|EEE Transactions on VLS Systems, Val. 3, No. 4, pp. 473-482, December, 1995

The Triptych FPGA Architecture

Gaetano Borriello, Carl Ebeling, Scott Hauck, Steven Burns

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195

Abstract

Field-programmable gate arrays (FPGAs) are an important implementation medium for digital logic.
Unfortunately, they currently suffer from poor silicon area utilization due to routing constraints. In this
paper we present Triptych, an FPGA architecture designed to achieve improved logic density with
competitive performance. Thisis done by allowing a per-mapping tradeoff between logic and routing
resources, and with a routing scheme designed to match the structure of typical circuits. We show that this
yields a logic density improvement of up to a factor of 3.5 over commercial FPGAs, with comparable
performance. We also describe Montage, the first FPGA architecture to fully support asynchronous and
synchronous interface circuits.

1 Introduction

Field-programmabl e gate arrays (FPGASs) have quickly become an important medium for the implementation of
digital logic. These arrays exploit the increasing capacity of integrated circuits to provide designers with
reconfigurable logic that can be programmed on an application-specific basis. This drastically increases flexibility in
both the design process and the final artifact by permitting one board-level design to perform many functions, or to
be upgraded in thefield.

Almost al of the FPGASs currently available - and certainly all of the dominant ones - are based on a strict separation
between logic and routing resources which pervades from the architecture itself to the tools employed in mapping
designs. Thisclosely parallels the development of integrated circuit gate arrays, arrays that utilize afew metal layers
for customization. A similar distinction was made between logic cells and the routing resources that interconnect
them. The strict separation was too confining, eventually leading to the sea-of-gates approach. Conceptually, the
differenceisthat in a sea-of-gates the split between logic and routing area can be made on a per-mapping basis. This
permits applications with regular logic structures to more efficiently utilize silicon area, while still permitting the
use of many wires (at the expense of logic) for random logic circuits.

FPGAs are at a similar point today. Aswith mask-programmable gate arrays, an ever larger proportion of the
silicon areais being devoted to routing resources to ensure that more and more designs are routable. Furthermore,
the logic cells are becoming ever more complex, attempting to perform coarser-grain functions and lighten the load
on the routing resources, but often end up being under-utilized. Aswas the case for gate arrays, it is now time to
evaluate the logic/routing tradeoff in FPGA architectures.

We have developed the Triptych FPGA architecture, which can be viewed as an FPGA in the sea-of-gates style.
Triptych addresses the two fundamental efficiency problems with current FPGAS. increasing routing area and
decreasing cell utilization. The innovations include the flexible allocation of logic cellsto either logic or routing
functions, an array structure that more closely matches the wide shallow structure of most logic functions, and fine-
grain cellsthat can be connected to form larger structures through short, fast local wires.

The rest of the paper is divided into four major sections. Section 2 provides the details of the Triptych architecture!
and explains the rationale underlying the design decisions. Section 3 describes some variations on the base
architecture, including the first FPGA to fully support the implementation of asynchronous systems. Section 4
completes the body of the paper by presenting a methodology for comparing FPGA architectures, and demonstrates
Triptych’s advantages. Finally, section 5 finishes with some conclusions.

1 Tools for automatically mapping designs to the Triptych FPGA (aswell as others) are described in a companion paper
“Mapping Tools for the Triptych FPGA”.

2 The Triptych Architecture

The overall goal mativating the development of the architectures described in this paper was to reduce the significant
cost paid for routing in standard FPGAs. The approach taken istwofold. First, instead of having a strong separation
between logic and routing resources, with the percentage of each fixed in the architecture, the resources are combined
in away that allows the tradeoff of logic and routing resource on a per-mapping basis. Thisis done by replacing the
logic blocks of standard architectures with Routing & Logic Blocks (RLBs), which perform both logic and routing
tasks. The second modification isto match the structure of the logic array to that of the target circuits, rather than
providing an array of logic cells embedded in a general routing structure. Most circuits are wide and shallow, with
large fan-in/fanout trees (figure 1). By matching the physical structure to thislogical structure, we reduce the
amount of “random” routing that is otherwise required.

>0

Inputs O N 1_::;}0 Outputs
O~ 1122\ ©
o~ .-~ o)
o~ o)

@ (b) @

Figure 2. The overall structure of the Triptych FPGA shown in a progression of steps. The basic
fanin/fanout structure (@) is augmented with segmented routing channels (b) attached to a third RLB input
and output. The structure (c) is obtained by merging two copies of (b), with data flowing in opposite
directions in the two copies. Shown in (d) are the connections between the two copies at diagona
Crossings.

The Triptych routing structure is shown in figure 2. Short, fast connections are provided between cells in a
checkerboard pattern, with signals flowing from left to right. This basic structure is augmented with segmented
routing channels between the columns that facilitate larger fanout structures than is possible in the basic array.
Finally, two copies of the array, flowing in opposite directions, are overlaid. Connections between the planes exist
at the crossover points of the short diagonal wires. It is clear that this array does not allow arbitrary point-to-point
routing like that associated with the Xilinx FPGA. However, we claim that this array matches the form of alarge
class of circuits, and that a mapping strategy that takes this structure into account can produce routable
implementations!. Such an approach will use the fast diagonal connections for critical paths, while less critical
signals can be routed longer distances via segments for vertical movement, and unused RLB inputs for horizontal
movement.

2.1 RLB structure

A logical schematic of the Triptych RLB is show in Figure 3. As can be seen, the cell is designed to handle both
function calculation and signal routing simultaneously (hence the name routing and logic block, RLB). It takes
input from three sources and feeds them into a function block capable of computing any function of these three
inputs, and the output can then be used in latched or unlatched form. The RLB’sthree outputs can choose from any
of the three inputs and either the latched or unlatched version of the function block output. One last feature is the

1 Descriptions of such mapping tools can be found in the companion paper “Mapping Tools for the Triptych FPGA”

loopback from the master/slave D-latch, which enables the function to be dependent on its previous value. Thisis
included for state machine implementation, although it may be used to output both the latched and unlatched
versions of the function block. Again, only one of the inputs and one of the outputs can be connected to the vertical
wires; the other two of each type are connected to the local diagonal wires.

1-

o F(AB,C) || D |

74t

1

Figure 3. Triptych routing and logic block (RLB) design. The RLB consists of: 3 multiplexors for the
inputs, a 3-input function block, a master/slave D-latch, a selector for the latched or unlatched result of the
function, and 3 multiplexors for the outputs.

A Triptych RLB is capable of performing both function calculation and routing tasks simultaneously, which leads to
several different uses of the RLB (see Figure 4). The three most obvious are: (a) a routing block with each input
connected to one of the outputs; (b) a splitter with one of the inputs going to two or three of the outputs; and (c) as
afunction calculator with the three inputs going to the function block and the function going out the outputs.
However, there are two important classes of hybrids that help produce more compact designs. The first comes from
the observation that in blocks used to calculate a three-input function, the function block value will most likely not
go out all three outputs, and one or two of the input signals could be sent out the unused output connection(s), asin
(d). Secondly, afunction of two inputs can be implemented by making the function insensitive to the third input,
thus allowing the unused input to be used to route an arbitrary signal, asin (€). Animportant observation is that
the RLBs will never need to be used for one-input functions (i.e., an inverter), since any output signal will only be
used either as an input to another arbitrary function block, where the inverter could be merged into the function
computed, or to an output pin, where an optional inversion can be applied.

(@ (b) (©) (d) (€)
Figure 4. Fivetypical uses of Triptych routing and logic blocks (RLBS).

Aswas shown earlier, the Triptych FPGA has no global routing for moving signals horizontally. Instead, thereisa
heavy reliance on unused RLBs and unused portions of RLBs to perform these routing tasks.

2.2 Interconnection

The Triptych RLBs are connected by three separate interconnection schemes. Thefirst isfor horizontal interconnect,
and is accomplished through the RLBs as described above. The second is for local high-speed communication
between neighboring RLBs and is achieved through “diagonals’. The detailed structure of the diagonalsis shown in
Figure 5. They allow outputs to be sent to the four RLBs immediately above and below them; two in the next
column, which flow in the same direction, and two in the same column, which flow in the opposite direction.

Diagonals are important for two reasons. Diagonals permit the construction of multilevel functions of more than
three inputs without the speed penalty of general-purpose interconnect. They also allow signalsto change direction
so that circuits can be more tightly packed and feedback can be provided for the implementation of sequential logic.

XY
N

Figure 5. Schematic view of apair of diagonals and the routing combinations they allow (implemented
by a multiplexor at each diagonal input).

The third type of interconnect is used for longer range connections and large fanout nodes. It isimplemented as a set
of segmented “channel wires’ between adjacent columns (see Figure 6) that connect middle outputs of RLBsto the
middle inputs of RLBs flowing in the same direction in the next column. Needless to say, this flexibility leads to
slower signal propagation, and speed-critical designs will avoid using the vertical channels for critical paths. There
are 7 tracks in avertical channel, with 6 handling inter-cell RLB routing and a seventh to carry apininput. The 6
inter-cell tracks are broken up into two tracks each of 8, 16, and 32 RLB high segments.

01010101000 00010101000 0 01 0]

a a a a a a a a a a a a a a a a

LI LN

PN

oobooboooooboondann

Figure 6. Top half of asegmented channel (onitsside). The bottom half isamirror image of the top.

One last important feature of the interconnect structure is how it handles the array borders. Since there are no RLBs
beyond the right and left edges for the channel wires to route to, the channels on the edges tie the two directions of
RLBstogether. Thisway of handling the border cases |eads to a different way of looking at the array, namely asa
cylinder of RLBs. If the diagonals |eading to the opposite direction of RLBs were cut except for those at the edges,
the chip would appear to be afolded cylinder of RLBs. Infact, it is often helpful to think of the array as containing
many smaller cylinders, with each of these cylinders implementing a smaller subcircuit. For example, asix by six
square of RLBs can be broken off from the rest of the array and considered to be a cylinder three RLBs high and
twelve RLBsin circumference. Thisis not quite true, since the vertical channel for the left and right edges of the
original six by six square will be unusable on the cylinder, but it can still be a useful abstraction for mapping. In
fact, the current Triptych chip isan array of 64x8 RLBs, designed to yield a 32x16 cylinder.

The array borders are also important because it is here that most of the chip I/O is performed. Asshownin figure 7,
neighboring RLBs on a chip edge share I/O pins, with the external inputs and outputs flowing on the unused
diagonal connections. The control signal for bi-directional pins comes from the vertical segmented channels, with a
mux (not shown) selecting one of the adjacent (non-10) channel wires. Note that this results in 6 possible settings.
With two additional configurations of purely input and purely output, three programming bits can chose the pin
direction and tristate signal. Although the pin connection scheme may seem counterintuitive, it is constructed to
allow arbitrary RLBs to receive two input signals, or send two output signals, while still allowing neighbors to use
an 1/O pin. An example of this can be found later in the traffic light controller mapping. The pins are primarily
connected to diagonals instead of the vertical interconnect since at the array borders half of the diagonal connections
are not used by the array, while all of the vertical segmented channels are connected. Note that the vertical
segmented channels have somewhat overloaded functionality, serving both to carry inter-RLB signals, and also

tristate signals to the 1/O pins. At the array top and bottom, where diagonals have no neighbors to connect to, these
diagonals are connected together as shown in figure 7.

PIN /'I
“
Ng=] [Ng=
PIN 1t e PaN 1t e
>
S
] [N] [
PIN o PaN 1t e PaN
|
™ Ng=] [Ng=
PIN 1t e PaN 1t e
>
S
= L waxwx%
\/
a ' YW Y ' YW Y ' YW Y a
PIN PINJIPIN PINJIPIN PINJIPIN PIN

Figure 7. One corner of the Triptych array, showing pin and diagonal connections at the array periphery

0
N
111
\"tl
S
| ~i23 1103
2123 1] _J.m
BNy 25 o
12 2
o
—>
Z
N ey
T
B 75
S {47
/vlt67
T (2 ol
BNy
7

Figure 8. Triptych mapping of an 8:1 multiplexor.
2.3 Using Triptych

In this section we present two examples of circuits mapped to Triptych. The purpose of these examplesisto
demonstrate the constraints on routing and how multilevel logic circuits do indeed map to the physical structure
provided by this FPGA. In these examples, each RLB is shown as a cell with three input entries and three output
entries. Each entry indicates an incoming or outgoing signal. Note that each block may create a new signal by
computing alogic function over the inputs. If acell isunused, or only used for routing, it will be shown in gray.
Diagonals, reverse diagonals and channel wires are only shown if they are actually used in the mapping.

The first example is an 8:1 multiplexor (figure 8). It has 8 datainputs, i0 to i7, and three control inputs, sO to s2.
The data inputs enter from the left edge, while the control bits come in on the vertical segmented channels. The
output Out is generated in the rightmost cell. As this example shows, the diagonal connections between cells are
able to handle most of the communication. However, the two intermediate values t03 and t47 are generated by RLBs
4 cells apart, requiring either one signal to use the vertical segmented channel, or for the signal to be routed through
two intermediate RLBs. Our solution was to place the signal on the vertical segmented channel, and use an earlier
RLB as astaging areato transfer the s2 control signal from vertical segmented channel to the proper diagonal.

I NPUTS: s1 s2 d1 st SBO SB1
OUTPUTS: NSBO NSB1 r1 yl gl r2 y2 g2 sd

NSBO = I'st * Ir2; NSBL = I'st * gl * 1g2;

ri = NSBO; r2 =1!st * (SBO * !9 + 1SB0O * 9);
yl =r2 * 51; y2 = 53 + 45;

gl =r2 * 151, g2 =!st * 1r2 * ly2;

sd = 12 + 45; 9 =18SBl1 + !d31;

12 = 1'SB1 * 18; 18 = 1SBO * s2 * Ist;

46 = I'st * SBO; 45 = s1 * 1 SBl * 46;

52 = 1dl * SB1; 51 = s2 * ISB1 + | SBO * SBI,

53 = 52 * 46;
Figure 9. Factored logic equations for the traffic light controller finite state machine.

PIN
> SB1
dl 19
PIN
\‘.9
< 12
SBO_ISBO
PIN Pt D
’-:FZ SBO SBO C
.‘|SBO 18 2 15l Iv1
34 Ig 51 1sBl 2151
ik e 'D C'5'31 551_3 CrZ 5] 'D
1
TNSEOI2 18 I51
al | |IvSBl 112 N | 1al 2
ik A S g R Y o gl FV 17 Y
dsISET 152 v 2 1
SB1 NSB11g2 45 [2
PIN] - "; D
A2 INSB1“| (MsBi_l45 7 17
1 INSB1 e T
2w [i»46 45 N 2 v2
PIN [>
26 NN 121 N2 12 .D
Se0 I H (M2 V2
46 23
PIN N - //"
a2 ™46 153
a2+ |52
PIN
PIN PIN{|PIN PIN||PIN PIN

Figure 10. Triptych realization of the traffic light controller.

Figure 9 shows the factored | ogic equations and Figure 10 the corresponding Triptych implementation for the
ubiquitous traffic light example. This example shows that circuit mappings can be very compact if the individual

logic blocks are correctly placed. The inputs and outputs of this circuit are all connected at the left and right of the
array, except for three signals that use the pin input track of the vertical channels. In this example 16 RLBs are used
to compute logic functions, 3 RLBs are used only for routing, and 5 RLBs are left unused (however, these 5 RLBs
could be used in neighboring circuits). Also, this circuit is assumed to be placed along the |eft edge of the chip, so
the vertical tracks at that edge are used to connect RLBs in the same column. Thisis about as compact a Triptych
layout as can be achieved for arandom logic function.

Resource Used Delay

RLB 1.6ns
Function Block additional 2.2ns
Channel Wire 2.5-3.7ns

Table 1. Speed of important features, estimated using HSPICE with parameters for the 1.2um CMOS n-
well process available from MOSIS.

2.4 Triptych Performance

The speed of a path in a Triptych mapping can be calculated from the numbers given in table 1. For example, a path
using 4 RLBs, 2 for routing and 2 for function calculation, and 1 channel wire would take 13.3 to 14.5 nanoseconds
(4 16+2 22+251t03.7=13.3t014.5). Note that being able to use such a simple speed calculation method is
due both to the simplicity of the interconnect and also to the design philosophy of “independence of paths’. Simply
put, “independence of paths’ means that gate logic is used in place of switch logic in much of the FPGA, making
signal propagation insensitive to the amount of fanout contained in the current mapping.

3 Architectural Variations

The structure detailed above differslittle from Triptych’sinitial conception. With the experience we have gained
with the original Triptych architecture, with placement and routing tools, and with asynchronous and interfaced
synchronous circuits, we have extended this architecture. These extensions can be grouped into two classes, 4-input
4-output RLBs, and asynchronous support, with the architecture for asynchronous circuits named “ Montage”.

F(A,B,C)

Wil

N L
e

Figure 11. A 4-input, 4-output RLB. The segmented channel input is split into two separate inputs, to
allow for greater routeability. Muxes are also added to the function block inputs to choose three of the four
RLB inputs for function calculation

3.1 4-Input RLBs

The major bottleneck that restricts circuit densities in the Triptych array is the 3-input limit on RLBs. If we
decompose circuits to mostly 3-input logic functions, there is no space to route unrelated signals through these
RLBs, requiring placements to leave large gaps of unused cells for routing. If we decompose circuits into more 2-
input functions, we greatly increase the number of function blocks required to handle the logic. The solution we

have adopted is to add a fourth input and fourth output to each RLB (figure 11), with this signal connected to the
vertical segmented channels. While this does increase the amount of logic and programming bits in each RLB, this
area penalty is more than made up for by denser circuit mappings.

Although it is tempting to also increase the function block to 4 inputs, this would require a much larger increase in
RLB area, and we would again face problemsin routing signals. However, one possible extension is to build the
architecture with a4-input lookup-table, but only use 4-input functions on the circuit’s critical path(s). Inthisway,
we retain the routing advantage of extra RLB input, yet can greatly speed up critical paths by reducing their logic
depth. Similarly, the basic Triptych architecture built with 3-input 3-output RLBs could only use 3-input functions
on the critical paths. However, the switch from 3-input to 2-input functions entails a much higher increase in the
number of lookup tables required than does the switch from 4-input to 3-input RLBS, and is aless attractive option.

3.2 Montage

While Triptych, as well as most other commercial FPGAS, is optimized to handle synchronous circuits, circuits
whose sequential behavior is moderated by clocked latches on all feedback paths, there islittle support in the FPGA
community for asynchronous circuits. Unfortunately, an asynchronous designer cannot simply make do with a
synchronous FPGA because the constraints on the implementation medium are much more stringent for
asynchronous circuits. Note that work has been done on mapping asynchronous circuits to standard FPGAS
[Brunvand91], but have difficulty handling the required timing assumptions and mutual exclusion operations. More
troublesome than this is the fact that synchronous interfaces, a significant portion of the “glue logic” that is widely
considered as the strongest candidate for mapping to FPGAs, have requirements very similar to asynchronous circuits
-- requirements not met by today’s FPGAS.

Asynchronous circuits and synchronous interfaces have no reference clock which synchronizes all of the incoming
signals, and thus are sensitive to every signal transition on their inputs. Thus, any medium implementing these
circuits must be carefully designed to avoid all hazards. Whilein practice thisis not difficult, it is a step that must
be taken to handle these classes of circuits, but which is safely ignored when implementing synchronous circuits.
The most troublesome portion of designing to avoid hazards is the proper choice and implementation of the logic
element. It turns out that the Triptych function block (figure 14) isin fact hazard-free. Thisis because during a
single input change the paths to the corresponding programming bits for the before and after states briefly conflict,
and no other paths are connected. A similar situation occurs during a multiple-input change, with the before, after,
and any possible intermediate states possibly conflicting. While the intermediate states might cause a hazard, thisis
an unavoidable (function) hazard, and represents afault in the original circuit. One other important feature of this
function block is the fact that every internal node is always driven to avalid value, avoiding any concern for charge-
sharing. Other parts of the circuit could suffer from charge-sharing, and thus the layout of the Montage architecture
has been carefully constructed to avoid large undriven capacitances.

IESR

Figure 12. Placement of a symmetric isochronic fork on an interconnect line (left) and on diagonals
(center), aswell as an asymmetric fork (right) reaching destination “1” before destination “2".

Another feature of the Montage FPGA that is very important for the support of asynchronous circuitsis the overall
routing structure. Some asynchronous design methodologies, including [Martin89, Ebergen89], make assumptions
about the delays incurred in wires. Specifically, they assume that some wires are asymmetric isochronic forks,
where a signal must reach one destination of the fork before it reaches the other, or symmetric isochronic forks,
where the signa must reach al destinations at the same time. In many FPGAS, routing delays are very
unpredictable, and it would be difficult (if not impossible) to ensure the isochronic constraints in these FPGASs. In
Triptych, the isochronic constraint is very easy to meet. For asymmetric isochronic forks, we simply route a signal
to the earlier destination’s RLB, and route out from that RLB to the later destination. In thisway, we ensure the
isochronic constraint. For symmetric isochronic forks, there are several RLB placements that respect the isochronic
constraint. For example, asignal that moves from a vertical segmented channel directly into the function blocks of
adjacent RLBs will have very little skew between the different destinations. Isochronic forks can also take a shared

diagonal to two RLBs, or move from an intermediate RLB to its four neighbors on diagonal connections, again with
very little skew. Thus, the Montage FPGA, by directly duplicating the Triptych routing structure, provides a
medium for guaranteeing isochronic constraints. Note that this does put some constraints on how circuits can be

_ -

\

A 4
YYYY

I
YYYY

FU

A 4
YYVvYY

N

Figure 13. The Montage RLB. Thisdiffers from the standard Triptych RLB by removing the feedback
path, as well as abstracting the function calculation unit into a separate entity.

i Inputs
* I nputs -
'%Z P Outputs
S A -
(- " —
L - - Vdd " o B
r\[[gq'o‘ Outputs —
L """F- 1 |
L

Figure 14. Thetwo types of functional units. the logic block (Ieft) and the arbiter unit (right).

Two requirements for Montage have altered the structure of the basic Triptych RLB: the need for multiple clocks for
interfaced synchronous circuits, and the need to implement and initialize asynchronous stateholding elements.
Handling multiple clocks is simply a matter of having more than one set of clock linesto the latches, which in fact
iswhat is done for Montage. Asynchronous stateholding elements are more troublesome, because they require avery
tight feedback path for the previous state. Specifically, elements such as an asynchronous S-R latch or aMuller C-
Element (an element whose output is 1 when all inputs are 1, 0 when all inputs are 0, and held to its previous value
in all other cases) can be implemented as a combinational function with one input being the element’s current
output. However, we must ensure that this path from output to input is faster than other paths in the system so that
the element stabilizes before a new input can arrive. While the feedback path in Triptych could probably handle
these requirements, it would mean that all of the RLBs with asynchronous stateholding elements would be unable to
receive asignal from the vertical segmented channels, greatly restricting the routing available in Montage.

To support asynchronous stateholding elements in Montage we have adopted the structure shown in figure 14, with a
very fast feedback path which does not interfere with any of the route-through capability of the RLB. In order to
initialize these stateholding elements, we use Triptych’s ability to load a value onto its D-latch to initialize this
path. During startup, all feedback paths are held to the loaded value, and once enough time has passed for the entire
FPGA to settle to a proper start-state, the feedback path is switched to the non-latched path, allowing the FPGA to
run freely. The combination of the feedback path and the initialization scheme means asynchronous statehol ding

elements such as an S-R flipflop or a 2-input C-element can be implemented in asingle cell, yielding very compact
mappings.

r

al Data R1 1
—
Clk En
R2 —

Figure 15. A mutua exclusion element (left), and a synchronizer (center) and enabled arbiter (right) built
fromiit.

Figure 16. Distribution of arbiter (labeled “A™) blocks throughout the Montage array. The complete
array is built by stacking vertically the tile shown above.

The final necessary feature for Montage was some way of performing robust arbitration and synchronization. For
both synchronous interfaces and asynchronous circuits there is a need to reliably determine the arrival order of two
signals (an arbiter) and sample a signal at a given time (a synchronizer). While standard combinational logic can
approximate these behaviors, there is always a chance that the output of such as approximation isincorrect, or
possibly even oscillating. Correct implementations can be built with the aid of a mutual exclusion element, an
element whose correct functioning depends on analog effects. As shown in figure 15 left, the element has two
inputs and two outputs, with an output raised in response to its corresponding input. What is special about this
element is the guarantee that at most one of the outputs will be raised at a time, without visible oscillations or
hazards.

To support arbitration and synchronization in Montage we could attempt to insert a mutual exclusion element into
each cell, or possibly place one by each I/O pad. However, each of these solutions would entail alarge areaincrease,
and the /O pad solution hurts circuit mappings where the arbitration or synchronization occurs in the middle of the
circuit instead of at the edges. The solution we adopted is to choose a small subset of the RLBs in the Montage
array and replace the function block with an arbiter unit (figures 15 and 16). The arbiter was carefully designed to
have about the same size asthe logic it replaces, as well as use the same number of programming bits, meaning that
alogic RLB and an arbiter RLB can have the same footprint. Also, since the Triptych/Montage FPGA family
expects to have a portion of the RLBs used only for routing, and since an arbiter RLB has exactly the same routing
capabilities as alogic RLB, mappings that do not use arbiters or synchronizers will have little or no area penalty due
to the inclusion of arbiter RLBs.

3.3 Using Montage

To illustrate how well typical asynchronous elements map to Montage, we present all of the basic elements used in
Ebergen’s synthesis methodology [Ebergen89] in figure 17. Most of the elements fit compactly into asingle RLB,
and can beinitialized with the built-in circuitry. The Toggle element is a two-output element, and thus required two
RLBs (with one extra signal that must be routed outside this mapping). The Sequencer, which is Ebergen’s two-
phase mutual-exclusion element, requires 10 RLBs, primarily for a two-phase to four-phase converter.

a. | a a p| T =
b2 ¢ oo [l b o rpoid e e
S DG o il pa i na

c=a*b+ (ath)*c
n?

C-element / NCEL

. 4 S
a?. - ¥ d! 2 &= Bt a Jpi
o S R==0S E
b S— el b Fb'\ . 3 Xa
=ab+ * | aa | Xa
RCEL c=a'b+ (ath)*c D | 2 —
C [pt | ca | xn
23 | ca ptixn
ar | Y xn n
C! C — ab | cb qt | xn
b?. b
c=ab+ab ab | qt cb [xn
qt
XOR M D —l 2
q |ab Xxb
—sla [D b 1 gt
b! c |la b qt b |qt
<qz
c |a b qt | gt
c! 0 5
Toggle b=aTHarb’ c=a*b+a*c Sequencer

Figure 17. Ebergen’s basic elements, mapped to the Montage FPGA. Included at top right is a circuit
diagram for the implementation of the Sequencer. Other elements have logic equations for the outputs.

4 Area comparisons with other FPGAs

In this section, we present a comparison of the area efficiency of four different FPGA architectures, based on several
representative examples. The FPGAs compared are CLI's CFA [Concurrent9l], Algotronix’s CAL1024
[Algotronix91], the Xilinx 3000 series [Xilinx91], and Triptych (with 3-input, 3-output RLBs). The example
circuits were chosen across a wide range of domains, rather than a specific one for which an architecture might have
been optimized (e.g., bit-serial computations). The circuits were mapped by hand and only optimized for area.
Automatic tools were not used as this would make the comparison as much about the CAD algorithms as the
architectures themselves. Even after eliminating these two factors, domain and CAD support, performing an
architecturd comparison between FPGAs is difficult because of complicating factors due to particular
implementations. The most significant of these include the manufacturing process, the design rules employed, and
the quantity and quality of designer effort. These factors make the straightforward approach of comparing actual chip
area inadequate for purposes of architectural comparison. Simply using bits per cell also fails because it assumes
that all FPGASs have equal per bit logic complexity, which is not true in current FPGAS.

CFA CAL Xilinx Triptych
Normalization factor 0.45 0.45 9.1 1.0
Table 2. Areanormalization factors. Triptych isused as the basgline.

CFA CAL Xilinx Triptych
Technology feature size 1.0 15 1.25 12
Scaling method Linear Linear Quadrtic —
Normalization factor 12 0.8 0.92 1.0

Table 3. Speed normalization figures and the data used to obtain them. A 1.2um processis used as a
baseline.

Triptych CFA CAL Xilinx
size aea factor factor factor
Systolic
Single-flow string compare 2 7 31 11 39
(# of bits per character) 4 10 29 11 3.6
8 16 2.7 1.0 3.7
Double-flow string compare 2 20 2.3 1.0 28
(# of bits per character) 4 24 24 1.0 34
8 36 2.2 1.0 3.8
FIFO 8 58 — 11 2.4
(width in bits) 16 90 — 1.0 23
32 154 — 1.0 23
64 282 — .9 2.3
Arithmetic
Counter 8 24 9 9 2.7
(width in bits) 16 48 .9 .9 2.7
32 96 .9 .9 2.7
Adder 8 40 16 9 3.7
(widthin bits) 16 80 16 9 3.7
32 160 1.6 .9 3.7
Linear-growth bit-parallel
Comparator 8 8 23 9 4.5
(width in bits) 16 16 2.3 9 4.6
32 32 2.4 .9 4.6
64 64 2.4 .9 4.6
Shift Register 8 8 2.8 2.3 45
(number of bits) 16 16 2.7 2.3 4.6
32 32 2.7 2.3 4.6
64 64 2.7 2.3 4.6
Exponential-growth bit-parallel
Decoder 2:4 4 — 1.0 45
(inputs:outputs) 3.8 10 — 1.0 3.6
4:16 22 — 11 3.3
5:32 46 — 14 3.6
Multiplexor 4:1 3 2.7 17 47
(inputs:outputs) 81 8 21 16 4.0
16:1 18 21 17 3.8
32:1 41 2.0 1.8 3.4
Random L ogic/FSM
s27 11 — — 4.2
s208 59 — — 29
traffic light controller 24 — — 3.0
Geometric Means 2.1 1.2 35

Table 4. Normalized area of circuits hand-mapped to four FPGAs. For each circuit, the number of
Triptych cells used and the normalized size of the mappings for the other three FPGAs islisted (e.g., the
Triptych s27 mapping is 11 cells, while the Xilinx mapping is 4.2 times as big, or the equivalent of 46
Triptych cells).

Appendix A contains a methodol ogy for comparing the area-efficiency of FPGA architectures which compensates for
most of the effects just mentioned. This approach allows us to normalize the area of an FPGA tile (alogic block an
its associated routing) so that mappings to different FPGAs can be compares. The resulting scaling factors are
contained in table 2. Normalization is also necessary for speed comparisons. We use the delay values provided by
the manufacturers (Xilinx values are for the 3020-50 [Schlag91]), and scale them based on the feature sizes of the
processes used. Asshown in [Vuillamy91], FPGA logic speed scales linearly with process size, while routing delay
scales quadratically. However, since the division of FPGA timings into routing-based and | ogic-based delaysis not
always clear, we have scaled CFA linearly from 1.0pm to 1.2um, and Xilinx quadratically from 1.25um to 1.2um,

both of which are generous to the given FPGAs. For CAL, which has no long-distance routing, all delays were
scaled linearly. Table 3 shows the normalization factors calculated for the FPGASs in question.

4.1 Summary of mapping results

Table 4 shows the results of area comparisons using this methodology for a wide range of circuits. They are
collected into the following general categories: systolic, arithmetic, linear-growth bit-parallel, exponential-growth
bit-parallel, and finite state machines (random logic). The systolic circuits are two versions of a string comparison
circuit that computes the “edit distance” of two strings [Lipton85], the two versions differing on whether both
strings move or if oneisfixed in place, aswell as a FIFO [Guibas82]. The arithmetic circuits chosen are a counter
with a 4-stage carry look-ahead and an adder with a 2-stage carry look-ahead. The linear-growth bit-parallel circuits
(circuits whose interconnection tends to scale linearly with problem size) include a ssmple equa/not-equa
comparison and a shift register, while the exponential-growth bit-parallel circuits are a decoder and a multiplexor.
Finally, for the random logic/FSMs, we chose the two smallest ISCAS benchmarks (s27 and s208), as well as the
traffic light controller example. Table 5 shows the results of delay comparisons for the circuits of Table 4. Note
that these numbers are for circuits mapped to optimize for area, not delay.

Triptych CFA CAL Xilinx
size Soed factor factor factor
Systolic
Single-flow string compare 2 14.6 2.7 1.8 9
(# of bits per character) 4 20.9 22 17 .6
8 33.5 1.3 1.6 .6
Double-flow string compare 2 26.3 19 11 .8
(# of bits per character) 4 317 16 1.0 .8
8 64.2 9 7 .6
FIFO — 34.0 — 3.0 15
(controller speed only)
Arithmetic
Counter 8 21.2 16 15 10
(width in bits) 16 32.0 16 16 13
32 53.6 1.6 1.6 15
Adder 8 42.3 1.6 19 9
(width in bits) 16 739 14 18 9
32 137.1 1.3 1.7 9
Linear-growth bit-parallel
Comparator 8 30.4 16 14 9
(width in bits) 16 60.8 12 13 9
32 121.6 13 13 9
64 243.2 1.2 1.3 9
Exponential-growth bit-parallel
Decoder 2:4 79 — 13 1.0
(inputs:outputs) 38 79 — 2.3 13
4:16 19.0 — 15 v
5:32 24.0 — 1.9 8
Multiplexor 4:1 7.6 35 32 1.7
(inputs:outputs) 8:1 139 2.7 31 15
16:1 17.7 3.0 39 17
32:1 26.5 2.9 4.3 15
Geometric Means 1.7 1.7 1.0

Table 5. Delay of circuits hand-mapped to 4 FPGAS, in nanoseconds, using normalized delay values.
The Triptych column contains actual speed numbers, while the other columns are the factor by which the
given FPGA’s mapping is slower (or faster) than Triptych’s.

Even under the model given above, which for several reasons is biased towards the other FPGAS, Triptych does quite
well in both area and speed. For all but the counter, whose CFA mapping is only 10% smaller, Triptych mappings
are consistently smaller than CFA mappings, quite often by afactor of 2 or more, and Xilinx mappings are usually

three to four times larger. Asto CAL mappings, the best are only about 10% smaller than Triptych mappings, with
the worst being more than twice as large. At the same time, delays in these circuits are amost always worse, up to
afactor of more than 4 in the larger multiplexors. All of these factors indicate that Triptych is aviable architecture.
Thisis especially true since the only FPGA surveyed that comes close to matching Triptych’s area efficiency is
CAL, which has no global routing facilities. This absence implies that larger, more complex circuits than those
surveyed would be more difficult to map to CAL than to Triptych. They will be larger and slower, due to more cells
being utilized for routing.

Several more points need to be made about these comparisons. First, the Xilinx mappings are the only ones for
which we did not perform the assignment of routing resources. This was due to the complexity of hand-mapping
Xilinx routing, and it was simply assumed that the circuit could be routed without leaving unreachable CLBs. This
is not always the case in the 3000 series, where large designs often achieve only 50% cell utilization due to the
scarcity of resources. Thus, the area numbers for Xilinx should be considered as a lower bound, and the mappings
may actually require significantly more space. Since we did not do routing, we have no direct method for measuring
the speed of Xilinx circuits. However, by using a routing delay model for Xilinx [Schlag91], we were able to
compute estimated routing delay, and these numbers were presented in table 5. Second, since all the circuits were
mapped by hand, we were able to use only small examples. No comparisons of large, complex random logic circuits
are presented. Third, since FPGAs normally come in families, with the amount of cellsin a chip variable, the issue
of 1/O blocks has been ignored and the circuits mapped to an unbroken plane of cells with no chip edges (except for a
few circuits who actually map easier along a chip boundary, in which case an arbitrarily long boundary was
assumed).

5 Conclusions

Current FPGA architectures are designed around the philosophy that the architecture must provide a genera, arbitrary
routing structure, with a strict distinction between logic and routing resources. Unfortunately, this imposes a
significant cost, with 90% or more of the chip area dedicated to routing resources. Triptych is a step away from this
philosophy, with logic and routing integrated into RLBS, letting the tradeoff between logic and routing be determined
on a per-mapping basis. These resources are also optimized for local communication, and are designed to map the
structure of typical circuit mappings.

The Triptych philosophy results in an architecture with much better density than standard commercial FPGAs for
hand-mapped circuits. Triptych mappings are up to 3.5 times denser than other architectures, and deliver comparable
performance. We have also written placement and routing tools, which are described in a companion paper, for the
Triptych architecture that are able to take advantage of the features of Triptych. These tools achieve alogic density
of 50% across a range of PREP and logic synthesis benchmark circuits. While this density is somewhat less than
that of the hand-mapped, regular circuits described here, it reflects our philosophy which shares the RLBs between
logic and routing.

Montage takes the Triptych architecture a step further, with an FPGA that completely supports the mapping of
asynchronous and interfaced synchronous circuits. Thisyields an attractive prototyping medium to the researcher and
developer of many types of circuits, and demonstrates that FPGAs can be applied to a much broader class of designs
than is currently considered.

Acknowledgments

Thanks to Christopher Hébert and the other students of CSE568, Winter quarter 1991 for contributing to the early
design phases of the Triptych layout. Thisresearch was funded in part by the Defense Advanced Research Projects
Agency under Contract NO0014-J-91-4041. Gaetano Borriello and Carl Ebeling were supported in part by NSF
Presidential Y oung Investigator Awards. Steven Burns was supported in part by an NSF Y oung Investigator Award.

References
[Algotronix91] Algotronix Limited, “ CAL1024 Preliminary Datashest”, 1991.

[Brunvand9l] E. Brunvand, “Implementing Self-Timed Systems with FPGAS’, International Workshop on Field-
Programmable Logic and Applications, Oxford, 1991.

[Concurrent91] Concurrent Logic, Inc., “CFA6006 Field Programmable Gate Array”, March 1991.

[Ebergen89] J. C. Ebergen, Translating Programs into Delay-Insensitive Circuits, Centre for Mathematics and
Computer Science, Amsterdam CWI Tract 56, 1989.

[Furtek91] F. Furtek, Personal communication, October 1991.

[Guibas82] L. J. Guibasand F. M. Liang, “Systolic Stacks, Queues, and Counters’, Second MIT Conference on
Advanced Research in VLSI, 1982.

[Kean91] T.Kean, Personal communication, October 1991.

[Lipton85] R.J. Liptonand D. Lopresti, “A Systolic Array for Rapid String Comparison”, Chapel Hill Conference
on VLSI, 1985.

[Martin89] A.J. Martin, “Programming in VLSI: From Communicating Processes to Delay-Insensitive Circuits”’,
in UT Year of Programming Institute on Concurrent Programming, C. A. R. Hoare, Ed. MA: Addison-Wesley,
pp. 1-64, 1989.

[Schlag91] M. Schlag, P. K. Chan, and J. Kong, “Empirical Evaluation of Multilevel Logic Minimization Tools
for aField Programmable Gate Array Technology”, International Workshop on Field-Programmable Logic and
Applications, Oxford, 1991.

[Singh90] S. Singh, J. Rose, D. Lewis, K. Chung, and P. Chow, “Optimization of Field-Programmable Gate
Array Logic Block Architecture for Speed”, Proceedings of the IEEE Custom Integrated Circuits Conference,
May 1990.

[Trimberger9l] S. Trimberger, Personal communication, October 1991.

[Vuillamy91] J. Vuillamy, Z. G. Vranesic, and J. Rose, “ Performance Evaluation and Enhancement of FPGAS”,
International Workshop on Field-Programmable Logic and Applications, Oxford, September 1991.

[Xilinx91] Xilinx, Inc., “The Programmable Gate Array Data Book”, 1991.
Appendix A: Area comparison methodology

In this paper we presented a comparison of the area efficiency of four different FPGA architectures, based on severa
representative examples. Automatic tools were not used as this would make the comparison as much about the
CAD agorithms as the architectures themselves. Even after eliminating CAD support, performing an architectural
comparison between FPGAs is difficult because of complicating factors due to particular implementations. The
most significant of these include the manufacturing process, the design rules employed, and the quantity and quality
of designer effort. These factors make the straightforward approach of comparing actual chip area inadequate for
purposes of architectural comparison. Simply using bits per cell also fails because it assumes that all FPGASs have
equal per bit logic complexity, which is not true in current FPGAS (see discussion of table 2 below).

Our approach to architectural comparison is based on the premise that we can normalize cell area (the basic tiling
structure in the FPGA) based on the size of the programming bits. There are two assumptions underlying this
claim. First, aprogramming bit should occupy the same area if two different architectures are implemented on the
same fabrication line, using the same design rules, and with the same amount of designer expertise and effort. Itis
not obvious that thisis true, since the programming bits may be designed quite differently in different FPGAs. In
the case of Triptych, the bits are 7-transistor pseudo-static shift-register cells interconnected in a scan-path, while
Xilinx and CAL use 5-transistor static RAM cells (CFA’s bit cell implementation is unspecified). However, even
with these differences, we claim that the programming logic would take up similar area, due to the fact that the
Triptych design can avoid ratioed transistors and use minimum-size devices (there is no feedback inverter to
overpower through a pass-gate), and that it does not have the extra areafor addressing and decode logic.

The second assumption is that the rest of the cell’ s logic and routing will scale proportionally to the programming
bit cell size. This second assumption can be stated as the following relationship:

total cell areain process a _ total cell areain process b (1)

total RAM bit areain process a total RAM bit areain process b

There are at least two ways in which this assumption may not hold true. First, speed impacts area, and one could
design avery small cell using minimum-size devices that would be unreasonably slow. Since speed of programming

isnot amajor issue, programming bit cells are almost always made as small as possible, so decreasing the logic size
could not decrease the programming bit size, and the ratio given above would change. This means that any area
comparison must also include a speed comparison of the circuit mappings in the sample. We present such a
comparison below. Second, programming bit cells are the easiest and most advantageous cell components to
optimize, due to the lack of speed requirements and their high degree of replication, and thus receive a much higher
share of optimization effortsin less optimized designs. As the programming bits shrink, the number of hit-
equivalents the cell occupiesincreases. Therefore, |ess optimized implementations will compare less favorably to
more highly optimized implementations (thisisin fact the case for Triptych, thus handicapping it somewhat in the
comparison).

Given these assumptions, we compare cell areas using the following normalization to a hypothetical standard process
and design effort, P

1
single RAM bit area in process P

total cell areain process P

@

Note that thisis simply the area of the cell in terms of the area of asingle RAM bit. Since we assume the area of a
RAM bit isthe same for all architectures, then the normalized area of acell isthe samefor all processes. Equation 2
can be rewritten to yield:

total cell areain process P

= #0f RAM bits per cell total RAM bit area in process P

©)

And finally, by applying equation 1, we obtain equation 4, which consists of two values easily obtained from
specific FPGA implementations (where a iswhatever process, design rules, and designer effort were used to
implement that particular FPGA). The value of theratio at right is the inverse of the percentage of chip area
dedicated to programming bits. This has the advantage of not requiring knowledge of the actual size of the FPGA’s
logic cell or programming bit, values that commercial vendors may not be willing to divulge.

total cell areain process a
total RAM bit areain process a

= # of RAM bits per cell)

Equations 2 to 4 alow usto scale al FPGA cell areas to our hypothetical process P. Table A1 shows the results of
applying equation 4 to the four FPGAS, with Triptych as the baseline for comparison.

CFA CAL Xilinx — Triptych

RAM bhits per cell 18 18 201 26
Percentage of cell areafor bits 40% 40% 22% 26%
Normalization factor 0.45 0.45 9.1 1.0

Table A1l. Areanormalization figures calculated by applying equation 4, and the data used to obtain
them. Triptych is used as the baseline. The numbers for CFA, CAL, and Xilinx were obtained from
[Furtek91, Kean91, Trimberger91] respectively.

