in Section 5 for both algorithms on a comprehensive set of
benchmark instances used in the related literature. Finally, we
offer conclusions and an outlook to future work in Section 6.

2. Technical Problem Description

Given an undirected complete graph G = (N, A), where N =

{0, 1, . . . , n} is a set of nodes representing the depot (node 0) and
n customers, and A = N × N is the set of edges connecting the
nodes, a TSPTW solution is a sequence visiting each node of
G exactly once (starting and ending at the depot). We represent
a tour as P = (p0 = 0, p1, . . . , pn, pn+1 = 0), where the sub-
sequence (p1, . . . , pk, . . . , pn) is a permutation of the nodes in
N \ {0} and pk denotes the index of the node at the kth position
of the tour. The two additional elements—that is, p0 = 0 and
pn+1 = 0—represent the depot at which the tour starts and ends.

For each edge ai j ∈ A, which connects the two nodes i and j,
there is an associated cost c(ai j). In a routing application, c(ai j)
represents the service time at customer i plus the travel time
between customer i and j. In a scheduling application, c(ai j)

represents the task time for job i plus the time to set up for job
j when following job i. A time window [ei, li] is associated
to each node i ∈ N, which defines when service at node i can
begin. Waiting times are generally permitted; in the routing,
this implies that a customer i may be reached before the start ei

of its time window, but service cannot start until ei. Therefore,
given a particular tour P, the departure time from node pk is
calculated as

Dpk = max(Apk , epk ) , (1)

where Apk = Dpk−1+c(apk−1,pk ) is the arrival time at node pk in the
tour. A tour P is feasible, if and only if Ω(P) =

∑n+1
k=0 ω(pk) = 0,

where ω(pk) = 1 if Apk > lpk , and 0 otherwise.
As outlined above, two different objective functions may be

considered for the TSPTW. The function for travel-time min-
imization, ftt(·), concerns the minimization of the sum of the
costs of the edges traversed along a tour. That is, given a tour
P:

ftt(P) =

n∑

k=0

c(apk ,pk+1 ) (2)

Note that the objective function ftt(·) is analogous to the one of
the classical TSP. The other alternative is to minimize Apn+1 ,
that is, the arrival time at the depot. That is, given a tour P:

fm(P) = Apn+1 (3)

where function fm(·) refers to makespan minimization.

2.1. Previous Work on the TSPTW

The earliest papers on the TSPTW focused on exact ap-
proaches for makespan optimization [4, 5]. The testing of these
approaches was limited to instances of at most 50 nodes. More-
over, these algorithms were not able to handle wide or over-
lapping time windows. Langevin et al. [6] proposed a branch-
and-bound scheme to solve a two-commodity flow formulation
for the TSPTW and considered both makespan and travel-time
optimization; their implementation was able to solve instances
of up to 40 nodes. Dumas et al. [7] extended earlier dynamic
programming approaches by using state space reduction tech-
niques that allowed them to solve larger problem instances.
More recently, Ascheuer et al. [8] developed a branch-and-
cut algorithm in which they applied techniques tailored for the
asymmetric TSPTW. Balas & Simonetti [9] presented a linear-
time dynamic programming algorithm for several TSP variants
with precedence constraints, including the TSPTW. Constraint
programming is another exact approach that has been applied
to the TSPTW [10, 11].

Due to the inherent difficulty of the TSPTW, heuristics have
been the focus of research in more recent years. Carlton &
Barnes [12] developed a tabu search approach to optimize
a hierarchical objective that attempts to primarily minimize
makespan, and then secondly to minimize total travel time sub-
ject to maintaining the minimal makespan. In order to deal
with infeasibility, Carlton & Barnes [12] augment the objec-
tive function with a static penalty for violating li of customer
i. Gendreau et al. [13] presented a constructive heuristic with a

2
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subsequent improvement procedure. Wolfler Calvo [14] pre-
sented a constructive heuristic that starts with a solution to
an ad-hoc assignment problem, proceeds with a greedy inser-
tion procedure to obtain a complete solution and applies local
search to further improve the obtained solution. Two state-
of-the-art TSPTW-TT algorithms for travel-time optimization
were proposed by Ohlmann & Thomas [2] and López-Ibáñez &
Blum [3]. Ohlmann & Thomas [2] proposed a compressed an-
nealing (CA) algorithm, which is a variant of simulated anneal-
ing making use of a variable penalty method. Finally, López-
Ibáñez & Blum [3] presented Beam-ACO algorithm, which re-
sults from the combination of ant colony optimization (ACO)
with beam search, a heuristic variant of branch-and-bound. The
same authors [3] also provided a comprehensive comparison of
CA and Beam-ACO. Recently, a variable neighborhood search
approach has been proposed [15]. This algorithm appears to
perform similarly well. However, it has not been tested on
all available benchmark instances. Authors developing heuris-
tic approaches have focused on travel-time optimization and
fewer results are published on makespan optimization. Curi-
ously, TSPTW-M has been the focus of the ant colony opti-
mization community [16, 17, 18]. Some of these ACO ap-
proaches [16, 17] can be considered state-of-the-art for the
TSPTW-M.

3. Adaptation of the Algorithms to Makespan Optimization

In the following we provide a short description of both CA
(as published in [2]) and Beam-ACO (as published in [3]) for
the TSPTW-M.

3.1. Compressed Annealing for the TSPTW-M
Compressed annealing (CA) incorporates a variable penalty

approach within the stochastic local search framework of simu-
lated annealing to address constrained combinatorial optimiza-
tion problems (such as the TSPTW). Simulated annealing algo-
rithms escape local optima by probabilistically allowing moves
to non-improving neighbors. Simulated annealing controls the
likelihood of accepting a non-improving neighbor solution via
a parameter called temperature, τ. CA introduces an additional
parameter called pressure, λ, which controls the likelihood of
accepting an infeasible solution (with respect to the time win-
dow constraints) by introducing a penalty proportional to the
degree of infeasibility. Specifically, CA evaluates each tour P
according to the augmented function v(P, λ) = fm(P) + λρ(P),
where

ρ(P) =

n∑

i=1

[
max

{
0,Dpi − lpi

}]
(4)

is the degree of time window violation. The search behavior of
CA is governed by the manner in which temperature and pres-
sure are adjusted during the annealing run. Every ι iterations,
the values of temperature and pressure are respectively updated
according to τk+1 = βτk and λk+1 = λ̂

(
1 − e−γk

)
, where β and γ

are user-specified parameters.
To estimate the initial temperature value, τ0, as well as λ̂,

we execute a pre-processing step that samples 5000 pairs of

neighbor solutions (for a 1-shift neighborhood). Based on this
sample, we compute

τ0 =
|∆v|

ln
(

1
χ0

) , (5)

and

λ̂ = max
P

{
fm(P)
ρ(P)

}
κ

1 − κ , (6)

where |∆v| is the average absolute difference in objective func-
tion over the 5000 sample transitions, and the values of χ0 and
κ are user-specified. CA is terminated when the best solution
has not been updated in the last I temperature/pressure changes
(I × ι neighbor solutions) while requiring a minimum of 100
total temperature changes, i.e., the algorithm will consider at
least 100 × ι neighbor solutions. We discuss the calibration of
parameters ι, β, γ, χ0, and κ in Section 5.1. See Algorithm 1
for an overview of CA; we refer to Ohlmann & Thomas [2] for
further details on CA.

Algorithm 1 Pseudo-code of Compressed Annealing
1: Initialize best tour found, Pbest, so that fm(Pbest) = ∞ and
ρ(Pbest) = 0

2: Generate initial tour, P
3: k := 0
4: Set initial temperature and pressure, τk and λk

5: Set ι, the number of iterations at each temperature/pressure
6: repeat
7: counter := 0
8: repeat
9: counter := counter + 1

10: Randomly generate P′, a neighbor tour of P
11: With probability exp

(−(v(P′,λk)−v(P,λk))+

τk

)
, let P := P′

12: if ρ(P) ≤ ρ(Pbest) and fm(P) < fm(Pbest) then
13: Pbest := P
14: end if
15: until counter = ι
16: k := k + 1
17: Update τk and λk according to cooling and compression

schedules
18: until termination criterion satisfied
19: output: Pbest

3.2. Beam-ACO for the TSPTW-M

Beam-ACO is an algorithm that results from the hybridiza-
tion of the metaheuristic ant colony optimization (ACO) with
beam search. The general framework of a Beam-ACO algo-
rithm [19] is based on ACO. In ACO, a certain number of so-
lutions are constructed at each iteration independent of each
other. This is based on a so-called pheromone model, a set T
of numerical values that are used to generate the probabilities
for the possible extensions of the partial solution considered at
the current construction step. In the case of the TSPTW, partial
solutions correspond to partial tours. Moreover, an extension

3
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of a partial tour is obtained by visiting exactly one of the so-far
unvisited customers.

The general framework of Beam-ACO is shown in Algo-
rithm 2. In contrast to ACO, Beam-ACO employs—at each
iteration—a probabilistic beam search procedure that generates
a number of kbw solutions interdependently and in parallel (see
line 5 of Algorithm 2). The best one of these solutions, Pib,
is provided as feedback to the algorithm. The pseudo-code of
the probabilistic beam search that we devised is given in Al-
gorithm 3. Parameter kbw is known as the beam width. Just
like in ACO, the extension of partial solutions in Beam-ACO
is based on a greedy function and on the pheromone model.
More specifically, based on greedy and pheromone informa-
tion, Beam-ACO selects at each construction step a number of
bµ · kbwc extensions of the current set of kbw partial solutions.
Hereby, µ > 1 is a parameter of the algorithm. As the num-
ber of solutions to be generated is limited by kbw, the next step
consists in reducing the set of selected partial solutions to the
kbw best ones. This is generally done by means of bounding
information. Hence, accurate and inexpensive bounding infor-
mation is of crucial importance for Beam-ACO. In other words,
when the bounding information is either misleading or when
this information is computationally expensive, Beam-ACO may
not be the algorithm of choice. Unfortunately, this has turned
out to be the case for the TSPTW. Therefore, López-Ibáñez &
Blum [3] replaced, in the context of the TSPTW-TT, the use
of bounding information by a technique known as stochastic
sampling [20, 21].

Algorithm 2 Pseudo-code of Beam-ACO
1: Initialize best tour found, Pbest, so that fm(Pbest) = ∞
2: Initialize parameters kbw, µ and Ns

3: Initialize the set T of pheromone values
4: repeat
5: Generate a solution Pib by probabilistic beam search

based on parameters kbw, µ, Ns and T
6: Apply local search to Pib

7: if Pib <lex Pbest then Pbest := Pib

8: Apply an update of the pheromone values
9: until termination criterion satisfied

10: output: Pbest

By means of stochastic sampling, partial solutions are evalu-
ated in the following alternative way. Starting from the partial
solution under consideration, a complete solution is probabilis-
tically generated N s times, based on greedy and pheromone in-
formation. Hereby, N s is called the number of samples. The
objective function value of the best of these N s samples is then
used to evaluate the corresponding partial solution. The in-
formation obtained by stochastic sampling is used to rank the
different partial solutions. The worst partial solutions are then
excluded from further examination. The importance (and accu-
racy) of stochastic sampling is controlled by an extra parameter,
the rate of stochastic sampling, referred to by rs ∈ {0, . . . , 100}
(in percent). More specifically, for the first (n − (rs · n)/100)
construction steps of probabilistic beam search, stochastic sam-

Algorithm 3 Pseudo-code of probabilistic beam search
1: Initilize set B0 with a partial solution that only contains the

depot
2: for t = 0 to n do
3: Generate the set of all extensions, C, of the partial solu-

tions in Bt

4: Bt+1 := ∅
5: for k = 1 to min{bµ · kbwc, |C|} do
6: Choose one of the children from C, c, based on

greedy/pheromone information
7: Remove c from C
8: Add c to Bt+1
9: end for

10: Reduce the size of Bt+1 to kbw by means of stochastic
sampling

11: end for
12: output: The best solution from Bn

pling is not used at all. Instead, the kbw partial solutions for fur-
ther examination are chosen randomly from the set of bµ · kbwc
generated extensions. Stochastic sampling is only used in the
remaining construction steps. Note that when rs = 0 stochastic
sampling is not applied at all, while rs = 100 refers to the use
of stochastic sampling at each construction step.

Finally, we adapt the 1-opt best-improvement local search
already proposed for the TSPTW-TT [3]. This local search is
applied to the best solution generated at each iteration. In the 1-
opt neighborhood, a single customer is removed from the tour
and reinserted in a different position. A similar local search
was previously proposed by Carlton & Barnes [12], but with
some notable differences. In particular, we implemented sev-
eral speed-ups that are not found in previous proposals, and we
compare solutions lexicographically, instead of using a penalty
term. The adaptation of the 1-opt local search to the TSPTW-M
requires that Beam-ACO keeps track of the partial makespan
during solution construction. Since this was already required
by the speed-ups proposed in the context of the TSPTW-TT [3],
the local search algorithm remains basically the same.

Since we noticed that the best-improvement local search
could be computationally expensive, we also implement here
a first-improvement variant, which does not necessarily exam-
ine the whole neighborhood of a given solution. In the first-
improvement variant, whenever a neighbor is found that is bet-
ter than the current solution, this neighbor is selected without
examining the rest of the neighborhood. Just like the best-
improvement variant, the first-improvement variant stops when
no improving neighbor can be found.

The Beam-ACO approach differs from other published algo-
rithms for the TSPTW by not making use of a penalty term
in the objective function. Instead it uses a lexicographic com-
parison of—possibly infeasible—solutions. For this purpose,
an operator (<lex) was defined that compares solutions by their
number of constraint violations (Ω). In the case of an equal
number of constraint violations, the objective function ( f ) is
used as a second criterion. More formally, two different solu-
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tions P and P′ are compared as follows:

P <lex P′ ⇐⇒ Ω(P) < Ω(P′)
or (Ω(P) = Ω(P′) and f (P) < f (P′)) (7)

The interested reader may note that the pseudo-codes that are
given above are slightly simplified. A complete description of
the Beam-ACO algorithm can be found in the original paper [3].

4. Benchmark Instances

In the following, we briefly describe the seven benchmark
sets considered in this work.1

1. The first set consists of 30 instances originally provided by
Potvin & Bengio [22] and derived from Solomon’s RC2
VRPTW instances [23]. These instances are very diverse
in structure. The number of customers (n) ranges from 3
to 44 customers.

2. The second set of benchmark instances, by Langevin et
al. [6], consists of seven instance classes of 10 instances
each. Instances are grouped by number of customers and
time window width.

3. The third benchmark set consists of 27 classes of five in-
stances each. All instances were proposed and solved to
optimality by Dumas et al. [7]. Instance size ranges from
20 to 200 customers.

4. Gendreau et al. [13] provided the fourth benchmark set
consisting of 120 instances grouped into 26 classes with
the same number of customers and equivalent time win-
dow widths. These instances were obtained from the in-
stances proposed by Dumas et al. [7] by extending the time
windows by 100 units, resulting in time windows in the
range from 120 to 200 time units.

5. The fifth set of benchmark instances, proposed by
Ohlmann & Thomas [2], contains 25 instances grouped
into five classes. The instances were derived from the in-
stances with 150, respectively 200, customers proposed by
Dumas et al. [7] by extending the time windows by 100
time units.

6. The sixth benchmark set consists of 50 asymmetric
TSPTW instances introduced by Ascheuer [24]. These are
real-world instances based on the routing of a stacker crane
in an automated storage system.

7. Finally, the seventh benchmark set contains 27 symmetric
instances proposed by Pesant et al. [10] (and also used by
Focacci et al. [11]). While they were also derived from
Solomon’s RC2 VRPTW instances [23], they are different
from the instances proposed by Potvin & Bengio [22].

1These instances are available at http://iridia.ulb.ac.be/~manuel/
tsptw-instances

Table 1: Parameters of Beam-ACO and their values considered for tuning.

Parameter Role Domain
kbw beam width {1, 2, . . . , 9, 10}
µ used for calculating the number

of extensions to be chosen
{1, 1.1, . . . , 4.9, 5}

rs sampling rate {0, 1, . . . , 99, 100}
N s number of samples {1, 2, 3, 4, 5}

local search mode first-improvement or best-
improvement local search

{first, best}

5. Experimental Evaluation

We implemented Beam-ACO and CA in C++, compiled with
gcc version 4.4. All experiments were performed on Intel Xeon
E5410 CPUs, running at 2.33 Ghz with 6MB of cache under
Cluster Rocks Linux version 4.2.1/CentOS 4. The implementa-
tion is sequential and experiments run on a single core.

5.1. Parameter Tuning

All benchmark sets described in the previous section are ran-
domly partitioned in two distinct sets: 20% of the instances
are used for tuning and the remaining 80% are used for test-
ing. The parameters of both Beam-ACO and CA are tuned by
means of Iterated F-race [25], as implemented by the irace

software package [26]. Tables 1 and 2 indicate the domain of
the parameter settings considered for tuning.

Each run of the tuner (irace) produces a single parameter
configuration of the algorithm being tuned (either Beam-ACO
or CA). The stopping criterion for a single run of the tuner is
1000 runs of the algorithm being tuned, and each individual
run of Beam-ACO or CA is stopped after 60 seconds. The
tuner does not directly use the objective function to evaluate
the quality of each run of Beam-ACO or CA. Instead, in order
to take into account the number of constraint violations (Ω), the
makespan ( fm) and the computation time (Tcpu), the tuner uses
the following formula to evaluate the cost value (Cost) of a run:

Cost = c1 ·Ω + c2 · fm + Tcpu (8)

where c1 and c2 are constants that were chosen as follows. First,
given a run having produced a solution with a lower number of
constraint violations than another run, the former should always
have a lower cost value than the latter. This can be achieved by
choosing c1 to be (i) greater than any possible makespan value
of any possible solution to any of the considered problem in-
stances, and (ii) greater than any possible computation time. It
was verified that c1 = 107 satisfies this requirement concerning
the set of benchmark instances that was tackled in this work.
Second, in the case of two runs having produced solutions with
the same number of constraint violations, the run with the bet-
ter solution concerning the makespan value should have a lower
cost value than the other run. This can be achieved by choos-
ing c2 to be greater than any possible computation time. As the
computation time limit for all runs was 60 seconds, the setting
c2 = 100 satisfies this requirement.

5
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Table 2: Tuning domain of CA parameters.

Parameter Domain
β {0.9, 0.91, . . . , 0.99}
χ0 {0.89, 0.9, . . . , 0.99}
γ {0.01, 0.02, . . . , 0.11}
κ {0.90, 0.91, . . . , 0.9999}
I {50, 51, . . . , 150}
ι {10000, 10001, . . . , 50000}

We repeat each run of the tuner five times for each algorithm,
thus, we obtain five parameter configurations of Beam-ACO
and five parameter configurations of CA. Table 3 describes the
configurations of Beam-ACO found by the five tuning runs, and
Table 4 describes the ones corresponding to the tuning of CA.
The table also includes the default parameter settings of CA
(row “default”) for further comparison. The parameter settings
found by the different runs of the tuner are quite similar. In the
case of Beam-ACO, they are characterized by small beamwidth,
low µ, and the use of first-improvement local search. The values
of sample rate and number of samples are more varied, which
indicates some trade-off between these two parameters. The
variability of the parameter settings found by the five tuning
runs is also small in the case of CA. However, there are large
differences with respect to the default parameter settings, in par-
ticular for ι and I. The next step is to test these configurations
on the set of testing instances.

Table 3: Results of the automatic configuration of Beam-ACO.

Configuration Parameter setting
number kbw µ sr N s local search mode

1 1 4.13 91 4 first
2 3 1.37 19 2 first
3 2 2.15 12 3 first
4 2 1.21 56 4 first
5 2 1.22 65 3 first

Table 4: Results of the automatic configuration of CA.

Configuration Parameter setting
number β χ0 γ κ I ι

default 0.96 0.94 0.06 0.9999 75 30000
1 0.9 0.93 0.08 0.99 75 10087
2 0.90 0.96 0.1 0.99 112 10052
3 0.90 0.91 0.09 0.98 147 10519
4 0.9 0.9 0.08 0.99 123 10805
5 0.9 0.90 0.10 0.99 133 10801

5.2. Testing of the Tuned Configurations
We ran the above eleven algorithm versions (five settings of

Beam-ACO and five settings of CA plus its default setting) on
the remaining 80 percent of the benchmark instances that were

not used during the tuning procedure. We repeat each run 15
times with a different random seed and stop each run after 60
seconds. We record the number of constraint violations (Ω), the
relative percent deviation (RPD) of the makespan, that is, 100 ·
(makespan−best-known)/best-known, and the CPU time (Tcpu)
required to find the best solution returned by each run. For the
sake of brevity, we provide here only a statistical summary of
the results.

For each run, we calculate a single value using Eq. 8, and we
average over the 15 repetitions. We apply the nonparametric
Friedman test to the average of these values over the 15 repe-
titions of each experiment. The different configurations are the
treatment factor and the instances within each benchmark set
are the blocking factor. The Friedman test ranks the configura-
tions for each instance: the lower the rank the better. Moreover,
it calculates the sum of the ranks for each configuration. Then,
given a confidence level—95 percent, for instance—it provides
the minimum difference of ranks that is significant at that level
(∆R95%). Tables 5 and 6 summarise the results of the Friedman
test for each benchmark set. The different configurations are
sorted according to their difference of ranks (∆R) with respect
to the best configuration. The value of ∆R is given in parenthe-
sis and it should be compared with the critical value (∆R95%).
When the critical value is infinite, there is no significant dif-
ference between the configurations. For ease of reading, we
mark with a grey background those configurations that are not
significantly different from the best one. In the case of Beam-
ACO, Table 5 shows that configurations 1, 4, and 5 are most
often the best ranked. Nonetheless, in most cases, there are
no statistically significant differences between most configura-
tions. In the case of CA, configurations 1, 4 and 5 are the best
ranked,2 whereas the default configuration is often among the
worst ranked. Nonetheless, in almost all cases, the observed
differences are not significant according to the Friedman test.
These results indicate that the multiple runs of the tuning pro-
cedure found parameter settings of roughly the same quality.

5.3. Results of Beam-ACO and CA
For the sake of brevity, in the following we compare one

configuration of Beam-ACO and one of CA. Specifically, we
choose the best ranked configuration for each benchmark set,
as reported in Tables 5 and 6. We report for each instance, the
best-known makespan value (Best), the percentage of runs of
an algorithm that did not find any feasible solution (%inf ), the
mean and standard deviation of the RPD makespan (RPDm and
RPDsd) over 15 runs with different random seed, and the mean
and standard deviation of the CPU time in seconds (Tm and
Tsd) required to find the best solution returned by each run.

Table 7 concerns the results obtained for the asymmetric in-
stances proposed by Ascheuer [24]. Except for two large in-
stances, Beam-ACO is able to achieve the best-known solu-
tion in all runs in very short time. For these two large in-
stances (rbg193.tw and rbg233.tw), Beam-ACO finds the

2It is by chance that the numbers of the best-ranked configurations of CA
match those of Beam-ACO, since individual runs of the tuner are completely
independent.
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Table 5: Friedman test of Beam-ACO configurations per instance set (see text for details).

Benchmark ∆Rα Configuration (∆R)

Ascheuer 14.64 #1 (0), #4 (12.5), #5 (14), #2 (16.5), #3 (27)
Dumas et al. 10.95 #4 (0), #5 (1), #2 (14.5), #1 (22), #3 (27.5)

Gendreau et al. ∞ #5 (0), #4 (0.5), #1 (3.5), #2 (4.5), #3 (11.5)
Ohlmann & Thomas 14.01 #5 (0), #4 (9.5), #2 (29.5), #1 (43), #3 (45.5)

Pesant et al. ∞ #4 (0), #1 (0.5), #5 (1), #3 (3.5), #2 (5)
Potvin & Bengio ∞ #1 (0), #5 (1), #4 (3.5), #2 (5), #3 (10.5)

Table 6: Friedman test of CA configurations per instance set (see text for details).

Benchmark ∆Rα Configuration (∆R)

Ascheuer ∞ #5 (0), #4 (8.5), #1 (12.5), #2 (13.5), default (13.5), #3 (15)
Dumas et al. ∞ #4 (0), #5 (1), #2 (7), #3 (10.5), #1 (12), default (20.5)

Gendreau et al. ∞ #4 (0), #2 (8.5), default (12), #1 (14.5), #3 (19.5), #5 (20.5)
Ohlmann & Thomas 16.86 #1 (0), #3 (0), #5 (3.5), #2 (4), #4 (4), default (42.5)

Pesant et al. ∞ #4 (0), #5 (1), #3 (3.5), #1 (4), default (6), #2 (9.5)
Potvin & Bengio ∞ #5 (0), #2 (1.5), #3 (7.5), #1 (8), default (12.5), #4 (15.5)

best-known solution in 93.33% and 80% of the runs, respec-
tively, while it fails to find a feasible solution in the rest. CA,
on the other hand, is much faster on the largest instances, but
it converges prematurely to slightly sub-optimal solutions for
several instances of size 21. This suggests that structural dif-
ferences between the instances play a larger role than instance
size for what concerns the performance of Beam-ACO and CA.
Apart from these few instances, the performance of Beam-ACO
and CA is similar.

Table 8 shows results for the instances proposed by Dumas
et al. [7]. In order to enable a comparison with previous results
reported by Carlton & Barnes [12], the statistics of 15 appli-
cations to each instance are averaged over the five instances
of each instance class. In this case, Beam-ACO generates the
best-known solution in all runs for all but two instance classes,
whereas CA fails to obtain a feasible solution in five instance
classes. Although CA converges faster than Beam-ACO for
instances of size n ≥ 150, it often converges to an infeasible
solution. In comparison to the results provided by Carlton &
Barnes [12], we found new best-known solutions for five in-
stance classes.

Table 9 compares the results of Beam-ACO with CA for the
instances proposed by Gendreau et al. [13]. Following Gen-
dreau et al. [13], we compute the statistics of 15 applications
to each instance averaged over the five instances of each in-
stance class. Hence, each instance class contains both tuning
and testing instances. These instances have wide time windows
for which the performance of exact algorithms tends to degrade.
Interestingly, Beam-ACO is always able to find the best-known
solution within one second. CA also finds very good feasible
tours in short time. However, the quality of the solutions found
by CA is slightly inferior to the ones obtained by Beam-ACO

on a number of instances.

Table 10 examines the performance of Beam-ACO on the
instances proposed by Ohlmann & Thomas [2]. In this case,
we only use the test instances for comparison. These instances
were designed to be difficult for both heuristic and exact op-
timization methods, since they involve a large number of cus-
tomers and wide time windows. However, they do not seem to
pose any difficulty to Beam-ACO, whereas CA has problems
finding the best-known solutions. Since these instances were
proposed as larger variants of those in Gendreau et al. [13] (Ta-
ble 9), this result confirms that Beam-ACO is particularly good
in solving this type of instances.

Table 11 provides the results for the symmetric instances pro-
posed by Pesant et al. [10]. We only show results on the test in-
stances. Although both algorithms always find a feasible solu-
tion, Beam-ACO always converges to the best-known solution,
whereas CA obtains slightly worse solutions in some runs.

Table 12 shows the results obtained by Beam-ACO and CA
on the test instances from the benchmark set by Potvin & Ben-
gio [22]. In that table, we also show the results of the current
state-of-the-art algorithms for this benchmark set: (1) the re-
sults reported by Cheng & Mao [16] for their Ant Colony Sys-
tem algorithm (ACS-TSPTW), and (2) the results of a different
Ant Colony System algorithm (labelled ACS-Time) proposed
by Gambardella et al. [17]. Both ACS algorithms were ex-
clusively applied to this benchmark set in the original papers.
Concerning our results, we can observe that Beam-ACO ob-
tains the best-known feasible solutions in all runs. On the other
hand, CA has difficulties finding the best-known solution for
seven instances. Despite the fact that Cheng & Mao [16] used
a modern computer equipped with an AMD Athlon 1.46 GHz
processor (the programming language that was utilized was not
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Table 7: Results for asymmetric instances proposed by Ascheuer [24].

Beam-ACO CA

Instance Best %inf RPDm RPDsd Tm Tsd %inf RPDm RPDsd Tm Tsd

rbg016b.tw 2094 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg017.2.tw 2351 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg017a.tw 4296 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg019a.tw 2694 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg019d.tw 3479 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg020a.tw 4689 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg021.2.tw 4528 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg021.3.tw 4528 0.00 0.00 0.00 0 0 0.00 0.02 0.04 0 0

rbg021.5.tw 4516 0.00 0.00 0.00 0 0 0.00 0.01 0.04 0 0

rbg021.6.tw 4492 0.00 0.00 0.00 3 3 0.00 0.06 0.03 0 0

rbg021.7.tw 4481 0.00 0.00 0.00 0 0 0.00 0.03 0.05 0 0

rbg021.8.tw 4481 0.00 0.00 0.00 0 0 0.00 0.03 0.06 0 0

rbg021.9.tw 4481 0.00 0.00 0.00 0 0 0.00 0.02 0.04 0 0

rbg027a.tw 5093 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg031a.tw 3498 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg033a.tw 3757 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg034a.tw 3314 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg035a.2.tw 3325 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg035a.tw 3388 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg038a.tw 5699 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg040a.tw 5679 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg041a.tw 3793 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg042a.tw 3260 0.00 0.00 0.00 1 1 0.00 0.00 0.00 1 1

rbg048a.tw 9799 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg049a.tw 13257 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg050b.tw 11957 0.00 0.00 0.00 1 1 0.00 0.00 0.00 0 0

rbg050c.tw 10985 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg055a.tw 6929 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg067a.tw 10331 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg086a.tw 16899 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg125a.tw 14214 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

rbg132.2.tw 18524 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rbg132.tw 18524 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

rbg152.tw 17455 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

rbg172a.tw 17783 0.00 0.00 0.00 18 19 0.00 0.01 0.03 14 17

rbg193.2.tw 21401 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

rbg193.tw 21401 6.67 0.00 0.00 16 14 0.00 0.00 0.00 1 0

rbg201a.tw 21380 0.00 0.00 0.00 8 7 0.00 0.00 0.00 1 0

rbg233.2.tw 26143 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

rbg233.tw 26143 20.00 0.00 0.00 14 9 0.00 0.00 0.00 1 0
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Table 8: Results for instances proposed by Dumas et al. [7].

Beam-ACO CA

Benchmark set Best [12] %inf RPDm RPDsd Tm Tsd %inf RPDm RPDsd Tm Tsd

n20w20 370.4 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n20w40 342.8 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n20w60 362.0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n40w20 521.2 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n40w40 512.2 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n40w60 481.4 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n40w80 486.6∗ 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n40w100 463.0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n60w20 626.8 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n60w60 672.8∗ 0.00 0.00 0.00 0 0 0.00 0.00 0.01 0 0

n60w80 628.2 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n60w100 620.2∗ 0.00 0.00 0.00 0 0 0.00 0.06 0.00 0 0

n80w20 748.2 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n80w60 712.6 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n100w20 823.0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

n100w40 821.0∗ 0.00 0.00 0.00 0 0 6.67 0.00 0.00 1 0

n100w60 817.2 0.00 0.00 0.00 0 0 1.33 0.00 0.00 1 1

n150w20 978.4 0.00 0.00 0.00 1 1 0.00 0.00 0.00 1 0

n150w40 990.4 0.00 0.00 0.00 4 4 9.33 0.00 0.00 1 0

n150w60 981.4∗ 0.00 0.73 0.00 4 4 20.00 0.03 0.05 1 1

n200w20 1137.8 0.00 0.00 0.00 7 8 0.00 0.00 0.00 2 0

n200w40 1156.0 8.00 0.00 0.00 15 13 10.67 0.00 0.00 2 0

∗ New best-known solution found in this paper w.r.t those provided by Carlton & Barnes [12].

mentioned), the computation time of their ACS algorithms is
quite high in comparison to Beam-ACO and CA. Furthermore,
ACS is clearly inferior to Beam-ACO and CA for what con-
cerns the solution quality. In some cases the ACS algorithms
do not even find any feasible solution within five repetitions.

The above results show conclusively that both Beam-ACO
and CA are high-performance algorithms for TSPTW with
makespan optimization relative to the benchmark sets from the
literature. The above results also show that, although CA is
able to obtain very good solutions in a very short computation
time, Beam-ACO consistently finds the highest quality feasible
solutions within the time limit of 60 CPU-seconds. The only
methods requiring significant amounts of time (more than 20
seconds) are the ACS algorithms. In most problem instances,
both Beam-ACO and CA require less than one second to find
the best-known solution. The fact that both Beam-ACO and CA
require a mean time of around 20 seconds for a few instances
shows that those instances are harder than usual. Nonetheless,
given that the time limit was 60 seconds, and that we report
the time that the last best-so-far solution was found, a value
of 20 seconds indicates that the algorithms converge fast. This
may be explained by the fact that we included minimizing time
(TCPU) as a criterion for tuning the algorithms (Eq. 8).

Finally, we performed a statistical comparison of Beam-ACO

and CA on all test instances, using the best configurations of
Beam-ACO and CA for each benchmark set, that is, those
ranked first in Tables 5 and 6. We applied Eq. 8 to the re-
sults obtained by each run for each instance. This was done
in order to take into account both feasibility, quality and com-
putation time. Then, the results are ranked and the Friedman
test is applied per benchmark set. The results of the tests are
given in Table 13. For all benchmark sets, except for the As-
cheuer instances, there is a significant difference in favor of
Beam-ACO over CA, which confirms the results observed in
the tables above.

6. Summary and Conclusions

This paper presented the adaptation of the Beam-ACO and
compressed annealing algorithms from the travel-time variant
of the traveling salesman problem with time windows to the
variant that considers makespan optimization. This case study
supports the intuition that, when tackling a variant of a well-
known problem, it might be a good strategy to first adapt the
best-known algorithms from the literature to the problem vari-
ant, before starting to develop completely new algorithms.

Both Beam-ACO and compressed annealing have been sub-
ject to a rigorous tuning process in order to obtain well-working
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M. López-Ibáñez et al., The Travelling Salesman Problem with Time Windows: Adapting Algorithms from Travel-time to Makespan Optimization

Table 9: Results for instances proposed by Gendreau et al. [13].

Beam-ACO CA

Benchmark set Best %inf RPDm RPDsd Tm Tsd %inf RPDm RPDsd Tm Tsd

n20w120 319.60 0.00 0.00 0.00 0 0 0.00 0.03 0.03 0 0

n20w140 286.20 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n20w160 311.40 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n20w200 281.80 0.00 0.00 0.00 0 0 0.00 0.00 0.02 0 0

n40w120 470.60 0.00 0.00 0.00 0 0 0.00 0.34 0.00 1 0

n40w140 458.20 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n40w180 427.40 0.00 0.00 0.00 0 0 0.00 0.05 0.13 3 3

n60w120 573.80 0.00 0.00 0.00 0 0 0.00 0.48 0.23 2 3

n60w140 600.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n60w160 619.60 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

n60w180 576.00 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

n60w200 570.20 0.00 0.00 0.00 0 0 0.00 0.04 0.14 4 3

n80w140 672.80 0.00 0.00 0.00 0 0 0.00 0.01 0.03 1 1

n80w160 653.60 0.00 0.00 0.00 1 1 0.00 1.34 0.70 3 6

n80w180 656.40 0.00 0.00 0.00 1 1 0.00 0.24 0.14 3 3

n80w200 646.20 0.00 0.00 0.00 1 0 0.00 0.53 0.42 7 7

n100w80 805.80 0.00 0.00 0.00 0 0 0.00 0.00 0.01 1 0

n100w100 795.80 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

n100w120 895.40 0.00 0.00 0.00 0 0 0.00 0.00 0.02 0 0

n100w140 906.40 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

n100w160 865.00 0.00 0.00 0.00 0 0 0.00 0.00 0.02 0 0

Table 10: Results for instances proposed by Ohlmann & Thomas [2].

Beam-ACO CA

Instance Best %inf RPDm RPDsd Tm Tsd %inf RPDm RPDsd Tm Tsd

n150w120.1 972 0.00 0.00 0.00 1 1 0.00 0.00 0.00 2 1

n150w120.2 917 0.00 0.00 0.00 1 2 0.00 0.00 0.00 2 1

n150w120.4 925 0.00 0.00 0.00 1 1 0.00 0.12 0.47 5 9

n150w120.5 907 0.00 0.00 0.00 1 1 0.00 0.57 0.63 17 18

n150w140.3 844 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

n150w140.4 898 0.00 0.00 0.00 1 1 0.00 0.00 0.00 1 0

n150w140.5 926 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

n150w160.1 959 0.00 0.00 0.00 1 1 0.00 0.00 0.00 1 0

n150w160.3 934 0.00 0.00 0.00 1 1 0.00 0.00 0.00 8 7

n150w160.5 920 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

n200w120.1 1089 0.00 0.00 0.00 9 8 33.33 3.65 1.22 5 13

n200w120.2 1072 0.00 0.00 0.00 1 2 0.00 0.00 0.00 1 0

n200w120.3 1128 0.00 0.00 0.00 4 5 0.00 0.01 0.02 26 18

n200w120.4 1072 0.00 0.00 0.00 4 5 0.00 0.00 0.00 1 0

n200w120.5 1073 0.00 0.00 0.00 5 5 0.00 0.00 0.00 17 10

n200w140.1 1138 0.00 0.00 0.00 12 12 0.00 0.64 0.72 11 13

n200w140.2 1087 0.00 0.00 0.00 4 5 0.00 0.00 0.00 3 1

n200w140.3 1083 0.00 0.00 0.00 12 11 0.00 0.04 0.08 14 18

n200w140.4 1100 0.00 0.00 0.00 12 8 0.00 0.18 0.00 2 1

n200w140.5 1121 0.00 0.00 0.00 5 9 0.00 0.00 0.00 1 0
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Table 11: Results for symmetric instances proposed by Pesant et al. [10].

Beam-ACO CA

Instance Best %inf RPDm RPDsd Tm Tsd %inf RPDm RPDsd Tm Tsd

rc201.0 853.71 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc201.1 850.48 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc201.2 883.97 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc201.3 722.43 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc202.0 850.48 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc202.1 702.28 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc202.2 853.71 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc202.3 883.97 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc203.1 850.48 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc204.0 839.24 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc204.1 492.60 0.00 0.00 0.00 0 0 0.00 0.02 0.08 0 0

rc204.2 870.52 0.00 0.00 0.00 1 1 0.00 0.10 0.30 1 0

rc205.0 834.62 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc205.1 899.24 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc205.2 908.79 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc205.3 684.21 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0

rc206.1 756.45 0.00 0.00 0.00 0 0 0.00 0.00 0.00 1 0

rc206.2 776.19 0.00 0.00 0.00 3 3 0.00 0.29 0.24 2 2

rc207.1 785.37 0.00 0.00 0.00 0 0 0.00 0.32 0.25 0 0

rc208.0 836.04 0.00 0.00 0.00 18 15 0.00 0.34 0.27 0 0

rc208.1 615.51 0.00 0.00 0.00 14 12 0.00 0.10 0.14 0 0

rc208.2 596.21 0.00 0.00 0.00 1 1 0.00 0.19 0.39 0 0

Table 12: Results for instances from Potvin & Bengio [22].

Beam-ACO CA ACS-TSPTW [16] ACS-Time [16]

Instance Best %inf RPDm RPDsd Tm Tsd %inf RPDm RPDsd Tm Tsd RPDm Tm RPDm Tm

rc201.1 592.06 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 0.00 101 0.00 97
rc201.2 860.17 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 2.01 246 0.74 263
rc201.4 889.18 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 1.28 151 inf. inf.
rc202.1 850.48 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 3.56 242 3.56 242
rc202.2 338.52 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 0.00 47 12.98 47
rc202.3 894.10 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 -0.21(!) 190 inf. inf.
rc203.1 488.42 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 37.81 79 22.98 80
rc203.2 853.71 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 8.56 256 6.75 279
rc203.3 921.44 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 inf. inf. inf. inf.
rc204.1 917.83 0.00 0.00 0.00 27 21 0.00 1.35 0.94 14 15 3.47 438 inf. inf.
rc204.3 455.03 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 41.10 127 17.19 129
rc205.1 417.81 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 1.06 47 0.90 47
rc205.2 820.19 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 0.00 181 0.00 195
rc205.3 950.05 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 0.00 275 0.12 273
rc205.4 837.71 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 3.91 187 1.39 180
rc206.1 117.85 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 0.00 13 0.00 13
rc206.2 870.49 0.00 0.00 0.00 0 0 0.00 0.89 0.68 1 0 5.11 306 4.19 304
rc207.1 804.67 0.00 0.00 0.00 1 1 0.00 0.74 0.31 1 0 7.00 258 10.52 258
rc207.2 713.90 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 inf. inf. 10.99 inf.
rc207.3 745.77 0.00 0.00 0.00 3 4 0.00 0.65 0.46 0 0 28.15 242 13.30 234
rc207.4 133.14 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0 0 0.00 22 0.00 23
rc208.1 810.70 0.00 0.00 0.00 4 4 0.00 0.63 0.75 0 0 15.31 335 11.21 332
rc208.2 579.51 0.00 0.00 0.00 9 8 0.00 0.31 0.02 0 0 24.63 186 5.06 185
rc208.3 686.80 0.00 0.00 0.00 1 1 0.00 1.32 1.56 0 0 15.76 292 7.68 296

(!) The results reported by Cheng & Mao [16] are better than the best value we ever found.
We suspect a typo in the original paper.

inf. The algorithm did not find a single feasible solution over 5 independent runs.
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Table 13: Friedman test of Beam-ACO vs. CA configurations per instance set
(see text for details).

Benchmark ∆Rα Configuration (∆R)

Ascheuer ∞ Beam-ACO (0), CA (6)
Dumas et al. 5.37 Beam-ACO (0), CA (6)

Gendreau et al. 4.76 Beam-ACO (0), CA (13)
Ohlmann & Thomas 7.11 Beam-ACO (0), CA (11)

Pesant et al. 5.37 Beam-ACO (0), CA (6)
Potvin & Bengio 4.71 Beam-ACO (0), CA (7)

parameter settings. Moreover, a comprehensive experimental
analysis has shown that both Beam-ACO and compressed an-
nealing perform significantly better than algorithms recently
proposed specifically for makespan optimization. Concerning
the comparison between Beam-ACO and compressed anneal-
ing, a slight but consistent advantage of Beam-ACO over CA
was observed.

Future work might consist in adapting other algorithms orig-
inally proposed for the travel-time minimization to makespan
minimization. However, this may prove to be difficult in the
case of algorithms that rely on heuristics specific to the travel-
time objective. Moreover, we are not aware of other state-of-
the-art metaheuristics for the travel-time objective that are can-
didates to perform well for the makespan objective [3].

Another interesting extension of the present work concerns
the automatic development of algorithms for less known prob-
lem variants on the basis of well-performing algorithms for well
known (and closely related) problems by means of automatic
configuration tools [27]. The resulting algorithms would then
be benchmarked against the current state of the art for those less
known problem variants in the same way as done in this paper.
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