
The Triconnected Abstraction of Process Models

Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
(Artem.Polyvyanyy,Sergey.Smirnov,Mathias.Weske)@hpi.uni-potsdam.de

Abstract. Companies use business process models to represent their
working procedures in order to deploy services to markets, to analyze them,
and to improve upon them. Competitive markets necessitate complex
procedures, which lead to large process specifications with sophisticated
structures. Real world process models can often incorporate hundreds
of modeling constructs. While a large degree of detail complicates the
comprehension of the processes, it is essential to many analysis tasks.
This paper presents a technique to abstract, i.e., to simplify process
models. Given a detailed model, we introduce abstraction rules which
generalize process fragments in order to bring the model to a higher
abstraction level. The approach is suited for the abstraction of large
process specifications in order to aid model comprehension as well as
decomposing problems of process model analysis. The work is based on
process structure trees that have recently been introduced to the field of
business process management.

1 Introduction

Business process modeling is a well-established technique for designing and
communicating how work activities are related to each other, and how these
activities contribute to a business goal. To provide a common understanding
of the language used, standard modeling notations are proposed, for instance,
Business Process Modeling Notation (BPMN) [1], Event-driven Process Chains
(EPC) [2], and Petri nets [3]. Business process models serve as a communication
vehicle for different stakeholders, e.g., business analysts and software designers.
Moreover, process models are used to analyze working procedures, to propose
improvements, and even to provide a blueprint for a software realizing the process.

With the increasing complexity of services which companies provide to markets,
business processes fulfilling these services are getting more and more complex,
too. As a result, business process models often consist of dozens or even hundreds
of nodes, making these models hard to understand. There is a dilemma: On the
one hand, too much detail hampers the understanding of the overall process. On
the other hand, this level of detail might be required for process analysis and for
implementing the process in software.

There are two approaches to address the problem. Either different models
serving different purposes are developed, or different models, catering to different

mailto:Artem.Polyvyanyy@hpi.uni-potsdam.de; Sergey.Smirnov@hpi.uni-potsdam.de; Mathias.Weske@hpi.uni-potsdam.de

2 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

process modeling needs, are generated from a detailed original model. If the former
approach is followed, consistency of the models is a severe problem. Changes on
one level need to be reflected on other levels as well, which is often done manually.
Experience shows that due to model evolution on different levels of detail, the
models become inconsistent quite soon. Therefore, we opt for the latter approach:
We generate different process models from a given detailed model by introducing
transformation rules. These rules abstract from details of a process model and
provide abstracted models that non-technical stakeholders can understand. At the
same time, any evolutionary changes will be taken into account, since effectively
there is only one process model, and the others are generated from it on demand.
Technically, the work is based on the program parsing technique, known from
the compiler theory of sequential programs [4]. The method was introduced to
the business process management community in the refined process structure
tree (RPST) decomposition of workflow graphs [5].

While the results in this paper are of a conceptual and rather theoretical
nature, they emerged from an industry project conducted with a large health
insurance company, just like a previous study focusing on pattern-based process
abstraction [6]. In this initial endeavor, we developed an automated abstraction
control mechanism guided by the average execution time of tasks included in a
model. The proposed technique attempts to first abstract from tasks which are
rarely observed. Of course, in order to allow such an abstraction control, models
must be additionally annotated with the tasks’ average execution times. The
main limitation of the pattern-based approach is the problem of completeness, i.e.,
the necessity to have a full set of patterns which can support the abstraction of
arbitrarily structured process models. The idea of abstraction control mechanisms
is elaborated in [7], where an abstraction slider is presented.

The completeness of a set of reduction rules is a well-known problem in the
analysis of Petri nets. Berthelot proposed a set of rules which can be repeatedly
applied to reduce live and bounded marked graphs to a single transition [8,9]. Desel
and Esparza, in [10], proposed a complete kit of reduction rules for free-choice
Petri nets. In [11], Murata presents reduction rules which preserve the liveness,
safeness, and boundedness properties. However, all the mentioned rules are
incomplete when operating on models of an arbitrary structure. The limitations
of the pattern-based abstraction and the impossibility of closing the gap by
adapting the existing reduction rules have inspired this work. We define and
utilize for abstraction purposes a notion of a process component which permits
achieving completeness when handling a process model of an arbitrary structure.

The rest of the paper is organized as follows: The next section sketches the
research field of business process model abstraction, its perspectives and its
challenges. In section 3, we provide definitions and a basic corollary that form the
basis for further discussion. The structural decomposition of process models into
triconnected components is presented in section 4. In section 5, the components
are used for process model abstraction, resulting in the triconnected abstraction
technique. The paper closes with ideas on future steps and conclusions that
summarize our findings.

The Triconnected Abstraction of Process Models 3

2 Business Process Model Abstraction

This section discusses the research field of business process model abstraction
(BPMA). The core aspects of BPMA are identified. Finally, we position the
contribution area of BPMA to be addressed in the rest of the paper.

Business process analysts often attempt to capture every detail of handling a
particular business case for inclusion in a process model, which leads to excessive
numbers of modeling constructs and sophisticated model structures. In order
to reduce the complexity and to allow for the faster investigation of process
logic, we started to look for automated techniques to abstract, i.e., to simplify,
process models. Abstraction is the result of the generalization or elimination of
properties in an entity or a phenomenon in order to reduce it to a set of essential
characteristics. Information loss is the fundamental property of abstraction and
is its intended outcome. When modeling, business process analysts abstract from
the complex reality by extracting important behavioral aspects of a process. In
BPMA, we investigate problems specific to the abstraction of process model
entities. The challenge lies in identifying what is a meaningful generalization of
process logic aimed at removing certain characteristics while at the same time
emphasizing others.

In BPMA, identified process fragments can be eliminated or replaced by
concepts of a higher abstraction level which conceal, but also represent, the logic
of the underlying fragments. In both cases, generalization as well as elimina-
tion, sophisticated handling mechanisms need to be proposed. We refer to such
mechanisms as abstraction steps.

Control mechanisms combine atomic abstraction steps into abstraction strate-
gies. One can envision manual strategies in which a user specifies tasks to be
abstracted, semi-automated, or automated control mechanisms.

Any process abstraction methodology aims at ensuring certain properties of
abstracted models. The properties should allow a semantic relation between the
original and abstracted models. The key property we pursue in our approach
of process abstraction is order preservation. An order preserving abstraction is
an abstraction that ensures that neither new task execution order constraints
can appear after abstraction, nor existing ones (except for generalized ones)
go away. For instance, assume that task A should be abstracted. Let fA be a
process fragment affected in the abstraction step (fA contains A). As a result
of abstraction, fragment fA gets replaced by task F . If task B belongs to fA,
information about execution order constraints between task A and task B is lost.
However, an order preserving abstraction ensures that between any pair of tasks
not in fA, e.g., task C and task D, execution order constraints are preserved.
Furthermore, an order preserving abstraction guarantees that execution order
constraints between any task not in fA, e.g., task E, and any task in fA, task
A or task B in our example, are the same as between task E and task F . In
the end, an order preserving abstraction secures the overall process logic to be
reflected in the abstracted model.

A business process model abstraction methodology is a compromised com-
bination of requirements and techniques picked out from all of the discussed

4 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

abstraction aspects. Usually, such a combination is guided by project specific
use cases. This paper primarily contributes to the BPMA aspects of discovering
fragments which are structurally suitable for abstraction and further performing
abstractions. Effectively, we define a structural fragment type which is accepted
as a unit of process logic abstraction, provide mechanisms for the discovery of
a complete set of process fragments suitable for abstraction, and specify the
algorithm which aims at abstracting from a given task in a process model by
utilizing the discovered fragments.

3 Preliminaries

In this section, we introduce basic definitions. We start with a process model
formalism adapted from [12] which is based on generic modeling concepts. A
process model consists of a set of tasks and their structuring using directed
control flow edges and gateway nodes that implement process routing decisions.

Definition 1. P = (N, E, type) is a process model if N = NT ∪NG is a set of
nodes, where NT is a nonempty set of tasks and NG is a set of gateways; the
sets are disjoint. E ⊆ N ×N is a set of directed edges between nodes defining
control flow. type : NG → {and, xor, or} is a function that assigns a control flow
construct to each gateway. (N, E) is a connected graph—a process graph. Each
task t ∈ NT can have at most one incoming and at most one outgoing edge
(|•t| ≤ 1 ∧ |t•| ≤ 1), where •t stands for a set of immediate predecessor nodes
(•t = {n ∈ N |(n, t) ∈ E}) and t• stands for a set of immediate successor nodes
(t• = {n ∈ N |(t, n) ∈ E}) of task t. A task t ∈ NT is a process entry if |•t| = 0.
A task t ∈ NT is a process exit if |t•| = 0. There is at least one process entry
task and at least one process exit task. Each gateway is either a split or a join. A
gateway g ∈ NG is a split if (|•g| = 1 ∧ |g•| > 1). A gateway g ∈ NG is a join if
(|•g| > 1 ∧ |g•| = 1).

To be able to refer to parts of a process model, we define a process fragment.
A process fragment is a connected part of a process model.

Definition 2. A process fragment F = (NF , EF , typeF) of a process model
P = (N, E, type), where NG ⊂ N is a set of gateways of P , consists of a
connected subgraph (NF , EF) of the process graph (N, E) of P and function
typeF , which is a restriction of the function type of P to a set NF ∩NG.

Within a process fragment, nodes can be classified in regard to their structural
relation to the whole process model.

Definition 3. A node n ∈ NF is a boundary node of a process fragment
F = (NF , EF , typeF) in a process model P = (N, E, type) if n is a process entry
of P , a process exit of P , or there exist edges ei ∈ EF and ej ∈ E\EF adjacent
through n. A non-boundary node n ∈ NF of F is an internal node of F .

Boundary nodes of a process fragment can be distinguished as fragment
entries and fragment exits based on the directions of incident control flow edges.

The Triconnected Abstraction of Process Models 5

g1t1 g4

g2

g5

g3

t2

t3

t10 t12t11

t6

t7

t9

t8

t13 g6 t14

t4 t5

Fig. 1. A process model

Definition 4. Let n ∈ NF be a boundary node of a process fragment
F = (NF , EF , typeF) in a process model P = (N, E, type), then:

◦ A node n is a fragment entry of F if all the incoming edges of n are outside
of F (•n ⊆ N\NF) or all the outgoing edges of n are inside of F (n• ⊆ NF).

◦ A node n is a fragment exit of F if all the outgoing edges of n are outside of
F (n• ⊆ N\NF) or all the incoming edges of n are inside of F (•n ⊆ NF).

Finally, we recognize a special class of process fragments—process components.

Definition 5. A process component C = (NC , EC , typeC) is a process fragment
with two boundary nodes: one fragment entry and one fragment exit.

This notion of a component was first introduced in [4] as a concept of a proper
subprogram. A process component is a process fragment in which it is assured
that if control flows through a fragment’s edge, it has first entered the process
fragment through the fragment entry and will subsequently leave the process
fragment through the fragment exit.

Structurally, a process component is a self-contained block of process logic
with strictly defined boundaries. Semantically, a process component can be ad-
dressed as a detailed specification of task execution scenarios. Hence, any process
component can be formalized as a WF-net [13] of, potentially, an arbitrary struc-
ture. Therefore, in the triconnected abstraction approach, a process component
is accepted as a unit of meaningful aggregation of process logic, i.e., detailed
specifications get represented by a corresponding task concept. In the following
sections, we discuss issues relevant to the identification and abstraction of process
components in process models.

We require process models to be structurally sound [12], i.e., a process model
should have exactly one process entry, exactly one process exit, and each process
model node should be on a path from the process entry to the process exit. The
prerequisite introduces a minimal correctness notion for process models—subjects
for abstraction. Moreover, the stated structural requirement is crucial when
it comes to the discovery of process components in process models. Figure 1
provides an example of a process model suitable for abstraction.

6 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

4 The Triconnected Decomposition

This section explains how to discover process fragments that relate to the notion
of a process component as defined in section 3. First, we give the basic intuition
inherent in the algorithm. Afterwards, we show the relation of the discovery
process to the approach of SPQR-tree [14,15] decomposition. Finally, we discuss
SPQR-tree fragments in the context of process models.

4.1 Basic Approach for Process Component Discovery

A search for a process component in a process model is guided by its definition
(see Definition 5), which states that a process component is a process fragment
with two boundary nodes. Boundary nodes are the nodes that connect the
fragment to the model, i.e., if removed the fragment becomes disconnected from
the model. Thus, in order to discover a process component, one must first look
for a separation pair—a pair of nodes that disconnect a process fragment from
the rest of the process model. For instance, gateways g3 and g4 disconnect task
t9 in the process model from Figure 1. Afterwards, the boundary nodes of the
fragment need to be tested to give one fragment entry and one fragment exit.

A separation pair divides process model into two fragments. In order to find all
fragments with two boundary nodes, the rationale of the described discovery step
must be applied to each of the two fragments, resulting in a divide and conquer
algorithm design. Each recursive thread terminates once the problem cannot be
further subdivided, i.e., there is no separation pair in a process fragment.

The described algorithm is in fact the algorithm for the discovery of tri-
connected components in a graph. Connectivity is a property of a graph. It is
known that a graph is k-connected if there exists no set of k− 1 elements, each a
vertex or an edge, whose removal makes the graph disconnected (there is no path
between some node pair in a graph). Such a set is called a separating (k − 1)-set.
Separating 1- and 2-sets of graph vertices are called cutvertices and separation
pairs. 1-, 2-, and 3-connected graphs are referred to as connected, biconnected,
and triconnected, respectively. Each recursive thread of the algorithm terminates
once it encounters a triconnected component.

4.2 SPQR-Tree Decomposition

In order to discover process components, one can use SPQR-tree decomposition.
SPQR-tree decomposition is a decomposition of an undirected biconnected multi-
graph induced by its split pairs aimed at identifying its triconnected components.
A split pair is either a separation pair or a pair of adjacent nodes. Process models
are connected, but not necessarily biconnected. For example, the process model
from Figure 1 has cutvertex g1. However, it is always possible to make a process
model biconnected by adding a back edge connecting a process exit with a process
entry. The requirement of structural soundness ensures that every process model
has exactly one process entry and exactly one process exit.

The Triconnected Abstraction of Process Models 7

g1t1 g4

g2

g5

g3

t2

t3

t10 t12t11

t6

t7

t9

t8

t13 g6 t14

t4 t5
S8

S9

P2

S2

S5

S10

P3

S3

S4

S7

S1
P1

R1

S6

(a) Undirected process graph, triconnected components

S1

P2

S10

P3

S3

R1

S8

P1

S2

S4 S5 S6 S7

S9

(b) SPQR-tree

Fig. 2. SPQR-tree process model decomposition

The algorithm for the discovery of triconnected components of a graph was
first proposed by Hopcroft and Tarjan in [16]. Later, Tarjan and Valdes in [4]
applied the algorithm for sequential program parsing to obtain the parse tree
(or the tree of the triconnected components). The tree was studied as SPQR-tree
in [14,15]. [16,17,18] show the path towards a linear time complexity algorithm
implementation of SPQR-tree decomposition. The decomposition results in tricon-
nected components of four structural types, in the following using the SPQR-tree
terminology, S, P , Q, and R types.

◦ Trivial case. A split pair is a pair of adjacent graph vertices—a fragment
consists of one edge—the Q-type fragment.

◦ Parallel case. A split pair is a pair of adjacent graph vertices in k distinct
edges (k ≥ 2)—the P -type fragment.

◦ Series case. A split pair is a pair of graph vertices giving a maximal sequence
of vertices and consists of k nodes and k edges (k ≥ 3)—the S-type fragment.

◦ Rigid case. If none of the above cases applies, a fragment is a triconnected
fragment—the R-type fragment.

SPQR-tree decomposition of the process model from Figure 1 is exemplified in
Figure 2. Each process fragment corresponds to a triconnected component of the
model and is defined by edges that are inside or intersect with a corresponding
region visualized with a dashed line in Figure 2(a). Fragment names hint at
structural fragment types, e.g., P1, P2, and P3 are all parallel case fragments.
Boundary nodes of a fragment are the nodes incident with edges crossing the
region borderline and are outside of the region.

Figure 2(b) shows an SPQR-tree that visualizes hierarchical fragment relations.
Fragment P1 contains fragments R1 and S2 and is fully contained within fragment
S1. Each SPQR-tree node represents a fragment skeleton, i.e., basic structure of
a fragment and its relations with a parent and child fragments. Figure 3 shows

8 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

g1

g6

(a) P1

g1

g2

g5

g3 g6

(b) R1

g2

g6

(c) P2

g4

g3

g5

(d) S6

g3

g4

(e) P3

g3

g4

t9

(f) S10

Fig. 3. SPQR-tree fragment skeletons

fragment skeletons of SPQR-tree nodes from Figure 2(b). Boundary nodes are
highlighted with a thick borderline, e.g., nodes g1 and g6 in fragment R1 (see
Figure 3(b)). Each fragment skeleton can consist of edges of three types. Original
graph edges are drawn with solid lines, whereas dotted and dashed lines represent
virtual edges. Each virtual edge is shared between two fragment skeletons and
hints at a parent-child relation. An edge visualized by a dotted line shows a
child relation of the fragment skeleton with another skeleton which contains
the same virtual edge; a dashed line signals a parent relation. For instance, the
fragment skeleton from Figure 3(f) contains one virtual edge (g3, g4), which
hints at a child relation with another fragment skeleton that contains the same
virtual edge—fragment skeleton P3 (see Figure 3(e)). In order to obtain the
graph fragment given by fragment skeleton P3, one must “glue” it together
with fragment skeleton S10 along virtual edge (g3, g4). Once the fragments are
combined, the virtual edge is removed. In general, a graph fragment represented
by an SPQR-tree node can be obtained by combining all its descendants.

SPQR-tree provides process model decomposition that ignores control flow
edge directions. At this point, there has still been no distinction made between
entry and exit boundary nodes; obtained fragments still cannot be classified as
process components.

4.3 SPQR-Tree Fragments in the Context of Process Models

In this section, we examine fragments obtained after the SPQR-tree decomposition
of a process model, i.e., edges of a process graph are directed and nodes distinct
as tasks and gateways.

In general, an SPQR-tree can be rooted to any node. However, in the context of
a process model it makes sense to root the tree to a node representing the fragment
containing the deliberately introduced back edge (node S1 in Figure 2(b)). As a
result, one obtains the structural hierarchical refinement of a process model.

Further observations are: Task nodes can only be present, but are not always
necessarily present (see Figure 3(d)), inside of S-type fragments, while boundary
fragment nodes are always gateways. The former property comes from the
definition of the S-type fragment. Any sequence of nodes in a process graph
can only be formed by task nodes embraced by gateways. Thus, any maximal

The Triconnected Abstraction of Process Models 9

sequence, also composed of one task (see Figure 3(f)), is recognized as the S-type
fragment with two boundary gateways: one at sequence entry and another at
sequence exit. This also means that other fragment skeletons are composed of
gateways only, which testifies the latter property.

Until now, we have recognized sequences as S-type fragments. Q-type frag-
ments stand for original process graph edges, e.g., the edge (g4, g5) of fragment
skeleton from Figure 3(d). P -type fragments (see Figures 3(a), 3(c), and 3(e))
allow identification of block and loop structures within process models. The
control flow of the process model from Figure 1 specifies fragments P1 and P2
as blocks and fragment P3 as a loop (there exists a back edge between boundary
nodes g3 and g4). The fragment from Figure 3(b) is the triconnected fragment
that explicitly defines what makes the process model graph-structured. There
are no R-type fragments in a block-structured process model. A block-structured
process model can be inductively composed based on sequence, block, and loop
patterns (S-type and P -type fragments) [19].

Finally, we are ready to make the concluding proposition of section 4:

Theorem 1. Any process fragment obtained after SPQR-tree decomposition of
a structurally sound process model is a process component.

Proof. Any process fragment obtained after SPQR-tree decomposition of a process
model has two boundary nodes. A pair of boundary nodes of a process fragment
is a split pair of the process model. Thus, it is necessary to show that one of the
boundary nodes is a fragment entry and the other is a fragment exit.

First, we show that any boundary node of a process fragment induced by
SPQR-tree decomposition is either a fragment entry or a fragment exit. All the
edges incident with a boundary node are divided into two disjoint sets of those
inside and those outside the fragment. Definition 4 states that a boundary node
of a process fragment is a fragment entry or a fragment exit if either all the
incoming or all the outgoing edges incident with the node are either the edges
of the fragment or are outside the fragment. As explained above, any boundary
node is a gateway. For any gateway, either a set of all incoming edges or a set of
all outgoing edges consists of one element (see Definition 1). The relation of this
one edge, either belonging to the process fragment or not, defines the relation
of the whole set. Therefore, any boundary node can only expose the logic of a
fragment entry or a fragment exit.

The rationale towards a formal proof of the “pure” logic of a boundary node
of a process fragment can be approached as follows. Let P = (N, E, type) be a
process model, F = (NF , EF , typeF) be a process fragment of P . Let us define
auxiliary predicates:

◦ i : E × N → {true, false} is true if e ∈ E is the incoming edge of node
n ∈ N , false otherwise, and

◦ o : E × N → {true, false} is true if e ∈ E is the outgoing edge of node
n ∈ N , false otherwise.

One can now define predicates which check if a node n ∈ N can be an entry
of F—canEnter, or an exit of F—canExit:

10 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

(a) (b) (c) (d)

Fig. 4. All possible combinations for edge separation on internal and external
fragment edges for a boundary gateway connecting three edges

◦ canEnter(n, F) = ∃e1 ∈ E\EF∃e2 ∈ EF : i(e1, n) ∧ o(e2, n),
◦ canExit(n, F) = ∃e1 ∈ EF∃e2 ∈ E\EF : i(e1, n) ∧ o(e2, n).

In order to show that any boundary fragment node cannot at the same
time expose entry and exit logic, one must show that the logical statements
canEnter(n, F) |= ¬canExit(n, F) and canExit(n, F) |= ¬canEnter(n, F) hold.
Hence, one must show that canEnter(n, F) ∧ canExit(n, F) is a false statement
on all interpretations which in a prenex normal form says:

∃e1 ∈ E\EF∃e2 ∈ EF∃e3 ∈ EF∃e4 ∈ E\EF : i(e1, n)∧o(e2, n)∧i(e3, n)∧o(e4, n)

If n is a split gateway, the statement might evaluate to true only if e1 and
e3 are bound to the same edge. This, however, is impossible, as e1 and e3

belong to different sets which are disjoint: E and E\EF . The same rationale
applies for a join gateway and edges e2 and e4. Therefore, a logical expression
canEnter(n, F) ∧ canExit(n, F) always evaluates to false, which proves the
pure logic of any boundary node of F .

Figure 4 shows all possible combinations of internal and external fragment
edges incident with a boundary gateway which connects three edges. The dashed
line separates edges on fragment’s internal and external edges. Regardless of
a separation and a gateway type, control flow is only allowed to “penetrate”
a fragment’s boundary in one direction, either to enter or to leave a process
fragment.

Finally, it is necessary to show that only one arrangement of boundary nodes
is possible, i.e., one of the nodes is a fragment entry and the other is a fragment
exit. We show this by contradiction; the settings of two fragment entries or two
fragment exits are not possible under the correctness criteria imposed on a process
model—a process model is structurally sound. Two cases can be reduced to one.
For instance, in case of a fragment with two exits, one can discuss a two entry
fragment formed by the edges outside the two exit fragment. A process fragment
with two entries violates the requirement of a structurally sound process model
which states that each node in a process model is on a path from a process entry
to a process exit. Once we enter a two entry fragment, we never leave it. Any
node of a two entry fragment cannot be on a path from the process entry to
the process exit. Therefore, one of the boundary nodes must be a fragment exit.

The Triconnected Abstraction of Process Models 11

If the process entry and the process exit are the boundary nodes of a process
fragment, the process entry is a fragment entry and the process exit is a fragment
exit. ut

5 The Triconnected Abstraction

This section presents the triconnected abstraction. The approach is based on the
decomposition technique described in section 4. First, we define abstraction rules.
Afterwards, we combine the rules into the process model abstraction algorithm.

5.1 Abstraction Rules

The triconnected process model abstraction technique is founded on the idea of
interchanging process fragments with process tasks of higher abstraction levels.
In this section, we present abstraction rules that utilize process components
obtained after SPQR-tree decomposition for this purpose. The approach assumes
abstraction control mechanism that delivers collection of tasks to be abstracted
in the process model.

Once a task to abstract is selected, it uniquely identifies the S-type fragment
that contains the task and its structural relation within SPQR-tree. There can
be seven types of SPQR-tree edges based on the types of adjacent nodes of
S-, P -, and R-type; Q-type fragments are not considered. Edges of (S, S)-type
and (P, P)-type are recognized as single fragments of S- or P -type, respectively.
Edges are proposed as (parent, child) pairs. Out of seven edge types, four connect
S-type nodes: (S, P), (S, R), (P, S), and (R,S). The abstraction rules we propose
operate within a single series case process fragment, or assume one of the four
stated structural relations of an S-type process fragment.

Sequential (Q-Type) Abstraction A task in a process model can be struc-
tured in a sequence with other tasks. We implement abstraction of this task by
aggregation with one of its neighbors. Any maximal sequence of tasks is recog-
nized within an S-type process component. Thus, the abstraction is performed
locally, i.e., within one process component.

B

C

A

C

AB

Fig. 5. Sequential abstraction

Figure 5 shows an example of a sequential ab-
straction performed inside of the S-type process
component. The structure of the original process
component is given on the left of the figure. The
component is a maximal sequence of three tasks.
The example ignores boundary gateway logic,
which can be either split or join. In the case task
A or C should be abstracted, selection of the
neighbor task to aggregate with is obvious—it is
task B. However, if task B triggers abstraction,
the selection is delegated to the abstraction control mechanism. If structural

12 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

process model generalization is of interest, abstraction control mechanism can
allow nondeterministic task choice. In the example, task A is selected to be
aggregated with task B, the corresponding process fragment is enclosed in the
region with a dashed borderline and constitutes a single Q-type component.

The process component structure on the right of Figure 5 is the output of
the sequential abstraction step. As a result, tasks A and B are aggregated into
one task AB that semantically corresponds to the activity of first accomplishing
task A and then task B. The process component keeps its structural type—the
S-type. Sequential abstraction preserves SPQR-tree structure.

S-Type Abstraction A maximal sequence of tasks in a process model can
consist of one task. The situation might occur in the original model or be a result
of the prior application of sequential abstractions. This task can be structured in a
sequence with process components of P -type or R-type. Within SPQR-tree, such
structural relations are captured by (S, P)- or (S, R)-type edges. If it is necessary
to abstract the task, aggregation with a neighbor component is performed to
result in S-type abstraction.

e

A

e

A[P]

Fig. 6. S-type abstraction

Figure 6 shows an example of S-
type abstraction. Task A is designed
for abstraction (highlighted with a
thick borderline on the left in Figure 6).
Task A has no neighbor task—sequen-
tial abstraction is not possible. How-
ever, the task is in a sequence with the
P -type component to form the abstrac-
tion fragment in the region enclosed by
the dashed borderline. The result of S-

type abstraction is given on the right of the figure. Abstraction results in task
A[P], which semantically corresponds to the activity of first accomplishing task
A and then performing a process fragment captured by the P -type component.
S-type abstraction results in SPQR-tree transformation. The branch representing
the abstracted component gets removed. Abstraction leads to a restructuring
of the S-type component that contained the task which triggered abstraction.
However, the component retains its type—the S-type.

S-type abstraction is presented by means of a structural relation of an (S, P)-
type edge in SPQR-tree. The procedure for an (S, R)-type edge is analogous. In
the example, the boundary gateways of the abstracted component are reduced.
In general, if a boundary gateway of an abstracted component is shared with
some other process component, it must be preserved in the abstracted model.

P-Type Abstraction Sequential and S-type abstractions tend to generalize
S-type components into simple components. A simple component is a S-type
component composed of a single task (see Figure 3(f)). Simple components
are structured by (P, S)- or (R,S)-type edges in SPQR-tree. If a task from

The Triconnected Abstraction of Process Models 13

a simple component is selected for abstraction and its parent component is a
P -type component, P -type abstraction is performed. The task is aggregated with
some other child component of the parent component. The selection of the child
component to aggregate with is carried out by the abstraction control mechanism.

 e1 e1 A e2 e2 [P]A

Fig. 7. P -type abstraction

Figure 7 shows an example of
P -type abstraction. Task A is se-
lected for abstraction. The task is
highlighted with a thick border-
line and is the only task of the
simple component (shown on the
left of Figure 7). The simple com-
ponent is the child component of
the P -type component. It shares virtual edge e1 with its parent. The result of the
P -type abstraction step is given on the right of the figure. Two child components
of the P -type component are aggregated into one simple component that contains
task [P]A. This task semantically corresponds to the execution of two abstracted
branches following the type of the boundary gateways. The obtained simple
component shares virtual edge e2 with the parent P -type component.

P -type abstraction results in SPQR-tree transformation. The branch that
represents the abstracted component is completely removed. The number of child
components of the parent parallel component is reduced by one. If the P -type
component initially contains two branches, abstraction results in a single branch.
Afterwards, the boundary gateways must be reduced if they do not specify any
routing logic, i.e., have single incoming edge and single outgoing edge. In such
a case, the P -type component node is further reduced in the SPQR-tree to
represent a single task within the next level parent component.

R-Type Abstraction A task intended for abstraction can be contained in a
simple component within a process model that is a child of a R-type component.
Such a structural relation is specified by a (R,S)-type edge within SPQR-tree.
R-type abstraction is proposed to handle this situation. As a result of the R-type
abstraction the task is aggregated with the whole parent component.

e

e A

[R]A

Fig. 8. R-type abstraction

Figure 8 shows an example
of R-type abstraction. Task A is
selected to be abstracted. The
task is highlighted with a thick
borderline and is the only task
of the simple component on the
left of the figure. The simple
component is the child of the R-
type component (the same com-
ponent as in Figure 3(b)). The

simple component shares the virtual edge e with its parent and corresponds to
fragment S7 from Figure 2. The result of R-type abstraction step is given on the
right of Figure 8. The abstraction results in the aggregation of the whole parent

14 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

R-type component into a simple component that has task [R]A and boundary
gateways of the R-type component. The task semantically corresponds to the
execution of the whole rigid component.

R-type abstraction results in SPQR-tree transformation. The abstracted R-
type component gets replaced by a simple component. The branch of the R-type
fragment is completely removed. Similar to P -type abstraction, the boundary
gateways can be skipped to further reduce the resulting simple component.

5.2 Abstraction Algorithm

Section 5.1 presented four abstraction rules. The rules cover all possible structural
relations of a task in a process model. In this section, we organize them into a
procedure that handles a single abstraction step of a task. As input, the algorithm
obtains a process model, its SPQR-tree decomposition, and a task to abstract. As
output, the algorithm delivers a process model with the specified task abstracted.
Algorithm 1 formalizes the procedure in pseudo code.

g1t1

g2

g5

g3

t2

t3

t13 g6 t14

a1

a2

a3

a4

Fig. 9. An abstracted process model

The algorithm orchestrates ab-
straction rules and attempts to ag-
gregate a minimal number of tasks
at each abstraction step; empirical
insights for the proposed solution
were obtained in [6]. In line 1, the
component c which contains task
a is identified—it is a S-type com-
ponent. If c is not a simple com-
ponent (line 2), then either it has
a neighbor task (line 3) or a neighbor component (line 4) that can be aggregated
with task a. Otherwise (line 5), abstraction of task a depends on the parent
component of c. If c is the root component of SPQR-tree, then p consists of a
single task a and there is nothing else to abstract (line 6). Otherwise, get the
parent component of c—component cp (line 7). If cp is a P -type component
(line 8) or a R-type component (line 9), then P -type abstraction or, respectively,
R-type abstraction is performed.

Algorithm 1 The Triconnected Abstraction
TriAbstraction(ProcessModel p, SPQRtree t, Task a)
1. c := component of process model p from SPQR-tree t containing task a
2. if c is not a simple component then
3. if a has neighbor task in c then perform sequential abstraction of a
4. else perform S-type abstraction of a
5. else // c is a simple component

6. if c is the root component in t then p is already abstracted to one task return
7. cp := get a parent component of c in SPQR-tree t
8. if cp is P -type component then perform P -type abstraction of a
9. if cp is R-type component then perform R-type abstraction of a

The Triconnected Abstraction of Process Models 15

Algorithm 1 provides a formal relation between an original model and an
abstracted one. The triconnected abstraction is the order preserving abstraction.
Figure 9 shows the abstraction example of the process model from Figure 1. In the
example, a collection of tasks selected for abstraction caused process components
S2, S5, S6, S8, S9, S10, P2, and P3 to get abstracted. These tasks can be t6,
t8, t9, t10, and t12 (see Figure 1). After abstraction, aggregating tasks a1, a2,
a3, and a4, highlighted with grey background in the figure, conceal the process
logic of abstracted components. For instance, task a1 is the abstraction of two
branches: one composed of tasks t4 and t5, and the other of a single task t6.
The type of gateway g2 specifies the behavioral relation of both branches inside
the abstracted task. Task a1 can be derived using a single P -type abstraction
step triggered by task t6 or by a series of sequential then P -type abstractions
if first triggered by either t4 or t5. The only R-type component of the process
model, shown in the region enclosed by the dashed borderline in Figure 9, is not
abstracted. An algorithmic step aimed at abstracting any of the tasks contained
within the region will cause the whole component to aggregate into one task.

6 Conclusions

In this paper, we investigated how the SPQR-tree decomposition of process
models can help the task of process model abstraction, in particular the discovery
of structurally meaningful process model fragments and their aggregation. We
defined abstraction rules based on the notion of a process component and proposed
their arrangement in the algorithm.

The triconnected abstraction technique defines structural model transforma-
tions and can be generalized to any process modeling notation which uses directed
graphs as the underlying formalism. Limitations of the triconnected abstraction
technique come from restrictions on process model structure. Process models
must be free of self-loop structural patterns (should have no cutvertices), and
must contain no “mixed” gateways with multiple incoming and multiple outgoing
edges (should decompose onto process components). The limitations described
above can be overcome by a preprocessing step which transforms mixed gateways
into a sequence of first a join, then a split. Alternatively, one can generalize
abstraction mechanisms to operate with the RPST decomposition [5].

While the results have proven very useful to our project partner, the abstrac-
tion mechanisms only take into account the structure of a business process. In
particular, the user of the abstraction might decide that certain activities need to
be present in several or even all abstractions. In this case, the application of the
mechanisms introduced in this paper needs to be restricted. Therefore, studies
regarding the methodology of abstractions need to complement the more techni-
cal studies reported in this paper. In future works, we also plan to investigate
multiple entry multiple exit components; this should allow further decomposition
of rigid case fragments in process models. Theorem 1 gives promising insights into
the problem of RPST computation, which we plan to develop in the following
work. A promising research direction is to look into how the triconnected ab-

16 Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske

straction technique can be employed for decomposing problems of process model
verification—process model behavior analysis, and which model properties are
preserved by the abstraction rules.

References

1. OMG: Business Process Modeling Notation, Version 1.2. (January 2009)
2. Keller, G., Nüttgens, M., Scheer, A.: Semantische Prozessmodellierung auf der

Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89, Uni-
versity of Saarland (1992)

3. Petri, C.: Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle
Mathematik, Bonn, Germany (1962)

4. Tarjan, R.E., Valdes, J.: Prime Subprogram Parsing of a Program. In: Proceedings
of the 7th Symposium on Principles of Programming Languages (POPL), New
York, NY, USA, ACM (1980) 95–105

5. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In:
Proceedings of the 6th International Conference on Business Process Management
(BPM), Milan, Italy (September 2008) 100–115

6. Polyvyanyy, A., Smirnov, S., Weske, M.: Reducing Complexity of Large EPCs.
In: Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten (MobIS:
EPK), Saarbruecken, Germany (November 2008)

7. Polyvyanyy, A., Smirnov, S., Weske, M.: Process Model Abstraction: A Slider
Approach. In: Proceedings of the 12th IEEE International Enterprise Distributed
Object Computing Conference (EDOC), Munich, Germany (September 2008)

8. Berthelot, G.: Checking Properties of Nets using Transformation. In: Advances in
Petri Nets 1985, London, UK, Springer-Verlag (1986) 19–40

9. Berthelot, G.: Transformations and Decompositions of Nets. In: Advances in Petri
nets 1986, London, UK, Springer-Verlag (1987) 359–376

10. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New
York, NY, USA (1995)

11. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4) (1989) 541–580

12. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer Verlag (2007)

13. Aalst, W.: Verification of Workflow Nets. In Azéma, P., Balbo, G., eds.: Application
and Theory of Petri Nets, Berlin, Germany, Springer Verlag (1997) 407–426

14. Battista, G.D., Tamassia, R.: Incremental Planarity Testing. In: Proceedings of
the 30th Annual Symposium on Foundations of Computer Science (FOCS). (1989)

15. Battista, G.D., Tamassia, R.: On-Line Maintenance of Triconnected Components
with SPQR-Trees. Algorithmica 15(4) (1996) 302–318

16. Hopcroft, J.E., Tarjan, R.E.: Dividing a Graph into Triconnected Components.
SIAM Journal on Computing 2(3) (1973) 135–158

17. Fussell, D., Ramachandran, V., Thurimella, R.: Finding Triconnected Components
by Local Replacement. SIAM Journal on Computing 22(3) (1993) 587–616

18. Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR-Trees. In:
Proceedings of the 8th International Symposium on Graph Drawing (GD), London,
UK, Springer-Verlag (2001) 77–90

19. Liu, R., Kumar, A.: An Analysis and Taxonomy of Unstructured Workflows. In:
Proceedings of the 3rd International Conference on Business Process Management
(BPM), Nancy, France (September 2005) 268–284

	The Triconnected Abstraction of Process Models
	Introduction
	Business Process Model Abstraction
	Preliminaries
	The Triconnected Decomposition
	Basic Approach for Process Component Discovery
	SPQR-Tree Decomposition
	SPQR-Tree Fragments in the Context of Process Models

	The Triconnected Abstraction
	Abstraction Rules
	Sequential (Q-Type) Abstraction
	S-Type Abstraction
	P-Type Abstraction
	R-Type Abstraction

	Abstraction Algorithm

	Conclusions

