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Abstract. Atomistic simulations are a primary means of understanding the
damage done to metallic materials by high energy particulate radiation. In many
situations the electrons in a target material are known to exert a strong influence
on the rate and type of damage. The dynamic exchange of energy between
electrons and ions can act to damp the ionic motion, to inhibit the production
of defects or to quench in damage, depending on the situation. Finding ways to
incorporate these electronic effects into atomistic simulations of radiation damage
is a topic of current major interest, driven by materials science challenges in
diverse areas such as energy production and device manufacture.

In this review, we discuss the range of approaches that have been used to
tackle these challenges. We compare augmented classical models of various kinds
and consider recent work applying semi-classical techniques to allow the explicit
incorporation of quantum mechanical electrons within atomistic simulations of
radiation damage. We also outline the body of theoretical work on stopping power
and electron-phonon coupling used to inform efforts to incorporate electronic
effects in atomistic simulations and to evaluate their performance.
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1. Introduction

The study of the damage caused to materials by high energy particles is of huge
practical importance. Beams of energetic particles are used as experimental probes,
as therapeutic tools, and as a means of materials modification in manufacturing
processes. Unintended radiation damage to materials in many applications demands
a detailed understanding of the physical processes at work.

Structural materials in fission and fusion reactor environments are subject to
intense bombardment by high energy neutrons. Given that commercial viability
demands long plant lifetimes, it is likely that future reactor materials will have to
cope with lifetime dose rates of over 100 displacements per atom (dpa) [1]. Such
high levels of atomic disturbance within an often carefully designed and fine-scaled
microstructure can significantly influence the choice of material. The damage caused
by irradiation can promote large long-term changes in bulk material properties, some
of which, such as embrittlement, can threaten dangerous failure.

Characterising this damage and understanding the mechanisms by which it is
caused is central to efforts to improve the lifetime of materials in hostile environments.
Experiment can only take us so far. Typical damage distributions have length-scales
that are accessible to the highest resolution experimental probes, but they are formed
in times of no more than a few picoseconds; too fast to measure directly.

Filling this experimental gap, a century of theoretical work on the subject of
radiation damage has built an impressive array of models, treating the interactions
of one type of ion with another and treating in turn the interactions of those ions
with the system of electrons in which they sit. In the last half century, these models
have been incorporated into computer simulations of radiation damage events, which,
as computing power has increased, have become more sophisticated, attacking ever
higher energies and larger length and time-scales. Today, computing resources allow
simulations of radiation damage to advance to the next stage. They will move beyond
the realm of classical molecular dynamics and towards a full quantum mechanical
treatment of the metallic system.

A current challenge, acknowledged by recent efforts in the field, is to provide a
better understanding of the effect of the interaction between ions and electrons on the
outcome of radiation damage events [2] (see [3] for a general review of such effects in
radiation damage). The electrons in a metal contribute to the potential in which the
ions move and their state of excitation will affect that potential. Classical simulations
assume the validity of the Born-Oppenheimer approximation: that the electrons will
respond instantaneously to the motion of the ions. In fact their response time is
finite and this will manifest itself increasingly strongly at higher ionic velocities. The
electrons will also behave as a heat bath, in thermal contact with the system of ions.
This heat bath will influence the production and healing of defects in the ionic system
and the comparatively high thermal conductivity of the electrons will provide a means
of enhanced energy transport away from areas of ionic disturbance.

In this article we will consider the variety of ways in which electronic effects can
be incorporated into atomistic models of radiation damage in metals, by which we
mean simulation methods that follow the evolution of an explicitly represented set
of ions. We will review the well established and much used analytical models and
their application in dynamic simulations to yield an implicit treatment of energy
loss to electrons. But we will also cover more recent simulation work, in which
electrons are treated explicitly, and examine to what extent the results validate
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previous conclusions. And we will look to the future, identifying some techniques that
improvements in computational power may soon render applicable to the simulation
of radiation damage events.

We do not aim to present a comprehensive review of collision and stopping theory.
Detailed discussions of these subjects are available elsewhere (see, for example, Bohr’s
review [4], the discussion of the work of Lindhard and co-workers by Ziegler et al.
[5] and the more recent book by Sigmund [6]). Instead we will consider only those
aspects of stopping theory relevant to a discussion of atomistic simulation in metals,
highlighting the essential aspects of the underlying physics that are included within
or excluded from the various approximations made.

In the remainder of this introduction we will discuss the evolution of a typical
radiation damage event, considering where electronic effects might make themselves
felt, and then introduce the basic theoretical framework on which much of the
discussion in the literature of energy exchange between electrons and ions is based.
In sections 2 and 3 we will describe the various analytical approaches that have been
applied to energy transfer in different regimes of ionic motion. In sections 4 and 5 we
will discuss the history, the state-of-the-art and the future of atomistic simulations of
radiation damage in metals.

1.1. The radiation damage cascade

Before delving into the nature of the interactions between the various particles
involved in radiation damage, we will describe a typical event, introducing some
of the terminology prevalent throughout the literature along the way. Much of our
discussion will focus on the notion of a radiation damage collision cascade developing
within a solid block of some material. The various ultimate causes of damage are
brought together in a single phenomenological framework by considering the cascade
to be initiated when an ion within the material, known as the primary knock-on atom
(PKA), is set in motion, typically with a very high energy. This PKA is often an ion
of the target material itself, accelerated by a collision with an intruding particle such
as a neutron or α-particle, but it might also be the recoiling product of a radioactive
decay process taking place, for example, within the storage medium for radioactive
waste.

The distribution of kinetic energy of the PKA (its spectrum) and the subsequent
pattern of development of the collision cascade, depend on the initiating event
[1]. Collisions with the 14 MeV neutrons emerging from a deuterium-tritium fusion
reaction will produce recoil energies in iron of up to 1MeV with half of all recoils being
above 10 keV. The somewhat slower neutrons emerging from nuclear fission reactors
produce recoil energies of up to several hundred keV. The recoiling 234U nucleus from
the decay of 238Pu will have an energy of around 100 keV.

A PKA with energy ∼ 100 keV and above will have a very small cross-section
for interaction with the nuclei of the solid and can travel large distances without
undergoing a significant collision in a process known as channelling. Experiments
in which 40 keV radioactive 125Xe ions are implanted into crystalline tungsten
along channelling axes [7] show significant penetration at depths of up to 10−6 m.
Comparison with results for amorphous tungsten, in which no penetration exceeds
0.1 × 10−6 m suggests that channelling plays a key role in determining the spatial
distribution of damage. A channelling ion will progressively lose energy to the electrons
of the solid and ultimately the channelling behaviour will end with a collision between
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a pair of ions. Depending on the energies and trajectories of the ions emerging from
the collision one or both of them might be able to travel a significant distance before
experiencing a further collision and a subcascade can form. However, an ion which has
been significantly slowed, either by the collision or by energy loss to the electrons, and
has a kinetic energy in the keV range, will have a large cross-section for interaction
with other ions and will undergo collisions with every ion that it encounters. At this
stage a displacement spike will form.

Before we discuss the evolution of the displacement spike in detail, we will
consider the important role played by electrons in the processes discussed above. At
the high ion velocities involved in channelling, kinetic energy is lost mainly to the
electrons‡, whilst the ions surrounding the channel are disturbed only slightly by their
fleeting interaction with the passing projectile. However, experimental results show
significant damage, referred to as an ion track, to the material surrounding the path
of a channelling ion. The transfer of the energy required to displace these ions must
be mediated by the electronic subsystem. The mechanism involved is the subject of
some controversy. Two plausible models have been put forward.

The first is the so-called thermal spike model in which the electrons in the vicinity
of the ion track undergo a large degree of excitation and subsequently lose energy to
the ions in the same region, causing local melting. The plausibility of the thermal spike
model depends on the competition between the rate at which the energy is conducted
away from the track region within the electronic subsystem and the rate at which it is
transferred to the ions. A model, due to Duffy et al., that is capable of investigating
this balance [8, 9] is discussed in section 4.5 on page 46.

The second, alternative view is the Coulomb explosion model in which the
channeling ion is thought to ballistically eject electrons from the adjacent ions, causing
a build-up of spatial charge in the track region [10]. It is the Coulombic repulsion
between the ions that is responsible for the damage. The plausibility of a Coulomb
explosion depends on the ability of the target material to sustain a spatial charge
distribution for timescales comparable to those required for ionic rearrangement to
take place.

Ryazanov et al. [11] have compared calculations of heating in copper for the two
models of damage formation and found that only the Coulomb explosion can give
sufficient heating to yield a molten region around the track. Fleischer et al. [12] have
shown that the extent of radiation damage in dielectrics correlates better with the rate
of ionization by the PKA than with its rate of energy loss, again lending support to
the Coulomb explosion model. Itoh and Stoneham [13] point to evidence from work on
dichalcogenides that shows track formation does not occur for electrical conductivity
exceeding 105 Ω−1cm−1.

A third possibility, not widely considered in the literature, mirrors the thermal
spike model, but without the requirement that the excitation energy of the electrons
be passed to the ions in the form of thermal excitation. In fact, as discussed in
section 5.4 on page 59 and in [14], a highly excited electronic subsystem implies
significant weakening of the attractive bonding interaction between ions and the
resulting outward pressure on the surrounding lattice may well be sufficient (and
sufficiently long-lived) to provide a mechanism for damage formation. Distinguishing
between these models requires a quantum mechanical model of electronic stopping

‡ The stopping power theories discussed in section 2 suggest that for a 500 keV Fe ion in iron, ∼ 70%
of the energy loss is to electrons.
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and electron-phonon coupling.
Now, returning to our discussion of the evolution of a collision cascade, we will

consider the displacement spike [15], first of all from the point of view purely of the
inter-ionic interactions. We can regard the displacement spike as being initiated by an
energetic ion, moving sufficiently slowly that it interacts strongly with the surrounding
ions, intruding into an undisturbed region of the target material, which for the sake
of example we will take to be a crystalline lattice. A sequence of collisions takes place
over a timescale of 1−10 ps in which the majority of ions over a region of 10−100 nm in
size are displaced from their equilibrium lattice sites. This initial period of disruption
is known as the displacement phase of the displacement spike and is followed by a
relaxation phase during which the energy is rapidly repartitioned amongst the ions
to yield a hot (and potentially molten) region, often referred to as a thermal spike.
Finally, there follows a cooling phase in which the excited region grows and cools.
By the end of the cooling phase, several hundred picoseconds after the initial PKA
impact, the lattice will have healed itself to a large extent, many of the interstitial and
vacancy defects formed in the displacement phase having recombined, and some final
damage state will have formed. The nature of the damage will depend on the target
material and the energy of the cascade and will be characterised by some particular
population of defect types showing a particular tendency towards clustering. Broadly
speaking, we tend to observe a core region with an elevated concentration of vacancies
(the depleted zone) surrounded by a shell containing interstitial defects.

An important mechanism for damage production is the replacement collision
sequence (RCS) in which an energetic ion collides with another ion at a low angle
of incidence to a line of atoms in the crystal. A sequence of collisions ensues, with
each ion replacing the next along the line, carrying the resulting interstitial atom far
enough from the corresponding vacancy to inhibit recombination. Successful formation
of an RCS is highly dependent on the alignment of the ions and is thus less likely at
high temperatures. It also requires a low ionic kinetic energy and even an RCS along
a close-packed direction will require energies of less than 100 eV [16]. The lattice
surrounding an RCS will tend to ‘breathe’ slightly as the disturbance passes, helping
to steer the collisions and also gradually slowing their progress.

We expect that the electrons should play an important role in the evolution of the
displacement spike. When the spike first forms, all of the excess energy is contained in
the ionic subsystem and so although at low velocities (below ∼ 500 keV) the dominant
mechanism for energy loss from an ion is to other ions, we expect a net transfer of
energy into the electronic subsystem during the displacement and relaxation phases.
During the cooling phase the electrons will function as a thermal bath in which the final
defect distribution establishes itself. The dynamics of energy exchange with the ions,
characterized by the electron-phonon coupling, as well as the high electronic thermal
conductivity, will determine the effect of the electrons in quenching in, annealing out,
or inhibiting the production of defects.

1.2. Transfer of energy between ions and electrons in radiation damage

A key aim of the simulation of radiation damage collision cascades in metals is to
establish analytical tools and methods of simulation able to predict the damage
distribution at the end of the cooling phase. Experimental testing of the effects of
twenty years of exposure in a high flux environment is difficult to achieve. The defect
populations caused by irradiation constitute the initial conditions for the long-term
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microstructural evolution of the metal. The models reviewed here form the first level
in a multiscale hierarchical description of radiation damage spanning time and length
scales from the electronic to the geological.

Fundamentally important in the history of the development of the theory and
simulation of radiation damage has been the evolution of the means by which energy
exchange, between ions and between ions and electrons, is treated. The earliest
theories undertook a wholly statistical treatment of cascade development. Collisions
between particles were treated within various approximations and with increasing
sophistication, ultimately yielding a body of theory able to make strikingly accurate
predictions of particle implantation ranges and defect concentrations.

With the increasing availability of computer resources, work began on the direct
simulation of cascade evolution. The earliest efforts married the established theory
with Monte Carlo techniques to gain more accurate information about the results of
radiation damage (see section 4.3). In such simulations, an explicit model of the ionic
distribution makes its first appearance, although the ion-ion interactions are treated
in a simplified way. More recent work has used molecular dynamics (MD) to give a
completely explicit picture of ions evolving under Newton’s laws, under the influence
of various force models. However, electrons within the metal have until recently been
treated only implicitly, in the simplest case via their contribution to the interionic
potential and in the most sophisticated case additionally as a viscous medium and
energy sink.

Given the important role of electrons in providing a heat sink or reservoir and
a means of energy redistribution, and given the likelihood that in many situations
the electronic contribution to the interionic forces will violate the Born-Oppenheimer
approximation implicitly assumed in the potentials of classical MD, we might
reasonably conclude that the next stage in the evolving effort to model radiation
damage should focus on improvements in the treatment of electrons. Some of the
most recent work begins to address this challenge.

The full dynamics of a system of interacting nuclei and electrons are encapsulated
within the time-dependent Schrödinger equation for the system. The solution of
this equation being intractable for large systems, a given simulation method can
be viewed as an approximation, to some lesser or greater extent, of the full many-
body quantum mechanical dynamics. Broadly speaking, there are then two routes to
incorporating electronic effects within such a simulation. One possibility is for the
degree of approximation to be such as to retain the physics necessary to give rise to
the electronic effects as a direct consequence of the dynamics of the model. That is to
say that the model includes an explicit description of quantum mechanical electrons.
Examples of such simulation methods are discussed in sections 5.3 - 5.5. Alternatively,
the approximation to the system dynamics may be such as to exclude electronic effects,
which are then added back in via some augmentation of the model intended to capture
particular phenomena. Examples of this class of model are covered in section 4 and
section 5.1.

The large body of theoretical and experimental work dedicated to understanding
and measuring the effects of energy exchange between ions and electrons in radiation
damage is thus highly relevant, either in evaluating models of the first class or in
informing the phenomenological additions to models of the second class. In sections 2
and 3 we will undertake a brief review of the most significant material.

Traditionally, theorists have divided the process of energy transfer between ions
and electrons into two regimes: the electronic stopping regime and the electron-phonon
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coupling regime. These regimes can be defined in terms of the predominant mode
of ionic motion. In the electronic stopping regime, the ions are assumed to move
ballistically, undergoing collisions with one another. In the electron-phonon coupling
regime, the ions are assumed to oscillate around their equilibrium positions. It is
important to note that the boundary between these two modes of behaviour is ill-
defined and that the physics of energy exchange is the same in both cases [17]. In fact,
the distinction is largely a practical one, with each regime having yielded a different
theoretical treatment: for instance, extrapolation of electronic stopping theory down to
ionic energies approaching those associated with phonon-like behaviour is unsuccessful.

The electronic stopping regime is characterized by high ionic energies, so that the
dominant processes lead to a net transfer of energy from ions to electrons. Ubiquitous
within the literature concerned with such processes is the concept of electronic stopping
power, defined as the rate of energy loss to the electrons along an ion’s path and
representable as a retarding force on the ion’s motion. At high ionic velocities, these
forces can significantly affect ion trajectories and in all events will act to dampen
the evolution of an ionic system. Various models that aim to predict the rate of this
energy loss are considered in section 2.

In the electron-phonon coupling regime, when ionic energies are much lower,
energy transfer in both directions between electrons and ions will be significant and
the electronic system will function predominantly as a heat reservoir. Theoretical
models of electron-phonon coupling are considered in section 3.
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2. Models of electronic stopping power

The problem of how a ballistic particle loses energy to the material through which it
moves has attracted the attention of many researchers over the last century. The sheer
volume of literature generated in a field whose importance spans from fundamental
physics research to large scale industrial application precludes a truly comprehensive
treatment in any review article §. Here we will give only a brief treatment, focussing on
those aspects of the theory that have a bearing on atomistic simulations of radiation
damage, either in helping us to understand the physics of the processes at work or in
informing the construction of atomistic models.

We will begin by considering an energetic particle penetrating a stopping medium,
assumed to consist of a collection of target particles. We will restrict our discussion
mainly to the case of a solid target made up of ions with electrons in bound states
and a gas of valence electrons. The penetrating particle, the projectile can lose energy
via mechanisms falling into five categories:

(i) Changes in the internal state of the target ions (electronic excitation and
ionization) or excitations of the electron gas,

(ii) Changes in the internal state of the projectile (electronic excitation, ionization
and electron capture),

(iii) Transfer of energy to the motion of the target ions (or to the generation of
phonons),

(iv) Emission of radiation (e.g. Bremstrahlung and Cerenkov radiation), and,

(v) Chemical or nuclear reactions.

The general picture is clearly very complicated and efforts to understand the energy
loss of a projectile are classified based on which mechanisms are significant. A standard
classification scheme in the literature [20] divides projectiles by their atomic number
Z1 into light (Z1 ≤ 2), heavier or intermediate (3 ≤ Z1 . 18) and heavy (Z1 & 19)
ions. Projectiles are further classified by their kinetic energy per atomic mass unit
E/W (effectively a measure of the velocity squared) into fast (E/W & 10 MeV),
intermediate (100 keV . E/W . 10 MeV) and slow (1 keV . E/W . 100 keV). This
classification scheme is illustrated in figure 1 along with an indication of to which
region various applications of the theory correspond.

For atomistic simulations, the key concept in the literature on the energy loss
of particles in matter is that of the stopping power, S, defined as the rate of loss of
projectile kinetic energy E per unit length x along its path,

S ≡ dE

dx
. (1)

In fact, S has the dimensions of a force, but whilst the term ‘stopping force’ is now
finding its way into the literature, ‘stopping power’ remains the dominant name.
Because the energy transferred into the stopping medium can be attributed partly
to the centre of mass motion of the target ions and partly to electronic excitations, it
is common to split the stopping power into corresponding nuclear (n) and electronic
(e) parts,

S = Sn + Se. (2)

§ Many excellent sources of further information exist, including the work of Bohr [4], Northcliffe [18],
Seitz and Kohler [19], Ziegler et al. [5] and Sigmund [6].
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Figure 1. The classification of electronic stopping behaviour into various regimes
based on projectile atomic number and kinetic energy per atomic mass unit. A
sample of applications is indicated on the chart according to their corresponding
regimes.

Each term will behave differently as a function of projectile velocity, with nuclear
stopping dominating at low speeds and electronic stopping at higher speeds. This
behaviour is most directly illuminated if we consider a target medium made up of free
electrons or nuclei and an intruding point charge projectile of mass m1 and charge q1
moving with speed v. The energy transferred to a stationary target particle of mass
m2 and charge q2 in a collision with impact parameter b is given by the Rutherford
formula‖,

T =
2q21q

2
2

m2v2b2

(

1

1 + (q1q2/µv2b)2

)

, (3)

where the reduced mass µ ≡ m1m2/(m1 + m2) and where b is defined as the initial
distance between the projectile and target perpendicular to the projectile velocity. If
we assume that the projectile path is unperturbed and the target particle does not
move during the collision then (3) reduces to,

T =
2q21q

2
2

m2v2b2
. (4)

Assuming a target particle number density n and integrating over the range of valid
impact parameters gives a stopping power,

S(v) = 2πn

∫ bmax

bmin

db b T (b)

=
4πq21q

2
2

m2v2
n ln

bmax

bmin
. (5)

At large velocities, the behaviour of this stopping power will be dominated by the
prefactor to the logarithm and so the fraction 1/m2 will determine the relative

‖ In all appearances of Coulomb’s law, Gaussian units will be used.
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contribution of nuclear and electronic energy losses. This result, that the electronic
stopping power is the dominant process at high projectile velocity, remains generally
true in more complex treatments.

Because atomistic models treat energy exchange between a projectile and the
nuclei automatically, via some explicit model for the inter-nuclear or inter-ionic
interaction, and because our key concern in this review is the treatment of electronic
excitations, we will henceforth focus our discussion on theories of electronic stopping.

Over the decades, many different approaches to determining the electronic
stopping power have been tried: classical and quantum mechanical, treating the target
medium as a continuum and in a binary collision approximation, and varying between
a first principles basis and completely empirical fitting. The aim is to produce models
that can accurately predict electronic stopping powers for arbitrary combinations of
projectile and target over given energy ranges. Which approach works best depends
on the type and velocity of the projectile and the nature of the stopping medium.

Broadly speaking, the physics is at its simplest, and theory at its most successful
(and abundant), in the case of fast, light projectiles. In this situation, the projectile
can be regarded as a point charge, stripped of all electrons and losing energy only
to excitation of target electrons and, at relativistic velocities, via radiative processes.
For heavier particles it becomes necessary to consider bound electronic states and the
additional energy loss mechanisms that appear as a result. And for slow particles,
matters become even more complicated. Screening of the interaction of the projectile,
now a complex compound object, with the target is significant and few simplifying
assumptions can be made.

Atomistic simulations of radiation damage in metals cover all of the above regimes,
dealing with channelling and sputtering of high energy incident particles and also
with the evolution of displacement cascades down to thermal ionic velocities. We will
therefore give a brief overview of examples from the whole range of stopping theory,
beginning with the simplest case and discussing complexities as they arise.

2.1. Models of the stopping of fast, light particles

The earliest theories of electronic stopping, from the 1910s, were due to Thomson
[21] and Darwin [22]. They treated a point charge projectile interacting with free
electrons of mass me in a target medium to arrive via the energy transfer formula (4)
at a stopping power,

S(Z1, v) =
4πZ2

1e
4

mev2
Z2naLfree,

L free =
1

2
ln
Tmax

Tmin
, (6)

where na is the number density of target atoms and Z2 is their atomic number.
Quantities of the type Lfree, following the commonly occurring prefactor in (6) are
known as stopping numbers. Application of the formula requires limits on the energy
transfer, Tmax and Tmin. The maximum energy transfer is naturally set by considering
a “head-on” collision,

Tmax =
4m1me

(m1 +me)2
1

2
m1v

2, (7)

but in order to prevent divergence of S due to the long range nature of the Coulomb
interaction, we also need to set a minimum energy transfer Tmin. Both Thomson and
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Darwin relied on an artificial limit corresponding to some maximum impact parameter
(e.g. the atomic radius in Darwin’s case).

This deficiency can be removed by taking into account the interaction of target
electrons with target nuclei. Theories due to Bohr [23] and Bethe [24] do just this and
continue to be used (with various refinements) up to the present day.

2.1.1. Bohr formula Bohr’s theory of electronic stopping considers the energy
transfer from a point charge projectile to classical electrons harmonically bound to the
target atoms with angular frequencies ωj . The interaction of the projectile with the
electrons is treated under the assumption that the strength of the Coulomb interaction
does not vary significantly over the range of motion of the electron. This is known as
the dipole approximation because it amounts to neglecting all but the leading order
term in electron position in the Fourier transform of the electric field at the electron -
a long wavelength limit. Equivalently we can calculate the response of the electron to
a force whose strength is calculated under the assumption that the projectile path is
undisturbed and the electron remains at rest throughout the collision (the momentum
approximation). Bohr’s theory is thus a classical perturbation treatment and so is
appropriate only for weak interactions. The final result for the stopping power is,

S(Z1, v) =
4πZ2

1e
4

mev2
naLBohr,

LBohr =
∑

j

fj ln

(

Cmev
3

Z1e2ωj

)

, (8)

where the constant C = 1.1229 and the values of fj give the relative contributions of
different frequencies ωj subject to

∑

j fj = 1.
Several important concepts arise in the derivation of Bohr’s theory. The first is

that when considering the binding of electrons, a natural upper limit to the impact
parameter emerges, countering the long range nature of the Coulomb interaction.
This corresponds to the situation in which the collision takes place so slowly that
the harmonic electron moves appreciably during the interaction and no energy is
transferred. This maximum impact parameter, bmax, then corresponds to an adiabatic
radius,

bmax ∼ v

ωj
, (9)

where b/v is a measure of the time scale of the collision (the collision time). We can
also recognise this limit as the distance at which the Coulomb interaction becomes
significant compared to the binding forces on the electron.

Second, the energy transfer to a bound electron in the dipole approximation
diverges for small impact parameters. Bohr removed this divergence by recognising
that for close collisions, such that the collision time is much smaller than the period
of electronic motion,

b

v
≪ 1

ωj
, (10)

the effect of binding can be ignored. By treating collisions below some threshold
impact parameter b∗ as being Coulomb collisions between free particles, Bohr avoided
imposing an artificial lower limit on b.

However, this derivation implies a restriction on the applicability of the theory. To
achieve a smooth join between the two limiting treatments of the collisions, interactions
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with bound electrons in the dipole approximation at large b and Coulomb interactions
between free particles at small b, both must be valid at b∗. The full Rutherford formula
for the energy transfer in a collision between free particles is in this case,

T (b) =
2Z2

1e
4

mev2b2

(

1

1 + (Z1e2/mev2b)2

)

, (11)

where the term Z1e
2/mev

2b accounts for the effect of the deviation of the paths of the
projectile and the position of the electron under the Coulomb force, i.e. the deviation
from the assumptions used in the treatment of distant collisions, which must be small
at b∗. Hence,

Z1e
2

mev2b∗
≪ 1. (12)

For the close collisions to be unaffected by the binding forces, the collision time must
be sufficiently short:

b∗

v
≪ 1

ωj
, (13)

and so we have a validity condition,

mev
3

Z1e2ωj
≫ 1. (14)

Third, the treatment is classical and so relies on being able to describe the
projectile as a well confined wave packet throughout the collision. A well collimated
projectile beam with a spread in transverse momentum δp1 will have a corresponding
uncertainty in impact paramter δb ∼ ~/2δp1. This will imply a spread in the transverse
component of the momentum transferred in the collision of δp2 ∼ (2|Z1e

2|/b2v)δb
(from (4)). Minimising ((δp1)

2 + (δp2)
2)1/2 as a function of δb and assuming that for

the classical approximation to be valid this uncertainty in the transverse momentum
must be much smaller than the total momentum transfer yields the condition,

2|Z1e
2|

~v
≫ 1. (15)

Thus, Bohr’s classical treatment seems to become more valid with decreasing velocity
below some high threshold. Unfortunately, the assumption is also made that the target
electron is at rest during the collision, i.e.

v ≫ v0, (16)

where v0 = e2/~ = c/137 is the Bohr velocity. Combining these two criteria,

v0 ≪ v ≪ 2Z1v0, (17)

we find that the Bohr theory should only be valid over a small range of high velocities
above v0 for a heavy projectile ion.

The Bohr formula exhibits several features characteristic of experimental data for
stopping powers (see figure 2). At high energies the stopping power drops away as 1/v2.
This is a consequence of the fundamental physics captured in the Rutherford scattering
formula. The impulse on a target electron will be proportional to the collision time
b/v and so the energy transfer will vary as the square of this. The Bohr formula also
exhibits a peak in the stopping power at approximately the correct energy. This is
known as the Bragg peak and its location is important experimentally because the
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depth resolution of experimental probes is maximised along with the stopping power
at this energy.

At energies below the Bragg peak, the Bohr stopping power falls off, though
much more rapidly than the experimental data. This fall-off is due to the effect of the
binding of the electrons. At low velocities, the adiabatic radius v/ωj becomes small
and most collisions no longer transfer any energy.
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Figure 2. Sample electronic stopping power data for oxygen projectiles in a gold
target. Experimental data (red crosses) from the database of Paul [25] are shown,
along with stopping powers calculated via the Bohr (green long dashed line) and
Bethe (blue short dashed line) theories. Various velocity thresholds discussed in
the main text are indicated. The average excitation energy in the theoretical
expressions, ln I ≡

P

j fj ln(~ωj), is calculated using a commonly used scaling

relation I ≈ Z2 × (10 eV) [26].

2.1.2. Bethe formula Bethe¶ derived an alternative stopping power formula using
quantum mechanical perturbation theory. In his derivation, the Coulomb interaction
of an incoming particle, represented as a plane wave, with a target atom is treated in
the first Born approximation [27] to give a stopping number,

LBethe =
∑

j

fj ln

(

2mev
2

~ωj

)

, (18)

where ωj is the angular frequency corresponding to the jth excitation of electrons
in the target atom. fj is a generalized oscillator strength [27] in the limit of low
momentum transfer and is proportional to the square of the matrix element of the
projectile potential coupling the initial and final states in the jth excitation.

The derivation of the Bethe formula again relies on a split between close and
distant collisions, in this case made at a particular momentum transfer ~q∗. If we
consider the incoming particles as a plane wave with wave-vector k being scattered
into a state with wave-vector k′ whilst the target atom undergoes an excitation of

¶ The original derivation is in German [24], but a thorough English language treatment can be found
in Sigmund [6]
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energy ~ω0, where ω0 is a typical excitation frequency, then for energy conservation
we require,

~ω0 +
~

2

2m1
(k′2 − k2) = 0. (19)

The momentum transfer ~q is given by q ≡ k − k′ and so, writing the projectile
velocity v = ~k/m1, we have,

~ω0 +
~

2q2

2m1
− ~q · v = 0. (20)

q∗ must clearly be larger than the minimum q at which (20) can be satisfied, so,

q∗v > ω0. (21)

In order to apply the dipole approximation for distant collisions, the kinetic energy
transferred to an electron must be small compared to a typical excitation frequency,

~
2(q∗)2

2me
≪ ~ω0. (22)

Together the conditions (21) and (22) restrict the validity of the Bethe theory to the
velocity range,

v ≫
√

~ω0

2me
. (23)

An example of the behaviour of the Bethe theory is shown in figure 2.

2.1.3. Corrections to the Bohr and Bethe Formulae For most of the key simplifying
assumptions used in the derivation of the Bohr (8) and Bethe (18) stopping numbers,
there exist refinements and correcting terms. For a detailed discussion of these
corrections see Ziegler’s review [28].

Bloch derived a revised model for the electronic stopping number that tends to
the Bohr model at lower velocity and the Bethe model at higher velocity. Bloch’s
model can be regarded as a correction to the Bethe stopping number to account for
the failure of the Born approximation to correctly treat close collisions [29] (which are
effectively Coulomb collisions between free particles, unaffected by electronic binding
forces over the short time-scale of the collision). These collisions are more important
at lower projectile velocities when the effect of more distant collisions is removed by a
smaller adiabatic radius. Conversely, the Bohr theory explicitly treats close collisions
as free-Coulomb interactions, in which limit the classical and quantum mechanical
treatments coincide, but fails because of its classical nature to give a good account of
binding in distant collisions. The Bloch theory can thus also be seen as a correction
to the Bohr theory in respect of more distant collisions and we can write the Bloch
stopping number in two forms [6],

LBloch ≈ LBethe − 1.202

(

Z1v0
v

)2

, (24)

LBloch ≈ LBohr −
1

2

(

v

Z1v0

)2

, (25)

in the limit of high v and low Z1e.
The Bethe and Bohr theories both assume that the target electron is initially at

rest. Corrections to account for electronic motion have been given for the Bohr model
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[30] and the Bethe model [31] and are known as shell corrections. A Thomas-Fermi

model [32] for the target atom suggests that typical electron velocities will be Z
2/3
2 v0,

giving a threshold for the importance of shell effects, v . Z
2/3
2 v0.

A difference in the ranges of positive and negative pions observed by Smith et al.
[33] led to explorations of terms in the stopping cross-section of order Z3

1 and above,
corresponding to higher order terms in the perturbation expansions in the Bethe and
Bohr theories. Further observations by Barkas et al. [34] and Andersen [35] led to such
corrections being called the Barkas or Barkas-Andersen effect. The Barkas effect is
also referred to as the polarization effect because the underlying cause of the difference
in stopping between positively and negatively charged projectiles is the distortion of
the electron density in the target ions. This alters the electron density experienced
by the projectile, giving an enhanced stopping power for positively charged particles.
Ashley et al. [36] produced a theoretical treatment for the Bohr model and a simple
treatment by Lindhard [37] gives an estimate of the size of the effect in an amended
Bethe stopping number,

S ≈ 4πZ2
1e

4

mev2

(

1 +
2Z1e

2ω0

mev3

)

ln
2mev

2

I
, (26)

where the second term in parentheses is known as the Barkas-Andersen parameter and
takes the same form as the dimensionless parameter in the validity criterion (14) for the
Bohr formula (8). I is a logarithmic average excitation energy ln I ≡ ∑

j fj ln(~ωj).
Figure 3 shows the thresholds in projectile charge and kinetic energy per atomic

mass unit at which various factors in the stopping power become important. Grüner et
al. [38] find that for a 1 MeV/amu nickel ion in a carbon target, the Bohr theory gives
a stopping power 42% smaller than experimental results. A Barkas term over-corrects
to give a number 28% too large and further addition of a shell correction gives a result
14% too large. In this case and in many others, the correction terms are significant
and must be taken into account to obtain good predictions of stopping power.

2.2. Models of the stopping of fast, heavy particles

We have seen in section 2.1.3 that relaxation of the simplifying assumptions in
the theories of Bohr and Bethe necessitates a series of corrections of considerable
complexity. It is important to note that this complexity arises even in the simplest
case where we treat projectile particles not only as point charges, but also as having
very low charge (Z1 ≤ 2). The theories of Bohr, Bethe and Bloch are essentially
perturbative, going to second order in the projectile charge Z1. Even with higher order
corrections such as the Barkas term in Z3

1 and the so-called Bloch correction in Z4
1 ,

these theories rapidly become inadequate for the treatment of heavy ions (Z1 > 2) even
at very high velocities. The increasing strength of the inter-particle interactions means
that the fundamental assumption in any perturbation theory, that the unperturbed
evolution (be it the projectile path or the initial quantum state of the projectile-target
system) is a good approximation to the perturbed evolution, is invalidated. A number
of models developed in the last decade and designed to treat the stopping of heavy
ions non-perturbatively will be discussed below.

The physics of heavy ion stopping is fundamentally different from that of light
particles. A highly charged nucleus will attract to itself a charge-compensating cloud
of the electrons of the target medium. There will thus be a screening of the interaction
of the projectile and target particles and a reduced stopping power. The intruding
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Figure 3. The projectile kinetic energy and atomic number regimes of electronic
stopping theory in an iron target (Z2 = 26) showing order of magnitude thresholds
for various effects and corrections. Bohr’s classical threshold v . 2Z1v0 is shown,

along with the thresholds for screening (v . Z
2/3

1 v0) and Barkas (polarization)

(v . (Z1Z2)1/3v0) effects. The velocity at which shell effects become important

(v . Z
2/3

2 v0) and the Bohr velocity, v0, below which the projectile ion will have
very low charge with many bound states are also indicated. (After Sigmund [39].)

nucleus may also carry with it its own electrons in bound states so that the projectile
becomes a compound object. Internal excitations of the projectile ion will become
possible, enabling new mechanisms for energy loss+. The charge of the projectile
will no longer simply be Z1 and may change as the projectile traverses the stopping
medium. Charge changing processes of electron capture and ionization open further
mechanisms of energy exchange.

2.2.1. The effective charge of the projectile The possibility of bound electronic states
of a projectile particle gives rise to the concept of an effective charge of the intruding
ion, written Z∗

1e. It is tempting to model the stopping of heavy ions by simply
replacing Z1 with Z∗

1 in simpler perturbative stopping theories. This approach is not
without some success (see section 2.4), but it is not immediately persuasive from a
physical point of view.

There is no reason to assume that the charge state of a projectile ion will be
constant during its flight and though it may acquire a well-defined mean value in a
steady state, this will be the result of repeated charge-changing processes. Assuming
a fluctuating number of bound electrons Nbound, so that at any time the effective
charge can be written Z∗

1e = (Z1 − Nbound)e, we will denote the mean effective
charge by 〈Z∗

1 〉e. The earliest considerations of effective charge adopted an empirical
definition. Writing a stopping power S(Z1, Z2, v) dependent on the atomic numbers
of the projectile and target and on the projectile velocity, Northcliffe [18, 40] defined

+ An enhancement of the stopping force attributable to the electrons associated with the projectile
is sometimes referred to as an anti-screeening effect.
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an empirical effective charge 〈Z∗
1 〉emp,

[〈Z∗

1 〉emp]
2 ≡ S(Z1, Z2, v)/S(1, Z2, v), (27)

in which the effective charge is related to the proton stopping power in the same
target. This definition is informed by the Z2

1 dependence in the stopping equation (5).
Yarlagadda et al. [41] compared experimental stopping data for protons and for carbon
and iodine projectiles in a selection of targets up to Z2 = 79 (Au) to show that the
quantity 〈Z∗

1 〉emp/Z1 is independent of Z2 to within 10%. This suggests some validity
for the effective charge concept and that, depending on the accuracy that we require,
the treatment of projectile and target may be separable.

Various theoretical definitions of effective charge have also been considered in
the literature. These often take the form of stripping models in which electrons are
considered to be progressively stripped from the projectile ion as a function of its
velocity based on some criterion related to the orbital velocities or potential energies of
the electrons. A Thomas-Fermi model of the atom, in which electron orbital velocities

are assumed to be ve ∼ Z
2/3
1 v0 gives rise to a much used stripping criterion [39],

〈Z∗

1 〉strip = (1 − exp(−v/Z2/3
1 v0))Z1, (28)

in which electrons of the target medium, approaching with a relative velocity ∼ v
are assumed to knock slower electrons out of states bound to the projectile nucleus.
Yarlagadda et al. [41] used a similar model and obtained good agreement with
empirical stopping data for ions heavier than chlorine. The less good agreement for
lighter ions is improved by including corrections in the scaling relation analogous to
the Bloch correction and the Z3

1 Barkas term.
Brandt and Kitagawa [42] note that when a projectile nucleus carries with it

some distribution of bound electronic charge, an electron of the target medium will
experience a projectile charge that depends on its impact parameter with the projectile
nucleus. Thus, even for a given net charge (Z1−Nbound)e, the stopping power will still
have a Z1 dependence, increasing with increasing atomic number. To quantify this
effect, they calculate a stopping power for a projectile of atomic number Z1 and fixed
ionization Q ≡ (Z1−Nbound)/Z1 using a Lenz-Jensen model [5] of the projectile charge
density and a Lindhard type model (see section 2.3.2, below) with an approximate
form for the dielectric function of a free electron gas target of number density ne.
Writing the stopping power as S(Z1, Q, ne), the effect of the charge distribution is
then revealed in the quantity,

1

Q

√

S(Z1, Q, ne)

S(Z1, 1, ne)
. (29)

If the charge distribution had no effect then we would expect to see the stopping power
vary as Q2 (see (38)). If the target electrons penetrate the electron distribution of the
projectile they will experience a higher than expected charge and the quantity (29)
will be greater than 1. Experimental data for ions of boron through to fluorine of
fixed charge in 〈111〉 channels in gold reveal the expected effect, that, for example,
S(N5+) > S(C5+) > S(B5+). The qualitative variation of the stopping power with
Z1 and Q is well modelled by the theory of Brandt and Kitagawa [42]. In addition,
experimental data for the stopping of nitrogen in gold, carbon and aluminium targets
over a velocity range 0.7v0 < v < 1.5v0 show the ability of the theory, when combined
with a simple stripping model for Q as a function of v, to capture the behaviour of the
stopping power of light ions that proved problematic in the theory of Yarlagadda et al.
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[41]. However, the resolution of the data is not good enough to reveal if variations due
to the target element (modelled via the free electron gas density ne) are well captured.

The ultimate aim of effective charge theory is to provide estimates of heavy
ion stopping powers. This is done either by multiplying some reference stopping
power (normally taken to be that of a proton or alpha particle in the same target
medium, for which comprehensive data are available) by some velocity dependent
effective charge or by using the effective charge as an input to a theoretical model of
stopping power. Attempts to formulate such methods will be hampered by the fact
that the mean stopping power over the fluctuating charge state of a projectile ion
traversing a stopping medium, 〈s(Q)〉, will not in general be equal to the stopping
power at the mean charge, s(〈Q〉). More importantly, as pointed out by Sigmund [43],
success depends on the stopping of heavy ions and the stopping of the projectile in the
reference data set being governed by the same physical processes. This is unlikely to
be the case; we have no reason to expect that a singly ionized gold ion will behave in
the same way as a proton. Experimental validation of effective charge theories [41, 42]
tends to focus on the high velocity regime, where projectiles will be highly ionized
and poorly screened. Such almost bare particle stopping is most susceptible to an
effective charge treatment, but at lower velocities the effects of screening and bound
states will become significant. As Sigmund discusses [39], any attempt to incorporate
these effects in an effective charge model is likely to result in a model so clumsy that
a direct calculation of heavy ion stopping powers, ignoring any reference data set, will
be at least as straightforward.

2.2.2. Non-perturbative models of heavy ion stopping As discussed above, a key
difference between light and heavy ion stopping is the strength of the interaction
between the projectile and the electrons of the target medium. In the latter case,
the use of perturbation theories such as Bohr’s and Bethe’s is questionable and new
approaches are needed.

Over the last decade, many researchers have been active in developing stopping
power theories applicable to fast, heavy projectiles. Various models have arisen,
which show good agreement with experimental data, and there is a significant volume
of relevant literature. Again, we will not attempt a comprehensive survey and the
interested reader should consult the discussion and references in Sigmund’s book [6].
Instead we will discuss the general character of a sample of theories of fast, heavy ion
stopping, considering the inputs upon which they rely and the results they produce
and briefly discussing the way that they work.

The broad aim of all the models that we will consider is to take a set of input
data, derived either from experiment or from other theoretical calculations, and from
this derive a prediction of electronic stopping power as a function of projectile and
target type and projectile kinetic energy. They aim to achieve this without the use of
any adjustable parameters. Beyond these common traits, the models that have been
developed are highly diverse; some are quantum mechanical, others classical; some are
based on straight calculations, others require a set of simulations to be performed.

The Binary Theory of Sigmund and Schinner [44, 45] adopts Bohr’s classical
approach to calculating the scattering of bound target electrons by a projectile. A
non-perturbative treatment is made possible by exploiting an approximate equivalence
between the interactions of a bare projectile with a bound electron and of a screened
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projectile with a free electron∗. Information concerning the binding frequency of the
jth electron is then encoded in the screened potential,

V (r) = −Z1e
2

r
e−rωj/v, (30)

where v/ωj can be identified as an adiabatic radius for the jth electron. Each electron
is treated separately and the individual stopping cross-sections summed together. In
common with other non-perturbative treatments, the Binary Theory treats the Barkas
effect automatically. The screening effect of bound projectile electrons (as opposed to
the screening in (30) used to represent the effect of the binding of electrons in target
ions) with a radius ascr is incorporated into the potential as,

V (r) = −Nbounde
2

r
e−rωj/v − (Z1 −Nbound)e2

r
e−r/a,

1

a2
=

(ωj

v

)2

+
1

a2
scr

. (31)

Further refinements allow for quantum mechanical corrections at higher velocities
(comparable to the Bloch correction to the Bohr formula (8)), for shell effects and
for projectile excitation (treated approximately by repeating the calculation and
exchanging the roles of projectile and target). Implementation of the basic Binary
Theory requires data on the atomic binding frequencies ωj of the target electrons and
their relative strengths (occupations) fj , along with knowledge of the effective charge
(Z1 −Nbound)e.

The full model compares well with experimental data (from the database of Paul
[25], discussed in section 2.4, below) for a range of projectiles (3 < Z1 < 18) in N, Al,
Ni and C targets over a range of energies from 1 keV/amu to 100 MeV/amu.

A second classical scheme, due to Grüner et al. [38], employs the classical
trajectory Monte Carlo method to treat a small number of target nuclei and the
projectile nucleus, along with their associated electrons. The evolution of the system
of electrons and nuclei is calculated using classical equations of motion for a large
number of statistically sampled starting conditions.

In contrast to the Binary Theory, the classical trajectory method does not require
a charge state as input, the only input parameters required being the nuclear charges
and the electron orbital binding energies and their occupations. The recovery of
details of the projectile charge as an output from the simulation is a stated aim of
the technique and recognises the important influence of charge on the stopping power.
This aspect of the model better reflects reality, in which projectiles tend to reach a
steady state that is independent of the input charge state. In addition, because all the
constituent particles are treated explicitly, information about the relative contribution
of various processes to the slowing of the projectile nucleus can be recovered. In a
simulation of a 1 MeV/amu Ni ion in a gaseous Ar target [38], 80% of the energy
loss is attributable to target ionization, 12% to target excitation and 20% to electron
capture by the projectile. Projectile excitation is found to have a contribution of
−13% (an accelerating effect) due to polarization of the projectile electrons by the
ionized target. Comparisons of simulations of a 1 MeV/amu Ni projectile in solid
carbon give agreement with experiment for the steady state charge and steady state
stopping power to within 2.8% and 3.7% respectively.

∗ There is an intuitive sense to this equivalence, in that the primary effect of the electron binding is
to reduce the energy transfer at larger impact parameters.
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Non-perturbative quantum mechanical schemes have also been proposed.
Motivated by a desire for economical stopping calculations with the accuracy of full
quantum mechanical results, Grande and Schiwietz [46] developed the Pertubative
Convolution Approximation (PCA). This calculates the energy transfer ∆E from a
projectile to the electrons of a target atom as a function of impact parameter b via an
integral over the electron density ρ of the target,

∆E(b, v) =

∫

dz

∫

d2r⊥K(b− r⊥, v)ρ(r⊥, z), (32)

where the convolution integrals are carried out in cylindrical polar coordinates about
a z-axis through the target nucleus and parallel to the projectile velocity. K(b, v)
gives the energy transfer to an electron at impact parameter b from a projectile with
velocity v. The form of K(b, v), given in [46], is such as to treat close collisions as
free and distant collisions within the dipole approximation. Inputs required for the
model are the projectile screening function, the electron density of the target and the
oscillator frequencies and oscillator strengths of the target.

Schiwietz and Grande [47] have also developed an extension to the PCA called the
Unitary Convolution Approximation (UCA), which implements a Bloch-like correction
and extends the applicability of the scheme to high Z1. Comparisons of ∆E as a
function of b and of Z1 with intensive quantum mechanical calculations [48] show good
and very good agreement respectively. Data for the stopping of oxygen in Al and Si
across an energy range from 0.1 MeV/amu to 100 MeV/amu show good agreement
with experiment [49].

Key experimental studies by Blazevic et al. [50, 51] provide important data for
testing of the non-perturbative stopping models described above. By separating out
the initial charge states of Ne ions prior to passage through thin carbon films and
measuring their final charge state and energy, it is possible to determine the cross-
sections for charge changing processes and the charge dependent stopping power of
carbon for neon. Blazevic et al. [50] compare their results for charge dependent
stopping against calculations within the Binary Theory of Sigmund and Schinner and
the UCA method of Schiwietz and Grande amongst others. The UCA agrees almost
to within experimental error. The Binary Theory scales less strongly with projectile
charge than the experimental results.

We have considered the above theories as examples of the sorts of models now
being applied to calculate stopping powers of fast, heavy ions. None of these models
is ab-initio in character: they take information about the excitation spectrum of the
target as input and focus on the problem of calculating the collision dynamics and
how they will stimulate the given excitations. Most models (that of Grüner et al.
being the exception) also require further input in the form of an effective charge of the
projectile. The effective charge concept is ill-defined and, at least in principle, much
physics could be secreted within an appropriate velocity and target dependent form for
an effective charge function. Add in the inherent complexity of many of the modern
stopping models and it becomes clear that they are theories in the sense that they
provide testable predictions rather than models designed to yield physical insight. As
such, their success should be evaluated in comparison with that of various empirical
fitting and interpolation models to be discussed below (see section 2.4).

Data on the performance of the models against experimental results demonstrate
that the models can successfully calculate electronic stopping powers across an energy
range from tens of keV/amu up to tens of MeV/amu for projectile ions in the “light”
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and “heavier” ranges (as defined in figure 1) in a wide variety of targets. The
predictions are good to within experimental error, which can be as good as 2% at
50 MeV/amu, but as bad as 20% at 5 keV/amu [20].

Given the current limits to the precision of experimental data, and given the
nature of the stopping models as predictive tools, the problem of predicting stopping
powers of fast and intermediate velocity ions could be considered to be solved, at
least for the time being. The practical justification for further refining stopping power
predictions for fast ions is not immediately clear. In fact, the applications shown in
figure 1 suggest a need for more work on the stopping of slower and heavier projectiles,
where the physics is more complicated and the theoretical and experimental literature
much more sparse.

2.3. Models of the stopping of slow, heavy particles

The non-perturbative stopping models aim to provide reliable predictions of stopping
power in cases where the projectile charge is large and the effects of screening must
be taken into account. A key issue is that of the degree of ionization of the projectile
ion and all the models except that of Grüner et al. require this as an input parameter.
Whilst this is less of a difficulty at high velocities, where stripping models of effective
charge should work reasonably well, as projectile velocities fall below the Bohr velocity,
v0 = e2/~, we see the appearance of so-called Z1-structure. These oscillations in
the behaviour of the stopping power with Z1 are due to the atomic structure of the
projectile and demand a different theoretical treatment.

In this section we will examine models designed to predict the stopping powers of
slow, heavy ions, with kinetic energies significantly below 1MeV/amu. We will begin
by outlining three older models, which are still very much in use today, before going
on to consider some more recent treatments. The older models fall into two categories:
those which consider the energy loss as arising from the inelastic interaction of the
projectile and a target atom in binary collisions and those which consider losses into
a continuous electronic system.

2.3.1. Binary models of slow particle stopping Into the first category fall two much
used models due to Firsov [52] and Lindhard and Scharff [53]. Firsov ascribed
the energy loss from a projectile during a binary collision with a target atom to
the exchange of electrons between the atoms. During the collision, the atoms are
considered to form a quasimolecule. At any given separation, the motion of electrons
within the quasimolecule will cause some electrons previously associated with the
target atom to become associated with the projectile. This change of identity of
an electron will be accompanied by a change in its momentum, proportional to the
relative velocity of the two atoms. Using a Thomas-Fermi model for the colliding
atoms, Firsov [52] obtained the following expression for the energy loss in a collision
between a stationary target and a projectile moving with velocity v,

∆E = 0.35
~v

a0

(Z1 + Z2)
5/3

1 + 0.16(Z1 + Z2)1/3rmin/a0
, (33)

where rmin is the distance of closest approach and a0 is the Bohr radius ~
2/mee

2.
Lindhard and Scharff [53] suggested an alternative formula, again based on a

Thomas-Fermi model, but did not publish a derivation. Tilinin [54] has derived a
more general result by considering the scattering of the electrons of the target atom
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by the screened field of the projectile. Use of the Thomas-Fermi model to obtain
quantitative results gives an electronic stopping power,

S =
8πnee

2a0Z1Z2
(

Z
2/3
1 + Z

2/3
2

)−3/2
τ(E,Z1/Z2)

v

v0
, (34)

where v0 is the Bohr velocity (v0 = e2/~) and the function τ is the result of an
integral over the electronic densities experienced during the collision. In Lindhard
and Scharff’s original formula [53], τ is replaced by a constant ξe ∼ 1 − 2, used to
obtain an improved fit to empirical data. Indeed, provided v is not too small, then
τ ∼ 1 and Tilinin’s formula (34) approaches that of Lindhard and Scharff. The key
feature of (34) is the proportionality of the stopping power to projectile velocity, a
feature shared with the stopping power implied by Firsov’s formula (33).

Because the models of Firsov and Lindhard and Scharff both rely on a simple
Thomas-Fermi model for atomic structure, they predict that stopping power will have
a simple monotonic dependence on the atomic numbers of projectile and target atoms.
They thus neglect both Z1-structure and an additional fluctuation in stopping power
with target atomic number known as Z2-structure.

2.3.2. Electron gas models of slow particle stopping The second class of models of
slow particle stopping treats the electrons of the target medium as an electron gas.
Fermi and Teller [55] gave an early treatment of the stopping power of a free electron
gas, pointing out that, since the maximum energy transfer from the projectile to a
target electron corresponds to the case of a head-on collision, only electrons with
velocities within v of the Fermi velocity vF can take part in stopping. Their final
result is,

S =
2mee

4v

3π~3
ln

(

~vF
e2

)

, (35)

again giving a stopping power proportional to the projectile velocity.
Lindhard [56] gave a more general treatment by considering the force acting on

a projectile due to the change in the electronic density distribution caused by the
electric field of the projectile. The response of the electronic system is assumed to
be characterised by a frequency and wavevector dependent dielectric constant ǫ(q, ω).
This corresponds to allowing the total potential φ(x, t) at any point x and time t to
depend on the potential due to the projectile φProj(x

′, t′) at points x′ and times t′,
via the integral equation,

φ(x, t) =

∫ t

−∞

dt′
∫

dx′ǫ−1(x − x′, t− t′)φProj(x
′, t′), (36)

where ǫ−1 is a linear operator. In Fourier space, this relationship becomes,

φ(q, ω) =
1

ǫ(q, ω)
φProj(q, ω). (37)

The history dependence introduced by (36) allows for a finite response time of the
electron gas to the potential due to the projectile. The centre of the screening cloud
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around an intruding charge will tend to lag behind, giving rise to a retarding force on
the charge‡. Lindhard [56] derived an expression for this retarding force,

dE

dx
= −2Z2

1e
2

πv2

∫ qv

0

ω dω

∫

∞

0

dq

q
ℑ

{

1

ǫ(q, ω)

}

, (38)

for a general stopping medium characterised by ǫ(q, ω) and where ℑ{·} indicates the
taking of the imaginary part.

Various alternative derivations of the Lindhard result have appeared in the
literature. In particular, Ritchie [58] treated the problem of finding the induced charge
density directly within first order perturbation theory, without the need to introduce a
classical electric field. The results obtained are equivalent to Lindhard’s results using
the Lindhard expression for the dielectric function of a free-electron gas [56].

Lindhard [56] gives results for the limiting cases of low and high projectile
velocities. These results are also derived by Lindhard and Winther [59] alongside
further discussion of the nature of the excitations of the electron gas. At high but
non-relativistic velocities, the stopping power reduces to the Bethe formula (18). At
low velocities the Fermi-Teller formula (35) is recovered.

2.3.3. Non-linear calculations of electron gas stopping At electron densities typical of
metals, and at lower projectile velocities, the perturbative approach behind Lindhard’s
stopping power formula is no longer appropriate and a non-linear theory must be used.
Various approaches have been tried and the review by Echenique et al. [57] contains
detailed discussions of both linear and non-linear treatments of stopping by an electron
gas.

The deficiency of a linear treatment was highlighted by Almbladh et al. [60] who
calculated the screening of a stationary proton in a free-electron gas using Kohn-
Sham density functional theory (DFT) [61]. They compared DFT calculations of the
screening length and the relative charge density at the proton position with linear
calculations using the Kohn-Sham form of the dielectric function. The results are
presented in figure 4 from which it can be seen that the linear theory under-estimates
the extent to which charge piles up around the proton and overestimates the variation
in the screening length (which varies little in the non-linear calculation). At the lowest
density considered, the results are similar to those for a 1s atomic orbital about the
proton, indicating the importance of bound states at lower electron densities. One of
the key features that emerges in non-linear treatments is the oscillatory Z1-structure
in the stopping power at low velocities.

Echenique et al. [62] calculated stopping powers for ions with v < vF, the Fermi
velocity, in an electron gas within time-dependnet DFT (see section 5.3 for a brief
discussion of the relevant theory). Figure 5 shows the behaviour of the stopping
power for hydrogen and helium nuclei calculated in the non-linear DFT and the
linear response theory. In both cases the non-linear DFT calculations show a more
rapid decrease in stopping power with decreasing electron gas density, consistent with
the formation of bound atomic-like states that screen out interactions with the gas.
Conversely, high electron gas densities screen the nuclei so efficiently that bound states
can no longer develop and the linear and non-linear results converge. A final feature
of note is that the stopping power for He lies below that for H at low electron gas

‡ Note that at higher velocities v > v0, this simple picture of a retarded screening response is greatly
complicated by the appearance of strong oscillations in the induced charge density. A full discussion
of these so-called wake effects can be found in the review by Echenique et al. [57].
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Figure 4. Calculated results for a proton in a free-electron gas of varying density
(parameterized by the one electron radius rs = (3/4πne)1/3). The screening
length is indicated for linear response (orange vertical crosses) and non-linear
DFT calculations (red diagonal crosses). Distances are given in atomic units,
a0 = 0.529 Å. On the right-hand axis are plotted the ratio of the charge density at
the proton position to the background density for linear response (purple squares)
and non-linear DFT calculations (blue circles). (Data from Almbladh et al. [60].)

densities. This is because the higher nuclear charge of He is more effective at producing
bound states and thereby screening the stopping interaction. Such a feature can never
emerge in a linear theory.

Echenique et al. used their calculated stopping powers along with the theoretical
equivalent of the empirical definition (27) to calculate the effective charge on a
projectile as a function of atomic number Z1 at several electron gas densities. Clear
oscillations are present (see figure 6), which at low density follow the pattern expected
from consideration of atomic structure, with deep troughs occurring at Z1 = 2, 10,
18, corresponding to stable filled shells. At higher densities, more effective screening
means that higher nuclear charges are necessary in order to form bound states and
the pattern shifts upwards in atomic number. Calculations for Z1 dependence of the
stopping power of ions in 〈110〉 and 〈111〉 channels in silicon up to Z1 = 20 show good
agreement with experiment.

Arista [63] has presented results for velocity and Z1-dependent stopping based
on calculating the transport cross-section from the phase shifts for free electrons
scattering off a screened projectile ion. A variety of screening functions are used and
are adjusted in order to satisfy the condition that the total charge of the screening
cloud cancels the residual charge (Z1−Nbound)e of the ion. Calculations of the stopping
power of bare ions for Z1 = 1 and Z1 = 7 show that, whereas for the lower charge
the results of Arista’s model are very similar to the linear dielectric results, for the
higher charge the non-linear theory gives a significantly (60%) reduced stopping power.
Again, this is typical of the overestimation of stopping power that results from non-
perturbative treatments of highly charged projectiles.

Arista’s calculations of the Z1 dependence of stopping powers at various velocities
show strong Z1-structure for v < v0, which is all but washed out with rising velocity
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Figure 5. Stopping powers as a function of the one electron radius rs =
(3/4πne)1/3. Results for linear response theory are shown for hydrogen (curve
A) and helium (curve B). Results for non-linear DFT are shown by curves D
(hydrogen) and E (helium). (From Echenique et al. [62].)

Figure 6. The effective charge Z∗

1 of point charge projectiles as a function of
atomic number Z1 in a free electron gas from non-linear DFT. Results for a
variety of electron densities labelled by the one electron radius rs = (3/4πne)1/3

are shown. (From Echenique et al. [62].)
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by v ≈ 2v0 (see figure 7). The positions of the minima shift upward with increasing
velocity as it becomes harder to form bound states. Comparison of calculations
of stopping power for a carbon target at a projectile velocity of v = 0.8v0 with
experimental data shows good qualitative agreement with the positions of the peaks
and troughs in the Z1-structure up to Z1 = 40 and good quantitative agreement of
stopping powers up to Z1 ∼ 20.

S
 (

Z
1
,v

 )

Z1

Figure 7. The Z1-structure in the stopping power for bare ions in a free electron
gas of density equivalent to that in carbon at several projectile velocities (given
in units of v0). (From Arista [63].)

2.3.4. Atomic environment dependence of electronic stopping Beyond considerations
of projectile and target type and projectile velocity, we might also expect the stopping
power felt by a projectile to depend on the positions of the surrounding target
ions. Electron gas models like those discussed above clearly exclude all such effects.
Models that treat stopping as a consequence of energy transfer in binary encounters
between the projectile and target ions can potentially yield some form of environment
dependence through the impact parameter dependence of the energy transfer: indeed,
the provision of such information is a stated aim for the Binary theory and the UCA
discussed in section 2.2.2. But these treatments will miss environmental dependence
of a many-atom nature, such as we would expect to become increasingly important at
lower velocities.

Campillo et al. [64] and Pitarke and Campillo [65] have derived an expression for
a position dependent stopping power within the linear response approximation using a
response function calculated with time-dependent DFT (see section 5.3). Comparison
of stopping powers calculated for aluminium with equivalent calculations for a free
electron gas at the same density show an enhancement in the stopping power of 7% in
the former case at low velocities (v < v0). This enhancement can be attributed to band
structure effects and, given that aluminium is free-electron-like, can be interpreted as
a lower bound for the importance of such effects in metals generally.

Campillo et al. [64] calculated the stopping power of protons at v = 0.2v0 along
〈100〉 and 〈111〉 channels in aluminium as a function of impact parameter with the
channel walls. They found variations of up to 20% around the average stopping power.
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Another model that yields an environment-dependent stopping power is that of
Dorado and Flores [66], who used a linear combination of atomic orbitals (LCAO) [67]
model to study helium projectiles in alkali metals. Calculations of the stopping power
of He in a 〈100〉 direction in sodium as a function of the position of the trajectory
in the plane perpendicular to the channel show variations of up to 100% around the
average value. This variation is much stronger than that found by Campillo et al. We
should note that no direct experimental validation is possible in either case.

2.4. Empirical models of electronic stopping power

If our primary aim in modelling electronic stopping is to predict stopping powers for
arbitrary projectile energies and arbitrary combinations of projectile and target, then
the most direct approach is to interpolate and extrapolate from the range of available
experimental data. In following this route we lose much opportunity for physical
insight, but as a practical tool for providing inputs to other calculations the approach
has merit and is still much used (for example in the molecular dynamics simulations
considered in sections 4 and 5).

The potential success of empirical fitting methods is indicated by useful scaling
relations in the behaviour of experimental stopping power data. Figure 8 illustrates
how data-sets for different targets and projectiles can be superimposed via some simple
transformations, leaving the fitting process to capture the underlying shape of the
stopping power curve as a function of projectile energy and any residual structure in
the data.

Two popular fitting schemes are those of Ziegler et al. [5], embodied in the
SRIM code§ [68] and of Paul and Schinner [69, 70], implemented in the MSTAR
code [25]. The approach of Ziegler et al. is based on scaling proton stopping powers,
S(Z1 = 1, Z2, v), by an effective charge fraction γ such that,

S(Z1, Z2, v) = Z2
1γ

2S(Z1 = 1, Z2, v). (39)

The proton stopping powers are calculated using the local density approximation of
Lindhard and Scharff [71], which writes the stopping power of a target medium as an
integral over the electron density of the medium, ne(x),

S(Z1 = 1, Z2, v) =

∫

dxn(x)S(Z1 = 1, ne(x)), (40)

where S(Z1 = 1, ne) is the stopping power for a proton of a free-electron gas of
constant density ne calculated using dielectric stopping theory. Hartree-Fock models
of the target atoms are used to determine ne(x). Empirical fitting finds its way into
the model via an adjustment to the calculated proton stopping powers in the form
of a fitted empirical factor varying between 1.0 and 1.2. A further empirical fitting
function is then used to determine the state of ionization of the projectile and this
provides the basis for a calculation of the effective charge fraction γ from theoretical
considerations.

Paul and Schinner [69, 70] take stopping data for helium as their experimental
reference and fit the quantity,

Srel =
S(Z1, Z2, v)/Z

2
1

S(Z1 = 2, Z2, v)/(2)2
, (41)

§ SRIM stands for ‘the stopping and range of ions in matter’.
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Figure 8. A demonstration of how simple scaling relationships (b) can capture
much of the behaviour of the electronic stopping power (a) for a variety of
projectile and target combinations. The scaling of stopping power by 1/Z2

1 is
informed by the pre-factor in the fast particle stopping theories (6), (8) and (18)

and the normalisation of the particle velocity by 1/Z
2/3

1 is suggested by the
Thomas-Fermi scaling of electronic velocities. (Data are from the database of
Paul [25].)

as a function of Z1 and v. A three parameter fitting function of prescribed form is
used to fit data at each value of Z1. The parameters themselves are then fitted as
functions of Z1 to yield a universal fitting scheme.

In [72], Paul and Schinner compare experimental data for stopping of carbon
projectiles in amorphous carbon targets with the prediction of various empirical
fitting and theoretical models. The fitting models of Ziegler et al. and Paul and
Schinner give an understandably good match, whilst the Binary Theory of Sigmund
and Schinner [44, 45] performs similarly well over the full projectile energy range from
1 keV/amu to 100 MeV/amu. The UCA (Unitary Convolution Approximation, see
page 21) of Grande and Schiwietz [49] performs well at higher energies, but significantly
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underestimates the stopping power for projectile energies below 1 MeV/amu.
In this section we have considered a variety of models for the energy transfer from

ions to electrons when the ions are sufficiently energetic to be moving ballistically
through a stopping medium. In this regime, the quantity of interest is the electronic
stopping power and it is the aim of most models to provide reliable predictions thereof.

We have seen that the complexity of the physical problem to be solved varies
considerably over the range of possible projectile energies, with many more factors to
be taken into account at lower energy. The simpler problem of the stopping of fast
particles (v ≫ v0) of low charge (Z1 ≤ 2) was tackled first and with most success by the
research community and continues to attract the bulk of theoretical and experimental
attention. In contrast, models of the stopping of slow ions are less well established.
This is, at least in part, justified by the relative dominance of nuclear stopping at
lower projectile velocities, but even in this regime we still expect a net energy transfer
from ions to electrons in most situations of interest. We should note that the majority
of practical applications shown in figure 1 lie squarely within the low velocity regime.

At very low velocities (v . 0.1v0) the stopping power formalism may no longer
provide an appropriate treatment in many cases. In radiation damage collision
cascades in particular, a separation of electronic and nuclear losses into two force-
like terms looks questionable and a direct simulation of the energy exchange processes,
taking into account both ion and electron dynamics explicitly, may be called for. Some
approaches of this type will be considered in section 5.



CONTENTS 31

3. Models of electron-phonon coupling

The electronic stopping power theories, which model the interaction of ions and
electrons via a force on the ions opposing their velocities are derived assuming that each
ion’s motion can be treated independently. Either a single ion moving through some
continuous stopping medium is considered or the ionic motion is regarded as a sequence
of binary collision interactions, occurring independently of the surrounding ions.
These approximations make sense when ions move with high velocities, interacting
only fleetingly with surrounding ions except when a collision takes place and their
interactions are then dominated by the strong binary interaction forces at close
approach. Later on in a collision cascade, however, the initial PKA energy will be
shared amongst many ions, all moving in complicated motion relative to one another.
At some stage, the cascade may resemble a molten region of the target material. The
forces on a given ion will not be dominated by those from any single neighbour and a
many-atom treatment will be necessary. At still later times, the lattice of the target
material will have largely healed and we must consider the collective motion of a
thermally excited set of ions, representable as a superposition of phonons.

Radiation damage theory has traditionally treated the exchange of energy between
ions and electrons in these later, lower energy stages of a cascade as a separate
problem from that of electronic stopping. This electron-phonon coupling regime has
given rise to its own body of theory, working with a different set of approximations,
but it is important to realise that the physics of all the energy exchange processes
is fully captured by the time-dependent Schrödinger equation (TDSE) for a set of
interacting quantum mechanical nuclei and electrons. Indeed, as we will discuss in
section 5, appropriate approximations to the TDSE can, in principle, give rise in a
single simulation framework to all the phenomena treated by electronic stopping and
electron-phonon coupling theories. However, the practical and theoretical challenges
in implementing such a framework on the time and length-scales of typical radiation
damage phenomena are huge. Information and insight provided by theoretical models
of the electron-phonon coupling regime thus remain important for informing and
validating the various methodologies used to capture energy exchange processes in
atomistic simulations at lower ion energies.

Our account of the theory of electron-phonon coupling will be briefer than that
of the theory of electronic stopping given in section 2 for three reasons. First, whilst
the study of electron-phonon coupling is an entire research field in itself, it is of
much broader relevance than simply to radiation damage phenomena. Much of the
literature is concerned with the concept of the electron-phonon coupling in general
(see for example [73] or [74] for excellent accounts). Here we will focus on the work
that directly addresses or informs atomistic simulations of radiation damage.

Second, as we shall see, experimental and theoretical estimates of numerical
measures of electron-phonon coupling, generally calculated as a rate of energy transfer
between the electronic and ionic subsystems per unit volume per degree temperature
difference, can vary over several orders of magnitude in a given material. This stands in
stark contrast to the high precision with which electronic stopping powers can often be
measured and reduces the direct usefulness of the data for parameterizing atomistic
models. As discussed in sections 4.4 and 5.1, the large uncertainties often prompt
researchers to explore a broad range of values for the electron-phonon coupling in their
simulations, rather than relying on any one particular estimate from the literature.

Third, attempts to incorporate the effects of electron-phonon coupling into
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atomistic simulations are still at an early stage and even somewhat controversial. Thus
far, only very simple, single-parameter models have been tried (sections 4 and 5.1)
and it is far from clear how the true energy exchange in the events modelled in
such simulations relates to the circumstances treated in experimental and theoretical
studies of electron-phonon coupling. As a specific example, several simulation schemes
incorporate electron-phonon coupling as a simple drag force (similar to a stopping
power) assumed to act on lower energy ions. This force acts on ions individually,
completely ignoring the collective nature of the motion that lies at the heart of
theoretical treatments of electron-phonon coupling. Such drag forces are also assumed
to apply up to cascade energies at which the target material may be molten and a
description in terms of phonons may be inappropriate. When the term ‘electron-
phonon coupling’ is applied in radiation damage theory it should be regarded as
referring to the rate of exchange of energy between electrons and ions in general
below some energy threshold, rather than specifically to the interaction of electrons
and a well-defined phonon system.

For the reasons given above, we will focus our discussion on the few theoretical
treatments of electron-phonon coupling that have been heavily cited in the radiation
damage literature and have been important in the development of atomistic radiation
damage models.

3.1. The importance of electron-phonon coupling in radiation damage

A short time after a thermal spike has formed, when almost all atoms over an extended
region of size ∼ 1000 Å are significantly excited, but few atoms are moving ballistically
through the target medium, we can regard our system as being composed of an excited
ionic subsystem interacting with an electronic subsystem. The electrons will likely be
initially much cooler than the ions and so will in the first instance act as a heat sink.
Because of the relatively high electronic thermal conductivity, any energy transferred
from the ions to the electrons can be rapidly transported away and the electronic
subsystem provides an important mechanism for cooling the ions. Depending on the
energies involved, and on the balance between the rate of energy exchange between ions
and electrons (i.e. the strength of the electron-phonon coupling) and the electronic
thermal conductivity, this cooling might be rapid enough to inhibit the production
of defects early in the evolution of the displacement spike or it may act to quench in
defects as the system returns to equilibrium.

This balance between the rates of energy exchange and energy transport was
investigated by Flynn and Averback [75]. They considered a thermal spike formed by
depositing an energy Q into a spherical region of the target of radius r. The energy
per ion is thus Q(r0/r)

3, where r0 is the Wigner-Seitz radius ‖. Writing the energy per
atom in terms of an ionic temperature TI, i.e. as 3kBTI, we can consider the evolution
of the thermal spike as it grows and cools to be described by,

r(t) ∝
(

Q

3kBTI(t)

)1/3

r0. (42)

Energy exchange between ions and electrons will occur when electrons are scattered
from state to state by imperfections in the crystal lattice, emitting or absorbing
phonons. A measure of the rate of this scattering is the distance travelled by an

‖ Defined as the radius of the spherical volume equivalent to the volume per atom in the solid, i.e.
4
3
πr3

0 = 1/na for a number density of atoms na.
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electron between scattering events, the electron mean free path, λmfp. In the harmonic
approximation, when the ions are not much displaced from their equilibrium lattice
sites, this can be written

λmfp =
r0T0

TI(t)
, where λmfp ≤ r0, (43)

where T0 is the ionic temperature at which λmfp = r0. T0 thus encapsulates
information about the strength of the electron-phonon coupling, with a low value
corresponding to a strong coupling (a high rate of energy exchange). Values for
T0 can be calculated from the electrical resistivity using the formula [76] λmfp =
(92×10−18 Ohm m2)(r0Tref/ρe(Tref)a

2
0), where ρe(Tref) is the electrical resistivity at a

reference temperature Tref and a0 is the Bohr radius. Comparing the mean free path
to the size of the thermal spike,

λmfp

r(t)
=

(

3kB

Q

)1/3
T0

T
2/3
I (t)

. (44)

Flynn and Averback point out that because λmfp has the stronger dependence on ionic
temperature, there will always be some point in time at which the thermal spike has
cooled sufficiently that λmfp > r. At this point, heating of the electrons by the lattice
will be very inefficient. The critical factor then is T0. For a material with strong
electron-phonon coupling and so a low value of T0, heating of the electrons by the
lattice will tend to remain effective for longer times and the electrons will tend to
remain in equilibrium with that lattice throughout the development of the thermal
spike.

To quantify the likely variation in the behaviour of real metals, Flynn and
Averback present a picture of electrons diffusing out of the thermal spike, acquiring
an energy kBΘD with each scattering event, where ΘD is the Debye temperature. If
escape involves a random walk with on average (r/λmfp)2 scattering events then the
electrons will acquire a temperature Te = ΘD(r/λmfp)2. Equilibration of the electrons
with the ions, Te = TI, will therefore be possible whilst the thermal spike remains
above a critical temperature,

Tcrit =
9k2

B

Q2Θ3
D

T 6
0 , (45)

which has a very strong dependence on T0. Flynn and Averback [75] quote values
for T0 of 4.5 × 104 K and 1.5 × 104 K for copper and nickel respectively. These
imply corresponding values for Tcrit of 2 × 105 K and 300 K, suggesting very different
behaviours for the two metals.

3.2. Two-temperature models

A particularly simple picture of the interacting electronic and ionic subsystems emerges
if we assume that though they are out of equilibrium with one another, they are each
internally in an equilibrium state, so that the state of the combined system can be
parameterized by an electronic and an ionic temperature, Te and TI respectively. Such
two temperature models have been widely explored and form part of some of the
atomistic simulation schemes [8, 9, 77, 78, 79, 80] to be discussed in section 5.

Assuming an initially hot ionic system, the two temperature model will be
valid provided the rate of thermalization of the electronic subsystem is significantly
higher than the rate of energy transfer into the subsystem. Since electron-electron
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interaction time-scales are typically of the order of a few hundred femtoseconds¶,
whereas electron-phonon interaction time-scales vary between tens and hundreds of
femtoseconds+ the approximation may be invalid in many cases. In fact, as we
discuss in the context of some results from recent simulations [14] in section 5.4,
the above condition can be considerably relaxed because the mode of excitation of the
electronic subsystem is such that it remains close to equilibrium with a steadily rising
temperature.

We can represent the evolution of a two-temperature model using coupled heat
flow equations for the evolving spatial temperature distributions Te(x, t) and TI(x, t),

ce(Te)
∂

∂t
Te(x, t) = ∇x[κe(Te, TI)∇xTe] − gp(Te, TI)[Te − TI], (46)

cI(TI)
∂

∂t
TI(x, t) = ∇x[κI(TI)∇xTI] + gp(Te, TI)[Te − TI], (47)

where ce and cI are the electronic and ionic heat capacities per unit volume and κe

and κI are the electronic and ionic thermal conductivities, respectively. gp(Te, TI) is
the electron-phonon coupling (measured in W m−3 K−1 or dimensionally equivalent
units).

By extending the arguments of Flynn and Averback [75], Finnis et al. [83] develop
a scheme to estimate the value of gp in different metals. This scheme will be discussed
in section 3.4, below. Their numerical solutions of (46) and (47) reveal the much
more rapid cooling of the ionic subsystem in nickel when compared with copper (see
figure 9) and suggest an important role for electron-phonon coupling in determining
collision cascade dynamics.

3.3. The electron-phonon drag

Finnis et al. [83] consider how the two-temperature picture could be incorporated into
an atomistic simulation. Noting that the ionic thermal conductivity will generally be
small, they simplify (47) to

dTI

dt
=
gp
cI

(Te − TI). (48)

This equation then gives the rate at which energy should be removed from (or
injected into) the ions in an atomistic simulation due to their interaction with the
electronic subsystem. Ideally, the required energy change of the ionic system would
be effected by the excitation or de-excitation of the physically correct phonon modes,
but such a process is computationally expensive. Instead, approximate methods such
as uniformly scaling (up or down) the ionic velocities or applying a force parallel to
the velocity are generally used. Energy transfer from electrons to ions is also often
implemented using a stochastic force. Finnis et al. adopt the use of a damping force,
defined for the ith ion, with velocity vi as,

Fi = −βivi. (49)

¶ For example, Del Fatti et al. [81], in femtosecond laser experiments, find timescales of 350 fs in
silver and 500 fs in gold.
+ The timescale of the electron-phonon interaction can be calculated as the ratio of the electronic
heat capacity per unit volume and the electron-phonon coupling constant (defined below). Using
experimental data from Qiu and Tien [82] gives values of 650 fs for copper (weakly coupled) and 64 fs
for vanadium (strongly coupled).
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Figure 9. The evolution of the ionic temperature given by the coupled
equations (46) and (47) for values of gp, the electron-phonon coupling constant,
for Cu and Ni. (From Finnis et al. [83].)

This force does work on the ion at a rate of −βiv
2
i , which can be equated with the rate

of energy transfer due to the electron-phonon coupling 3kBdTi/dt = (gp/cI)(Te − TI),
where we have introduced a temperature per ion, Ti. If we further equate the thermal
energy associated with Ti with the ionic kinetic energy, 3kBTi = miv

2
i for ions of mass

mi, then we can write the drag coefficient βi corresponding to the electron-phonon
coupling as,

βi =
gpmi

cI

(

Ti − Te

Ti

)

. (50)

In the case where the ions are hotter than the electrons βi will be positive and will
provide a drag force that removes energy from the ions. In the opposite case of Te > Ti,
a negative βi will provide an accelerating force. In a practical simulation scheme, Ti

can be replaced by an average TI over some coarse-grained cell of the ionic system [8].
Finnis et al. [83] point out that if one is calculating the “ionic temperature” Ti of an
ion it is necessary to deal with the singularity at Ti = miv

2
i /3kB = 0 for momentarily

stationary ions. They do this by making the substitution T−1
i → {T 2

i +(Te/20)2}−1/2,
where the factor of 1/20 is chosen to be compatible with their simulation time-steps.

3.4. Models of electron-phonon coupling

Various analytical models for calculating the electron-phonon coupling gp have been
proposed. One of the most physically transparent is due to Finnis et al. [83] and arises
from an extension of the analysis by Flynn and Averback [75]. We will consider their
derivation and compare the result with other commonly cited analyses.

Finnis et al. [83] once again consider an electron with mean free path λmfp =
r0T0/TI acquiring energy kBΘD in each of a series of collisions with lattice distortions.
If the local electronic temperature is Te and the electronic density of states at the Fermi
level is D(εF) then ∼ kBTeD(εF) electrons will be able to participate in the energy
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exchange, given the requirements of quantum mechanical exclusion. The scattering
rate will be vF/λmfp, where vF is the Fermi velocity, and so the rate at which electrons
acquire energy will be,

dEe

dt
=
k2
BΘDD(εF)vFTITe

r0T0
. (51)

Finnis et al. then turn this into a net rate of energy transfer by letting TI → (TI−Te).
Whilst this gives an energy transfer that vanishes as required when TI = Te, there is no
physical argument to support the substistution. TI appears in (51) as the temperature
determining the rate of scattering of electrons by ions and we would not expect this
scattering rate to go to zero at equilibrium between electrons and ions. What we
would expect to go to zero is the net average energy transfer associated with such
collisions, and in (51) the temperature determining this is ΘD. The above comments
not withstanding, we will continue to follow the analysis given by Finnis et al. and
write for the electron-phonon coupling,

gp =
k2
BΘDD(εF)vFTe

r0T0
, (52)

corresponding to a damping coefficient,

βi =
3ΘDcevFmi

π2r0T0cI

(

Ti − Te

Ti

)

, (53)

where, again, ce and cI are the electronic and ionic heat capacities per unit volume
and the density of states D(εF) has been subsumed into ce = (π2/3)k2

BD(εF)Te.
Finnis et al. [83] undertake some preliminary simulations in copper and nickel

using their damping scheme. Their results are inconclusive about the effect of electron-
phonon coupling on the residual defect population, but similar schemes have been used
on a larger scale by other researchers [8, 78, 84, 85, 86] and we will discuss them in
detail in sections 4 and 5.

Various more formal treatments of the electron-phonon coupling exist in the
literature [87, 88, 17], but they all reduce to a form similar to (52), with different
numerical prefactors depending on the extent to which they contain details of the
true electronic and lattice structures. These treatments all begin by considering the
general case of a quantum mechanical ionic subsystem characterised by phonons of
energy ~Ωs(q) and momentum ~q populated according to a set of occupation numbers
N (q, s), where s indexes the phonon branch. This system is coupled to a quantum
mechanical electronic subsystem of electronic states of energy εν(k) and momentum
~k with occupations f(εν(k)), where ν is a band-index. At equilibrium the f(ε(k, ν))
will have a Fermi-Dirac distribution and the N (q, s) a Bose-Einstein distribution. If
we consider the case of an electron scattering from state (k, ν) to state (k′, ν′) with the
emission or absorption of a phonon (q, s), then we must ensure energy conservation
εν′(k′) − εν(k) = ~Ωs(q) and momentum conservation k′ − k = q. A Fermi’s Golden
Rule (FGR) analysis [32] (first-order time-dependent perturbation theory) treating
the lattice distortion due to the phonons as a perturbation gives an expression for the
rate of the transfer of energy ~ω and momentum q from the ions to the electrons [17],

Γ(q, ω) ∝
∑

s

∑

k,ν

∑

k′,ν′

δΩs(q),ω δk′−k,q

×δ(εν′(k′) − εν(k) − ~Ωs(q))|Vkνk′ν′(q, s)|2
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×
{

f(εν(k)[1 − f(εν′(k′)]N (q, s)

−f(εν′(k′)[1 − f(εν(k)][N (q, s) + 1]

}

, (54)

where Vkνk′ν′(q, s) is the coupling matrix element between electronic states (k, ν)
and (k′, ν′) due to the lattice distortion by phonon mode (q, s). The first term in
braces corresponds to the stimulated absorption of a phonon and the second term to
stimulated and spontaneous emission of a phonon. The rate of energy absorption by
the electrons can then be written as,

dEe

dt
=

∫

dω ~ω
∑

q

Γ(q, ω). (55)

The task now is to find suitable approximations to the formulae (54) and (55).
Kaganov et al. [88] approximate the electronic system as a free electron gas and find
in the case of a hot electron-ion system not too far out of equilibrium, TI ≫ ΘD,
|TI − Te| ≪ TI, an electron-phonon coupling constant,

gp =
πmenev

2
s

6τeTe
, (56)

where τe = λmfp/vF is the electron-phonon scattering time and vs is the speed of sound
in the lattice. Equation (56) has the same form as the result (52) due to Finnis et al.
[83] and the two formulae are made equivalent by the transformation,

π2

6
→

(

108π2

z2

)1/3
T 2

e

TIΘD
, (57)

where z is the number of valence electrons per atom in the free-electron gas of Kaganov
et al. [88].

An analysis by Koponen [17] yields an expression for the energy transfer rate,

dEe

dt
= 4πD(εF)

∫

dω α2F (ω)(~ω)2{N (TI) −N (Te)}, (58)

where N (T ) is a Bose-Einstein distribution at temperature T for the phonon
occupations. The derivation of (58) is too involved to admit a simple discussion, but
the important point is that the so-called spectral function α2F (ω) is an experimentally
measurable property of a metal, encapsulating the information about the electronic
and phonon densities of states and the coupling matrix explicitly present in (54).

3.5. Estimates of electron-phonon coupling

As a demonstration of the uncertainty involved in selecting a numerical value of the
electron-phonon coupling for use in an atomistic simulation, we give a selection of
literature estimates of gp in table 1. Included are values calculated by Finnis et al.
[83] using (52) and values calculated using the same formula by Gao et al. [84]. These
differ by approximately a factor of 2 due to the choice of values for T0.

Also included are theoretical values calculated by Wang et al. [89] and Qiu and
Tien [82] using the formula (56) due to Kaganov et al. [88]. The large differences in
the values for chromium and vanadium are due to differing assumptions about the
number of valence electrons contributing to the free electron gas density: Wang et al.
assume ne = na; Qiu and Tien assume a variable ratio 0.5 ≤ ne/na ≤ 2.0.
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Table 1. A sample of experimental and theoretical estimates of the
electron-phonon coupling gp from the literature. All data given in units of
1016 W m−3 K−1. See main text for a discussion of the trends and variation
in the values.

Theoretical Experimental

Equation (52) Equation (56)

Finnis Gao et Wang et Qiu and Qiu and
et al. [83] al. [84] al. [89] Tien [14] Tien [14]

V 4803a 183 648 523±37
Cr 179 45 42±5
Fe 1815.0 119
Ni 3164.1 1714.5 107
Cu 81.9 40.1 (36.4a) 12.7 14 4.8±0.7
Ag 9.4a 3.34 3.1 2.8
Au 14.2a 2.3 2.6 2.8±0.5
W 27.6 27 26±3

a Calculated by the present authors using the approach of Gao et al.

The large difference between the values for nickel calculated using (52) and (56) is
due to the presence of the electronic density of states at the Fermi level in the former.
This is particularly high in nickel (compared, say, to copper) and thus implies a large
electron-phonon coupling. This band structure dependent effect is absent from the
free-electron based formula (56).

Experimental values of gp were tabulated by Qiu and Tien [82], derived from
short pulse laser heating experiments (see [90, 91] for examples, [92] for a review) in
which excess energy is injected into the electronic system by a laser pulse of ∼ 100 fs
duration and the system monitored as it relaxes to equilibrium. These values show
much better agreement with calculations using (56) than with those using (52), despite
the presence of more band structure dependent effects in the latter formula.

Overall, the values of electron-phonon coupling obtained by each method show a
variation of several orders of magnitude between gold (weakly coupled) and vanadium
(strongly coupled). Such variation implies the possibility of strong material dependent
effects on the later stages of cascade development.

The relative variation in the experimental values between copper and vanadium
is best reproduced by the formula (52) as implemented by Finnis et al. [83] and Gao et
al. [84]. The formula (56) used by Wang et al. [89] is only able to capture the variation
if the number of valence electrons is varied. Qiu and Tien [82] use such a variation,
but the justification for, for example, setting ne = 2na for vanadium, but ne = 0.5na

for its neighbour chromium is not clear.
Equally importantly, for any given material, the estimated values of gp vary by

over an order of magnitude and it is not clear which value should be adopted as a
parameter in any particular simulation scheme.
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4. Implicit incorporation of electronic effects in atomistic simulations

In the following two sections we will examine the various methods which exist for
incorporating the effect of the electronic system into simulations of radiation damage.
Such methods fall into two broad classes depending on how the electrons are modelled
and we will treat each in turn. To date, the bulk of effort has focussed on methods
from the first of these classes - those which treat the electrons implicitly within a
simulation of ion behaviour. A second class of methods which incorporate an explicit
model of the electrons has recently begun to be explored and offers much opportunity
for future work. These methods are considered in detail in section 5.

4.1. Experimental benchmarks

The main aim of most simulations of radiation damage is to establish as accurately
as possible the primary state of damage at the end of the relaxation phase and the
factors that influence it. In considering the validity of the various approaches we will
need to bear in mind the extent to which experimental verification is possible. We
will not consider the methods used to obtain such experimental data (see Averback
and Diaz de la Rubia [15] for a review), rather only the types of information available.
These are:

Range distributions: The perpendicular distance from the surface at which an
intruding ion comes to rest is known as its range and the standard deviation
of the range is referred to as the straggling. Large quantities of experimental
data on both quantities are available, but as Ziegler et al. [5] point out, different
experimental techniques involve different biasing factors and often use slightly
different definitions of range and straggling. The data available for model fitting
thus exhibit broad scatter in many cases.

Mixing: The ionic mixing parameter ζIM is defined as

ζIM ≡ 〈X2〉
naTc

, 〈X2〉 ≡
∑

i

[Ri(t) − Ri(0)]2, (59)

where {Ri(t)} are the ionic positions at some time t during a cascade, {Ri(0)}
are the corresponding initial positions, na is the ionic number density and Tc is
known as the cascade energy and is defined as that portion of the initial PKA
energy available to cause atomic displacements (i.e. it excludes energy lost to

the electrons). ζIM is normally given in units of Å
5
eV−1 and uncertainty in the

experimental measurements is around 10-20% [93].

Displacement threshold energy: The displacement threshold energy (or just
threshold energy), Ed, is defined as the energy required to make a stable
Frenkel pair. In crystals this energy will vary with direction, typically being
significantly lower along close-packed directions. For a few materials the direction-
dependent threshold energy surface has been mapped experimentally (see King
et al. [94] for an example in copper). Average threshold energies, measured using
polycrystalline samples, are available for a broad range of materials [15].
The threshold energies, and particularly the threshold energy surfaces when
available, are used for calibrating the short range repulsive portion of interatomic
potentials in MD. After such a fitting to the data for copper in King et al.
[94], Foreman et al. [95] found a good match to the shape of the experimental
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threshold energy surface from their simulations. King and Benedek [96] obtain
good qualitative agreement with an unfitted Born-Mayer potential.

Damage function: The damage function ν(T ) is the number of defects produced by
a PKA of energy T . Damage functions are often expressed in terms of a damage
efficiency, ξFP, defined via

ν(T ) = ξFP(T )νKP(T ), (60)

where νKP is the Kinchin-Pease damage function (see (61) and discussion in
section 4.2 below). Wallner et al. [97] give experimental data for which they claim
a maximum error of 15%, though this excludes further possible errors involved in
their calculations; they rely, for instance, on data for the incremental resistivity
due to an additional Frenkel pair, which are known only to within ±25% and are
not expected to be additive at higher damage concentrations.

Clustering and defect distributions: Various methods exist for mapping out the
distribution of defects in experimentally irradiated samples. Though all have
their limitations (they might be sensitive to the effects of the surface of a small
sample for instance) they can be used to build up a picture of typical defect
distributions in different materials. The distributions and data on clustering
provide support for the ability of classical MD to reproduce the correct broad
patterns of behaviour.

Lengths of replacement collision sequences: The length of a typical replace-
ment collision sequence (RCS) in a cascade simulation will be sensitive to the
details of the interatomic potential and so experimental measurements of RCS
length can be useful for calibration. Such measurements are not possible directly,
but RCS lengths can be inferred by various means. As an example, Wei and Sei-
dman [98] give a distribution of RCS length resulting from 20 keV self-irradiation
of tungsten.

4.2. Damage functions

Before the availability of general purpose computers flexible enough to perform
simulations of radiation damage events, predictions of damage relied on analytical
approaches. We can view many of these approaches as cascade simulations in
thought-experiment form, allowing expressions for the damage function, and range
and straggling distributions to be derived.

The most well known of these expressions is the so-called Kinchin-Pease damage
function, νKP(T ). Kinchin and Pease [99] considered the case of a PKA of initial
kinetic energy T initiating a series of collisions within a solid. The cascade is imagined
to develop via a sequence of rounds of collisions, with each round doubling the number
of ions involved in the cascade and the initial energy being shared via hard sphere
collisions. The probability distribution for the energy transfer in such collisions is
uniform between zero and the maximum possible for the projectile to target mass
ratio: a simple form permitting an analytical solution for the energy distribution of
all the atoms in the cascade in a given round of collisions. In a given round, any ions
with energy between one and two times the displacement threshold energy, Ed, will
be displaced themselves, but will not go on to displace further atoms. Thus the total
number of atoms displaced in the cascade can be calculated as a sum over the energy
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distribution in all collision rounds. The final expression is,

νKP(T ) =
T

2Ed
. (61)

Various extensions and refinements to this expression have been proposed, but
the most widely adopted is the Norgett-Robinson-Torrens (NRT) expression, also
sometimes referred to as the modified Kinchin-Pease damage function. An obvious
deficiency of (61) is the lack of any account of electronic energy loss. In fact, in some
applications νKP is allowed to saturate above some energy Tcrit to take account of the
fact that at high energies the energy loss from an ion is predominantly to electrons,
but this modification is crude. Instead, Norgett et al. [100] propose a revised form of
the damage function,

νNRT(T ) =
κT̃
2Ed

, (62)

where T̃ is that portion of the PKA kinetic energy not lost to electronic excitations
(calculated using the universal functions of the LSS theory, see Lindhard et al. [101]).
The factor κ is the displacement efficiency, designed to take account of the possibility
of recombination of some of the Frenkel pairs formed in the cascade. Norgett et al.
propose a universal value of κ = 0.8 based on a series of simulations carried out by
Robinson and Torrens [102].

4.3. Binary collision models

Expressions like the Kinchin-Pease (61) and NRT (62) damage functions result from
considering radiation damage events as a series of isolated binary collisions. An
alternative to addressing such a process analytically is to carry out large simulations
within the same approximation and directly observe the damage produced. This
approach is called the binary collision approximation (BCA).

Simulations in the BCA begin with a PKA with some initial kinetic energy T0

moving through a simulation cell containing other ions. This PKA moves in a straight
line at constant speed until it comes within range of another ion, at which point it is
considered to undergo a collision with that ion. The velocities of the projectile and the
target ion after the collision are calculated using the theory of simple scattering under
an assumed potential. If the kinetic energy transferred from projectile to target is Tt

and the projectile is left with kinetic energy Tp then there are four possible outcomes
from the collision:

(i) Tt > Ed, Tp > Ecut: The target atom joins the cascade and both atoms go on to
undergo further collisions.

(ii) Tt > Ed, Tp < Ecut: The target atom joins the cascade and the projectile replaces
the target at its lattice site.

(iii) Tt < Ed, Tp > Ecut: The target atom remains on its lattice site and the projectile
proceeds on a modified trajectory to undergo further collisions

(iv) Tt < Ed, Tp < Ecut: The target atom remains on its lattice site and the projectile
becomes an interstitial atom.

The cut-off energy Ecut is a simulation parameter chosen to improve the results and
need not take the same value as the displacement threshold energy Ed.

Various different features have been incorporated into the basic BCA scheme
since the earliest simulations by Yoshida [103]. A clear distinction exists between
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models of amorphous targets (see the early work of Oen et al. [104, 105]) and more
computationally demanding treatments of crystalline lattices. In the former case,
target ions are generated for collisions with cascade ions based on a random spread
around some mean free-flight path. In the latter case, a search for collision partners
must be made within the lattice surrounding the cascade ion path. Early simulations
using the BCA in ordered lattices [106, 107, 108] provided the first means of exploring
the anomalies discovered in experimental range distributions in polycrystalline targets
[109] and attributed to ion channelling.

An important feature of BCA simulations is their relatively low computational
cost. Because they treat ionic collisions in a very simple way and because the
description of the target material is effectively generated ‘on the fly’ in the vicinity
of cascade ion paths, it is possible to simulate large numbers of cascade events up to
very high PKA energies and to generate good statistics for the damage distribution.
This feature of the BCA has ensured its continued use alongside more realistic, but
much more computationally costly, MD methods, even up to the present day. Well
developed codes have been widely used, including the SRIM code [68] for simulations
of amorphous targets and Marlowe [102] for the treatment of crystalline targets.
Results from the latter were used to determine the displacement efficiency, κ in the
NRT expression (62).

However, the BCA has some major flaws. Whilst simulations can provide defect
distributions if the initial and final positions of the cascade ions are recorded [110, 111],
there is no inbuilt mechanism for recombination of interstitials and vacancies to take
place. The simplest way to allow for such healing is to define a recombination radius
within which Frenkel pairs will be eliminated. Beeler [112] has also explored the
possibility of defect annealing by allowing for a phase of diffusive defect motion
following the conclusion of the cascade. More generally, we cannot be confident that
the cascade evolution, and therefore the damage distribution, is realistic, because of
the approximation of treating only binary interactions. This approximation gets worse
at the lower ion velocities at which the final damage state is formed. This problem is
highlighted by differences in the BCA literature in the way that the cascade evolution
is followed. Which collision should be considered next at any particular time? When
should multiple collisions be deemed to occur simultaneously? And how should cascade
evolution be allowed to interact with existing defects given that the ‘true’ chronology
of the cascade is uncertain?

From the point of view of this review, a key issue is the incorporation of electronic
effects within the BCA. Many of the earliest simulations made no attempt to take into
account the loss of ionic kinetic energy to the electrons. Later schemes such as those in
Marlowe and SRIM incorporate an energy loss into the calculation of the projectile
and target velocities following a collision. The collisions are still treated elastically
within the centre of mass frame, but an energy loss is calculated using the models of
Firsov [52] or Lindhard and Scharff [53] (see section 2.3.1), which then influences the
final trajectories.

It is not immediately obvious that such a means of incorporating electronic effects
will give the correct cascade behaviour. In particular, when the predominant mode
of evolution involves glancing collisions (in the case of channelling) or very efficient
energy transfer from projectile to target (in the case of an RCS) we might expect a
more sophisticated treatment to be necessary. Whilst the outcome of BCA simulations
agrees well with experimental results for ion range and straggling distributions, such
statistics afford only a crude view of cascade behaviour; it is not clear to what
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extent such agreement is the result of the fitting of the values of the many empirical
parameters within the simulation schemes.

4.4. Molecular dynamics with drag

An obvious improvement over the BCA would be to include in the cascade simulation
an explicit representation of the ions and the forces between them. Classical molecular
dynamics (MD) implements just such an improvement and, contingent on a good
choice for the interionic force model, allows for much more realistic simulations of
radiation damage and for the study of more complex phenomena. Computational
power has been sufficient for the MD simulation of collision cascades since the 1960s
(see Gibson et al. [113] for an early example and various reviews [114, 115]). In the
early simulations, electronic effects were ignored.

Since the 1990s various models have explored the use of a viscous drag force,
opposed to the ion velocity and proportional to its magnitude, to represent the effects
of energy transfer to the electrons in both the electronic stopping and the electron-
phonon coupling regimes. Such a force is clearly consistent with the slow particle
stopping models discussed in sections 2.3.1 and 2.3.2 for the electronic stopping power
and also conforms to the model proposed by Finnis et al. [83] for the electron-phonon
coupling (see section 3.3). We are thus considering ions moving under an equation of
motion,

MiR̈i = Fi − βiṘi, (63)

where Fi is the force on ion i of mass Mi due to the other ions under the chosen
interatomic potential. Ri, Ṙi and R̈i indicate the ion position and its time derivatives
and βi is the drag coefficient. In the simplest models βi is chosen to be a constant for
all ions.

Nordlund et al. have made extensive studies [93, 116, 117, 118] of the effect
of electronic stopping power on the primary damage state. Their MD simulations
use embedded atom model (EAM) potentials [119], adjusted to give correct melting
temperatures and joined at distances of close approach to a repulsive potential
(chosen according to the specification of Ziegler et al. [5]) to improve the handling
of energetic collisions. The electronic stopping power is incorporated as a frictional
force, proportional to ion speed with constants of proportionality drawn from the
SRIM code [5] and assumed to act only on ions whose kinetic energy Ti exceeds 10 eV:

βi = β Ti ≥ 10 keV

= 0 Ti < 10 keV. (64)

No clear reason for the kinetic energy cut-off is offered, except that the Lindhard form
for the stopping power is only considered valid down to this velocity range.

In addition to this, a kinetic energy cut-off in the damping force will ensure that
the long term steady state of the ionic system has a finite temperature rather than all
the ions being damped to zero velocity. However, the approach to this steady state will
be unphysical. Rapid repartitioning of the initial PKA energy TPKA amongst all the
Na ions will probably take the average kinetic energy per ion, ∼ TPKA/2Na (assuming
equipartition between kinetic and potential energy), below the threshold within the
timescale of the simulation. Statistical fluctuations will then repeatedly take some ions
above the threshold until the ultimate steady state, in which the average total kinetic
energy is 5 eV is reached. The temperature of this steady state, TI = 2(5 eV)/3kBNa,
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though it would take an extremely long time to reach in practice, is thus system size
dependent.

A common theme in the publications of Nordlund et al. is a conclusion that the
electron-phonon coupling, not taken into account in their model, has only a minor
effect on the primary damage state. In [116] and [93] a comparison of the mixing
parameter from simulations of ion beam mixing with data from experiments in several
metals and semiconductors is carried out. This shows that much of the difference in
behaviour between pairs of metals expected to have very different electron-phonon
coupling strengths (e.g. Cu and Ni, and Au and Pt) is accounted for by the MD
model without the effect of electron-phonon coupling. Nordlund et al. conclude that
the inter-ionic potential (and hence the melting point and elastic properties) has the
dominant effect on the extent of mixing and its variation between materials, and
therefore electron-phonon coupling strength must play only a minor role. A detailed
MD simulation study of the effect on the primary damage state of material properties
and choice of potential is to be found in [93]. Similar conclusions are drawn by Zhong
et al. [118], who compare defect yields in the self-bombardment of tungsten between
simulation and experiment, claiming agreement within ∼ 30% for a model omitting
electron-phonon coupling effects.

However, even if an MD model without electron-phonon coupling were to
replicate the experimental results perfectly, this would not necessarily indicate the
unimportance of electron-phonon coupling. Such models tend to contain various
parameters, whose calibration is ultimately based on experimental data. When
comparison of simulations is made only to high-level characteristics of real cascades,
it is conceivable that the fitted values for these parameters might compensate for the
lack of electron-phonon coupling to yield broadly correct behaviour. The detail of the
cascade evolution might nevertheless be inaccurately captured.

Before we discuss the above results further, we will consider the complementary
work of Bacon et al.[84, 85]. In [84] a MD model of α-iron using a Finnis-Sinclair
potential [120] is augmented with a frictional force to represent the effect of electron-
phonon coupling. The simulations focus on the evolution of the cascade once a molten
region has formed and the effect of the coupling strength on the defect yield is analysed.
A range of values of coupling strength is tested, varying between zero and a value ten
times that found for Ni in [87], and including the values for Cu and Ni calculated by
Finnis et al. [83]. The strength of the electron-phonon coupling is observed to have
a dramatic effect on the rate at which the molten zone shrinks (see figure 10) and a
less strong, though still significant effect, on the number of Frenkel pairs produced
(figure 11).

The apparently contradictory conclusions concerning the importance of the
electron-phonon coupling strength can be reconciled if we note that the claim by
Nordlund et al. of agreement to within ∼ 30% between experiment and MD excluding
coupling [118] is overstated. In the case of a 20 keV impact the simulations produced
123 vacancies compared with 81 measured via field ion microscopy (FIM). At 30 keV
the data were 63 vacancies in the simulations to 125 in the experiments. As a
percentage of the experimental results, these figures suggest a discrepancy of ∼ 50%,
leaving ample room for a significant contribution from electron-phonon coupling.
Indeed, this is consistent with the change in the Frenkel pair yield observed by Gao
et al. [84] (and illustrated in figure 11) when the coupling strength is varied from zero
to the value associated with nickel.

As pointed out by Nordlund et al. [93], there is still considerable uncertainty as
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Figure 10. The evolution of the radius of the molten zone in cascade simulations
in α-Fe. Increasing the electron-phonon coupling strength dramatically increases
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to how electron-phonon coupling should be treated in MD simulations of radiation
damage. If we add to this the scarcity of experimental data against which to validate
coupling models and the uncertainties in those data, then there is clearly a need for
more work in this area. More realistic treatments of the interaction between electrons
and ions could help to resolve this issue (see section 5).

4.5. Electrons as a heat bath

In addition to providing a mechanism for ionic energy loss, we also expect that the
electrons in a metal will function as a heat bath, exchanging energy with the ions
and enhancing the rate of energy transport away from the cascade region. Caro and
Victoria [121] identify two key problems in MD simulations of radiation damage, which
remain no matter how accurate the interatomic potentials become. These are the
treatment of inelastic scattering and the need for a description of electronic thermal
conductivity (see also [2]). In order to better capture the effect of electron-phonon
coupling, they propose a treatment of the electrons as a Langevin heatbath, such that
the ions obey the modified equations of motion,

MiR̈i = Fi + ηi(t) − βiṘi, (65)

where βi is a drag coefficient and ηi(t) is a stochastic force, distributed with probability
P(η)

〈η〉 = 0, 〈η(t) · η(t′)〉 = 2βikBTeδ(t− t′),

P(η) = (2π〈η2〉)−1/2 exp(−η2/2〈η2〉). (66)

Caro and Victoria note that a wide range of theoretical treatments yield a stopping
power proportional to velocity, so that equation (65) could, in theory, describe both the
electronic stopping and the electron-phonon coupling regimes, provided some means
were found to account for the difference of up to several orders of magnitude in the
value of β between the two (see section 3).

The method proposed by Caro and Victoria adopts the density dependent
stopping power formalism of Ziegler et al. [5] (see (40) on page 28), assuming that
the higher average electronic density experienced by an ion moving ballistically in the
stopping power regime compared with an ion oscillating about its equilibrium position
can correctly account for the variation in damping. Such a model can be efficiently
implemented within MD simulations that make use of EAM potentials in which a
measure of local electron density is readily available. The form of β is determined
empirically to match the linear response theory of Kitagawa and Ohtsuki [122] at high
density and results derived from density functional theory by Echenique et al. [123]
at low density. The best fit is found to be,

βi = A log10(αρ
1/3
i + b), (67)

where ρi is the electron density experienced by an ion at Ri and A, α and b are
constants whose values are given in [121]. Caro and Victoria emphasise that there
is no physical justification for this density dependence of the damping; it is simply a
best fit to other models across a range of ρ.

Prönnecke et al [124] used the Caro and Victoria model in a set of simulations
of 55,296 atoms in copper. They simulated initial cascade energies of 2.5 keV and
5.0 keV with electron-phonon coupling included and excluded in each case, making
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four simulations in total. Even the weak coupling in copper is found to reduce the
duration of the cascade and decrease the extent of mixing significantly.

An acknowledged deficiency of the original model in [121] is the handling of the
dependence of the stochastic force η(t) on electronic temperature. Under Langevin
dynamics the fluctuation dissipation theorem states that at equilibrium η ∝ √

Te and
so in general some model for the evolution of the electronic temperature distribution is
required. To avoid this need, Caro and Victoria assume that the rate of heat transport
by the electrons and the strength of the electron-phonon coupling are such that the
electronic system functions as a perfect heat sink, remaining at the target ambient
temperature throughout any simulation. This is the case with the simulations in
[124]. Unfortunately this assumption precludes any electronic heating, excluding the
possibility of the electrons acting to anneal out defects and making it unlikely that the
model will correctly describe cascades in metals with strong electron-phonon coupling.

Rectifying these deficiencies requires a change in the way that simulations deal
with the electronic system, moving beyond merely attempting to capture its effect on
the ions and towards an explicit model of its evolution.
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5. Explicit treatment of electrons

Our consideration of the work of Caro and Victoria [121] in section 4.5 serves to
highlight the limitations of attempting to treat electrons only implicitly via their effect
on ion behaviour. Only relatively simple phenomena can be captured and often only
with the sacrifice of physical content. Just as the explicit treatment of ion trajectories
in classical MD simulations revealed a richness of behaviour uncaptured within the
binary collision approximation, so we might expect that the full role played by electrons
in radiation damage will be revealed only by their explicit treatment.

In this section we will introduce a variety of models that explicitly model the
behaviour of electrons within simulations of radiation damage in metals. The range of
work that we consider spans the state of the art in handling electrons as classical
degrees of freedom within large-scale cascade simulations and recent successes in
exploring the effect of quantum mechanical electrons on ion dynamics. We will also
examine some further techniques that may soon be rendered applicable to radiation
damage problems by advances in theory and computational resources.

5.1. Electrons as an inhomogeneous heat bath

Duffy and Rutherford [8, 9] have developed an extension of the model of Caro and
Victoria, which better captures the effect of electron-ion interactions on ion dynamics
by including a representation of the electrons as an inhomogeneous heat bath. The
ions obey a Langevin equation of motion as in (65),

MiR̈i = Fi + ηi(t) − βiṘi,

but in this case the mean squared magnitude of the stochastic force ηi(t) is varied
throughout the simulation cell with the local electronic temperature.

The form of the damping coefficient βi is also different from that used in [121].
The effect of electron-phonon coupling is represented by a constant βp applied to all
ions and the electronic stopping power is modelled via a second, usually much larger,
constant βs applied to ions moving faster than some threshold velocity vt,

βi = βp + βs Ṙi ≥ vt,

= βp Ṙi < vt. (68)

Values for βs are taken from the SRIM code [5] (βs/Mi = 1 ps−1 for bcc iron) and
a variety of values for βp is explored (0.05 ps−1 ≤ βp/Mi ≤ 30 ps−1). vt is set to
correspond to an ionic kinetic energy of twice the cohesive energy.

The electronic temperature distribution is coarse-grained into cells of around 340
ions and evolved according to a heat diffusion equation,

ce
∂Te

∂t
= ∇(κe∇Te) − gp(Te − TI) + gsT

′

I , (69)

where ce and κe are the electronic heat capacity and thermal conductivity. TI is an
ion temperature defined as an average over the Ncell atoms of the coarse-graining cell
as,

3

2
kBTI =

1

Ncell

∑

i

1

2
MiṘ

2
i , (70)

and T ′

I is the equivalent average over only those N ′

cell atoms with Ṙi ≥ vt. The second
term on the right hand side in (69) is thus the usual source term corresponding to
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energy exchange between ions and electrons via the forces −βpṘi and ηi. The third
term on the right hand side in (69) is an additional source term corresponding to
the electronic stopping force −βsṘi. The values of gp and gs are chosen to maintain
energy conservation in the exchange between ions and electrons.

Duffy and Rutherford refer to this model as an inhomogeneous Langevin
thermostat. They give a full description in [8] and present preliminary results for a
small number of cascade simulations. In [9] they add a further refinement by enlarging
the spatial extent of the electronic system to ten times that of the ionic MD simulation,
thereby enhancing the ability of the electrons to transport energy out of the cascade
region. They apply a 300 K thermostat to the boundaries of the enlarged system.

Rutherford and Duffy use this enhanced model to simulate 10 keV cascades in
iron, modelled using the magnetic interionic potentials of Dudarev and Derlet [125].
They explore the effect of electron-phonon coupling on cascade development by varying
βp across the large range of values found in the literature (see section 3.5). The overall
trend for the effect of electron-phonon coupling on the number of stable defect pairs
formed is for an increase at moderate values of βp due to freezing in the distribution
of point defects and for a decrease at high βp because the removal of energy from the
cascade reduces the size of the cascade and hence the number of point defects created.

A comparison between the use of a spatially varying electronic temperature and
simulations using a homogeneous Langevin thermostat at 300K (the perfect heat sink
of Caro and Victoria [121]) shows that the former tends to reduce the stable defect
yield across the full range of βp (see figure 12). Comparison of the maximum number of
defects (most of which will heal) formed during the simulations shows that at moderate
and high βp, inhomogeneity in the thermostat tends to increase the size and duration
of the thermal spike (see figure 13). These effects can be understood as the result of
the elevated electronic temperatures developed in the cascade region; the feedback of
energy to the ions prolongs the thermal spike, increasing the peak defect yield, but
also allowing for prolonged annealing, reducing the final stable defect yield.

We note that care should be taken in interpreting figures 12 and 13 for lower
values of the coupling (βp/Mi . 1 ps−1). In the simulations using a homogeneous
thermostat, the electronic stopping power is omitted (βs = 0) meaning that the effect
of allowing the electrons to heat up is properly disentangled from that of a higher
average damping only when βp ≫ βs.

In [9] the evolution of the electronic and ionic temperature distributions during
cascade simulations is plotted and the effect of the electron-ion interaction can be seen
in the dramatically faster decrease in the ionic temperature for high βp.

Duffy et al. [78] find a further application for their model in simulating the
formation of damage tracks around high energy channelling ions. They take an MD
cell of around one million ions, coupled as in [9] to a much larger electronic system.
The electronic temperature in a central cylindrical region 2.52 nm across is elevated
to 7.5 × 104 K to represent the energy that would have been transferred from an
ion traversing the region and experiencing a stopping power of 10 keV nm−1. These
simulations thus examine the thermal spike model of channelling ion damage and
the authors explore the sensitivity of the defect yield not only to the value of the
electron-phonon coupling, but also to values of the electronic specific heat and thermal
conductivity. The defect yield is highly sensitive to βp, with higher coupling resulting
in a greater number of stable defects. Increasing the electronic thermal conductivity κe

from the experimental value for Fe rapidly reduces the stable defect yield by reducing
the size of the molten region. This result is consistent with experimental data for the
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track formation behaviour of a variety of metals (see [78]). However, the very low
sensitivity to electronic specific heat found in the simulations is in contradiction to
the experimental evidence.

Care should be taken in the comparison of these simulations with experiments on
different metals because the same Fe potential is used in each case. The simulations
therefore fail to take account of the variation of other material properties that will
affect the experimental results: melting point in particular would be expected to
have a large effect on defect yield. Also, the heat capacity and stopping power
are not independent material properties. The heat capacity will be proportional to
the electronic density of states at the Fermi level, D(εF), and the stopping power,
being dependent on the number of available electronic transitions from occupied to
unoccupied states, will tend to be proportional to [D(εF)]2.

Ivanov and Zhigilei have developed a similar model for an MD simulation of ions
coupled to an evolving electronic temperature distribution. They apply their model to
the study of melting in nickel films induced by short laser pulses [126] and the velocity
of the melt front in nickel and gold [127]. The main difference between the work of
Duffy et al. and that of Ivanov and Zhigilei is the manner by which energy is returned
from hot electrons to cooler ions. In the latter case this is implemented by making
the damping term proportional to the difference between the local electronic and ionic
temperatures (averaged over a coarse-graining cell),

βi ∝ (TI − Te). (71)

It is thus possible for the drag force to accelerate ions in the presence of hotter
electrons.

Duvenbeck et al. [79, 80, 77] have developed a model in which the work done by a
drag force on the ions acts as a source of heat in a diffusional model of electronic
temperature. The aim of the work is to explore the behaviour of the electronic
temperature at the surface in simulations of sputtering events. However, since the
authors do not include a mechanism for return of energy from electrons to ions,
rejecting this as a second-order effect, their model represents only a partial coupling
of electron and ion evolution.

The model presented by Duffy et al. is a significant advance over earlier classical
MD simulations with simple Langevin dynamics at a fixed thermostat temperature.
Even though the techniques discussed in the rest of this section provide a more
realistic model of the electronic system, available computational resources will restrict
simulations of large collision cascades (of hundreds of thousands of atoms or more)
to using some sort of augmented MD model for the next decade at least. The
inhomogeneous Langevin thermostat, then, can be seen as an important first step
towards a molecular dynamics scheme optimized to capture the effects of the exchange
of energy between electrons and ions. Initially, the primary role of more sophisticated
models will be to identify and calibrate the necessary refinements to such a classical
scheme.

We therefore lay out the key remaining gaps in the model of Duffy et al., as a
useful guide for future work in the field:

Thermal properties of electrons: As Duffy et al. acknowledge, their treatment
of the electronic thermal conductivity and heat capacity is only at the simplest
level, with a fixed room temperature value for the former and a tanh(Te) form for
the latter, saturating at 3kB per atom for high Te. Many processes of radiation
damage are such that the electrons and ions are strongly out of equilibrium, both
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within and between the subsystems, for significant periods of time and so more
sophisticated treatments of heat transport might be required.
Ivanov and Zhigilei [126, 127] implement a temperature dependent thermal
conductivity of a form that tends to κe ∼ Te/TI at low temperatures and to

κe ∼ T
5/2
e , characteristic of a low density plasma, at high Te.

Energy transfer from ions to electrons: Various ad hoc forms for an electronic
damping of ionic motion have been proposed, but all have in common the fact that
the damping force is proportional to and directly opposed to the ionic velocity.
Such forms are justified by an appeal to a large body of supporting literature,
both experimental and theoretical. However, the theoretical work is carried out
only within approximations that would be expected to yield a linear damping
result and experiments are severely restricted in what they can measure. Neither
has anything to say about the magnitude or importance of deviations from perfect
linearity and opposition to velocity of the force on the ions due to the electrons.
Furthermore, most schemes make a distinction between the electronic stopping
power regime and the electron-phonon coupling regime, between which a large
difference in damping is expected. Bacon et al. [84, 85] and Nordlund et al.
[93, 116, 117, 118] choose to ignore one or the other regime entirely, Caro and
Victoria propose an ad hoc fitted form based on local electronic density to
accommodate both regimes and Duffy et al. incorporate each via a separate
constant force. We reiterate that the same physics of electron-ion interactions
underlies energy transfer in both regimes [17]. The distinction between electronic
stopping and electron-phonon coupling is normally drawn in terms of the
correlation between the motion of different ions (small in the former case, large in
the latter). But a molecular dynamics simulation, with its explicit treatment of
ionic motion, contains full information about such correlation. This means that
it should be possible to find a scheme that accounts for variation in the damping
force in a physical way. The investigation of radiation damage with more advanced
models should help to inform the design of such a scheme, incorporating a local
environment and velocity dependent, anisotropic electronic damping force.

Ensuring the correct dynamics: Several potential problems arise with the
inclusion of a spatially varying electronic temperature. The first of these is the
correct handling of the boundary conditions on the electronic subsystem. In the
first incarnation of their model [8], Duffy et al. chose the same size for the electron
and ion systems. All the energy transferred into the electrons was therefore
trapped in a small region, resulting in anomalously high electronic temperatures
which were only slowly reduced by the 300 K thermostat on the boundary. In later
work [9] the electronic system is greatly enlarged, allowing for diffusive transport
of energy out of the ionic MD region, but the system is still finite in extent and
bounded by a simple 300 K thermostat. In fact, Duffy et al. identify three phases
in the evolution of the maximum electronic temperature: a rapid rise, followed by
a rapid fall off dominated by electronic heat diffusion, followed by a final slower
decay. It is not clear, but it is possible that the change in behaviour between
the fast and slower decay is simply due to the establishment of a fairly uniform
electronic temperature, with further cooling dominated by the thermostat.
A second issue is the handling of the temperatures outside the region of the MD
simulation. Duffy et al. implicitly assume that the ion temperature remains equal
to the electronic temperature in the embedding region. In reality the ions will
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tend to remain cooler than the electrons, but will gradually heat up. In effect they
provide a spatially varying bath for the electronic temperature in the embedding
region and another heat sink, in addition to the boundary thermostat.

5.2. Adding quantum mechanical electrons

In the remainder of this review we will consider a variety of simulation methodologies
able to better capture the complex physics of radiation damage in metals. These
methodologies vary widely in their complexity, but none of them can be claimed to
provide a means for directly simulating radiation damage cascades over realistic time
and length scales. Advances in computational resources will gradually render models
in each step up the ladder of complexity applicable to direct simulation, but in the
meantime the models should primarily be viewed as exploratory tools. This is not to
belittle their importance. Whilst the inhomogeneous Langevin thermostat of Duffy et
al. captures much of the important physics in a phenomenological way, there remain
many unanswered questions about the interaction of ions and electrons. Only by
answering these questions can we hope to build more realistic molecular dynamics
models. And an excellent way of answering them is by undertaking simulations in a
framework of more sophisticated physics.

A non-relativistic quantum mechanical system of Nn nuclei at positions R =
{R1,R2, . . . ,RNn

} and Ne electrons at positions r = {r1, r2, . . . , rNe
} is properly

described at time t by a many-body wavefunction Φ(R, r, t). This wavefunction
will evolve under a Hamiltonian Ĥ(R, r), which we assume to have no explicit time
dependence, according to the time-dependent Schrödinger equation,

Ĥ(R, r)Φ(R, r, t) = i~
∂

∂t
Φ(R, r, t). (72)

ˆH(R, r) incorporates terms corresponding to the kinetic energy of the nuclei, T̂n(R),
the kinetic energy of the electrons, T̂e(r), and to the electrostatic interaction energy
of the nuclei with each other, V̂nn(R), the electrons with each other V̂ee(r), and the
nuclei with the electrons V̂ne(R, r),

Ĥ(R, r) = T̂n(R) + T̂e(r) + V̂nn(R) + V̂ee(r) + V̂ne(R, r). (73)

Solution of this full problem is computationally impossible for any system of
appreciable size and progress can be made only by making simplifying approximations.

Most practical simulation schemes begin by making the semi-classical
approximation, choosing to treat the relatively massive nuclei as classical particles.
This then reduces the problem to one of calculating the evolution of the quantum
mechanical electronic system, described in general by a many-body wavefunction
Ψ(r, t), under an electronic Hamiltonian,

ĥe(r;R(t)) = T̂e(r) + V̂ee(r) + V̂ne(r;R(t)) + Vnn(R), (74)

where the co-ordinates of the classical nuclei now enter as parameters in the electronic
dynamics and determine the time dependence of the Hamiltonian. Vnn(R) is the
interaction energy of the classical ions and is included to cancel a singularity in the
electronic energy. In turn, the nuclei will respond to forces due to the electrons derived
from the Hellman-Feynman theorem [128],

Fe(R, t) = −
∫

dr [Ψ(r, t)]∗ ∇Rĥe(r;R(t)) Ψ(r, t). (75)
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Of course, solution of the full many-body electronic problem still remains a challenge
formidable to the point of computational intractability, and so the remainder of the
task of implementing a semi-classical simulation scheme consists in finding a suitable
approximation to Ψ(r, t) and its evolution,

i~
∂

∂t
Ψ(r, t) = ĥe(r;R(t))Ψ(r, t). (76)

Before we consider some specific examples of such schemes, we will briefly examine
the dynamics of a semi-classical system. To make our analysis transparent we will
choose to work in the basis of many-electron instantaneous eigenstates of the electronic
Hamiltonian ĥe. Working from now on in the Dirac notation we will denote the
eigenstates by {|ψi(t) 〉} and their eigenvalues by {εi(t)} so that we have,

ĥe(r,R(t))|ψj(r;R(t)) 〉 = εj |ψj(r;R(t)) 〉. (77)

We now expand our many-electron wavefunction in terms of these eigenstates,

|Ψ(r, t) 〉 =
∑

j

aj(t)e
−(i/~)

R

εjdt|ψj(r;R(t)) 〉, (78)

where the phase-factor exp[−(i/~)
∫

εjdt] is inserted for algebraic convenience. The
expansion coefficients are given by,

aj(t) ≡ e(i/~)
R

εjdt〈ψj(r;R(t)) |Ψ(r, t)〉. (79)

Directed by the expression for the Hellman-Feynman force (75), we consider the
quantity,

〈ψi |∇Rĥe|ψj 〉 = ∇Rεjδij + εi〈∇Rψi |ψj〉 + εj〈ψi | ∇Rψj〉, (80)

Where we have used the fact that ĥe is Hermitian. By the orthogonality of the
eigenstates, 〈ψi |ψj〉 = δij , we have ∇R(〈ψi |ψj〉) = 0 ⇒ 〈∇Rψi |ψj〉 = −〈ψi | ∇Rψj〉
and so we can write the Hellmann-Feynman force as,

Fe = −
∑

i

|ai|2∇Rεi+
∑

i,j

a∗i aj(εi−εj)e
(i/~)

R

(εi−εj)dt〈ψi | ∇Rψj〉.(81)

Inserting the expansion (78) into the time-dependent Schrödinger equation (76) and
premultiplying by 〈ψi(r;R(t)) | yields the time evolution of the expansion coefficients,

∂

∂t
ai(t) = −

∑

j

aj(t)e
(i/~)

R

(εi−εj)dt ∂R

∂t
· 〈ψi | ∇Rψj〉, (82)

where we have made use of the chain rule, dψj/dt = (∇Rψj) · Ṙ.
If we consider starting our evolution at time t0 with the electronic system in

its ground state, say |Ψ(r, t0) 〉 = |ψ1(r;R(t0)) 〉, such that ai(t0) = δi1, then (82)
gives a picture of the evolution in which the nuclear motion stimulates transitions to
excited states at a rate determined by the non-adiabatic coupling vectors 〈ψi | ∇Rψj〉.
These coupling vectors also appear in (81), where we can see that the electronic forces
on the nuclei can be decomposed into motion on a set of potential energy surfaces
{εi(R)} corresponding to the instantaneous eigenstates {|ψi 〉} occupied according to
the evolving expansion coefficients {ai(t)} and a set of non-adiabatic forces given by
the second term in (81). These non-adiabatic forces act in the direction of the non-
adiabatic coupling vectors and the ionic motion will do work against them equal to
the electronic excitation energy implied by the changing expansion coefficients.
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5.2.1. Surface hopping vs. Ehrenfest dynamics Most semi-classical simulation
schemes implement the electronic evolution (82) with some approximate treatment
of the electronic wavefunction. The nuclei are evolved under forces which include
those given by (81). Such a scheme is referred to as Ehrenfest dynamics and is
a mean-field approach in the sense that the ions move on a linear combination of
the potential energy surfaces corresponding to the electronic energy eigenstates. A
possible flaw in Ehrenfest dynamics becomes apparent if we consider the case of an
excited eigenstate that has a very different shape to the ground state. We can regard
the |ai(t)|2 as representing the probability that at time t the electronic system has
been excited into the ith eigenstate. Ehrenfest dynamics will correspond to motion on
some weighted average potential energy surface (illustrated schematically in figure 14),
which is representative of neither the ground state nor the excited state.
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Figure 14. A schematic representation of the variation of the energies E1,2 and
occupation probabilities |a1,2|2 of a pair of energy eigenstates as function of an
ionic coordinate R. We are assuming that R is changing sufficiently quickly that
non-adiabatic transitions within the system are stimulated. As the probabilities
evolve, the potential energy surface EEhr traversed by the Ehrenfest system is a
weighted average, representative of neither eigenstate. (After [129].)

We could instead consider a dynamical evolution in which the nuclei all remain on
a potential energy surface corresponding to a single electronic eigenstate. The evolving
values of

{

|ai(t)|2
}

are then used to determine the probability that the electronic
system should undergo a discrete ‘hop’ to a different eigenstate, changing the potential
energy surface on which the nuclei move. This is the surface hopping method of Tully
and Preston [130].

Chief amongst the issues that a practical surface hopping algorithm must address
are, first, the mechanism for adjusting the nuclear energy in order to conserve total
energy when a hop takes place and, second, how (and how frequently) to select which
hops are made. A reasonably strong consensus has been reached on the second issue,
with most surface hopping implementations adopting the so-called fewest-switches
approach [131]. The first issue is more complex, but there are strong arguments for
adjusting the kinetic energies of the nuclei by altering the components of the velocities
parallel to the non-adiabatic coupling vectors, since this is the direction in which the
non-adiabatic forces, corresponding to the electronic excitations, lie. Problems can
arise when there is a finite probability of an electronic transition whose energy exceeds
the kinetic energy of the ions parallel to the non-adiabatic coupling vectors. Often
such transitions are simply disallowed by the algorithm.
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Several features of the surface hopping approach make it unsuitable as a means
of simulating radiation damage in metals. First, such simulations will tend to
involve large numbers of atoms and so calculating the electronic forces on the nuclei
(as gradients of the eigenstate potential energy surfaces) may become prohibitively
expensive depending on the model of the electronic system used. This fact, along
with the stochastic nature of the method, which means that it is necessary to follow a
large number of trajectories in order to adequately sample the hopping probabilities,
restricts the successful use of surface hopping to simulations of small systems (e.g.
molecular reactions [132] and the interaction of atomic clusters [133]). Second,
the large number of electrons involved will lead to a dense spectrum of electronic
eigenstates meaning that a large number of hopping probabilities must be calculated
and sampled, again increasing the computational overhead.

Since in a metallic system we would not expect to see large differences in the shape
of the potential energy surfaces corresponding to electronic eigenstates close in energy,
the Ehrenfest dynamics method, with its mean-field treatment, currently represents a
better compromise between accurately representing the evolution of coupled quantum
mechanical electrons and classical nuclei and limiting the computational overhead.
We consider several examples of Ehrenfest dynamics simulations of radiation damage
events below, each adopting a different model of the electronic system.

5.3. Time-dependent density functional theory

Time-independent density functional theory (DFT) is well established as a method
for calculating the ground state electronic energies of a large variety of systems
[61] to within a few tenths of an electron volt per atom. The time-dependent
version of the formalism (TD-DFT) is a more recent innovation [134] and allows
the calculation of certain excited state properties, in contrast to standard DFT.
Access to information about excitations of the electronic system makes possible
the linear response calculations discussed in section 2.3.3 and also opens up the
possibility of determining the evolution of a system of electrons under a time-
dependent Hamiltonian.

The formalism of TD-DFT is broadly analogous to that of standard DFT. It
can be shown that, for a given initial many-body electron state Ψ0 = Ψ(r, t = t0),
the electronic densities ρ(x, t) and ρ′(x, t) corresponding to evolution of Ψ0 under
external potentials V (x, t) and V ′(x, t) respectively will be different provided the
potentials differ by more than a function of time only (here x is a position vector
in three-dimensional space and the electron density corresponding to Ψ(r, t) is given
by

∑

i

∫

dr δ(x − ri)|Ψ(r, t)|2). This is the Runge-Gross theorem [134], the time-
dependent version of the Hohenberg-Kohn theorem [135]. Once a particular choice is
made for Ψ0, then a given external potential determines a unique density ρ(x, t) and
it is possible to write any observable of the electronic system as a functional of ρ(x, t).

It can then be established, that for a system of Ne interacting electrons evolving
under a potential Vint(x, t), there exists a unique potential Veff(x, t) that, when acting
on a fictitious system of Ne non-interacting electrons, yields the same time-dependent
density. The evolution of this fictitious system is governed by the time-dependent
Kohn-Sham equations,

i~
∂

∂t
ψi(x, t) =

(

−∇
2

2
+ Veff(x, t)

)

ψi(x, t), (83)
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for a set of Ne single-particle wavefunctions {ψi(x, t)}. We thus have a way of
calculating the evolution of a set of interacting electrons, provided we have a way
of determining the correct Veff(x, t).

More information about the theory and application of TD-DFT can be found in
the many reviews on the subject (see for example: [136, 137]).

The application of TD-DFT to direct simulation of radiation damage events is
hampered by the computational complexity of the method. First, the calculation
of the electronic forces on the nuclei requires that time-dependent one-electron
orbitals be calculated to high precision, which in turn demands many basis states
per atom. Second, calculation of the electronic Hamiltonian is inherently time
consuming, requiring many three-dimensional spatial integrals over the basis states
(six-dimensional in cases where non-local pseudo-potentials are employed in a local
basis).

We are aware of only one example in the literature of an atomistic radiation
damage simulation using TD-DFT. Pruneda et al. [138] examined the case of protons
and anti-protons penetrating the insulator lithium fluoride. Experimental data for the
electronic stopping power of LiF for various penetrating particles suggests the existence
of a threshold effect [139, 140, 141]. Below a certain velocity (0.1 v0 for protons in LiF)
the electronic stopping power drops nearly to zero, violating the standard dE/dx ∝ v
behaviour. This threshold effect is attributed to the existence of the band gap, which
implies a minimum energy for excitations in the target material, in contrast to the
case of metallic targets.

Pruneda et al. [138] undertake a series of simulations in a 4×4×4 unit cell lattice
of LiF (128 atoms) in which all the atoms are frozen at their perfect lattice sites and
a proton or anti-proton is constrained to move down the centre of a [110] channel at a
fixed velocity. The simulations use the Siesta TD-DFT code [142] with the adiabatic
local density approximation (ALDA) to the exchange-correlation energy. The results
of the simulations for projectile velocities up to 0.6 v0 are shown in figure 15 and a
threshold effect at around the velocity suggested by experiment is clearly evident. If
we regard the channelling particle as a periodic perturbation to the extended electronic
system, with a frequency determined by the passage of the particle from one cell to
the equivalent point in the next [143], then we can understand the threshold velocity
as corresponding, via the passing frequency, to the minimum possible excitation in
the electronic system, in this case the band gap.

Above the threshold, the stopping power at a given velocity will be dependent
on the number of transitions within the electronic system with energies corresponding
to the frequencies characteristic of the ionic motion. Such frequencies will often be
very low - an iron atom with a kinetic energy of 100 eV typical of a collision cascade
will have a velocity v = 0.19 Å fs−1 and, assuming a characteristic atomic separation
of d = 2 Å, we obtain a characteristic excitation energy of 2π~v/d = 0.4 eV. The
number of transitions available will be dependent on the size of the system simulated
(for low frequency excitations it will be proportional to the square of the electronic
density of states at the Fermi level) and the number of bands and k-points, and so we
must be wary of finite system size effects when drawing quantitative conclusions from
simulations in small systems. These system size effects will be a particular problem in
any attempt to use TD-DFT to study radiation damage, because the computational
complexity of the method will restrict simulations to very small cells. The mere fact
that TD-DFT is able to accurately predict excited state energies is not enough to
ensure accuracy in the calculated values of quantities which, like stopping power,
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Figure 15. Electronic stopping power dE/dx as a function of particle velocity
from time-dependent DFT simulations of channelling in LiF. The results for
protons are shown as filled circles, anti-protons as empty circles. The crosses
show results for protons when extra basis states are added along the channelling
particle’s path. The insert and other data are discussed in [138]. (From Pruneda
et al. [138].)

involve transitions between states in a possibly extremely sparse eigenspectrum. So,
whilst the accuracy of the calculated threshold velocity might be very good, depending
as it does on a specific feature of the band-structure, the calculated stopping powers
above the threshold might be unreliable.

Pruneda et al. state that their 128 atom super-cell with calculations at a single
k-point was chosen after “convergence tests”, but also make it clear that the values
found for the stopping power were not converged. They attribute a residual factor
of ∼ 2 discrepancy between their calculated stopping power and experimental values
(after making an adjustment for the channelling geometry) partly to a “finite-basis
saturation effect at high velocities”. They experiment in the case of proton stopping
by augmenting the basis set of the target with extra hydrogenic basis states every
0.5 Å along the projectile’s path and find a ∼ 75 % enhancement in the stopping
power. These results correspond better to experiment, but the justification for adding
the extra basis states is unclear. Indeed, any augmentation of a finite basis set, so
long as the added basis states were coupled to the ionic motion, might be expected
to increase the stopping power by increasing the number of excitations through which
the electrons could absorb ionic energy. We discuss finite system size effects further
in section 5.4.

Pruneda et al. also point out that errors in the electronic structure will yield
discrepancies in the calculated stopping powers. Whilst these discrepancies will be
dwarfed by finite system size effects in this case, they will be an ongoing problem
until improved models for the fully time-dependent exchange-correllation energy are
available.

Despite the foregoing discussion, there is no fundamental reason why simulations
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of small collision cascades (up to a few hundred moving atoms) should not be
undertaken with TD-DFT at the present time. Improvements in computational power
will gradually increase the size of systems which can be modelled and such simulations
could yield further valuable information about band-structure dependent effects in
radiation damage.

5.4. Time-dependent tight-binding (TDTB)

Time-dependent density functional theory is highly restricted in the size of systems
that it can simulate, because of the computational complexity of the underlying
description of the electronic structure. By choosing a more approximate model we
can trade off the accuracy of the electronic structure for an ability to simulate much
larger systems for much longer times. Semi-empirical tight-binding (SETB) models
offer just this compromise.

Semi-empirical tight-binding can be regarded as an approximation to the local
orbital implementation of density functional theory∗ in which the real space integrals
needed to calculate the Hamiltonian matrix elements and the overlap of basis states
are replaced with parameterized functions (for details see [119, 144, 145]). The effects
of the exchange-correlation term are implicitly included in these parameters. The
parameters of SETB models are then derived either from experimental data or via
recourse to more sophisticated models, such as DFT. A time dependent form of SETB
has been derived by Todorov [146] using a Lagrangian formalism.

Recent work by Mason et al [147] has explored the effect of electronic excitations
in simulations of radiation damage in metals using a simplified tight-binding model.
Whilst there exist tight-binding models with parameterizations that reproduce
electronic structures with high accuracy [148], such models require large numbers
of basis states per atom. This makes them too unwieldy for use in large simulations
and also hampers attempts to interpret the dynamical evolution of the electronic
system. At this stage in the effort to understand the quantum mechanical nature
of non-adiabatic energy exchange between ions and electrons in radiation damage
processes it will be helpful to focus one prong of attack on capturing the behaviour of
simple systems on the largest possible length and time scales. Mason et al. justify their
choice of simplified TDTB dynamics as being the simplest possible way to introduce an
explicit system of quantum mechanical electrons into an atomistic simulation. In any
case, band structure dependent effects will still appear in the system dynamics, and
whilst the tight-binding band structure is not an accurate representation of any real
metal, the dependence of aspects of the dynamical evolution on well-defined features
of the band structure can still be quantified and understood.

Mason et al. [147] adopt the single s-orbital tight-binding model of Sutton et
al. [149], selecting a parameterization that reproduces the mechanical and structural
properties of copper along with a metallic electronic structure. The model uses a
basis of orthogonal local orbitals {|α 〉}Na

α=1 centred on the Na atoms at positions
R = {R1,R2, . . . ,RNa

}. The non-self-consistent Hamiltonian for the electronic
system is written as,

ĥe(R(t)) =
∑

αβ

|α 〉γ (|Rα(t) − Rβ(t)|) 〈β |, (84)

∗ This latter type of model is sometimes referred to as ab-initio tight-binding.
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where ĥe is now a one-electron Hamiltonian and where γ(|x|) are hopping integrals
varying as an inverse power of the internuclear separation |x|. The electronic system
is represented by a single-particle density matrix ρ̂(t), which is initialized at time t0
to be,

ρ̂(t0) =
∑

i

f(εi(t0);T )|ψi(R(t0)) 〉〈ψi(R(t0)) |, (85)

where {|ψi(R(t)) 〉} are instantaneous eigenstates of ĥe(t) with eigenvalues {εi(t)} and

f(ε;µ, T ) = {exp[(ε− µ)/kBTe] + 1}−1
is a Fermi-Dirac distribution at temperature

Te, chemical potential µ. The evolution of this density matrix is given by the Liouville
equation, equivalent to the time-dependent Schrödinger equation,

i~
∂

∂t
ρ̂(t) = [ĥe(R(t)), ρ̂(t)]. (86)

Electronic forces on the ions are given by the Hellman-Feynman theorem (the
independent electron equivalent of (75)) to give an ionic equation of motion,

MIR̈(t) = −∇RVion(R(t)) − Tr
{

ρ̂(t)∇Rĥe(R(t))
}

, (87)

where Vion is a repulsive ion-ion interaction and it is assumed (for notational simplicity
only) that all the ions have the same mass MI. Tr {·} indicates a trace over a complete
basis of the electronic system, easily computable in the local orbital basis. Now (86)
and (87), along with the definition of the Hamiltonian (84), form a closed set of
equations for the dynamics of the semi-classical system of ions and electrons.

The time-evolved density matrix ρ̂(t) encapsulates all the information about the
quantum mechanical electronic system and allows all quantities of interest to be
calculated. In addition, by constructing an adiabatic density matrix ρ̂0(t), which
represents the state the electronic system would be in if the ions had traversed their
paths infinitely slowly, we can calculate the irreversible transfer of energy from ions
to electrons,

∆E = Tr
[

(ρ̂(t) − ρ̂0(t)) ĥe(R(t))
]

. (88)

Mason et al. [147] have explored the energy transfer response of a 1120 atom
perfect lattice super-cell of their model to a single forced oscillating ion as a function of
the frequency, position and direction of the oscillator and of the electronic temperature.
The energy transfer in each case gives a measure of the coefficient β of the drag force on
the oscillating ion (c.f. the discussion in sections 4.4 and 3.3, in particular (63)). The
results of these oscillator simulations are reproduced in figures 16 and 17 and reveal
that in general the damping coefficient is a tensor quantity dependent on the local
atomic environment, the velocity of the moving ion and the electronic temperature.

Ref. [147] also contains a detailed treatment of the effect of finite system size on
the calculated energy transfer. A time-dependent perturbation theory analysis shows
that, in any given system, the irreversible energy transfer to the electrons is only well
behaved for a finite time. The key issue is the degree of resolution of the energy
transitions stimulated by the oscillating ion. The time-energy uncertainty relation
suggests this should vary as ∼ ~/t and at some point the resolution will become so fine
that the oscillator can no longer stimulate transitions within the discrete spectrum of
the finite system. This problem is a general one, which needs to be carefully addressed
in any semi-classical simulation in a finite system.
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Figure 16. The damping coefficient β corresponding to the average drag force
on a single oscillating ion in a perfect lattice. β is shown as a function of
driving frequency for different initial electronic temperatures. At low frequencies,
finite-size effects are evident in the erratic behaviour of the plots. Above
Ω ∼ 100 rad fs−1 the oscillator energy exceeds the finite band-width of the TB
model, no electronic transitions can be stimulated and the damping force goes to
zero. (From Mason et al. [147].)
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Despite the complexity of the most general form of the damping coefficient
β demonstrated by Mason et al. [147], we might still hope that a simple velocity
independent damping force (analogous to a stopping power linearly proportional to
velocity) would do a good job of representing the average effect of electrons on the
ion dynamics in collision cascades. Le Page et al. [150] examine this possibility by
undertaking a series of 240 cascade simulations with the model of Mason et al. [147].
Simulation cells of 2016 atoms with periodic boundary conditions are used to simulate
cascades with a range of PKA energies from 100 eV to 1 keV in 24 different directions.
By calculating the work done as an integral over the ionic trajectories for different
models of the damping force and comparing it to the irreversible energy transfer (88), le
Page et al. test the validity of various MD-with-damping simulation schemes. Figure 18
shows the results and it is clear that they offer strong support for the use of a simple
velocity-independent damping coefficient as a first approximation to the true non-
adiabatic force. Importantly, the model of Caro and Victoria [121] (see section 4.5)
gives an improvement over a simple damping in certain circumstances. The density
dependence of their model goes some way to capturing the factor of two increase found
in the damping of replacement collision sequences in the simulations of le Page et al.
[150]. The results offer no support for the use of a lower kinetic energy cut-off for the
application of the damping force of the type implemented by Nordlund et al. [93, 117]
(see section 4.4).
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Figure 18. Plots of the irreversible energy transfer from ions to electrons in semi-
classical (TDTB) simulations of collision cascades. Data from 24 simulations
at PKA energies of 100 ev (left panel) and 1 kev (right panel) are shown. In
each plot, for each simulation, the energy calculated according to one of three
classical damping models is plotted against the energy transfer from the TDTB
simulations. Top row: simple fixed damping model with no cut-off. Middle row:
fixed damping applied above a 10 ev ionic kinetic energy cut-off (c.f the discussion
of the work of Nordlund et al. [93, 116, 117, 118] in section 4.4). Bottom row: The
local electron density dependent model of Caro and Victoria [121] (see section 4.5).
(From le Page et al. [150].)

An advantage of the approach of Mason et al. is that the nature of the electronic
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excitations stimulated by ionic motion can be analysed in detail. Race et al. [14]
apply the method to study several hundred cascades in 2016 atom super-cells with
PKA energies from 1 keV up to 50 keV. They find that the spectrum of electronic
excitations is well described by a Fermi-Dirac distribution at an elevated temperature
(see figure 19), even though the electron dynamics in the simulations do not include the
direct electron-electron interactions able to thermalize a non-equilibrium distribution♯.
This property of the excitation spectrum can be attributed to the characteristic
spectrum of the ionic motion. Even for a 50 keV cascade, most of the transitions
stimulated are small on the scale of the width of the Fermi-Dirac distribution and so
the evolution of the excitation spectrum takes the form of a one-dimensional diffusion
in energy space. This strong evidence for a well-defined electronic temperature
justifies an assumption often used to simplify the development of excitation dependent
potentials for use in MD simulations of hot materials [151]. It will also greatly simplify
efforts to devise and implement an augmented MD scheme that correctly treats energy
exchange between ions and electrons.
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Figure 19. The occupations of the instantaneous eigenstates around the
Fermi level 225 fs into a sample TDTB simulation of a 2016 atom cascade.
The excitations are seen to be well modelled by a best-fit thermal function at
Te = 6055 K despite the lack of thermalizing electron-electron interactions. The
initial temperature of Te = 300K is shown for comparison. (From Race et al.
[14].)

Information about the effect of electronic excitations on the interionic forces is also
available and in principle the direction and magnitude of the non-adiabatic force (given
by the second term in (81)) can be analysed in detail. Studies by Race et al. [14] of the
effect of the electronic excitation on the average bond strength in evolving cascades
show that significant changes may occur in situations where electronic temperatures
above 10, 000 K develop (see figure 20). Classical MD simulations of such processes
might then need to make use of electronic temperature-dependent potentials.

♯ In reality the electron-ion interactions would also act to thermalize the electronic system. However
Ehrenfest dynamics does not include the effect of spontaneous phonon emission (see section 5.5) and
so in this case the electron-ion interaction cannot produce thermalization of the electrons at a fixed
electronic energy.
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Figure 20. The percentage reduction in the average magnitude of the attractive
electronic force with rising temperature in a TDTB model. Data shown are: (Red)
squares, reduction in the force found in cascade simulations up to 50 keV PKA
energy, plotted against the best-fit temperature to the excited electronic system.
(Purple) circles, the calculated reduction in the force based on the temperature
dependence of the bond orders in a perfect crystal. (Blue) crosses, the change in
force found for an electronic temperature in a static system distorted to reflect
the ionic positions during cascade simulations. (From Race et al. [14].)

Whilst the simulations so far undertaken by Mason et al. [14, 147, 150] have been
of low energy cascades, there is no reason that their model or one similar should not
be applied to much higher energy phenomena. One possibility would be to carry out
simulations like those of Pruneda et al. [138] (discussed in section 5.3, above) of high
energy channelling ions, but in the much bigger system sizes made possible by the
simpler treatment of electronic structure. Such large scale semi-classical simulations
are currently the only way to search for excitation phenomena dependent both on the
detailed atomistic evolution and on the quantum mechanical nature of electrons.

5.5. Correlated electron ion dynamics (CEID)

The approximation of the ions as classical particles, inherent in Ehrenfest dynamics
(ED), prevents the equilibration of the electronic and ionic subsystems. ED accurately
reproduces the transfer of energy from excited ions into cooler electrons. However, it
fails to produce thermal equilibrium between electrons and ions as the spontaneous
emission of phonons is suppressed by the mean field approximation [152, 153, 154,
155, 156, 157]. This asymmetry exists because each ion is treated explicitly (so their
fluctuations are visible to the electrons which can thus identify the ionic temperature)
while the electrons are experienced by the ions as a structureless fluid whose
temperature cannot be identified through the forces. This is a completely general
property of the Ehrenfest approximation, independent of the level of description of
the electrons.

The inability of ED to reproduce spontaneous phonon emission and so give the
correct long term behaviour of a system of ions and electrons is not always a problem
in simulations of radiation damage. In the early stages of collision cascades and in
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phenomena such as channelling, the initial conditions of the combined system place
a large excess of energy in the motion of the ions. The predominant mode of energy
exchange is therefore from ions to electrons, exactly the process that ED can model
well [156].

However, many key open questions in radiation damage centre on the electron-
phonon coupling and the effects of energy exchange in both directions as the electrons
and ions approach equilibrium. Modelling the effect of the electrons in quenching in
or inhibiting the formation of defects in the displacement spike is critically dependent
on a correct treatment of the full electron-phonon coupling, including spontaneous
emission of phonons.

Correlated Electron-Ion Dynamics (CEID) is a systematic method for extending
ED so as to reintroduce the correct flow of energy from the excited electrons back
to the ions. This is achieved by including small quantum fluctuations in the ionic
trajectories through a low order moment expansion [153, 154]. This allows the ions
to probe the response of the electrons to small changes in their trajectory from which
information about the internal state of the electrons can be determined. The moments
correspond to powers of the instantaneous ionic positions and momenta relative to the
mean values for the trajectories. The first moment gives us heating [153], while the
second moment is needed to introduce the scattering of electrons by heated ions [154].
In order to capture strong non-adiabatic effects the formalism has had to be reworked
to make the expansion stable. This has been achieved by the introduction of an
efficient basis set expansion [158].

The ability of CEID to describe correctly the transfer of energy between
electrons and ions over a wide range of electron-phonon coupling strengths has now
been demonstrated: it has been applied to heating in current carrying nanowires
[153, 154, 159, 160] and simple two level systems [158]. Thus in principle it can be
applied to problems in radiation damage, including the equilibration stage after the
initial cascade formation. Just as for ED, we anticipate that CEID will be used to
inform much simpler and computationally efficient models for large-scale simulations.
An intermediate step might be to use CEID to support simple corrections to ED
simulations to enable them to reach thermal equilibrium. However, the complexity
of CEID calculations and their memory requirements are much larger than for ED,
which currently makes even reference simulations very expensive. Reducing the
computational burden is an ongoing research topic.
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6. Concluding remarks

Our aim in this review has been to outline and explain the various ways in which
electronic effects can be incorporated within atomistic simulations of radiation damage
in metals (see figure 21). We began by discussing the theoretical treatments of
electronic stopping power and electron-phonon coupling. From our point of view
these represent a means of understanding and quantifying the role of electrons in the
various events that make up a radiation damage process. They tell us about how ionic
collision dynamics are altered when excitation of the electrons is taken into account
or how a ballistically moving ion will lose energy to the surrounding electron gas.

Moving on we considered various approaches to the simulation of radiation
damage, in which a series of interactions between classical ions is allowed to unfold
dynamically according to some approximate physical model. We discussed the various
ways in which electronic effects have been incorporated into these simulations, always
informed by stopping power and electron-phonon coupling theory. The electrons might
make themselves felt as an inelastic loss in ionic collisions (as in the BCA) or they
might manifest themselves as a viscous medium providing a drag force on the ions, or
as a stochastic force, buffeting the ions and returning energy to them. We discussed
the application of such models and what has been learnt from them - above all, that
defect yields can be materially affected by the electrons.

Yet in discussing the full range of stopping power theory we saw how the effect
of electrons becomes increasingly complex as we consider slower or heavier ions. With
this increasing complexity the literature becomes increasingly sparse, in contrast to
the comprehensive treatment of fast, light ions. The theories of slow ion stopping, all
yielding a stopping force proportional to ion velocity, are not expected to remain valid
down to the energies involved in many damage scenarios of technological importance.
Somewhere in the murk of this low energy regime, only dimly lit by experimental
data, analytical theory switches its attention to the electron-phonon coupling. The
interactions of ions and electrons are treated within a different set of approximations to
produce estimates of the rate of energy exchange that are, as we saw, inconclusive. The
various different theoretical treatments conflict with one another and with experiment.
This uncertainty, along with the expected low energy failure of stopping theory,
demands new approaches to investigating electronic effects.

There are several reasons that we might expect simple theories to fail in the
low energy regime that encompasses much of the evolution of a radiation damage
cascade. When ions move more slowly it is harder to view the evolution of the
cascade as a series of separable binary encounters. Equally we expect that nuclear
and electronic energy losses will become correlated and that it will no longer be valid
to treat the electrons as a homogeneous stopping medium. At lower velocities too,
the excitations of the electronic system stimulated by the ionic motion will approach
the energy scale of details in the electronic structure. These factors point the way
toward the latest generation of atomistic models of radiation damage. We concluded
our review by considering models that combine a dynamically evolving set of ions
and an explicitly represented system of quantum mechanical electrons. Such models
allow for the possibility of incorporating the effects of electronic structure and of the
many-body nature of the cascade evolution. We presented the results of simulations
undertaken to date within such a framework.

Finally, we gave some thought to the future of radiation damage simulations.
As available computational resources improve, new techniques, incorporating some
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of the effects of the quantum mechanical nature of the ions, will become useful in
investigating radiation damage phenomena. Such effects must be taken into account
in a full description of the later stages of a collision cascade when hot electrons may be
in contact with cooler ions. At the same time the semi-classical techniques discussed
above will become applicable to ever larger length and time scales, ultimately allowing
for quantitative investigations via the simulation of full cascades within an accurate
model of the electronic structure. In the short-term, however, the main role of more
advanced techniques will be to inform the design of better classical models allowing
the impact of electronic excitations on systems of millions of atoms to be more fully
explored.
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Figure 21. An overview of the theories and models covered in this review. The
types of model are represented in terms of their incremental physical content
along with an indication of the size of system that can be modelled with
current computational resources. Augmented classical molecular dynamics models
represent a current “best compromise”, able to handle simulations of millions of
atoms, but having the potential to include much of the key physics of energy
exchange between ions and electrons. Such models are informed by analytical
stopping power and electron-phonon coupling theories and by the the results of
simulations with more complex models.
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