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Abstreact

The triangular model of chance-constroined programming with stochastic
A-matrix and deterministic right hand side 1s considered. The use of con-
ditional probabilities makes it possible to solve this problem for ang type
of distribution function of the elements of the A-matrix provided that there
is only one decision variable at each stage. The extension of the model
to several decision variables per stage is possible under certain conditions

and for special distribution (stable distributions) of the elements of A.




1. Introduction,

The triangular E-mcdel of chance constrained programming has been intro-
duced by Charnes and Kirby {5) and later extended by [io] and especially [6] .
This paper treats the same triangular E-model but rather than considering a
random right-hand vector L in the chance constraints, we develop the case of
randomness in the coefficient matrix A. The use of conditional probabilities
makes it possible to solve this problem for any type of distribution function
of the elements of the A-matrix provided that there is only one decision
variable at each stage. The so-called l-feasibility concept [14] or
safety-first principle [6] will be used to avoid decision rules which
could create inconsistent sample points whenever there exists a feasible
decision rule. The extension of the model to several decision variables
per stage 1is possible under certain conditions and for special distributions
(stable distributions) of the elements of A.

Section 2 contains the statement of the problem and some notational
conventions. An example from the field of production planning which can
be reduced to this general model is given in Section 3. In Seection 4 we
indicate how the probabilistic constraints can be rewritten as deterministic
constraints. The relationship between l-feasibility and safety-first
principles and the properties of the soluticn set and objective function
are investigated in Section 5. It turns out that every sub-problem consists
in maximizing (minimizing) a concave (convex) function over a convex set.
The extension of several decision variables at each stage is treated in 6.

Finally, Sszction 7 contains two detalled examples,

2. The lModel and Notational Conventions

The formal model which we will be concerned with in this paper has
been formilated as follows :
max E (ex)
subject to :
(2.1) Pr (Ax €b) » &

x>0




where the following notation has been adopted :

A = (aij) is a lower triangular (nxg) matrix with random elements
s Y
i, P o a,.= 0 ¢! i.
aij (i,5) € ' 1, , j L for j> i
i .th
a is the 1 column of A and assumed to be known before the
t
(1+1)°%" Qeeision x has to be made.
i+l
c 1xn vector of random elements Ci'
b nxl vector of non-random elements bi'
X nxl decision vector, the dscision to be made at stage i

. i Y
is x,,1 & {' 1,...,n } .

E(.) expectation operator with iraspect to all random variables
involved.

Pr(.) probability operator which is assumed to apply in parallel.

a(i) the nxi matrix with elements (al,...,ai)

c(1) the 1lri vec.or with elements (cl,...,ci)

a, = (a',0,)

e =@y

F {.) conditional distribution function of asy given the

observations d(i—l)

E, ;d (.) conditional expectation cperator with respect to (al,ci)
. - 1)
17 (1-1) given the observations (a(l ‘o, C(i-l))
el vector of probability nuubers, deciced upon a priori and

each d’i & ;’_JO,l}




3., An Example in Production Planring

To illustrate one possible snplication of the model {(2.1) we

consider an example taken from the field of production planning.

A firm has to make sequential decisions concerning the production

of a good over a n-unit time pericd. Thne price of the product in period i

TTi (i=1,...,n) is a random variable and the firm is a price-taker, i.e.
it has no control over te prices. Also, the total production cost
ki (i=l,...,n) of one unit in period i is random. Assume further that
demand prospects are such that oversupply of the market within the n
periods in considered to be iimmossible, although stochastic demand constraints
could be easily incorporated. Clearly the random variables TT& and ki

will depend upon Tf(i 1) and k Indeed through observation

Y41y

of ‘Vki 1) and k we get new information about the market and

(1-1)
the cost structure of the product. Hence the decision X; as to how many
units to produce in period i has to be chosen dependent upon the prices

and production costs expericnced in previous periods.

At the beginning of the dscision process fixed amounts Li (which
can be made dependent upon previous observations) are budgeted for
production., Budgets not fully used up in previous periods can be
transferred to later periods and previous profits (losses) increase (decrease)
funds available for production in periocd i by some fixed proportion. The
reascn for this 1s that during periods of large profits we want to create
the possibility of heavier investment in production. Moreover, to allow
for overspending in a period when prospects are particularly favorable,
we want the budget constraints to hold with prescribed probabilities.
By cholce of o o 1 in the nth period constreint we can make sure

that at the end of the *ime horizon the total buaget ceiling is not

exceeded.




As indicated earlier, we interpret the probability constiraints to
be conditional probabilities given the previous observations. The problem
may then be formulated as follows :

n

max E | 2 (W,-k,)xj}
1 1 1

i=1

wt

subject to :

[ A
Prf xx) gL13 > 4y

L
i-1 N
1) Pr Jkx KL, + - kx4 oS (F.k)x, ) N 1 Lo
(3 ) I 154 “\( 5 JZ= LLJ KJ J (WJ( HJ J){le k(l-l) “(1_1)72 {‘i
-~
1 € 5 2P o }
L .
- (
Xy >0 iée ?l""’n_[j
where
Tri price in period i (random variable depending on Tf(i 1)
ki total production cost per unit in period i (random variable depending
on k(i—l)'
Li parc of the budget for period i which may or may not depend on

k(i-l) ’ Tr(1-1)'

determines the fraction of the profit (loss) in period i ,

/5i(1?i~ ki)x# , that will be available for production from period

i+l on, 0 £




Pr conditional probability operator of k, given k and

i (i-1) ™ (1)

th :
X, amount to be produced in the i~ period , 1 € { l,°,.,n.} )
L

Rewriting the problem we obteain the following equivalent formulation for

(3.1)

’ n
max > (T, - x.)x,
i i1
1=1
(o

subject to :

roi-l i
2) pr ) STk~ (Wox ) x4kx < L.k 1
(5.2) % ;le 57 sy o) Xyt JZ (1) T ()2 g
i & { 2,...,n}
> i 6 e o @ { 1 4
Xi 2 0 1 {l/ !nj
Defining
.. = K - .fx_ i - 1
245 f fJ( J <
k. jJ=1
J
Y J>i
and c.= U, - k, i=l,...,n
1 1 1
1
b, = o L, i=l,...,n
1 j=l J

we see that the production model is of tl= gensral form described in Section 2

e



The applicablility of ihz gers.oal model is howsver not restricied
to the above example. As will boecome clicew upon inspection, the one-stock
P

-~

invsstment model of B, Naslund fl} ¢ can be broought to £it intc the
gencral framework developed herc. .This is of particular ialzra2st to note
since Naslund's model so far has bean studred only in the context of First-
order decision rules wheress we shall use the more general segucintial
decision rules obtaired from zonditional probability constraints to sclve
lhe above model. The procedure developed here might also ke useful for

the study of chence-constrained capital budgeting problems as in { jf}

and l4j wherz solutlions are presenced in terms of zaro order rules.

4, Deterministic Ecuivalents of the Chance Constraints

As indicated in thz previous section, we consider the decision x,
_ -1 -
i-1) T > Y-y’
By a decision vule for proplem (2.1) wo mean a rilaticn of the form

to be a function of the previous coservaoions d( (a

(4.1) X, = xi(d(iwl))

marvying the veservations d( inte tie reals. We cbserve that the first

i-1)
decisicn is independent of any random variable. Using the notaticns cof

Secuion 2 we can now write the ccinditional probability constraint of the

L th .
i period as follows :
4 :
Pr f 5. e x. < b.je Vo
k_ i 15030 Y U(EAL) P 7T
L=l g
or cguivalentiy
A il .
o2 Pr {a. .z D = 5 e, x. /d L
2) Pe { A 7 ij j/ (i"l)f GO
‘. s o - .. .th .
Iet .G = 0 b any caseoisicr functicn for ths 1 pericd



satisfying the noh-negativity constraint ol problem (2

L0
be the set

and define N to

(4.3) N =

{ o A
x 7 { Ay 1y (A gy) =0 }

Then (4.2) implies that

i-1
(4.4.2) 0% < 15 ¥ ) €N,

From the non-negativity of x, we have that for 4,, £N
i (i-1)" "x

where N
X
the complementary set of Nx in the space of all possible outcomes of

d(i 1)’ the following inequality must hold

1 i-1
K - -
br < 833N x (bi

is

Toa x0/a, ) 2 A ¥4, € N
i 3=1 1J J (i 1>J 1 (i-1) X
or equivalently
i-1 .
(4.4.p) }j e..x, +x, F {£.)& b, ¥4, &€ N
] i3 i aii/d(iml) i i (i-1) X

Now observe that for d(:“l>(§- N, (%.4.b) ard (4.h.a) coincide ;

hence the deterministic equivalent of (4.2) using the non-negativity of x,
is given by

[l

-1 1
(b.4) 2 a, X, +x; F

T s v (L)< p;

[

¥3,.

¢
P
l_l
N
[N
~—~

This leads us to define l-feasibility (see | 14

) of a seauential
. . {
decision rule 1 xi(d(i-l));g 11

as follows :

®
s e ee 5d



Definiti .1 is icica s L
Definition 4,1 : A sequential decisicn s ule { xi(d(i—l))\} i1.....m

is called l-feasible if
i) = 7
(1) i(d(i-—l)) > O

(ii) (4.4) is fulfilled for all possible realizations d(i 1)

and i € { l,p..,n} .

For typographical reasons we set

1 (

* | € 1
ii/a(i~1) \q_i) for all i { 1,...,n

(h.5) £, (ciigd(i_l)) =F, j -

Note that for i=l1 the right-hand side of (4.5) is the inverse of the

(unconditional) marginal distribution of a evaluated at cC]: We can

11
now state the deterministic equivalent of the constraint set of problem

(2.1) as follows :

il
” . \ . e (& S
(4.6) ljé;__l aij}\j + Xi fi(o(zi.vd(i—l), ‘\; bi B Xi }-i(c‘.(i"l)) '// 0
for all d(i—l) H
, . . s -~ ) .
Remark 4.1. Suppose that b, > 0, i€ { l,...n } , then Ki(diwl)=o

for oll d( i E.Elq...,n }., is a2lways a feasible decision rule,

i-1)*
In particular, in this case there do not exist sample points which could

create inconsistencies.

@ggggg_ﬁlg. From the equivalent formulation (4.6) of the constraint set
(2.1) we infer that for a finite sample space it is possible to derive a
linear program as a deterministic equivalent, in the case where the
coefficients in the cohjective function ars non-random or stochastically

independent random variables., The wey to obtain the linear program is




essentially the same ac used in cunneztion with program.ing undsr uncertainty,
see [}6] and {;7:} . Ona indexes the decisions o ke uade at stage i

by the possible observations on d(i~l) alhd computes the objective functicn
explicitly using the (known) probabilities of the possible combinations

of the observations. Clearly for only modestly sized sample spaces the
resulting problem becomes already very large. But one can expect that due

to the triangularity of the stochastic matrix and the particular choice of

the decisions to be dependent only upon prior observations the resulting
linear programming problem has a special structure that can be exploited in

computation.

5. Properties of Solution Set and Objective Function

let & for i€ {l,...,nlgbe any given observation on the

s (1-1)
(k-1)

(1-1)

et

random variables of the (i—l)”c periols ard denote by d for

'S €5ii+l,...,n } any obaervation d(k—l) such that the ({(i-1) first

Correscondingly let dg%‘l)
(J-1)

for J & { l,...,i} denote the vector of observations obtained from

components equal the given d 5130

L1,

d(i~l)/ by deleting the lact 1-j elements of d(i—l)' lote that

) _ o o, .
d(k—l) = d(k-l) for all k¢ {L”""r3ﬁ .

In a manner similar to that used in EZGQ’ , define the set

+ . . . S
Ci (d(i-l)’x(i-l)) for given d(i~l) and X(i-l) recursively as folloss

=3 C ,’
(5.1) ¢, i(d(i_l) ’C(i~1))
(i-1) 4 -~ -
= | i - == -
=% ¥ o/(1) ¥4 1) o ,kj(d.{jul)) >0, J=i+l,....k

such that (5.2.2) holds for «ll k& |
(2) (5.2.b) l'0ds




4

where ko1
{ a, .xX. o Y ] > (< s, ) -
((5:2.2) any v 2 ey hEg ) Fhpaey) e Lda 1)<y
(5.2 \i J=i+l
[ i-1
2 b f 0\. ~ ,d X had Sw . ..4’- .
| (5.2.p) ( (i- )) & 25 &5

For these set da=finitions to be recursively meaningful, we have to chooss -

(j=1,...,1i-1) such

(5.3) (a

The proof of the following remark is sire

that :

f1-1)
(.-1)

j S ) lsﬂ"’i'—l 1‘

» %(5-1))

J

ghtforward and will be omitted,
Remark 5.1.
1. There exists a 1 - feasikle decision rule iff CI £ .
2, Tet { xi(d(i—l)) % i=1, ...n b2 any decisioun rule. Then
[ x(@ ) Taslon a1 - teasible 1f x (4, ))e € (A )
for all d(, ;s % ¢ é‘l,_,.,i % :

Theorem 5,1

e ™

convex in xi.

: For any given, d(i ) and y(

1) the set C (d

Procf :7 ILet x, x? £ C (d, 1\), t-ern for ¥ ézk %; , there
AJ >0 and /uj“ 0, Jo : ;tlg,Ju,k‘} such that
i~
I T RN Liety)
Je=L
1”§;; ease of notavicrn we will srnidte x ,}-jgfﬁj,..” whereas
) A - Ay

(1-1)) 37

exists

it should be



i-1 S
\5 a 4) bk %_ a’l;jxj .q«]:;i..;i . :; , 1 a ’ s : . ’. f‘k ™ k a Ll (1{~1 ) g

o R . 5
cor Ik G i i+l,.. .,nj
and

N

~ .. . 2
(5.5) similar expressions for xy whore A, (g é.§1¢l,...,k;}) is

N

replaced by Ao, Job 0 i+l,...ok ).
43 - J

Multiplying the inequalities of (5.4) v 0 STN?‘S 1 and theose of (R.5)

by (1-Y) and adding the corresponding inequalities, we get

i-1
L :w_ l . 2 - .
- 72 a by T - )., f { D)
by = A ey sy ey xs g f (e L)
J=1
i-1 -1
- ro1 o < . .
b - 7 a,x.-a 1VYx,+ (1-y) |~ O a .y A, + (L=y) o | 2
k J=1 +dJ le,/ 1 R j;“i‘_!_l Ls 7 d Fo0 3 ”'}
A - YY) A 1 £ . a, z (iwl) VoA (- N
I v @y e TE (L gpy Tor ¥ ATy s BEDHL 0!
h. h . 'tl , t T 1 l (l ‘;.) N 2 ; &C:‘ » O o ,-\{ - S
which means tha L /ﬁxi + (@-y) x{ 3 €C, for 0% Y& L. Q.1E.D.

Let us now tirn to the properties of the objective function. Using dynamic

programming in the familisr backward manner I_l} . the objective function
, t: . . . -
for the i stage,given a set of observations d(i 1) and decisions x. .,

(i-1)
car. be written as follows :

m
(5.6 ¥ .(a X = max E (Vv ex
20 ¥y Qgay ey T E Loy
PSR N . 5 =2
i1 i1 P
= ax B fe.x, + ¢, ,d I
= mey - LRt Vi) Ryl g
x, i ¢, d./c,. ' :
i~ i i’ 7 {i-1)
= max H’<Xi>
x, € C, -
i i
= 7 o(x ) Y fax, + 0 CRN D7
(5.7) where £ () 2 Ut Ve e



[}
e

Theorem 5.2 : Tor any fided d 1) and Xs0) tne Zunction Hi{x

)

A i
. _ .
defined in (5.7) is coicave over x, € C; .

The proof goes by backward induction and is almost identical to the proof

given in [6.§ . It will therefore be omitted.
o

Remark 5.2.

e s e o vk sy o e Ao

%o

In the general model it follows frais (4.4) that the following relation mist

o N / . s
hold at stage i if £, (ol,, des5.1y2 0. Tovell d

(1-1) °

i:;
T e x, <D, .
j=l ig Jd i

4

In the two period nroblem we now show that the sct C, can be characterized

by iinear constiaints.
Conditicns (5.2.h) and (5.2.a) become in that ceose :

(5.2.) £ (., da)=x 7 ..

: “i ¥ 7o’ T
(5.2.a) For all dl’ . }_E(Ql} 3
(g ) (A . <&
By %y + ipldy) £y (45.d,) $ By

Ir. (5.2.a) , two cases are possible :

1) £ (A _,4.) <0 for all poesible d.3 (5.2.a) is void since A _(d,) cau
2 = 1 1 2 ke
be takan large enough for the constraint to hold.
) . T N (ctp a s o
2) fe(vvgjdl)}y 0 for some d, . ¢, &k, say s (5.2.a) becomes (sup B804 1
N
since one can set N {(¢.) =0 for d.1 & Nl'

Tils resu.t however, cannut be gereralize’ v more than two periuds.



6. Extension to Several Decisions Per Stage

Consider the more general problem :

2 oo 1
max E |- 2 ;“1 cy ¥y
| 1=l =l g +d

subject to :

[ \ ,
¢ s - of
- : b .
S T B I W T ) B
N J=l '
/ m m *
Q-l 2 3—»2 2 < b \ N
e e a) X, . 2. a ., x,. < jE e,
151 25 T23 N To
51 3713 521 J p
(6.1)
( e " n " n 3 ,
Pr b 5 a,, b a X :bn),? <L
\ i1 2. 71T S BN
J::
xij > 0 for all 1, J
Define
i - )
A = (a-?j) p (.. { 11- 'Jnj
j & E_ 1, .,mi}
2
A L
= < i € 560 o gl 1
c, = (cij)’ Je {1” oy




14

l,...,m

g
[
™
(e

[

x(i) = xlgo-v;::i

; ; . i .
Agaln, observations on the random variables A~ are made after decisions

0y

J€d1, ..., .
( Ll’ mi+l$

Xij(j € {l,...,mi E ) are selectzd and before decisions Xi+l,j

Initially the following condition will be imposed on the random
variables of the constraint set : the elements of Ai are conditionally
independent random variables by which we mean that (someof) their paramsters
may depend upon previous observations Aj (3 é.{l,...jrll), howevear, once

- J

these paramsters known the r.v, are independent.

The difficulty in this generaliszzd problem is to find a d=terminisiic
equivalent for the chance consuraints. We shall now show how this can be

i
done for the 1~th constraint when the aij (j=l,...,mi) have independent

1)

symnetric stable distributions(“ s with the sane characteristic e:ponent

lsee appendix, |

wd

Introducing the following notation :
y~ sy(cc,ify e, /)ty is stable distributed with

characteristic exponentc O <¥{5§2

-
location parameter ©

s @le parameter c 20
symnetry coefficient L) &1,
Let ai ~ S ul s ci 0) for 3#1311,....m. 1 . From the
1 M B i3’ RO P

properties of symmetric stable distributions 1t follows that :

(1) : The reason why this transfcrmation conno* be extended to other types
of distributions follows from thr convolution property of stable
Gistributions (see definition A.2) and “he traagformation (A.5) which
make the cunmulative distribtution function indepandent of the vector xie




mi Ill mi \
g 1 T" 1 t \i}\ 3
a,.x, . \uS oL, [} ¢ X .. 2. o, /x | 0 j

Z 13713 ( TS ij i Q/‘_l 13710 ]

my "y
£, e & i
or ~nsS (cﬂ, 0T %, c KOL,C)) since x. . > O
R 1J 14 ijJ 1ij
J=1 NESK /
Hence
m L2
H,l.i i i (’b
Ta x,, - &~ O oz
je1 19 A =1 i 14 (1)
m. N l/d" [ S (&i: O’ 1_, O)
¥ oot %
AP B B
=]
J 7
. .th .
Writing the 1 constraint as :
[ 11 ko
o il T
Pr A b, - £ R - 20
& j=1 ij ij i kel Sod %3 kJ,/ i
or n m
i-1 k i R i
- 2 ) X > 0D
Pym e A g Ty T o= Ty Ty \
k= J==] J=1 N
F | 2
1/4 / i
/o
\~ / t“'i i f"{. /
- ci, Xj.
j=l J ‘(}

where F(,) is the cumlative distribution function for a standardized
The

e
o

symmetric stable distribution with characteristic exponent 5{ .
n -
chance constiraint beconmes :

deterministic equivalent for the i

Notice thet for the normal distribution («=p), the standardized

(1)

variable has a variance =2.




. . N
m} i 1 f/ J 4 \‘l )
(7.2) 2. o, x  +F - (d,) [ Z o . x. ) <b.-
= ijg " i i K P} i ij /5 i

where F T (di) can be founi (using interpolation) in the
’ 4«
[7] if 1< g2, 1/4

. m,

1= rid i

L .

pa 2. a, X s

tebles given in

m,
< i
Theorem 7.2 : The function L. €, . X..
""""""" . 1J &d
J=1 .
with < >o s J€&{1,....m, } is
157 1 J
L X,. >0
ij -
. s 4 " . -l
(1) convex in X, = (Xij) s éf,l“'”mi I if 1 4dg2
(2) concave in X, if o< L.
Proof : To prove (1), we know “rom Minkowski's inequality that, for
~ 8o} ™, B o i, H
u‘j >0 (J __,...,mi) and ij 0 (g=1,.. (l)
. 1
- m /A VA \1/%
gt L | < / = [ 3«
2 (u+v) NE DI +( L Vs } for 4 2> 1.
g=1 4 Vg =1 )
. . p
g W i
Setting uj=>\(cij) X, with 0% ALl and ey 30
¥ J Q{Al,...,mi }
i l'/d“” 2 {
= - “r kY4 j - l « N }\.
V5 1 -A) (cij) ¥y Vo eqlom L

Then




1
1/ 'm 1/A o "
"y <] SRR ot / (1-2) ;ll o13057
i 1 2 7Y en] X el (x], + (1-
jgl cij[‘)xij+ (1 ))xij]j Ny WA j=1
§ Y
. i -
for 0 gAL1, 1L AL2 and cij,},o J

The proof of (2) follows from the reversed Minkowski inequality when O < °(\<l

Q.E.D.

It follows from Theorem 7.l that the sct of polnts x > 0, 3 efl,.. ,m, b

1)
satisfying (7.2) is a convex set whenever :

() Q’.i > .5 and 1 ,Sc{Sg

@) o, € .5 and 0<< (1

The most interesting case from a computational viewpoint is clearly when the
ot 5 (3:1,...,mi) are Cauchy-distributed (d =1) since inequality (7.2)
btecomes linear in ::i,, ¥ j. Similar to the procedure in Section 5, we
define a set C+ as :

i
+

+
¢ =9 (D(i—l)’x(i-—l))

-

(1-1)
=Jx. >0 (1) ¥D :!) 0 =1,...
(7 3) { i > \ ( ) (k-—l) (J-l)) s P ,mj
* J =1+1,...,k
L
such that (7.4) holds for &1l k = i+l,...,n
(2) (7.2) hnolds
where 1,(:(
m m @ s
i, k-1 3 x . k “K GL \
(7.4) Z at Xip * Z z al? Moo+ 6kp xpt (J‘k) - ll: Ny )
p=1 1P j=il p= eodp 5 p= p kp
1-1 mj Kk
b, - . a, x, (1)
Tk L pm JpdP
(1) For ease of notation we use abbreviated expressions as :
)‘J‘p = >‘Jp( (3 l)) k .ﬁ ko )
Jp kp P(k-1)




18

However since stable distributions assin positive probahility to any intervel
1
on the real line, we will generally bhe able to find a;p, pzl,...,mi and

J=i,...;k such that C; = @, Therefcre to have a meaningful pzoblém in
1
praciice we should only consider values of ajp within a certain interval

-y

k - - .
around O s pé{jq..., rn\j 3 and j é{ﬁq...,k § . A procedure to follow

Jp
in practice might be as follows : for k=itl, we consider values of
i+l . s i+l
aip ,» D€ t l,...,mi B., in a fairly broad interval around §
ip

As k grows larger, the intervals around the location parameters

k 7 { - 5 - ~

. s & 41l,....m, and & dyseask=-l » can gradually be taken
g’ P 3y 1 & ¢ S & v a

smaller.

(o2l

Using the general procedure of Theorem 5.1 and Minkowski's

+
inequality it is easy to prove that the set C, 1is convex if

(1) 1gd g2 and 4> .5, J€ a0

(@) 0<dgl and o, K5, JE ikl (1)

Let us now drop the assumpticn of conditional independence and

i i \ . .
agsume that the vector (ail,...ﬁaim J has a multivariate symmetric stable

i
distribution of order 1 {See Appendix}

v o1 3 -~
a s 38, = s« 3 {).
O(., ( 110 almi) Smi (l 8] :‘Q- <, )

By (A.7) it fl%llows that :

J

1 .
o o i - -~
2, ( Z_l ai,jxi‘) = 8 (L, 6x, x, Ox, o).

(1) Throughout the paper we have kept the characteristic coefficient the
same for all the stable distributions involved in thes model. The
requirement hoirever is that 2 pe equel only for stable distributions
regarding verisbles whose values will be known in the same period.
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By tae properties of characteristic functions, then :

4 Z‘ 1313_5
al- L s, (1, 0, 1, %)

(xO.f:)

4 ‘"a'x -Sx
/_j_ ijij i

so that the log characteristic function of

3 .
(X Ax )1/2 L8 @
i 71

log §(t) = -3 It}

The deterministic equivalent of the ith constraint can then be derived asg :
(1.5) Ox, + ¥ () x,Qx)E - i‘:i“l S b,
where Ffl(o(li) can be found again in the tables in E'{} if 1gdg2

In a similar way as in (7.3) we define a set C using (7.5).

Since (x Qx ) 1/2 is a convex funciion (for a proof, see [9] ),

+ 1, & -
convixity of the set Ci can be proved whenever o{J > .5 J&Ei,...,0.

7. Numerical Examples

Example 1 : Consider the following two-period problem :
max E (elxl 4 02X2)
subject to : Pr (al:{lg bl) > a(‘l

Pr (ax +ax (b

1+ 8%, < Bylapseg) 24

2




xl,x2 2/ 0
with clmU(l5,25)

e, mU(cl~6, cl+4)

a. v U(100,200)
v U(75,2al- 75)

by 3 0

a

b

O

where y ~uU(p,q) means that y is uniformly distributed over the interval
[p,q:j .

The second period maximizaticn prodlem can be written :

max E (cexg) = max (cl-l) %,

*5

Xy, eyfeg

Since e¢,-1 > O for all possible values of ¢

) » we will choose x_ as large

1 2

as possible :

* Dy &%y
X, = max ) > 0
Foa (OLE)
2 1
j bg" alxl
= max . s 0

L 9(2(2a1-150)+75

By remark 5.2.:

- N,
b2 alxl >0 for ¥ a
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It follows that :

3*
- by- 2%y

X S
2 aL2(231°15O)+75

The first period constraints are given by :

. bl ) bl .
- - ( g
1 p-l (o) 10\1+4l)
a 1
1
b2 - alxl } 0 for al

which is equivalent to :

b

R G —

1 0~ 10(1+o(1)
o,

% L T30

The solution set of the first periocd problem follows then as :

+ ﬁ bl bg
¢ = LXI > 0/x) L min 100(1rd ) 200
Now, —_—
b -
7{! = max E e.x. + (e.~1) !
1 11 1 A 2(2a1-150) + 75

1 —

8y

)
o (Ea-150) + 75 *F J

= max {20 xl- 19 xl B

+
xlé Cl a,

where X 1s independent of xl.




As can be verified ; for A 5 >0

E al = 1 o+ j (l - WJ:._.‘... )ln i];(.).:.f.g
a, 0(2(2a1~150)+75 2o, 8dl 5 24, 3-:;204,2
5 3+10
P A9 BT o4 . 2
Ifa(,..eo.-gd? 8o£2 (1 2%2) 1n }2&2 > 0
/b b
> x = min L 2
1 100(1+ Rl) 7 200

OZ<O=§>X§ = 0

QZ' = O =» choose any xf 2
¥ b
1 2

*
0 ¢ x Lmin T00(1+d,) * 200

Example 2 : Consider the following three period problem :

>
max S ox.
ey
is=1

s.t. Pr (alxls bl) >’O(l
<b) >

1735 Q%

[ ,
Pr (a, %) +ax, + ajxj:g b3) > A

Xi>/0 s i=1221‘j

where

alNU (4,8)
aENU (lO-—al, lOﬁ»al)
ajf\/U (*&2: jag)

and olgzl/e ; o(3=3/4.

e2
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The third period problem :

max x
>
s.t xF_l (d )b, -ax -ax
cUe 3 "a l‘a 30N T3 171 22
312
x3 > 0.
Since F-l} () = (4d_-1)a_ = 2a >0 fcr all possible values cf
a_la 3 27 /% o
3\ 2
al and a2 » we have
xﬁ (d _ bj_ a.lxl - a.2.a.2
3 (2) 2a

2

since we have from the previous period constraint that

-1
3 ,\3 20 Jax) + a X, * >\3 Faj\';ae (dj)g by for all a,

which implies a_x

5 gbl- a_x for 211 a_..

11 2

The second period problem :

max xgk E %

: 1717 0%
2 a J
b'd a.g\al 2

2

o4 - : -
s.t. [10 + (_0(2 1) alj %, < b2 a,%;

max
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or
b - b_~ ¢ \
. 2~ %% 37 %1%
*p g MO 10 ' 10+a
1/
x2 > 0
Since the coefficient of Xy (= 1/2) is positive, we take x_ as large as
possible , i.e.
'b_~ a_x b_~ a,x
XK (d ) = min _g._yl 1 s ”2___l_£ .
2 1 10 10 + al

We again know that this minimum 1

S

non-negative from the first period

l-feasibility constraints. To facilitate computation we assume b2 > b
so that

3
) -
2 1 - lO+al

The first period problem :

I G b_~- a; %, o /b_; 2,%; = a, (b3- alxl/lO +al\

1 10 + a 2a
| 1 a2,"al\ 2
-1 J
s.t. x F oo )< py

1

X, (4) >0 and ,\3(d2)> 0 such that

-1
ax. + 2 (d)F
11 21 E/al
a X+ a, /\2(dl) +>\3(d

(1/2) b, ¥a,
yEL,  (3/4) ¢ b
(2) a5,/a2 N 1°%2

x > 0




-1
Since Fa /a. (1/2) >0 , V-al

2’1

F”l/a (3/4)>0 , ¥ a .,

a.3 o

it is easily verified that the above constraints reduce to :

b b b b b,
P () ()
aq 1 ay 1l

The coefficient of xl in the objective function ecan be computed as :

§-+ézlog7-§-5-log}) 0

which means that

/
;v:}E = min '-——-—1-)—1-—-“—*
al 1

N

[ey

“ha




APPENDIX

1. Definitions and Properties

Def. A,1 : Two distribution functions F and G belong to the same type if
they are connected by the followling relation :
(A.1) G(x) = F (x-—;—a—) with b >O0.

Def, A.2 : A distribution belongs to a stable type if its type is closed
wi:h respect to convolutions. (see [12:}and [8] ).

Properties of Stable Listributions

1. All distributions are absolutely continuous.
2. The log characterlistic furction of the most general form of a stable

distribution is of the form :
% 1
(4.2) log  (t) = 18t -cltl Ji+1ipm rcih({t;o()
where the constants c,/>.cl satisfy c¢ > 0
121
0¢ &2 and of real.
h (|t], &) is given by :

n (1tl, ) = tang 4T/2 if o £1
=2/ log |t} 1T A =1

The distribution is called symmetric stable if (5 = 0,
3. All stable distributions are unimodal.
L. For 0<< K1, stable distributions have no first or higher order moments.

1</ <2, a firat moment exists but no higher moments,

A =2, all moments exist.
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5. Stable distribution functionswith exponent O< <1 and parameter
>l =1 are one-sided distributions. They are bounded to the right
if » = +1 and bounded to the left if D = -1,

i

6. The following special cases arise :
- for & =2, [_l. =0 ¢ log ¢ (t) = 1€t - ct2 corresponds to the log

characteristic funetion of a normal distribution.

-for o =1, p=0: log §(t) = 1St -c |t] corresponds to the
log characteristic function of & Cauchy-distribution with density

function :

p(x) = s ~x <%, c¢> 0.

T [02 +(x- 6)2j Y
2

- for d =1/2, = -1, c=l, § =0 : 1og<p(t) =~ |t} {1_1 I—:T}

corresponds to the log characteristic function of a one-sided

distribution function witn density :

i

(A.3) p(x) =0 if x<O

/2 X-3}/2 e-1/.2x

fi

em™ if x > O.

Apart from these speclal cases, no stable distribution functions

are known whose density functions are elementary functions.

2. Symmetric Stable Distribution functions

Suppose x has a symmetric stable distribution with log
characteristic function :

(A.4) log ¢ (t) = 1 6t -c ltlo(
It follows that the standardized variable
b A

(A'5) u = cl/:j\-
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has a log characteristic function :

log q;u(t) = - gth"

Using results of Bergstrom on series expansion to approximate densities
[2] » Pama and Roll [7] computed cumulative distribution functions
and fractiles of standardized symmetric stable distributions for the
characteristic exponent 1¢ 8 £2. They also discuss estimation

procedures for the coefficients &, ¢ and d

The univariate family of stable distributions has been extended
to the multivariate case [ll] . In the case of multivariate symmetric
stable distributions, Press [15] considers the following family which has

several interesting properties :

(1.6) log¢ (1) =16t -2 T (t'mjtfl/e

where m 1is some integer 3 1. (m is called the order of the family)
§= (51, cees cgp) is an arbitrary p-vector
& ¢ (pxp) positive semidefinite matrix, ¥ J

J
o characteristic exponent 0<&K 2

X = (xl, ‘e .,xp)
If a vector x = (xl, ...,xp) belongs to the family with log characteristic
function (A.6), we denote this by :
= e
OZ' (X) Sp(m: 6’nis 4)
We will use the following properiy (for a prcof, see (_15] ).

Suppose x: pxl and o[ (%) = Sp(m, 8, Qi,fl). Then if y: axl and
¥y = AX + b, where A; gxp and b: @, g :\ip s
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a7y oL ) =5, mab+ D, A2 Q).

Press does not give estimation procedvres for the parameters ; however

one of his next papers will deal with this problem.
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