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Abstr&.ct 

The triangular model of chance-constr:::.ined programming with stochastic 

A-matrix and deterministic right hand side is considered. The use of con­

ditional probabilities makes it possible to solve this problem for a~ type 

of distribution function of the elements of the A-matrix provided that there 

is only one decision variable at each stage. n1e extensi~n of the model 

to several decision variables per stage is possible under certain conditions 

and for special distribution (stable distributions) of the elements of A. 



1. Introduction. 

The tria•1gular E-model of chance constrained programming has been intro­

duced by Charnes and Kirby (5 J and later extended by [10] and especially [ 6] . 
This paper treats the same triangular E-model but rather than considering a 

random right-hand vector b in the chance constraints, He develop the case of 

randomness in the coefficient matrix A. The use of conditional probabilities 

makes it possible to solve this problem for any type of distribution function 

of the elements of the A-matrix provided that there is only one decision 

variable at each stage. lhe so-called 1-feasibility concept [14] or 

safety-first principle [6] will be used to avoid decision rules which 

could create inconsistent sample points whenever there exists a feasible 

decision rule. The extension of the model to several decision variables 

per stage is possible under certain conditions and for special distributions 

(stable distributions) of the elements of A. 

Section 2 contains the statement of t.te problem and some notational 

conventions. An example from the field of production planning which can 

be reduced to this general model is given in Section 3. In Section 4 t'l'e 

indicate how the probabilistic constraints can be rewritten as deterministic 

constraints. The relationship between 1-feasibility and safety-first 

principles and the properties of the solution set and objective function 

are investigated in Section 5. It turns out that every sub-problem consists 

in maxinuzing (minimizing) a concave (convex) function over a convex set. 

The extension of several decision variables at each stage is tr~ated in 6. 

FinallyJ Section 7 contains two detailed examples. 

2. The J;Iodel and Notational Conventions 

The formal model which we will be concerned with in this paper has 

been formulated as folloHs : 

subject to 

(2 .1) 

max E (ex) 

Pr (Ax (b) .~ 

X ?'- 0 
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where the following notatio'1 has been adopted : 

A = (a .. ) 
~J 

i 
a 

c 

b 

X 

E (.; 

Pr(,) 

(i) 
a 

c(i) 

d. 
~ 

F d (.) 
a .. ! (. , ) 
~~f ~-~ 

is a louer triangular (rum) matrix with random elements 
2 

aij(i,j)f {l, ... ,nJ , a .. = 0 
~J 

for j > i. 

is the ith column of A and assumed to be known before the 

(i+l)st decision xi+l has to be made. 

lxn vector of random elements c .• 
~ 

nxl vector of non-random elements bi. 

nxl decision vector, the decision to be made at stage i 

is xi, i E: { 1, ... , n J 

expectation op19rator with l'9spect to aJ.l random variables 

i.nvolved. 

probability operator wlil.ich is assumed to apply in parallel. 

the nxi matr:Lx with elements 

the ]_y_i vec-..or with elements (c
1 
•... ~c.) 

. 1 

conditional distribution function of a .. 
~~ 

given the 

observations 

conditional expectation 

given ·che observations 

i 
operator with respect to (a ,c

1
) 

(i-l) ) 
(a , c(i-l) 

vector of probability nuc:,bers, deciced upon a priori and 

each d.. E: C 0 1l i L. _, .J 
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3. An Example in Production Planr:~ 

To illustrate one possible r.~plication of the model (2.1) we 

consider an example taken from the fie1·i. of production planning. 

A firm has to make sequential dec:!sions concerning the production 

of a good over a n-unit tirue period, The price of the product in period i 

V. (i=l, •••• n) is a random variable and the firm is a price-tru:er, i.e. 
~ 

it hD,s no control over te prices. Also, the total production cost 

k. (i=l, ••• ,n) of one unit ln period i is random. Assume further that 
J. 

demand prospects are such that oversupply of the market within the n 

periods in considertJd to be L:;.j::Jssible, although stochastic demand constraints 

could be easily incorporated. Clearly the random variables and k. 

will depend upon 

of and 

if (i-1) 

k(i-1) 

and k(i-l) . Indeed through observation 

we get new information about the marlcet and 

the cost structure of the product. Hence the decision x. as to how many 
J. 

units to produce in period i has to be chosen dependent upon the prices 

and production costs experienced in previous periods. 

J. 

At the beginning of the decision process fixed amounts L. (which 
J. 

can be made dependent upon previous observations) are budgeted for 

production. Budgets not fully UDed up in previous periods can be 

transferred to later periods and previous profits (losses) increase (decrease) 

funds available for production in peri.od i by some fixed proportion. The 

reason for this is that during periods of large profits vv-e want to create 

the possibility of heavier investment in production. Moreover, to allow 

for overspending in a period when prospects are particularly favorable, 

we want the budget constralnts to hold with prescribed probabilities. 
th 

By choice of d. "" 1 in the n period constrc-.int we can mal<e sure 
n 

that at the end of the time horizon the total buc:.get ceiling is not 

exceeded. 



As indicated earlier, uo interpret the probability constl~aints to 

be conditional probabilities given the previous obs8rvations. The problem 

may then be formulated as foJ.lows : 

( 1T.- k.) x.;l 
~ J. .... 

_! 

subject to 

(3.1) Pr {k.x. ~ L. + 
J. J. "' J. 

x. 
J. 

where 

Tri price in 1-eriod i (random variable depending on 1T (i-l)" 

k. total production cost per unit in period i (random variable depending 
~ 

L. par·~ of the budget for period i which may or may not deJyend on 
J. 

11 
(i-1)" 

/)i determines the fraction of the profit (loss) in ~eriod i , 

(::- . ( lT . - k. )x. , that w·ill be available for production from period 
J. J. J. :.L 

i+l on, 
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Pr conditional p:robability operator of ki given k(i-l) and 1T (i-1). 

xi amount to be produced in the i th period , i E { 1, .•. , n _J . 

Rewriting the problem we obtcdn the following equivalent formulation for 

(3.1) : 

subject to 

(3.2) 

x. ~ 0 
~ 

Defining 

aij = r 

l 
and c = 1T .- k. 

max E 

k.-
J 

k. 
J 

0 

i ~ ~ 

i 

hi = ) L. ...... 
j=l J 

r n 

I ' L 

L i:::l 

err. - k. )x.J 
~ ~ ~ 

i E: { 

i E: { 1, ..• ,n } . 

(?.· • ( \1.-
J J 

1'.: j) j <i 

j = i 

j >i 

i=l •••. ,n 

i=l,,., ,n 

we see that the production model is of tl·<> general form described in Sect2.on 2. 



6 

The applicab::..li ty of ·Gh9 ge: .. ..:.,·al mo<iel is how~ver not restricted 

to the above example. As will b,.:co;nr~ _;.ici' .. J: u.pon 5.nsl:,ec-cion, the o~1e-stock 

irrv,;,stme.at model o:L B. Naslund f 13 ~ ct:. a be b:.·vught to fit j nto tl-:.e 

genv~ral framework developed here. Thic is of pa:c•ticular ~>1-Le::r"Jst to note 

s::.nce Naslund 1 s lilOdel so fa:c has b&en s r,uQ.:!.ed only in ths conte:;;:t of first-

oruer decision rt~lcs whe~c·ee s we sh~ll use the more general seqt<.c.ntial 

<iecj.sion rules obtaiv.ed fron; conditional p:r:·0bab51H.y constraints to soJ:ve 

the above model. 'lhe procedur0 developed here might also be useful for 

the study of chance-constra:l.neJ. capital budget::l.ng problE.:ms as in 

and il,hcr~ solut:..·Jns a.::-e pr<?.ser;:t.ed in terms of zsro ordeJ.' rules. 

4. Deterministic Equivalent.:> of the Chance Constraints 

As in0.icated in th3 previous section, 

to be a function of the previous c/Dservc:.;:.~_ons 

we consic.er t?.-1c d'?.cisio.-:~ x.. 
(i-1) . J. 

d(i-1) = (a ' 0 (i-1) 1" 

By a dech;ion l'ule for p:r.o·o:.em (~:::.1) F~; m<:Jall a r:lll'l.ticn of the form 

(L~.l) X 
i 

:::x.(d(, l)) 
~ 1-· 

ma;ping the ooservations d(i-l) in·cc' t:.1e reals. We cbserv·e that the firs·:. 

decisicn ::;_:::; inde~;end.ent of any l~andom varia1Jle. Us:i.ng the notations of 

Section 2 WE: can nO\'l write the cc~!di tiona!. proba.'bj l:i t;•t constraint of the 

l..th . d f 11 per2o as o ows 

{!._ "'\) 
. '-!·C. 

Ls-t 

1'1" (_ )t 
\ ._., 

J-..... 

~ b 
.l 

a .. x.. 
l ,J ,] 

j:=.::. 

,.,. 

" e,_, ~x jd (" _1 ) ) 
·J J ... -- ) 
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satisfying the non-negativity constrai•+; o;.' problem (2.J) and define N to 

be the set 

(4.3) N ,. 
X 

Then (4.2) implies that 

(4.4.a) 0 ~b. 
~ 

a .. x. 
~J J 

From the non-negativity of x. i'le have that for d(. l)f. N where N is 
~ ~- X X 

the complementary set of N in the space of all possible outcomes of 
X 

d(i-l), the following inequality must hold 

i-1 

z 
j=l ( 

1 
Pr a .. { :;:- (b.-

~~ ··~. ~ 
~ 

a .. x. )/d(. l)) .-"'.) <{ 4 
~J J ~- ) ... 

or equivalently 

(4.l.t.b) 

i-1 

2. .. 
j=l 

-1 I ; ) _, b 
e . .x . + X • F - /d \ --'·" . ~- . 
~J J ~ aii (i-1) 2 ~ 

E:- :N 
X 

Now observe that for d(i-l)f Nx·' (4.4.b) and (4.4.a) coincide ; 

hence the deterministic equivalent of (4.2) using the non-negativity of x. 
2 

is given by 

(4.4) "if d.(i ~ \ 
-.Lj 

This leads us to define 1-feasibili ty (see [ 14 J ) of a sequent:i.al 

decision rulE; .L\ xi (d (. . ) ) '\ ~ _
1 

as follows : 
2-1. ....,. ... - : • •• ~n 
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Definition 4.1: A sequential dech:ic:1 ;!lle f x.(d(. l))jl . , 
L ~ 1- l=.L, ••• , n 

is called 1-feasible if 

(i) :;:i (d(i-1))} 0 

(ii) (4.4) is fulfilled for all possible realizations d(i-l) 

and i E J lsc.qn}. 
!...,.. ~J 

For typographical reasons we set 

(4.5) c( ··1 
f. ( 1' 'd (1· -1)) = F 1d ( ct i) 

1 a .. ;' ("' l) ll. J.-

for all i E 
,./ 

{l, ... ,nj· 

Note that for i=l the right-hand side of (4.5) is the inversP- of the 

(unconditional) marginal distribution of a
11 

evaluated at o{_ 
1

• We can 

now state the deterministic equivalent of the constraint set of problem 

(2.1) as folloHs 

i-1 

L. 
j=l 

(4.6) a. .X • + X. f. ( .,Z. . , d ( . l ) ) ~ b . ; X • =X • ( ct ( . l ) ) ~ 0 
lJ J l. l l l- ' l l l l-

for all 

Remark 4.1. Suppose that b.~ 0, 
---------- l 

for all d(i-l)' i IC £ 1~ ... ,n } , is always a fea::;ible decision rule. 

In particul%'t.r, in this case there do not exist sampl8 points 1'rhich could 

create inconsistencies. 

Ren:ark 4.2. From the eqoivE:lent fo.cmulation (4.6) of the constraint set 

(2.1) we infer that for a finite sampJe space it is possible to derive a 

linear program as a deterministic equivalent, in the case \'There the 

coefficients in the objective function artS non-rarld.cm or stochastically 

iPilepend.ent rand.om variables. The way to obtain the linear program is 
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ess,_:mtially the same as used in cunne.::;tion with p:"'ogrc:.JTh.,ing under uncertair:ty, 

see [16 J and [17 J . One indexes the doc is:: ~ns to be !;;ude at stage i 

by the possible observatioL3 on d(. 
1

, and cori'l)utes the objective functicn 
l-_) 

explicitly using the (known) p:::--obabilities of the possible combinations 

of the observations. Clea:;.~ly for only wode3tly sized sarr.ple spaces the 

resulting problem becomes already very large. But or...e can expect that d:J.e 

to the triangularity of the stochastic matl~ix and the particular choice of 

the decisions to be dependent only upon prior observations the result~ng 

linear programming problem has a special structure that can be exploited in 

co:nputation. 

5. Properties of Solution Set and Objeot.ive __ Fu~£tlon 

Let for if 5 l, •.. ,n ·; be 'lny glven observation on th8 
l _ _; 

!":-'-

random variables of the (i-1)~" perio,:s arc1
. denote by 

d (i-1) 
(k-1) 

for 

.r;: E { i+l, ... ,n } any obzervation 

components equal the given d(i.-l). 

d(k-1) 
S'J.c}:l tJ::.at the 

Correspondingly let 

(i-·1) 

d(i-1) 
(j-1) 

for 

d(i-1) 

d(O) 
(k-1) 

(5 .l) 

j e { 1, •• .,i} denote the ve0to:r· of obsel'vations obtained from 

by deleting the la~J·L i-j elements of d(i-l)" r:ote that 

= for all , ' I 2 1 
11:. ::. l , ... , n 'r 

l . .) 

In a manner similar to that uzed in [ 6 J , define the set 

for given d(. " ) l-J.. and x(i-l) recursively as follc·.'iS 

= 
+ 

Ci(d(i-l)'x(i-1)) 

={xi),:, 0/(J.) v d~~=~~ 3 > (d~.j-:_)) :,_ 0, j==j.+l,.,.~k 

su-::h that 

(2) 

(5.2.c.) hol<";;:; f':lc e:.ll 

(5 .2 .b) l· -;Trls 
l 

·' 

k .- •. l l 
t:. l 1+ , • , • n j 
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where 
k-1 i-1 

((5.2.a) 

(5 .2 ).f 
1: akj ),j(<i(j-1)) +},k(d(k-1)) fk(c(k,d(k--l));$"bk- ~ akixJ 

j=i+l j:=1 ·-

r (5.2.b) 
'-

f.(o~_. 1 ,d(·--L))x. ~ b -
~ - ~ . ~ i 

i-1 

"-1 

'--
J=l 

a .. x. 
~J J 

For these set d.efinitions to be recursively meaningful, we have to choo;:;e 

U=l, ... , i-1) such that 

j { ) l ••• ,,j_-1 1. 
\.. .} 

T'De proof 0f ·che following remark is /i'.tn'.ghtforward and vi'ill b8 omitted. 

Remark 5.1. 
----------

1. 'l'here exists a 1 - feas:ttle decis::.on rule iff C~ f.: ¢. 

for all d (i-
1

), ::. \.c. ~ l,. , .• J':. l 
} 

+ 
For any given, d.(i<) and .Y:ri--1 ) the set c1 (d(i-l)) j_c; 

conv~x tn x .• 
~ 

1 
Proof : Let 

b. 
~ 

1 ,... + f; 1) 
::·., x~ C C. (d 1 ._ 

1
,), t··e~· for V· c.'(k··--_

1
) , ther·e exists 

l l. l t..J ·- 1 -

i-1 

;:: 
j=l 

u . 0. J' c I j . , .; "'' ;_, •. ",k J such that 

1 
a .. x. ).;· .. l. ::.4 ( .{ . 'c . ;_ . --1 ) ) 
lJ ,J - 1 . . --

1 
For· ease of rJ.CJtm~ic-r~ we vi:l.ll il: ·i t.e x , ,1. _ .}.-. .. , •• , whereas it should be 

i ,j . J 

·- . ( d . i -1 ) ) , ;A . ( d ( i -, ) ) , /·· ~ ( \ I • --1 ) L . 
~ \. · J v .1. ~1 ,J , 

j 



(5.4) b .. 
k 

and 

J-"L+l 

(5.5) similar expressions for 

replaced by "· J' ·: f J... -1.1 k l 
/ ·"·", ~ \..., ; , _, " (I , ;; r • 

' J L. ) 

n. 

r " 
Ir G L i + 1 , • • • , n J 

Multiplying the inequalities of (5.4) ty 0 ~ y~~ 1 and these of (:;.5) 

by (1- ·v) and adding the c-::>rresponding inequal:i.tie~, 

b -
k 

i-1 

b. 
J.. 

j=l 

(""' 1 
~ X .. l 'J .,, 
a.ij . :- ' I "". . 

,1 ·- 1. 

i-1 
~--- r 1 
L a .. x.- ak. \ y x. 

J..J J J.L,. J.. 
J=l 

2 - . 
(1--\· > x .. r. c~ .~de· 

1
).) 

f ::. ' 1. J. J.-

k-1 
·~·· 

) 
'---

j=i+1 

a, .J"·.,! '\ • + (1- "\! I 
KJL ) A.J I ' 

1> -~ c ~ -'-1 n 
...._:..( ... \ .... ·wl .)aoe, 

which mee.ns that 
r l 2 ·· ' 
L ''V·· x. + (1- ·v) x ' r-c··· for 

J.. f i"1 ~ i 
0 ~-

'"\I ,._.. '""!: 

I " .L. 

.) 

Let \.~s now t'lrn to the properties of the objective function. Using dynarr.J.c 

programming in the familiar backuard mar1ner [ lJ , the objective functio.r.. 

for the i th stage:,givcn a set of observations d. (. 
1

) and decislons x,. 
1

,, 
J..-· \l.-. ; 

car. be written as follows 

(5.6) 

( r.:..7) :_).' 

-~~. (d(·· 1)' X(. 1\) 
" J. J.- J.- ) 

where E (7..) 
). ). 

't::' 
j;, 

:d. (x.) 
J.. 1. 

E 

d./:i(. 1) 
J. J.. -· 

E 

d./d ' 1\ 
J. \l. ,., ) 

( 

p=i 

C X ) 
p p 

J c.x +f. ,\dr·)' xr.·-) 1, 
'· J. J. J.. +. " 'J. 'J.. ) J 

.f l"j X -1-
l. ;o" i ' :1.-i-l 



Fnr ~ ._,.., -!"-; ~- '1· cl a.:-.. .1 
~ C..-' .. v .. .....,,.·:..' '(i-1) • -· 

defined in (5. 7) is cru1cavod over + c .. 
J. 

~0 
J.r_. 

x(-i .. J) t:C.te ::':'v:J.ction H. (x.) 
.. . l l 

'I'l:1e proof goes by backviard induction and. is almost, identical to tl'J.e proof 

[ 
-, 

given :Ln 6 _. _, 
It l'll'i).l therefore be vrrd tted. 

In the general model it follows fl'GJ.,j (4.l:-) tb.at the following relation ;nn:r~­

hold at stage i if fi (o[i, dU-l) ~ 0, fo:..' <".11 d(i""l) : 

i-1 

& •• x. ~ bi 
J.J J . 

-!-

In the two period ;::>roblem we not·; show that th~ set c can bt; cl::a:~acter·ized 
1 

by j :Lnear cons+,:..'aints. 

Condi t,i ens (:). 2. b) anci (5. 2. a) bee orne Jn that case 

(5.2.b) f' (·J d \ X / 
-1 v' 1' 0 1 "1··:.: .J, 

(5.2,a) 

Ir. (5.2.a) , tvro cases are possible : 

t 

1) ! ~ (-::t a· ) _ _. 0 
2 2' '1' .. , for- all pof'sible c1. 1 ~ (5.2.a) is void since )._ 

2
(d:;_) qau 

be tak:m J.arce enough fc.r the constraint ·to hold • 

.aa.y 9- (5.2.a) becomes (st:p a
01

J7..
1 
~ -. 

'- -
C . .., Nl 

s:I nee one can se·t \ rc: ) ""' o 
~:: \ .. , for d

1 
f. N

1
• 



6. Extension to Several Decisions Per Stage 

Consider the 

max E 
1

·-. f !::1 
/.-_ 2:_ 

L i=l j==l 

more general problem 
! 

subject to 

l'r (
/ ~ 

<:. •• 

j=l 

(6.1) 

( n-1 m. m 
J. n n n 

Pr -~ 

> a .. X. '<;"' '.1 .x . <- .r:. 
\ J.J ~j llJ rlJ 
\ ::!.=1 

j=l 
j~l 

X .. 
~-J 

;; 0 for all i, j. 

l)efir.e : 

A
1

:;; (aij) p t" { in .. ,n} 

(i) 1 ~ i 
A = A, A-, ...• A 

( i ' A J C.) 
J. 

j E .l) 1, .•. ,m
4 

1-r 
... J 

13 

) ~- ' < b ::( ,.._ 
n n 
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- X '" - J 1, ..• ) .... i 

Again, observations o~ the random variables Ai are made after decisions 

x .. (j "- S l, ••• ,m. l ) are select-;d e1.nd before dedsions x. 
1 

. (j E.li 1, ••• ,m. ··, .. ) 
l.J l J. j J.+ ,J l+l.\ 

Initially the following condition will be imposed on the ranciom 

variables of the constraint set the elements of A
1 

are conditionally 

independent random variables by which we mean that (someof) their parar.:eters 

may depend upon previous observations .'1. j (j E { 1, ••. ;i..-1_1), however, once 

these param:::ters lmmm the r.v. are independent. 

The difficulty in this generaliz:;;d problem is to find a d~termlnisttc 

equivalent for the chance const:.':'aints. We shall now show how this can be 

done for the i-th constraint when the a~. (j=l, ••. ,r.a.) he.ve independen+, 

t . t bl d' .~. 'b t' (l) 'thl.tJl h J. t . t' t symme rJ.c s a e J.S GrJ. u 1ons , I'll. 1e saLe c arac er1s 1c e~~pom~n-
- .<;:'1 L see appendix. J 

Introducing the following notation : 

- ( I ~ ~ . y.·-.... s c, .• 0. c;, (:.:.y) 
y I 

y is .stable distributed with 

Let 

characteristic exponen·c 0 < oi_~2 
location parameter 

s <ale parameter 

symmetry coe:'ficient 

for 

c 1:· 0 

From the 

properties of symmetric stable dist:ri:Jutions it follovm that : 

(l) The reason why this transfcr:mat::.on cumo-1.; be exterlded to other types 
of distributions follo\,rs fro1:1 t.hG cor.volution p:coperty of stable 

distributions (see 1efi:1itior. J\.2) c.n.d "-he tra::1.~forn;ation (A.5) which 

make the cumulative distrit;~tion fu:1ction lndep;;nd.ent of the vector x., 
l 



m. 
~ 

' i L. a .. x.j i\J S 
j=l ~J ~ 

or rv' S ( 
Hence 

( ~, 
mi 

c{_ , I: 
j=l 

lil. 
~ 

y 
"--.. 
,:·,1 

';) i 
v 

ij 

m. m. ~ 

\~ i ~ < 

X.·' 
~J 

~-· a .. x.. L o 
~J ~J ij ""ij 

(
J=.l~mi--J~ri-~~~--

r i c-.{ 
c v 

- iJ' "'"· . ::l.J j=l / 

i-1 

~ 
r - L 

X 
ij 

m. 
·;·;). 

i_. 

j=1 

m 
k 

) 
bi 

k=1 '":J. 
~· 

or 

( 
i-1 mk 

b. """" L 
i 

' '3.k. :ckj 
, __ 

l. 
k=1 j==l 

.J 

F 

( ~i <{ y/d. \ i 

j<:-1 cij X .. 
J. ,) 

i d.. ) c .. x .. , 0 :;;ince 
~J ~J 

(1) 
r-._, S ( ~ , 0, 1, 0) 

xk.l i 
><"' a 

kj J/ 
........ i 

.m.; ., 
)" •7 i 

~' xij "-- i.j 
J=1 j.;:;. v{ 

I . i 

/ 
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x .. ~· 0. 
~J 

where F(.) is the cumulative distribution funotion for a standardized 

symmetric stable distribution with characteristic exponent c:{ • The 

th 
deter:ninistic equivalent for the j_ chance constraint becon1es : 

(1) Notice the.t for tbe normal cist.ributior;. (.X. =2), the standardized 
variable has a variance =2o 
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(7.2) 

rni 
f m. \ 1/::i l'il,_ 

I J. \ i-J. 
"' ~- .:, i ··1 ( t:\ ) I <:-- i yd ... .;:" b ~·~~-· 

~ 
i 

l... F > 
0 •. X. + 

\ 
'- cij .. ij ., . - L ak.x'. 

~J ~j i i :L 
j=1 j=1 j k=l j=1 

,] .!\:,) 

where F-
1 

( ol.) can be foun~L (t:sing interpolation) in the te.bles g'iven in 
~ 

(1) 

(2) 

~ 

~ 
function L-

( 

m. 
i ot )

1

/J, 
C, .X •• 

J.J ~J 
j=l 

with r c~j ~ 0 ; j c{ 1, •.• ,rni J is 
.. 

l x. . );;. 0 
J.J ~ 

cor.vex in x. = (x •. ) , j E. f l, ... , m. \ 
J. ~J ... J. J 

. ..., 0<-'./1 conc<:tve J.n x. L. q ~--. 
J. 

Proof To prove ( l), we knoH ::~o!':l f-1inkowski 1 s inequality that, for 

uJ. ),. 0 (j:::-"1~ ••• ,m.) and v. ~ 0 (j:=:l, ... ,m.) : 
, J. J ~ 

r m. 

L
. 2:J. 

j=1 

Setting 

Then 

i/:)( . m. 1/~ 

(u + v.) oZJ ~ ( 2:1. u :J ) 
J J \ J=1 a -? 

. 1/o( 
1 -A( J.) u.-/ c.. x.j 

J J.J J. 

i 
c

1
. ~ 0 
J 

• . r r 1 V J -.:.. 1_1, ••. ,m. ., 
. J. ,) 

¥ j f- )l 1, .. . ,m. -~ . ~ .) 

for d... '?- 1. 
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) 1/o(. r m. ll/d... 
<.() . ~ i ( 1 )d.. 

i 1 .2 . <).. ..:_ C •• X. • + 
c1 j [>- x1J + (1- :X )x1J] j ~ · ~=l >J >J J 

r. 

m 2 ":(] 1/o( i :i. (x .. ) · 
c1-.A) .r C~J ~J 

J=l 
,_ 

The proof of (2) follows from the reversed Minkowski inequality when 0 ~ ~~1. 

Q.E.D. 

It follows from Theorem 7.1 that the set of points xij,? 0 , j £: { 1~ .. .,mi J 
satisfying (7 .2) is a convex set t-rhenever 

(l) ,'1>(_ .. ~ .5 and 1 ~ c/.~ 2 
.J.. 

(2) cti ~ .5 and 0'( <~t ~ 1 

The most interesting case from a computational viewpoint is clearly when the 

a~j (j=l, •.• ,mi) are cauchy-distributed (ct =1) since inequality (7.2) 

becomes linear in :: ..• '¥ j. Similar to the procedure in Section 53 we 
~J 

define a set c; as 

+ + 
ci = ci (D(i-l)'x(i-1)) 

= {xi~ 0 I (1) '¥ D(i-1) 3 A . (D (' 1) ) ? 0, [ p - 1, •• .,m. 
(7 .3) 

(k-1) JP ,J-

j = i+l,. •• ~1{ 

such that (7.4) holds for &.11 k = i+l, ••• ,n 

(2) (7 .2) holds 

where 
mi k-1 mj 

k 
(7.4) I. ~ " a. x. + L 

~p ~p L... 
p=l j=i+l p=l 

(1) For ease of notation we use 

A. = .A. (D(. 1)) 
JP - JP J-

b~. ::::b~~ (D(k l)) 
JP ~-P -

k 
~. a. 

JP jp 

i-1 

2: 
j=l 

( 1~ m 

5 ~P Akp+ F- 1 (~) 0' 
0
k ),d.. ) . 

l\: 

L + 
p=l kp kp 

j=l 
m. 

J k 
' a x. L- jp JP 
p=l 

(1) 

abbreviated expressions as 
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However since stable distributions ass:: ::;1 positive probahUi ty to any intervz,l 
k 

a . , p=l, ..• , m . and 
JP ,1 

on the real line, we will generally be able to find 

Therefc;,re to have a. mean5.ngful p: oblc:;m in + 
j=i, ••• ,k such that ci = ¢. 
pracTice we should only consider vnJ.ues cf a 1 ~ within a certain interval 

r k ;::.{1 ( d . /'. f JP -. around o jp , p .. , •.• , mj J an J cL i, ••• ,k J . A procedure to follow 

in practice might be as follows for k=i+l, we consider values of 

i+l J 1_ 
aip , p f l l, ••• ,mi J, in a fairly broad interval arouP~. 

ip 
As k grows larger, the intervals around the location parameters 

<"k r f ·· 5 ' 
o jp , p G ll, ..• ,mj J and j E l. 1, •.. ,k-1 ) , can gradually be taken 

smaller. 

Using the general procedure of Theorem 5.1 and Minlcow:ki 1 s 

inequality it is easy to prove that the set C+ is convex if 
i 

(1) l~ol~2 and otj ~ .5 j E ( • 1 } , ~- l~ !II • • ,.t: 

(2) 0< ~{~l and .J ~ .5 j ( J . 1- -~ (1) ""j ~>·•~,Plh . 
t 

./ 

Let us noH drop the assrunpticn of conditional independence and 

assume that the vector ( 
i i ' 

ail'. •. "a. ) 
lilli 

has a multivariate symmetric stable 

distribution of order 1 [See Appendix J : 
"-!~:· i ~ 

o(_(a. 1 ,.,qa~ ) = s (1,6,.Q,c{). 
l lmi mi 

By (A. 7) 

Sl ( l, {) X; , X. £1 X,.. , o{, ) , 
... l .L. 

(l) Throughout the paper we have kept the characteristic coefficient the 
same for all the stabl8 distributions jnvolved in th-9 model. 'lbe 
requirement b.o~:ever is that ,-::{_, be eqt:a.l only for stable distl"•ibutions 
regarding vari2bles whose values will be knovm in the same period. 



By t~1e properties of characteristic functions, then 

s
1 

(1, o, 1, ct. ) 

so that the log characteristic function of 

log cJ> (t) 
I 

1 
= - 2 

oL 
I t \ 

i <:" L a .. xi .-ox. 
j ~J J ~ 

1/2 
(x.flx.) 

~ ~ 
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The deterministic equivalent of the ith constraint can then be derived as 

i-1 mj 
i 

~_- r aj x. 
j::-::1 p·;:l p JP 

where F·l (d i) can be found again in the tables in [ 7 J if 1 ~o( ·~ 2. 

In a similar way as in (7.3) we define a set c: using (7.5). 

Since (xll xi l/2 
is a convex func-::.j.on (for a proof, se~ [ 9 J ), 

+ I ' conv:~xity of the set Ci can be proved ltvhenever C)\ j ~ .5, j E i, ••. ,n. 

7. Numerical Examples 

Example 1 : Consider the follotring two-period problem 

max E (e
1
x

1 
·!· c

2
x

2
) 

subject to : Pr (a
1
x

1 
~ b

1
) ~ cL 

1 

Pr (alxl +a2x2~b2)al,cl)~~.:{2 



with c
1 

rvU(l5,25) 

c
2 

rvU(c
1
-6, c

1
+4) 

a
1 

tvU(l00,200) 

a
2 

rv U(75,2a
1

- 75) 

bl,b2 ~ 0 

20 

where y rvU(p,q) means that y is uniformly distributed over the interval 

The second period maximization pr:.'::>lem can be written 

Since c
1

-1 > 0 for all pos;:;ible values of c
1

, we will choose x
2 

as large 

as possible 

1E t b2- ah oj x2 = ma..'C ) 

F-1 (c( ) 
a

2 
a

1 
2 

maxJ 
b2- alxl o} = $ 

l ~(2a 1 -150)+75 

By remark 5.2.: 

b
2

- a
1
x

1 
~ 0 
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It follows that 

d_
2

(2a
1

-150)+75 

The first period constraints are given by 

= 

which is equivalent to : 

~ 
bl 

xl 10(1+ <:(1) 

liil 

~ 
2 

xl 200 

The solution set of the first period problem follows then as : 

Now, 

= max 

a 
E ---,~-__::,;;1 __ _ 

~( 2 (2a 1 -150) + 75 

al 

wher'e K is independent of x
1

• 



As can be verified ; for cl 
2 

) 0 

-.- _..2__ (1 - ~- )ln 
8 o( 2 2 c(2 

If e/; = 20 
19 

- 2~ -
1 

(1 -
2

o{

2

) 1n 

1 
'f' 

q__.= 

....\. xJEl" ::; mJ.·n ('- bl -
7 100 (1+ o{l) 

JE 
0 :S> choose any x

1 
3 

JE ( bl 
0 ~ xl ~ min 100 ( 1-+__,d._l..,...) 

3+10o(2 

3+2o!. 
2 

> 0 

Example 2 : Consider the follotring three period problem 

3 
rna.": L. x. 

i=l J. 

s. t. Pr (a
1

x
1 

f: b
1

) ~ o(
1 

where 

Pr (a
1
x

1 
+ a

2
x

2 
~ b

2
) ~o{ 

2 

a I'V U (4,8) 
1 

a
2 

rv U (10-a
1

, lO·YJ.l) 

a
3 

rv U ( -a
2

, 3a
2

) 

and c>l, 
2 

= 1/2 ; o{ 
3 

= 3/4. 

3+10c( 
2 

22 



'·· 

23 

The third period problem 

s.t. 

a
1 

and a
2 

, we have 

since we have from the previous per•iod constraint that 

The second ~riod problem : 
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or 

, 

Since the coefficient of x
2 

(= 1/2) is positive, we take x
2 

as large as 

possible , i.e. 

We again know trillt this minimum is non-negative from the first period 

1-feasibility constraints. To facilitate computation we assume b 2 ~ b
3 

so that 

= 

-1 
alxl+ a2/\2(dl) +A3(d(2)) Fa3/a2 (3/4) ~ b3, V al,a2 

x
1 
~ o 
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Since (1/2) > 0 ) ¥ a
1 

it is easily verified that the above constraints reduce to 

, 

The coefficient of x
1 

in the objective function can be computed as 

.2 + lllog 7 - 35 log 3 > 0 
2 8 8 

wrJch means that 

JoE 
X = 

1 
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APP~NDIX 

============= 

1. Definitions and Properties 

Def. A.l : Two distribution functions F and G belong to the same type if 

they are connected by the following relation 

(A.l) G(x) = F (x~a) with b > 0. 

Def. A.2 : A distribution belongs to a stable type if its type is closed 

w~ ::-n respect to convolutions. (see [ 12 J and [ 8] ) . 

Properties of Stable Listributions 

1. All distributions are absolutely continuous. 

2. The log characteristic fur:.ction of the most general form of a stable 

distribution is of the form : 

(A.2) log 

where the constants c~(b; d. satisfy c > 0 -
t12:.1 ~ 1 

0 < ¢1. ~ 2 and c{ real. 

h (It/, dt) is given by 

h ( \ t \, ol) = tang d. Tf /2 if ol 1: 1 

= 2/lf log It l if cl = 1 

The distribution is called symmetric stable if {?> = o. 

3. All stable distl"ibutions a::."e unimodal.· 

1;., For 0 <c{ ~ 1, stable distributions have no first or higher order moments. 

1 "(d. < 2, a first moment exists but no higher moments. 

c{ = 2 , all moments exist. 
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5. Stable distribution functionswith exponent 0 < oL < 1 and parameter 

~f-> I = 1 are one-sided distributions • They are bounded to the right 

if (!> = +1 and bounded to the left if (6 = -1. 

6. The following special vases arise : 

- for ol =2, (3 =0 : log <P (t) = i 6t - ct
2 

corresponds to the log 

characteristic function of a normal distrj.bution. 

- for ol =1, fJ =0 : log <J> ( t) = i 5 t - c \ t \ corresponds to the 

log characteristic function of e.. Cauchy-distribution with density 

function 

p(x) 
c 

- oo ( x <oo, c > o. = , 
1T[c

2 
+(x-6)

2
] 

1/2{ t } 
- for ol =1/2 , f.:;= -1, c=l, 6 =0 log' (t) = - Itt 1-i-

It! 

corresponds to the log characteristic function of a one-sided 

distribution function ,,;it)~'- density 

(A.3) p(x) = 0 if x < 0 

(2 )
-1/2 -3/2 -l/2x 

= lT X e if X> 0. 

Apart from these special cases, no stable distribution functions 

are known whose density functions are elementary ft!llctions. 

2. SY!Pletric Stable Distribution.Functions 

Suppose x has a symmetric st.ctble distribution with log 

characteristic fl1nction 

(A.4) logq>"(t)= i6t-cjt({ .. 
It follmrs that the standardized ve..riable 

( ) 
X -0 

A.5 u = l/ol 
c 
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has a log characteristic fUnction 

log d> (t) 
,u = 

Using results of Bergstrom on series expansion to approximate densities 

[ 2 J, Fama and Roll [ 7) computed cumulative distribution functions 

and fractiles of standardized symmetric stable distributions for the 

characteristic exponent 1 ~ G( ~ 2. They also discuss estimation 

procedures for the coefficients 6 , c and oL . 

The univariate family of stable distributions has been extended 

to the multivariate case [11]. In the case of multivariate syrometric 

stable distributions, Press (15] considers the following family \·rhich has 

several interesting properties : 

(A.6) log<J> (t) = ibt-! 
X 2 

where m is some integer ~ 1. (m is called the order of the family) 

b = ( 6
1

, ••• , b P) is an arbitrary p-vector 

..O.J : (pxp) positive se:nidefinite matrix, ¥ J 

o{ characteristic exponent 0 '(cit~ 2 

x = (x
1

, ••• ,xp) 

If a vector x = (x
1

, •.• ,xp) belongs to the family t<Ti th log characteristic 

fUnction (A.6), He denote this by : 

1 (x) 

We will use the following proper·~y (for a proof, see [ 15 J ) . 
Suppose x: pxl and a{_ (x) = S (m, 6, 0.

1
, ct). Then if y: qxl and 

p ~ 

y = Ax + b, where A: qxp and b: qx~ .• q ~ p , 
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(A. 7) 'f (y) = S (m,A6+ b, At:l.A' Jet). 
o(. q l 

Press does not give estimation p~ocedur":s for tt'.'3 parameters ; hov;ever 

one of his next papers will deal ui th this problem. 
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