# The triangular E-model of chance-constrained programming with stochastic Amatrix - Source link 

Willy Gochet, Manfred Padberg
Published on: 01 May 1974 - Management Science (INFORMS)
Topics: Three-point estimation, Conditional probability distribution, Stability (probability), Marginal distribution and Chain rule (probability)

Related papers:

- A Chance Constrained Approach to Fractional Programming with Random Numerator
- Deterministic equivalents of chance constrained stochastic programming problems
- Two-stage stochastic programming problems involving interval discrete random variables
- Computation of some stochastic linear programming problems with Cauchy and extreme value distributions
- Stochastic simulation-based genetic algorithm for chance constraint programming problems with continuous random variables


# THE TRIANGULAR E-MODEL OF CHANCE-CONSIRAINED 

PROGRAMMING WITH STOCHASTIC A-MATRIX
by
W. Gochet
M. Padberg

Onderzoeksrapport nr. 7304

This report is a revised version of research started as part of the activities of the Management Sciences Group at Carnegie-Mellon University. (Management Sciences Research Report No. 253).
Reproduction in whole or in part is permitted for any purpose of the U.S. Government.

The triangular model of chance-constrained progranming with stochastic A-matrix and deterministic right hand side is considered. The use of conditional probabilities makes it possible to solve this problem for ang type of distribution function of the elements of the A-matrix provided that there is only one decision variable at each stage. The extension of the model to several decision variables per stage is possible under certain conditions and for special distribution (stable distributions) of the elements of $A$.

1. Introduction.

The triangular E-model of chance constrained programing has been introduced by Charnes and Kirby [5] and later extended by [10] and especially [6]. This paper treats the same triangular E-model but rather than considering a random right-hand vector $b$ in the chance constraints, we develop the case of randomess in the coefficient matrix $A$. The use of conditional probabilities makes it possible to solve this problem for any type of distribution function of the elements of the $\Lambda$-matrix provided that there is only one decision variable at each stage. The so-called l-feasibility concept $[14]$ or safety-first principle $[6]$ will be used to avoid decision rules which could create inconsistent sample points whenever there exists a feasible decision rule. The extension of the model to several decision variables per stage is possible under certain conditions and for special distributions (stable distributions) of the elements of $A$.

Section 2 contains the statcment of the problem and some notational conventions. An example from the field of production planing which can be recuced to this general model is given in Section 3. In Section 4 we indicate how the probabilistic constraints can be rewritien as deterministic constraints. The relationship between l-feasibility and safety-first principles and the properties of the solution set and objective function are investigated in Section 5. It turns out that every sub-problem consists in maximizing (minimizing) a concave (convex) function over a convex set. The extension of several decision variables at each stage is treated in 6 . Finally, Section 7 contains two detailed examples.

## 2. The Model and Notational Conventions

The formal model which we will be concerned with in this paper has been formulated as follows:

$$
\max E(c x)
$$

subject to:

$$
\begin{equation*}
\operatorname{Pr}(A x \leqslant b) \geqslant \infty \tag{2.1}
\end{equation*}
$$

$$
x \geqslant 0
$$

where the following notation has been adopted :
$A=\left(a_{i j}\right) \quad$ is a lower triangular ( $n \times n$ ) matrix with random elements
$a_{i j}(i, j) \in\{1, \ldots, n\}^{2}, a_{i j}=0$ for $j>i$.
$a^{i} \quad$ is the $i^{\text {th }}$ column of $A$ and assumed to be known before the $(i+1)^{\text {st }}$ decision $x_{i+1}$ has to be made.
$c$
lxn vector of random elements $c_{i}$.
$b \quad n x l$ vector of non-random elements $b_{i}$.
$x \quad n x l$ decision vector, the decision to be made at stage $i$ is $x_{i}, i \in\{1, \ldots, n\}$.
$E($.$) \quad expectation operator with respect to all random variables$ involved.
$\operatorname{Pr}($,$) \quad probability operator which is assurned to apply in parallel.$

${ }^{c}$ (i) the lyi vecuor with elements $\left(c_{1}, \ldots, c_{i}\right)$
$d_{i} \quad \equiv\left(a^{i}, c_{i}\right)$
$d_{(i)} \quad \equiv\left(a^{(i)}, c_{(i)}\right)$
$F_{a_{i i} \|_{(i-1)}}$ (.) conditional distribution function of $a_{i i}$ given the observations $d_{(i-1)}$
$E_{d_{i}} \|_{(i-1)}($.$) \quad conditional expectation operator with respect to \left(a^{i}, c_{i}\right)$ given the observations $\left(a^{(i-1)}, c_{(i-1)}\right)$
\& vector of probability numbers, deciced upon a priori and each $\alpha_{i} \in[0,1]$

## 3. An Example in Production Planr:ng

To illustrate one possible enplication of the model (2.1) we consider an example taken from the field of production planning.

A firm has to make sequential decisions concerning the production of a good over a n-unit time period. The price of the product in period i
$\pi_{i}(i=1, \ldots, n)$ is a random variable and the firm is a price-taker, i.e. it hos no control over te prices. Also, the total production cost $k_{i}(i=1, \ldots, n)$ of one urit in period $i$ is random. Assume further that demand prospects are such that oversupply of the market within the $n$ periods in considered to be impossible, although stochastic demand constraints could be easily incorporated. Clearly the random variables $\Pi_{i}$ and $k_{i}$ will depend upon $\Pi_{(i-1)}$ and $k\left(_{i-1)}\right.$. Indeed through observation of $T_{(i-1)}$ and $k_{(1-1)}$ we get new information about the market and the cost structure of the product. Hence the decision $x_{i}$ as to how many units to produce in period $i$ has to be chosen dependent upon the prices and production costs experienced in previous periods.

At the beginning of the decision process fixed amounts $L_{i}$ (which can be made dependent upon previous observations) are budgeted for production. Budgets not fully used up in previous periods can be transferred to later periods and previous profits (losses) increase (decrease) funds available for production in period i by some fixed proportion. The reason for this is that during periods of large profits we want to create the possibility of heavier investment in production. Moreover, to allow for overspending in a period when prospects are particularly favorable, we want the budget constraints to hold with prescribed probabilities. By choice of $\alpha_{n}=1$ in the $n^{\text {th }}$ period constreint we cen make sure that at the end of the time horizon the total bucget ceiling is not exceeded.

As indicated earlier, we interpret the probability constraints to be conditional probabilities given the previous observations. The problem may then be formulated as follows:

$$
\max E\left[\sum_{i=1}^{n}\left(\pi_{i}-k_{i}\right) x_{i}\right]
$$

subject to:

$$
\operatorname{Pr}\left\{k_{1} x_{1} \leqslant I_{1}\right\} \geqslant \alpha_{1}
$$

(3.1) $P_{P}\left\{k_{i} x_{i} \leqslant I_{i}+\sum_{j=1}^{i-1}\left[L_{j}-k_{j} x_{j}+\beta_{j}\left(T_{j}-k_{j}\right) x_{j}\right] \mid k_{(i-1)}, \pi_{(i-1)}\right\} \geqslant \alpha_{i}$ $i \in\{2, \ldots, n\}$

$$
x_{i} \geqslant 0 \quad i \in\{1, \ldots, n\}
$$

where :
$\pi_{i}$ price in period $i$ (random variable depending on $\pi_{(i-1)}$.
$k_{i} \quad$ total production cost per unit in period i (random variable depending on $k_{(i-1)}$.
$I_{i} \quad$ pare of the budget for period $i$ which may or may not depend on $k_{(i-1)}, \Pi_{(i-1)}$.
$\beta_{i}$ determines the fraction of the profit (loss) in period $i$, $\hat{F}_{i}\left(\Pi_{i}-k_{i}\right) x_{i}$, that will be available for production from period $i+1$ on, $\quad 0 \leqslant \beta_{i} \leqslant 1$.
$\operatorname{Pr} \quad$ conditional probability operator of $k_{i}$ given $k_{(i-1)}$ and $\pi_{(i-1)}$. $x_{i}$ amount to be produced in the $i^{\text {th }}$ period, $i \in\{1, \ldots, n\}$.

Rewriting the problem we obtain the following equivalent formulation for (3.1) :

$$
\max E\left[\sum_{i=1}^{n}\left(\pi_{i}-k_{i}\right) x_{i}\right]
$$

subject to :

$$
\operatorname{Pr}\left\{k_{1} x_{1} \leqslant L_{1}\right\} \geqslant \alpha_{1}
$$

(3.2) $\operatorname{Pr}\left\{\sum_{j=1}^{i-1}\left[k_{j}-\beta_{j}\left(\pi_{j}-k_{i}\right] x_{j}+k_{i} x_{i} \leqslant \sum_{j=1}^{i} L_{j} \mid k_{(i-1)}, \Pi{ }_{(i-1)}\right\} \geqslant \alpha_{i}\right.$ $i \in\left\{2, \ldots, r_{1}\right\}$

$$
x_{i} \geqslant 0 \quad i \in\{1, \ldots, n\} .
$$

Defining

$$
a_{i j}= \begin{cases}k_{j}-\beta_{j}\left(\pi_{i}-k_{j}\right) & j<i \\ k_{j} & j=i \\ 0 & j>i\end{cases}
$$

and $\quad c_{i}=\pi_{i}-k_{i}$

$$
i=1, \ldots, n
$$

$$
b_{i}=\sum_{j=1}^{i} I_{j}
$$

$$
i=1, \ldots, n
$$

we see that the production model is of the general form described in Section 2.

The applicability of the gew..nal noalel is however not restricted to the above example. As will bacome was upon inspection, the one-stock investment model of $B$. Noaslund $13 j$ can be brought to fit into the genural framework developed here. This is of pairticular intersst to note since Naislund's model so far has been stuayed only in the conteat of firstoraer decision mies wherees we shall use the nore general sequential decision rules obtained fron gonditional probability constraints to solve the above model. The proceclure developed here might also be useful for the study of chonce-constrained aapital budgeting probiems as in $[3]$ and $\quad 4\}$ where solutions ane presented in terms of zero order rules.

## 4. Deterministic Equivalents of the Chance Constraints

As incicated in the previous section, we consicer the decision $x_{i}$ to be a function of the previous coservatons $d_{(i-1)}=\left(a^{(i-1)}, c_{(i-1}\right)^{\text {. }}$ By a deciaion iule ior prow?em (o.l) w meat a rolation of the form

$$
\begin{equation*}
x_{i}=x_{i}\left(d_{(i-1)}\right) \tag{4.1}
\end{equation*}
$$

mapping the ubservations $d_{(i-1)}$ into the reals. We cbserve that the first decisicn is independent of any random variable. Using the notations of Section 2 we can now write the conditionat probability constraint of the $i^{\text {th }}$ period as follows:

$$
\operatorname{Pr}_{1}\left(\sum_{j=1}^{i} \quad a_{i j} x_{j} \leqslant b_{i} / c_{(i-1)}\right) \geqslant \alpha_{i}
$$

or couisalentiv
4.2) $P=\left(a_{i j} z_{1} \leqslant b_{i}-\frac{i \cdots}{j=1} \sum_{i j} x_{j} / a_{(j-1}\right) \geqslant \geqslant i$

satisfying the non-negativity constralat $0:$ problem (2.1) and define $N$ to be the set

$$
\begin{equation*}
N_{x}=\left\{d_{(i-1)} / x_{i}\left(d_{(i-1)}\right)=0\right\} \tag{4.3}
\end{equation*}
$$

Then (4.2) implies that

$$
\text { (4.4.a) } \quad 0 \leqslant b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j} \quad \forall d_{(i-1)} \in N_{x}
$$

From the non-negativity of $x_{i}$ we have that for $d_{(i-1)} \in \bar{N}_{x}$ where $\bar{N}_{x}$ is the complementary set of $N_{x}$ in the space of all possible outcomes of ${ }^{d}(i-1)$, the following inequality must hold :

$$
\operatorname{Pr}\left(a_{i i} \leqslant \frac{1}{x_{i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}\right) / d_{(i-1)}\right) \geqslant \alpha_{i} \quad \forall a_{(i-1)} \in \bar{N}_{x}
$$

or equivalently
(4.4.b) $\quad \sum_{j=1}^{i-1} a_{i j} x_{j}+x_{i} F_{a_{i i}}^{-1} / d_{(i-1)}\left(d_{i}\right) \leqslant b_{i} \quad \mathrm{~F}_{(i-1)} \leqslant \bar{N}_{x}$

Now observe that for $d_{(i-1)} \in \mathbb{N}_{X}$, (4.4.b) ard (4.4.a) coincide; hence the deterministic equivalent of (4. 己) using the non-negativity of $x_{i}$ is given by
(4.4) $\sum_{j=1 .}^{i-1} a_{i j j_{j}}+x_{i} F_{a_{i j}^{-1} / d_{(i-1)}}\left(l_{i}\right) \leqslant b_{i} \quad \forall d_{(i \cdots 1)}$

This leads us to define l-feasibility (see [14]) of a sequential decísion rule $\left\{x_{i}\left(d_{(i-i)}\right)\right\}_{i=1, \ldots, n}$ as follows:

Definition 4.1 : A sequential decisicn ale $\left\{x_{i}\left(d_{(i-1)}\right)\right\} \quad i=1, \ldots, n$ is called l-feasible if
(i) $x_{i}\left(d_{(i-1)}\right) \geqslant 0$
(ii) (4.4) is fulfilled for all possible realizations $d_{(i-1)}$ and $i \in\{1, \ldots, n\}$.

For typographical reasons we set
(4.5) $f_{i}\left(\alpha_{i} d_{(i-1)}\right)=F_{a_{i i}}^{\prime \prime} / d_{(i-1)}\left(\alpha_{i}\right)$ for all $i \in\{1, \ldots, n\}$.

Note that for $i=1$ the right-hand side of (4.5) is the inverse of the (unconditional) marginal distribution of $a_{11}$ evaluated at $\alpha_{I}$. We can now state the deterministic equivalent of the constraint set of problem (2.1) as follows :
(4.6) $\sum_{j=1}^{i-1} a_{i j} x_{j}+x_{i} f_{i}\left(\alpha_{i}, \alpha_{(i-1)}\right) \leqslant b_{i} ; x_{i}=x_{i}\left(d_{(i-1)}\right) \geqslant 0$ for all ${ }_{(1-1)}$ :

Remark 4.1. Suppose that $b_{i} \geqslant 0, \quad i \in\{1, \ldots, n\}$, then $x_{i}\left(d_{i-1}\right)=0$ for all $d_{(i-1)}, i \in\left\{l_{2} \ldots, n\right\}$, is always a feasible decision rule. In particular, in this case there do not exist sample points which could create inconsistencies.

Remark 4.2. From the equivelent formulation (4.6) of the constraint set (2.1) we infer that for a finite sample space it is possible to derive a linear program as a deterministic equivalent, in the case where the coefficients in the objective function ars non-randon or stochastically independent ranaom variables. The way to obtain the linear program is
essentially the same as used in connettion with program.ing unaer uncertairty, see [16] and [17] . Ono indexes the decisions io bc made at stage i by the possible observations on $d_{(i-1)}$ and computes the objective function explicitly using the (known) probabilities of the possible combinations of the observations. Clearly for only fuodestly sized sample spaces the resulting problem becomes already very large. But ore can expect that due to the triangularity of the stochastic matirix and the particular choice of the decisions to be dependent only upon prior observations the resulting linear programing problem has a special structure that can be expioited in computation.

## 5. Properties of Solution Set axd Objective Function

Let $\bar{a}_{(i-1)}$ for $i \in\{1, \ldots, n\}$ be any given observation on the random variables of the $(i-1)^{\text {st }}$ periocs and denote by $d_{(k-1)}^{(i-1)}$ for $k \in\{i+1, \ldots, n\}$ any observation $d_{(k-1)}$ such that the $\underset{(i-1)}{ }$ finst components equel the given $d_{(i-1)}$ Correspondingly let $d_{(j-1)}^{(i-1)}$ for $j \in\{1, \ldots . i\}$ denote the vector of observations obtained from $d_{(i-1)}$ by deleting the last $i-j$ elements of $d_{(i-1)}$. rote that $d_{(k-1)}^{(0)}=d_{(k-1)}$ for all $k\{\{2, \ldots, n\}$.

In a manner similar to that used in $[6]$, define the set $C_{i}^{+}\left(d_{(i-1)}{ }^{\left.X_{(i-1)}\right)}\right.$ for given $\alpha_{(i-1)}$ and $X_{(i-1)}$ recursively as follons: (5.1) $\left.\quad c_{i}^{+}=c_{i}^{+} d_{(i-1)}, x_{(i-1)}\right)$

$$
\begin{aligned}
& =\left\{x_{i} \geqslant 0 /(1) \forall d_{(k-1)}^{(i-1)} \exists x_{j}\left(d_{(j \ldots)}\right) \geqslant 0, j=i+1, \ldots, k\right. \\
& \text { such that (5.2.a) holes for all } k \in\{i+1, \ldots n\} \\
& \text { (2) }(5.2 .0) \text { 1.0is }
\end{aligned}
$$

$(5.2)\left\{\begin{array}{l}\text { where } \\ (5.2 . a) a_{k i} x_{i}+\sum_{j=i+1}^{k-1} a_{k j} \lambda_{j}\left(a_{(j-1)}\right)+\lambda_{k}\left(d_{(k-1)}\right) f_{k}\left(\sigma l_{k}, d_{(k-1)}\right) \leqslant b_{k}-\sum_{j=1}^{i-1} a_{k j} \alpha_{j} \\ (5.2 . b) f_{i}\left(d_{i}, d_{(i-1)}\right) x_{i} \leqslant b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}\end{array}\right.$

For these set definitions to be recursively meaningful, we have to choose $(j=1, \ldots, i-1)$ such that :
(5.3) $x_{j} \in C_{j}^{+}\left(d_{(1-1)}^{i-1)}, x_{(j-1)}\right) \quad j \in\{ ]_{\ldots, \ldots, j-1\}}$

The proof of the following remark is straightforward and will be omitted.

## Remark 5.1.

1. There exists a 1 - feasible decision rule iff $C_{l}^{+} \neq \varnothing$.
2. Let $\left.\left\{x_{i}\left(d_{(i-1}\right)\right)\right\} i=1, \ldots n$ bs any decision male. then $\left\{x_{i}\left(d_{(i-1)}\right) ; i=1, \ldots, n \quad i \quad 1\right.$ - feasible $i f x_{i}\left(d_{i-1}\right) \in C_{i}^{+}\left(d_{(i \ldots l)}\right)$ for all $d_{(i-1)} \therefore \therefore\{1, \ldots, \ldots\}$.

Theorem 5.1 : For any given, $a_{(i-1)}$ and $y_{(i-1)}$ the set $c_{i}^{+}\left(d_{(i-1)}\right)$ is. convex in $X_{i}$.


$$
\lambda_{j} \geqslant 0 \text { and } \mu_{j} \geqslant 0, j<\{+\ldots \ldots, k\} \text { such that }
$$

$$
\left.b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j} \geqslant a_{i}^{1} z_{i}\left(\ell_{i}, a_{i}, \ldots\right)\right)
$$

I For ease of rotacjer we will wite $x_{i}, y_{j}, \ldots, \ldots$ whereas it should be $\left.\left.\dot{i}_{i}\left(d_{(i-1)}\right), \lambda_{j}\left(d_{(j-1}\right)\right), \mu_{j}(j \cdots 1)\right)$,
(5.4) $b_{k}-\sum_{j=1}^{i-1} a_{1-j} x_{j}-a_{k j}{ }_{j} \sum_{j-1+1} a_{i} f_{k}\left(d_{k}, a_{(k-1)}\right)$

$$
\text { or is } \in\{i+1, \ldots, n\}
$$

and
(5.5) similar expressions for $x_{i}^{2}$ whore is $\{(j \in\{i+\ldots, \ldots, k\})$ is replaced by $\mu_{j}, j:\{i+1, \ldots, k\}$.

Multiplying the inequalities of (5.4) $\mathrm{ry} 0 \leqslant y \leqslant 1$ and those of (5.5) by (l-Y) and adding the corresponding inequalities, we get :

$$
b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}-1 y x_{i}^{I} \cdot(1-y) x_{i}^{2} f_{i}\left(d_{i}, d_{(j-1 j}\right)
$$

$b_{k}-\sum_{j=1}^{i-1} a_{i j} x_{j}-a_{k j}\left[y x_{i}^{1}+(1-y) x_{i}^{2} j-\sum_{j=i+1}^{k-1} a_{k j i}^{j} y \lambda_{j}+(1-y) y_{j}\right]=$

$$
\left[\because \lambda_{k}+(1-y) \lambda_{k}\right] f_{k}\left(\alpha_{1 ;}=d_{(k-1)} \text { for } \forall d_{(k-1)}^{(i-1)}=k \in\{i+1, \ldots n\}\right.
$$

which means that $\left[y x_{i}^{1}+(1-y) x_{i}^{2}\right] \leqslant c_{i}^{*}$ for $0 \leqslant Y \leqslant I$. Q.J.D.

Let us now turn to the properties of the objective function. Using dynamic programming in the familiar backyard mariner [1] , the objective function for the $i^{\text {th }}$ stage, given a set of observations $\dot{d}_{(i-1)}$ and decisions $x_{(i-1)}$ : car be written as follows :
(5.6) $\left.\quad \Psi_{i}\left(d_{(i-1)}, x_{(i-1)}\right)=\underset{x_{j} d_{i}}{\max _{i}} \underset{\left.d_{i} / d_{(i-1)}\right)}{E} \quad \underset{p=i}{m} \quad c_{p} x_{p}\right)$

$$
=\max _{x_{i} \varepsilon_{i}^{+}} d_{i} / \alpha_{(i-1)}^{E}\left\{c_{i} x_{i}+\bar{\psi}_{i+!}^{\left(\alpha_{(i)}, x_{(i j}\right)}\right\}
$$

$$
=\max _{x_{i} \in C_{i}^{+}} \quad H_{i}\left(x_{i}\right)
$$

(5.7) where $\mathrm{E}_{2}\left(\mathrm{y}_{\mathrm{i}}\right) \underset{d_{i} / a_{(i-1)}^{E}}{\left.E a_{i}+\hat{i}_{i+1}\left(d_{i,} x_{(i)}\right)\right\}}$

Theorern 5.2: For any fined ${ }_{(i-1)}$ and $x_{(i n)}$ the sunction $H_{i}\left(x_{i}\right)$ defined in (5.7) i.s cnicave over $x_{i} \in C_{i}^{+}$.

The proof goes by backward induction and is almost identical to the proof given in $[6]$. It wil] therefore be omitted.

## Remark 5.2.:

In the general model it follows mon (4.4) that the following relation mest hold at stage i if $f_{i}\left(d_{i}, d_{(i-1)} \geqslant 0_{s}\right.$ roin ell $d_{(i-1)}$ :

$$
\sum_{j=1}^{i-1} a_{i j . j} x_{j} \leqslant b_{i}
$$

In the two period problem we nov show that the set $c_{l}^{+}$can be characterized by iinear constraints.

```
Conditions (j.2.b) ance (5.2.a) become in that cose :
```

(5.2.b) $f_{1}\left(d_{1}, d_{0}\right) x_{1}$,
(5.2.a) For ail $d_{1}, \forall \lambda_{2}\left(d_{2}\right) 3$

$$
a_{21} x_{1}+\lambda_{2}\left(a_{1}\right) f_{2}\left(x_{2}, a_{1}\right) \leqslant o_{2}
$$

Ir (5.2.a), two cases are possible :

1) $i_{2}\left(\alpha_{2}, \dot{d}_{1}\right) \times 0$ fon ail porsible $d_{1} \Rightarrow(5.2 . a)$ is void since $\lambda_{2}\left(d_{1}\right)$ ani be taken large enough for the constraint to hold.
2) $f_{2}\left(\alpha_{2} d_{1}\right) \geqslant 0$ ror some $d_{1}, d_{1} \in i_{2}$ ay $\Rightarrow$ (5.2.a) becomes (sup $\left.a_{21}\right) a_{1}$,

$$
\text { since one can set } \lambda\left(c_{1}\right)=0 \text { sor } d_{1} \in N_{1} \text {. }
$$

This resuri however, cannot be gerergly the more than two periuds.

## 6. Extension to Several Decisions Per Stage

Consider the more general problem :

$$
\max E\left[\begin{array}{ccc}
\sum_{i=1}^{n} & \sum_{j=1}^{i} & c_{i j} x_{i j}
\end{array}\right]
$$

subject to :

$$
\begin{align*}
& \operatorname{In}\left(\sum_{j=1}^{m_{1}} a_{1 j}^{1} x_{1 j} \leqslant b_{1}\right) \geqslant d_{1} \\
& \operatorname{Ir}\left(\sum_{j=1}^{m_{1}} a_{1 j}^{2} x_{1 j}+\sum_{j=1}^{m_{2}} a_{2 j}^{2} x_{2 j} \leqslant b_{2}\right) \geqslant a_{2} \tag{6.1}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(\sum_{i=1}^{n-1} \sum_{j=1}^{m_{i}} a_{i j}^{n} x_{i j} ; \sum_{j=1}^{m_{n}} a_{n j}^{n} x_{n j} \leqslant b_{n}\right) \geqslant \alpha_{n} \\
& x_{i j j} \geqslant 0 \text { for all is. }
\end{aligned}
$$

Define :

$$
\begin{array}{ll}
A^{i}=\left(a_{i j}^{p}\right) & p \in\{i, \ldots, n\} \\
& j \in\left\{1, \ldots, m_{A}\right\}
\end{array}
$$

$$
A^{(i)}=A^{1}, A^{2}, \ldots A^{i}
$$

$$
c_{i}=\left(e_{i j}\right),
$$

$$
j \in\left\{1, \ldots, i i_{i}\right\}
$$

$$
c_{(i)}=c_{1}, c_{2}, \ldots, c_{i}
$$

$$
D_{i}=\left(A^{i}, c_{i}\right)
$$

$$
D_{(i)}=\left(A^{(i)}, c_{(i)}\right)
$$

$$
\begin{aligned}
& x_{i}=\left(x_{i j}\right) \quad j \in\left\{1, \ldots, m_{i}\right\} \\
& x_{(i)}=x_{1}, \ldots, x_{i}
\end{aligned}
$$

Again, observations on the random variables $A^{i}$ are made after decisions $x_{i j}\left(j \in\left\{1, \ldots, m_{i}\right\}_{\}}\right)$are selected and before decisions $x_{i+1, j}\left(j \in\left\{1, \ldots, m_{i+1}\right\}\right)$

Initially the following condition will be imposed on the rantom variables of the constraint set : the elements of $A^{i}$ are conditionally independent random variables by which we mean that (someof) their parameters may depend upon previous observations $A^{j}(j \in\{1, \ldots, i-1\})$, however, once these paramsters known the r.v. are indeperdent.

The difficulty in this generalized problem is to find a deterministic equivalent for the chance constraints. We shall now show how this can be done for the $i-t h$ constraint when the $a_{i j}^{i}\left(j=1, \ldots, m_{i}\right)$ have independent, symmetric stable distributions (1), with the sare characteristic exponent [see appendix.]
Introducing the following notation :

$$
\begin{aligned}
& y \sim S_{y}(d, \sigma, 0, A): y \text { is stable distributed with } \\
& \text { characteristic exponent } 0<\alpha \leqslant 2 \\
& \text { location parameter } \delta \\
& \text { sale parameter } \\
& \text { symmetry coefficient } \quad \beta \geqslant 0
\end{aligned}
$$

Let $a_{i j}^{i}, ~ S\left(\alpha,{\underset{i}{j}}_{i}^{i}, c_{i j}^{i}, 0\right)$ for ${ }_{j}^{i} \in\left\{1, \ldots, m_{i}\right\}$. From the properties of symmetric stable distributions it foliows that:
(1) : The reason why this transformatwon connot be extended to other types of distributions follows from the convolution property of stable Gistributions (see defimition A.2) and the tramsornation (A.5) which make the cumulative distrikition function independent of the vector $x_{i}$.
$\sum_{j=1}^{m_{i}} a_{i j}^{i} x_{i j} \nu S\left(\alpha, \sum_{i=1}^{n_{i}} \delta_{i j}^{i} x_{i j}, \sum_{j=1}^{m_{i}} c_{i j}^{i} / x_{i j}, d, 0\right)$
or $\sim S \quad\left(\alpha, \sum_{j=1}^{m_{i}} \delta_{i j}^{i} x_{i j}, \sum_{i=1}^{m_{i}} c_{i j}^{i} x_{i j}^{\alpha}, 0\right) \quad$ since $x_{i j} \geqslant 0$.

Hence

$$
\frac{\sum_{j=1}^{m_{i}} a_{i j}^{i} x_{i j}-\sum_{j=1}^{m_{i}} \delta_{i j}^{i} x_{i j}}{\left(\sum_{j=1}^{m_{i}} c_{i j}^{i} x_{i j}\right)^{1 / \lambda}} \sim s(\alpha, 0,1,0)^{(1)}
$$

Writing the $i^{\text {th }}$ constraint as :

$$
\operatorname{Pr}\left(\sum_{j=1}^{m_{i}} a_{i j}^{i} x_{i j} \leqslant b_{i}-\sum_{k=1}^{i-1} \sum_{i=1}^{m_{k}} a_{k j}^{i} x_{k j}\right) \geqslant a_{i}
$$

or

$$
\left.F\left(\frac{b_{i}-\sum_{k=1}^{i-1} \sum_{j=1}^{m_{k}}{ }_{z_{k, j}^{i} x_{k j}}-\sum_{j=1}^{m_{i}} \sum_{i, j}^{i} x_{i j}}{\left(\sum_{j=1}^{m_{i}}\right.} c_{i j}^{i} x_{i, j}^{\alpha}\right)^{1 / \alpha}\right) \geqslant \alpha_{i}
$$

where $F($.$) is the cumulative distribution function for a standardized$ symmetric stable distribution with characteristic exponent $d$. The deterministic equivalent for the $i^{\text {th }}$ chance constraint becomes :
(1) Notice that for the normal distribution ( $\alpha=2$ ), the standardized variable has a variance $=2$ 。
(7.2) $\sum_{j=1}^{m_{i}} \delta_{i j}^{i} x_{i j}+F^{-1}\left(d_{i}\right)\left(\sum_{j=1}^{m_{j}} c_{i j}^{i} x_{i j}^{\alpha}\right)^{1 / d} \leqslant b_{i}-\sum_{k=1}^{i-\lambda} \sum_{j=1}^{m_{1 j}} a_{k j}^{i} x_{k j}$
where $\mathrm{F}^{-1}\left(\alpha_{i}\right)$ can be found (using interpolation) in the tables given in $[7]$ if $1 \leqslant c_{l}^{\prime} \leqslant 2$.
Theorem 7.2 : The function $\left(\sum_{j=1}^{m_{i}} c_{i j}^{i} x_{i j}\right)^{1 / \alpha}$

$$
\text { with }\left\{\begin{array}{l}
c_{i j}^{i} \geqslant 0 ; j \in\left\{1, \ldots, m_{i}\right\} \text { is } \\
x_{i j} \geqslant 0
\end{array}\right.
$$

(1) convex in $x_{i}=\left(x_{i j}\right), j \in\left\{1, \ldots, m_{i}\right\}$, if $1 \leqslant d \leqslant 2$
(2) concave in $x_{i}$ if $0<\alpha \leqslant 1$.

Proof : To prove (1), we know f om Minkowski's inequality that, for $u_{j} \geqslant 0\left(j=1, \ldots, m_{i}\right)$ and $v_{j} \geqslant 0\left(j=1, \ldots, m_{i}\right)$ :
$\left[\sum_{j=1}^{m_{i}}\left(u_{j}+v_{j}\right)^{\alpha}\right]^{1 / \alpha} \leqslant\left(\sum_{j=1}^{m_{j}} u_{j} \alpha\right)^{1 / \alpha}+\left(\sum_{j=1}^{m_{i}} v_{j} \alpha\right)^{1 / \alpha} \quad$ for $\alpha \geqslant 1$. Setting $u_{j}=\lambda\left(c_{i j}^{i}\right)^{1 / \alpha} x_{i j}^{1}$ with $0 \leqslant \lambda \leqslant l$ and $c_{i j}^{i} \geqslant 0$

$$
\begin{aligned}
& \forall j \in\left\{1, \ldots, m_{i}\right\} \\
& v_{j}=(1-\lambda)\left(c_{i j}^{i}\right)^{1 / \alpha} x_{i j}^{2} \quad \forall \quad j \in\left\{1, \ldots, m_{x}\right\}
\end{aligned}
$$

Then :

$$
\begin{gathered}
\left\{\sum_{j=1}^{m_{i}} c_{i j}^{i}\left[\lambda x_{i j}^{1}+(1-\lambda) x_{i j}^{2}\right]^{\alpha}\right\}^{1 / \alpha} \leqslant \lambda\left[\sum_{j=1}^{m_{i}} c_{i j}^{i}\left(x_{i j}^{1}\right)^{\alpha}\right]^{1 / \alpha}+(1-\lambda)\left[\sum_{j=1}^{m_{i}} c_{i j}^{i}\left(x_{i j}^{2}\right)^{\alpha}\right]^{1 / \alpha} \\
\text { for } 0 \leqslant \lambda \leqslant 1, \quad 1 \leqslant \alpha \leqslant 2 \text { and } c_{i j}^{i} \geqslant 0 \ddot{v} j
\end{gathered}
$$

The proof of (2) follows from the reversed Minkowski inequality when $0<\alpha \leqslant 1$. Q.E.D.

It follows from Theorem 7.1 that the set of points $x_{i j} \geqslant 0, j \in\left\{1, \ldots, m_{1}\right\}$ satisfying (7.2) is a convex set whenever :
(i) $\alpha_{i} \geqslant .5$ and $1 \leqslant \alpha \leqslant 2$
(2) $\alpha_{i} \leqslant .5$ and $0<\alpha \leqslant 1$

The most interesting case from a computational viewpoint is clearly when the $a_{i j}^{i}\left(j=1, \ldots, m_{1}\right)$ are Cauchy-distributed ( $\alpha=1$ ) since inequality ( 7.2 ) becomes linear in $x_{i j}{ }^{\prime} \forall j$. Similar to the procedure in Section 5, we define a set $C_{i}^{+}$as :

$$
\begin{aligned}
& C_{i}^{+}= C_{1}^{+}\left(D_{\left.(i-1)^{\prime} x_{(i-1)}\right)}\right. \\
&(7.3)=\left\{\begin{array}{l}
x_{i} \geqslant 0 \mid(1) \neq D_{(k-1)}^{(i-1)} \quad \exists \lambda_{j p}\left(D_{(j-1)}\right) \geqslant 0,
\end{array}\right. \\
& \quad \begin{array}{l}
p=1, \ldots, m_{j} \\
j=i+1, \ldots, k
\end{array} \\
& k=i+1, \ldots, n
\end{aligned}
$$

(2) (7.2) holds
where
(7.4)

$$
\begin{gather*}
\sum_{p=1}^{m_{i}} a_{i p}^{k} x_{i p}+\sum_{j=i+1}^{k-1} \sum_{p=1}^{m_{j}} a_{j p}^{k} \lambda_{j p}+\sum_{j=1}^{m_{k}} \delta_{k p}^{k} \lambda_{k p}+F^{-1}\left(\alpha_{k}\right)\left(\sum_{p=1}^{m} c_{k p}^{k} \lambda_{k p}^{\alpha}\right)^{1 / \alpha} \\
\leqslant b_{k}-\sum_{j=1}^{i-1} \sum_{p=1}^{m_{j}} a_{j p}^{k} x_{j p} \tag{1}
\end{gather*}
$$

(1) For ease of notation we use abbreviated expressions as :

$$
\begin{aligned}
\lambda_{j p} & \equiv \lambda_{j p}\left(D_{(j-1)}\right) \\
\delta_{j p}^{k} & \equiv \delta_{l p}^{l i}\left(D_{(k-1)}\right)
\end{aligned}
$$

$$
c_{k p}^{k} \equiv c_{k p}^{k}(D(k-1))
$$

However since stable distributions assin positive probahility to any interval on the real line, we will generally be able to find $a_{j p}{ }_{j p}, p=1, \ldots, m_{j}$ and $j=i, \ldots, k$ such that $C_{1}^{+-}=\varnothing$. Therefcre to have a meaningful problem in practice we should only consider values of $a_{j p}^{k}$ within a certain interval around $\delta_{j p}^{k}, p \in\left\{1, \ldots, m_{j}\right\}$ and $j \in\{i, \ldots, k\}$. A procedure to follon in practice might be as follows : for $k=j+1$, we consider values of
$a_{i p}^{i+1}, p \in\left\{1, \ldots m_{i}\right\}$, in a fairly broad interval around $\delta_{i p}^{i+1}$. As $k$ grows larger, the intervals around the location parameters

$$
\delta_{j p}^{k}, p \in\{1, \ldots, m j\} \text { and } j \in\{1, \ldots, k-1\} \text {, can gradually be taken }
$$ smaller.

Using the general procedure of Theorem 5.1 and Minkowski's inequality it is easy to prove that the set $\mathrm{C}_{i}^{+}$is convex if
(1) $1 \leqslant d \leqslant 2$ and $\alpha_{j} \geqslant .5, j \in\{1, \ldots, k\}$
(2) $0<d \leqslant 1$ and $d_{j} \leqslant 5, j \in\{i, \ldots, k\}$.

Let us novi drop the assumption of conditional independence and assume that the vector $\left(a_{i l}^{i}, \ldots a_{i m_{i}}^{i}\right)$ has a multivariate symmetric stable distribution of order $1 \quad[$ See Appendix $]$ :

$$
\mathcal{\alpha}\left(a_{i 1}^{i}, \ldots, a_{i m_{i}}^{i}\right)=s_{m_{i}}(1,6, \Omega, \alpha) .
$$

By (A.7) it follows that :

$$
\mathcal{L}\left(\sum_{j=1}^{i} a_{i j}^{i} x_{i j}\right)=s_{1}\left(1, \delta x_{i}, x_{i} \Omega l x_{i}, \alpha\right) .
$$

(1) Throughout the paper we have kept the characteristic coefficient the same for all the stable distributions involved in the model. The requirement horever is that $\alpha$ be equal only for stable distributions regarding variables whose values will be known in the same period.

By tie properties of characteristic functions, then :

$$
\mathcal{L}\left(\frac{\sum_{i} a_{i j}^{i} x_{i j}-\delta x_{i}}{\left(x_{i} \Omega x_{i}\right)^{1 / 2}}\right)=s_{1}(1,0,1, \alpha)
$$

so that the $\log$ characteristic function of $\frac{\sum_{j} a_{i j}^{i} x_{i j}-\delta x_{i}}{\left(x_{i} \Omega x_{i}\right)^{1 / 2}} \quad$ is :

$$
\log \phi(t)=-\frac{1}{2}|t|^{\alpha}
$$

The deterministic equivalent of the $i^{\text {th }}$ constraint can then be derived as :
(7.5) $\delta x_{i}+F^{-1}\left(\alpha_{i}\right)\left(x_{i} \Omega x_{i}\right)^{1 / 2} \leqslant b_{i}-\sum_{j=1}^{i-1} \sum_{p=1}^{m} a_{j p}^{i} x_{j p}$
where $F^{-1}\left(\alpha_{i}\right)$ can be found again in the tables in $[7]$ if $1 \leqslant \alpha \leqslant 2$.
In a similar way as in (7.3) we define a set $C_{i}^{+}$using (7.5). Since $\left(x_{i} \Omega x_{i}\right)^{1 / 2}$ is a convex function (for a proof, see [9]), convexity of the set $C_{i}^{+}$can be proved whenever $\alpha_{j} \geqslant 5, j \in i, \ldots, n$.

## 7. Numerical Examples

Example 1 : Consider the following two-period problem :
$\max E\left(c_{1} x_{1} \div c_{2} x_{2}\right)$
subject to : $\operatorname{Pr}\left(a_{1} x_{1} \leqslant b_{1}\right) \geqslant \alpha_{1}$

$$
\operatorname{Pr}\left(a_{1} x_{1}+a_{2} x_{2} \leqslant b_{2} \mid a_{1}, c_{1}\right) \geqslant d_{2}
$$

$$
x_{1}, x_{2} \geqslant 0
$$

with

$$
\begin{aligned}
& c_{1} \sim U(15,25) \\
& c_{2} \sim U\left(c_{1}-6, c_{1}+4\right) \\
& a_{1} \sim U(100,200) \\
& a_{2} \sim U\left(75,2 a_{1}-75\right) \\
& b_{1}, b_{2} \geqslant 0
\end{aligned}
$$

where $y \sim U(p, q)$ means that $y$ is uniformly distributed over the interval $[p, q]$.

> The second period maximization problem can be written :

$$
\max E\left(c_{2} x_{2}\right)=\max _{x_{2}}\left(c_{1}-1\right) x_{2}
$$

$$
x_{2} \quad c_{2} / c_{1}
$$

Since $c_{1}-1>0$ for all possible values of $c_{1}$, we will choose $x_{2}$ as large as possible :

$$
\left.\begin{array}{rl}
x_{2}^{*} & =\max \left\{\frac{b_{2}-a_{1} x_{1}}{F_{a_{2} a_{1}}^{-1}\left(\alpha_{2}\right)}, 0\right.
\end{array}\right\}
$$

By remark 5.2.:

$$
b_{2}-a_{1} x_{1} \geqslant 0 \text { for } \forall a_{1}
$$

It follows that :

$$
x_{2}^{\pi}=\frac{b_{2}-a_{1} x_{1}^{*}}{\alpha_{2}\left(2 a_{1}-150\right)+75}
$$

The first period constraints are given by :

$$
\begin{aligned}
& x_{1} \leqslant \frac{b_{1}}{F_{a_{1}}^{-1}\left(\alpha_{1}\right)}=\frac{b_{1}}{10\left(1+\alpha_{1}\right)} \\
& b_{2}-a_{1} x_{1} \geqslant 0 \quad \text { for } \forall a_{1}
\end{aligned}
$$

which is equivalent to :

$$
\left\{\begin{array}{l}
x_{1} \leqslant \frac{b_{1}}{10\left(1+\alpha_{1}\right)} \\
x_{1} \leqslant \frac{b_{2}}{200}
\end{array}\right.
$$

The solution set of the first period problem follows then as :

$$
c_{1}^{+}=\left\{x_{1} \geqslant 0 / x_{1} \leqslant \min \left(\frac{b_{1}}{100\left(1+d_{1}\right)}, \frac{b_{2}}{200}\right)\right\}
$$

Now,

$$
\begin{aligned}
\Psi_{1} & =\max \quad E\left\{c_{1} x_{1}+\left(c_{1}-1\right)\left[\frac{b_{2}-a_{1} x_{1}}{\alpha_{2}\left(2 a_{1}-150\right)+75}\right]\right\} \\
& =\max _{1} \in\left\{\begin{array}{ll}
a_{1}, c_{1}
\end{array}\right\} \\
& x_{1} \in C_{1}^{+}
\end{aligned} \begin{cases} & E \frac{a_{1}}{a_{1}-19 x_{1}\left(2 a_{1}-150\right)+75}+K\end{cases}
$$

where $K$ is independent of $x_{1}$.

As can be verified; for $d_{2}>0$ :

$$
\begin{aligned}
& E_{a_{1}}\left[\frac{a_{1}}{\alpha_{2}\left(2 a_{1}-150\right)+75}\right]=\frac{1}{2 \alpha_{2}}+\frac{3}{8 \alpha_{2}}\left(1-\frac{1}{2 \alpha_{2}}\right) \ln \frac{3+10 \alpha_{2}}{3+2 \alpha_{2}} \\
& \text { If } \alpha=20-\frac{19}{2 \alpha_{2}}-\frac{57}{8 \alpha_{2}}\left(1-\frac{1}{2 \alpha_{2}}\right) \ln \frac{3+10 \alpha_{2}}{3+2 \alpha_{2}}>0 \\
& \Rightarrow x_{1}^{x}=\min \left(\frac{b_{1}}{100\left(1+\alpha_{1}\right)}, \frac{b_{2}}{200}\right) \\
& \mathcal{L}<0 \Rightarrow x_{1}^{x}=0 \\
& \mathcal{L}=0 \Rightarrow \text { choose any } x_{1}^{\text {K }} \geqslant \\
& 0 \leqslant x_{1}^{*} \leqslant \min \left(\frac{b_{1}}{100\left(1+\alpha_{1}\right)}, \frac{b_{2}}{200}\right)
\end{aligned}
$$

Example 2 : Consider the following three period problem :

$$
\max \sum_{i=1}^{3} x_{i}
$$

s.t. $\quad \operatorname{Pr}\left(a_{1} x_{1} \leqslant b_{1}\right) \geqslant \alpha_{1}$

$$
\begin{aligned}
& \operatorname{Pr}\left(a_{1} x_{1}+a_{2} x_{2} \leqslant b_{2}\right) \geqslant \alpha_{2} \\
& \operatorname{Pr}\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3} \leqslant b_{3}\right) \geqslant \alpha_{3} \\
& x_{i} \geqslant 0, i=1,2,3
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{1} \sim U(4,8) \\
& a_{2} \sim U\left(10-a_{1}, 10+a_{1}\right) \\
& a_{3} \sim U\left(-a_{2}, 3 a_{2}\right)
\end{aligned}
$$

and

$$
\alpha_{2}=1 / 2 ; \quad \alpha_{3}=3 / 4
$$

The third period problem:

$$
\begin{gathered}
\max x_{3} \\
\text { s.t. } \begin{cases}x_{3} F_{a_{3} \mid a_{2}}^{-1} & \left(\alpha_{3}\right) \leqslant b_{3}-a_{1} x_{1}-a_{2} x_{2} \\
& x_{3} \geqslant 0\end{cases}
\end{gathered}
$$

Since $F_{a_{3} \mid a_{2}}^{-1}\left(d_{3}\right)=\left(4 d_{3}^{-1) a_{2}}=2 a_{2}>0\right.$ for all possible values of $a_{1}$ and $a_{2}$, we have

$$
x_{3}^{x}\left(d_{(2)}=\frac{b_{3}-a_{1} x_{1}^{3}-a_{2} x^{3} 2}{2 a_{2}}\right.
$$

since we have from the previous period constraint that

$$
\exists \lambda_{3} \geqslant 0 \ni a_{1} x_{1}+a_{2} x_{2}+\lambda_{3} m_{3}^{-1} a_{2}\left(\alpha_{3}\right) \leqslant b_{3} \text { for all } a_{2}
$$

which implies $a_{2} x_{2} \leqslant b_{1}-a_{1} x_{1}$ for all $a_{2}$.
The second period problem :

$$
\left.\begin{array}{c}
\max \left\{\begin{array}{c}
\left.x_{2}+\frac{E}{a_{2} \mid a_{1}}\left(\frac{b_{3}-a_{1} a_{1}-a_{2} x_{2}}{2 a_{2}}\right)\right\} \\
\text { s.t. }
\end{array}\right\}\left[10+\left(2 \alpha_{2}-1\right) a_{1}\right] x_{2} \leqslant b_{2}-a_{1} x_{1}
\end{array}\right\} \begin{aligned}
& \max x_{2} \leqslant b_{3}-a_{1} x_{1} \\
& a_{2} \quad x_{2} \geqslant 0
\end{aligned}
$$

or

$$
\begin{aligned}
& x_{2} \leqslant \min \left(\frac{b_{2}-a_{1} x_{1}}{10}, \frac{b_{2}-a_{1} x_{1}}{10+a_{1}}\right) \\
& x_{2} \geqslant 0
\end{aligned}
$$

Since the coefficient of $x_{2}(=1 / 2)$ is positive, we take $x_{2}$ as large as possible , ie.

$$
x_{2}^{x}\left(d_{1}\right)=\min \left(\frac{b_{2}-a_{1} x_{1}}{10}, \frac{b_{3}-a_{1} x_{1}}{10+a_{1}}\right) .
$$

We again know that this minimum is non-negative from the first period l-feasibility constraints. To facilitate computation we assume $b_{2} \geqslant b_{3}$ so that

$$
x_{2}^{x}\left(d_{1}\right)=\frac{b_{3}-a_{1} x_{1}}{10+a_{1}}
$$

$$
\begin{aligned}
& \text { The first period problem : } \\
& \max \left\{x_{1}+E\left[\frac{b_{3}^{-a_{1} x_{1}}}{10+a_{1}}+\underset{a_{2}^{\prime} a_{1}}{E}\left(\frac{b_{2}-a_{1} x_{1}-a_{2}\left(b_{3}-a_{1} x_{1 / 10}+a_{1}\right.}{2 a_{2}}\right)\right]\right\} \\
& \text { s.t. } \quad x_{1} F_{a_{1}}^{-1}\left(d_{1}\right) \leqslant b_{1}
\end{aligned}
$$

$\exists \lambda_{2}\left(d_{1}\right) \geqslant 0$ and $\lambda_{3}\left(d_{2}\right) \geqslant 0$ such that

$$
\begin{gathered}
a_{1} x_{1}+\lambda_{2}\left(d_{1}\right) F_{a_{2} / a_{1}}^{-1} \quad(1 / 2) \leqslant b_{2}, \forall a_{1} \\
a_{1} x_{1}+a_{2} \lambda_{2}\left(d_{1}\right)+\lambda_{3}\left(d_{(2)}\right) F_{a_{3}}^{-1} a_{2}(3 / 4) \leqslant b_{3^{\prime}} ¥ a_{1}, a_{2} \\
x_{1} \geqslant 0
\end{gathered}
$$

Since $\quad F_{a_{2} / a_{1}}^{-1}(1 / 2)>0, \quad a_{I}$

$$
\mathrm{F}_{\mathrm{a}_{3} / \mathrm{a}_{2}}^{-1} \quad(3 / 4)>0, \quad \forall a_{1}, a_{2}
$$

it is easily verified that the above constraints reduce to :
$0 \leqslant x_{1} \leqslant \min \left(\frac{b_{1}}{F_{a_{1}}^{-1}\left(\alpha_{1}\right)}, \frac{b_{2}}{8}, \frac{b_{3}}{8}\right)=\min \left(\frac{b_{1}}{F_{a_{1}}^{-1}\left(\alpha_{1}\right)}, \frac{b_{3}}{8}\right)$
The coefficient of $x_{1}$ in the objective function can be computed as:

$$
\frac{3}{2}+\frac{17}{8} \log 7-\frac{35}{8} \log 3>0
$$

which means that

$$
x_{1}=\min \left(\frac{b_{1}}{F_{a_{1}}^{-1}\left(d_{1}\right)}, \frac{k_{3}}{8}\right)
$$

## A P PENDIX

## 1. Definitions and Properties

Def. A. 1 : Two distribution functions $F$ and $G$ belong to the same type if they are connected by the following relation :

$$
(A, 1) \quad G(x)=F\left(\frac{x-a}{b}\right) \text { with } b>0
$$

Def. A. 2 : A distribution belongs to a stable type if its type is closed Wi th respect to convolutions. (see $[12]$ and $[8]$ ).

## Properties of Stable Listributions

l. All distributions are absolutely continuous.
2. The log characteristic furction of the most general form of a stable distribution is of the form :
(A.2) $\quad \log$
$(t)=i \delta t-c|t|^{\alpha}\left\{1+i \beta \frac{t}{|t|} h(|t|, \alpha)\right\}$
where the constants $c, \beta, \alpha$ satisfy $c \geqslant 0$

$$
\begin{aligned}
& |\beta| \leqslant 1 \\
& 0<\alpha \leqslant 2 \text { and } \alpha \text { real. }
\end{aligned}
$$

$h(|t|, d)$ is given by:

$$
\begin{aligned}
h(|t|, \alpha) & =\operatorname{tang} \alpha \pi / 2 & & \text { if } \alpha \neq 1 \\
& =2 / \pi \log |t| & & \text { if } \alpha=1
\end{aligned}
$$

The distribution is called symmetric stable if $\quad \beta=0$.
3. All stable distributions are unimodal.
4. For $0<\alpha \leqslant l$, stable distributions have no first or higher order moments. $1<\alpha<2$, a first moment exists but no higher moments. $\alpha=2$, all moments exist.
5. Stable distribution functionswith exponent $0<\alpha<1$ and parameter $|\beta|=1$ are one-sided distributions. They are bounded to the right if $\beta=+1$ and bounded to the left if $\beta=-1$.
6. The following special vases arise :

- for $\alpha=2, \beta=0: \log \phi(t)=i \delta t-c t^{2}$ corresponds to the log characteristic function of a normal distribution.
- for $\alpha=1, \beta=0: \log \phi(t)=i \delta_{t}-c|t|$ corresponds to the $\log$ characteristic function of a Cauchy-distribution with density function :

$$
p(x)=\frac{c}{\pi\left[c^{2}+(x-\delta)^{2}\right]},-\infty<x<\infty, \quad c>0
$$

- for $\alpha=1 / 2, \beta=-1, c=1, \delta=0: \log \phi(t)=-|t|^{1 / 2}\left\{1-i \frac{t}{\mid t!}\right\}$ corresponds to the log characteristic function of a one-sided distribution function with density :
(A.3) $\quad \mathrm{p}(\mathrm{x})=0$ if $\mathrm{x}<0$

$$
=(2 \pi)^{-1 / 2} x^{-3 / 2} e^{-1 / 2 x} \text { if } x>0
$$

Apart from these special cases, no stable distribution functions are known whose density functions are elementary functions.

## 2. Symmetric Stable Distribution Functions

Suppose $x$ has a symmetric stable distribution with log characteristic function :

$$
(A .4) \quad \log \phi_{x}(t)=i \delta_{t}-c|t|^{\alpha}
$$

It follows that the standardized variable

$$
\text { (A.5) } \quad u=\frac{x-5}{c^{1 / \alpha}}
$$

has a log characteristic function :

$$
\log \phi_{u}(t)=-\mid t 1^{\alpha}
$$

Using results of Bergstrom on series expansion to approximate densities [2], Fama and Roll [7] computed cumulative distribution functions and fractiles of standardized symmetric stable distributions for the characteristic exponent $1 \leqslant(\leqslant 2$. They also discuss estimation procedures for the coefficients $\delta, c$ and $\alpha$.

The univariate family of stable distributions has been extended to the multivariate case [11]. In the case of multivariate symmetric stable distributions, Press [15] considers the following family which has several interesting properties :
(A.6) $\quad \log \phi_{x}(t)=i \sigma_{t}-\frac{1}{2} \sum_{j=1}^{m}\left(t^{\prime} \Omega, t\right)^{i / 2}$
where $m$ is some integer $\geqslant 1$. (ris called the order of the family)

$$
\left.\begin{array}{l}
\delta_{1}=\left(\delta_{1}, \ldots, \delta_{p}\right) \text { is an arbitrary p-vector } \\
\Omega_{j}:(p x p) \text { positive semidefinite matrix, } \\
\\
\alpha \text { characteristic exponent } 0<\alpha \leqslant 2 \\
x
\end{array}\right)\left(x_{1}, \ldots, x_{p}\right) .
$$

If a vector $x=\left(x_{1}, \ldots, x_{p}\right)$ belongs to the family with log characteristic function (A. 6 ), we denote this by :

$$
\mathcal{L}(x)=s_{p}(m, \delta, \Omega, a)
$$

We will use the following proper'vy (for a proof, see [15]). Suppose $x$ : $p x l$ and $\mathcal{L}(x)=s_{p}\left(m, \delta, \delta_{i}, \alpha\right)$. Then if $y$ : qxi and $y=A x+b$, where $A: q x p$ and $b: q x^{2}, q \leqslant p$,

$$
(A .7) \quad \chi^{\varphi}(y)=s_{q}\left(m, A \delta+b, A \Omega A_{i}^{\prime}, \alpha\right)
$$

Press does not give estimation procedures for the parameters ; however one of his next papers will deal with this problem.

> Bo: Lography

1. Bellman, R.E., Dynamic Programming, Princeton University Press, New Jersey, 1957.
2. Bergstrom, H., "On some Expansions of Stable Distributions," Arkiv for Matematik, II (1952), 375-378.
3. Byrne, R., Charnes, A., Cooper, W.W. and K. Kortanek, "A ChanceConstrained Approach to Capital Budgeting with Portfolio Type Fayback and Liquidity Constraints and Horizon Posture Controls," Journal of Financial anl Quantitative Analysis, December, 1967, Vol. II, No. 6.
4. Byrne, R., Charnes, A., Cooper, W.W. and K. Kortanek, "A discrete Probability Chance-Constrained. Capital Budgeting Problem," Management Science Research Report, No. 155, GSIA, Carnegiemellon Uriversity, Pittsburgh, 1969.
5. Charnes, A. and M.J.L. Kirby, "Optimal Decision Rules for the E-Model of Chance-Constrained Programming, " Cahiers du Centre d'Etudes de Recherche Operationnelle, Vol. 8, No. I, 1966, 5-44.
6. Eisner, M.J., Kaplan, R.s., and J.V. Soden, "Adinissible Decision Rules for the E-Model of Chance-Constrained Programming, "Management Science, Vol. 17, 1971, 337-353.
7. Fama, E.F. and R. Roll, "Some Properties of Symmetric Stable Distributions," Journal of the American Statistical Association, September 1968, Vol. 63, 817-836.
8. Feller, W., An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley and Sons, 1966.
9. Kataoka, S., "A Stochastic Programming Model," Econometrica, Vol. 31, 1963, 181-196.
10. Kortanek, K. O. and J.V. Soden, "On the Charnes-Kirby Optimality Theorem for the Conditional Chance-Constrained E-Model, "Cahiers du Centre d'Etudes de Recherche Operationnelle, Vol. 2, 1967, 87-98.
11. Levy, P., Theorie de I'Addition des Varisbles Aleatoires, Second Ed. Pariw, 1954.
12. Lukacs E., Characteristic Functions, Hafner Publishing Company, N.Y., 1960.
13. Näslund, B., Decisions under Ris., EII, Stockholm, 1967.
14. Padberg, M., Coarse-Cond tioned Chance-Corstrained Programming, Management science Research Keport, No. 203, GSIA, Carnegie-Mellon University, Pittsburgh, 1970.
15. Press, J.S., "Multivariate Symmetric Stable Distributions," unpublished paper, University of Chicago.
16. Wets, R., "Programming under Uncertainty : The Equivalent Convex Program," SIAM Journal on Applied Mathematics, Vol. 14,
17. Wets, R., "Programming under Uncertainty : The Solution Set," SIAM Journal on Applied Mathematics, Vol. 14, 1966, 1143-1151.
