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ABSTRACT

We propose an estimator for the trispectrum of a scalar random field on a sphere, discuss its geometrical and
statistical properties, and outline its implementation. By estimating the trispectrum of the 4 yrCOBE Differential
Microwave Radiometer experiment data (in HEALPix pixelization), we find new evidence of a non-Gaussian signal
associated with a known systematic effect. We find that by removing data from the sky maps for those periods of
time perturbed by this effect, the amplitudes of the trispectrum coefficients become completely consistent with
predictions for a Gaussian sky. These results reinforce the importance of statistical methods based in harmonic space
for quantifying non-Gaussianity.

Subject headings: cosmic microwave background — cosmology: observations

1. INTRODUCTION

The cosmic microwave background (CMB) is the cleanest
window on the origin of structure in the very early universe. A
complete description of the statistical properties of cosmological
fluctuations at a redshift of affords us an essentialz � 1000
insight into those processes that may have seeded the formation
of galaxies. In a Gaussian theory of structure formation, such
as the currently favored model of inflation, the power spectrum
contains all possible information about the fluctuations. Any
higher order moment can subsequently be described in terms of
it. However, if the theory is non-Gaussian (as expected for struc-
ture formation theories due to local effects from primordial phase
transitions or more generally from nonlinear processes), then
there will be deviations from the simple Gaussian expressions
for the higher order moments. Such behavior can serve as a
powerful discriminator between different models of structure
formation.

Most analyses of CMB data to date have focused on the
angular power spectrum and its sensitivity to various param-
eters of cosmological theories. Some work has been done on
the estimation of the three-point correlation function and its
analog in spherical harmonic space, with intriguing results
(Heavens 1998; Ferreira, Magueijo, & Go´rski 1998; Magueijo
2000; Banday, Zaroubi, & Go´rski 2000). It is the purpose of
this Letter to propose a method for estimating the four-point
spectrum, thetrispectrum, and to apply it to theCOBE Dif-
ferential Microwave Radiometer (DMR) 4 yr data. This work
complements the recent work of Hu (2001), where some of the
properties of the angular trispectrum of the CMB are discussed.

The outline of this Letter is as follows: In § 2 weconstruct
a set of orthonormal estimators and describe their properties for
a Gaussian random field. In § 3 weapply the estimators to the
COBE DMR 4 yr data. We show that we detect the non-Gaussian
signal found in Ferreira et al. (1998), that it can be explained
by the arguments presented in Banday et al. (2000), and in
particular that this is a manifestation of a known systematic
effect. We therefore conclude that theCOBE 4 yr data is con-
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sistent with a Gaussian cosmological signal. In § 4 we summarize
our results.

2. THE ESTIMATOR

In this section we wish to construct a set of quantities for
estimating the trispectrum of a random field on the sphere. The
temperature anisotropy in a given direction on the celestial
sphere, , can be expanded in terms of spherical harmonicT(n)
functions, :Y (n)lm

T(n) p a Y (n). (1)� lm lm
lm

For any theory of structure formation, the coefficients are aalm

set of random variables; we shall restrict ourselves to theories
that are statistically homogeneous and isotropic. In this case, we
can define the power spectrum of the temperature anisotropiesCl

by .∗Aa a S p C d′ ′ ′lm l m l ll

We now seek to construct a set of tensors that are geometrically
independent, describe their statistical properties for a Gaussian
random field, and then discuss the practical issue of their im-
plementation. Given a set of , we wish to find the indexalm

structure of the set of four-point correlators such that (1) they
are rotationally invariant, (2) they form a complete basis (pref-
erably orthonormal) of the whole space of admissible four-point
correlators, and (3) they satisfy the appropriate symmetries under
interchanges ofm- and l-values. We shall restrict ourselves to
the case in which . Furthermore, through-l p l p l p l p l1 2 3 4

out this section we keepl fixed. We determine the tensor suchT
that

n

a; lAa a a a S p T T , (2)�lm lm lm lm l; a m m m m1 2 3 4 1 2 3 4
ap0

where (due to reflection, permutation, and rotationaln p int(l/3)
symmetry). The -values are then the components of the tri-Tl; a
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spectrum that we wish to estimate. The explicit form of isT

l

a; l aa a; l¯T p L T , (3)�m m m m l m m m m1 2 3 4 1 2 3 4
ap0

2a
l l 2aa; l MT̄ p (�1)�m m m m ( )1 2 3 4 m m MMp�2a 1 2

2a l l
# � inequivalent permutations,( )�M m m3 4

(4)

where the matrices in parentheses are the Wigner 3J symbols.
The are not orthogonal and satisfya; lT̄

3 l l 2aa; l a; l¯ ¯T T p d � 6 (5)m m m m m m m m ab { }1 2 3 4 1 2 3 4 l l 2b4a � 1

(where summation over the is assumed), which has a rank ofmi

. The matrix in equation (3) is a rectangular matrix (withn � 1 Ll

a triangular subblock) with columns and rows. It isn � 1 l � 1
constructed through a Gram-Schmidt procedure by subtracting
for eacha (starting from ) the projection onto all′a p 0 a ! a
and then normalizing the result. The (and hence )a p 0 a p 0
tensor is proportional to the Gaussian contribution. This can be
easily seen given that for the Wigner 3J symbols area p 0
simply Kroneckerd symbols in the corresponding indices. The
remaining terms contain therefore no Gaussian signal anda 1 0
quantify the non-Gaussian part of the trispectrum.

The -values are orthonormal and can be used to constructT
an estimator for from a realization of :T aa lm

a; lT̂ p T a a a a . (6)l; a m m m m lm lm lm lm1 2 3 4 1 2 3 4

For a Gaussian random field we expect for2 2ˆ ˆj [T ] k j [T ]l; 0 l; a

, where denotes the variance of the random variable2a 1 0 j [A]
A and is simply the square of the minimum variance es-T̂l; 0

timator of the . One finds that and2ˆ ˆC AT S p 0 j [T ] pl l; a l; a

for all .424C a 1 0l

To show that the constitute a family of minimum varianceT̂l; a

estimators, we construct a linear combination of the estimators,

n

l a; lT p c T , (7)�m m m m a m m m m1 2 3 4 1 2 3 4
ap0

and minimize the function

2 l 2j [c , l] p A(T a a a a ) Sl a m m m m lm lm lm lm1 2 3 4 1 2 3 4

� 2� AT a a a a Sm m m m lm lm lm lm1 2 3 4 1 2 3 4

2 l l� lC (T T � 1), (8)l m m m m m m m m1 2 3 4 1 2 3 4

where summation over all is implied. The last term, a La-mi

grange multiplier, ensures that is normalized. We solvelT

to find a set of two equations:2 2� j [c , l] p � j [c , l] p 0c l a l l aa

ab(24I � 72A ) c � lc p 0,l b b

2c p 1, (9)

where

ab a; l b; lA p T T . (10)l m m m m m m m m1 2 a a 1 2 b b

This is an eigenvector equation where for a given eigenvector
c, the eigenvaluel gives the expected variance of the estimator.
Of the eigenvalues, one is large and has an eigenvectorn � 1
proportional to . The remaining eigenvalues have an am-T̂l; a

plitude of , and each eigenvector is a for .ˆl p 24 T a 1 0l; a

Note that we can relate our parameterization to the one pro-
posed in Hu (2001); if we reexpress equation (2) as

l

a; l¯¯Aa a a a S p T T , (11)�lm lm lm lm l; a m m m m1 2 3 4 1 2 3 4
ap0

where , then as defined in equation (15) ofaa ll¯T p L T Ql; a l l; a ll

Hu (2001) can be written as

l l 2all ¯ ¯Q (2a) p T � 2(4a � 1) T . (12)�ll l; a l; b{ }l l 2bb

The numerical implementation of these estimators is more in-
volved than for the bispectrum. If we omit the numerous sym-
metries, we have to consider for eachl a set of up to Wigner38l
3J symbols (compared to just one for the bispectrum). There
are reasonably fast ways for constructing the Wigner 3J sym-
bols (Schulten & Gordon 1976), but the number of operations
per estimator scales as . For repeated computations of the6O(l )
estimators (e.g., in Monte Carlo studies), this can be partially
avoided by storing the precomputed estimators in a look-up
table, with the amount of memory required scaling as .4O(l )

Clearly, to be able to estimate the trispectrum on small an-
gular scales, approximate methods must be developed to make
the procedure computationally feasible. However, the ability to
constrain non-Gaussianity on large angular scales is in any case
more important physically for two reasons: the ratio of the non-
Gaussian to the Gaussian signal will in general be higher for
lower moments, and the signal-to-noise ratio is better for
low l. To understand these points, let us assume a source for
non-Gaussianity that leads to approximately scale-invariant
moments of the gravitational potential on arbitrary scales; i.e.,

is constant for anyR, where is the gravitationalNAF(R) S F(R)
potential within a ball of radiusR and denotes the ensembleA…S
average. This might be expected from a primordial source with
no preferred scale such as inflation (Komatsu & Spergel 2000)
or from an active source where the only scale is set by the
horizon today (Durrer et al. 2000). Current observations of the
CMB certainly favor such scale-invariant descriptions of the
potential. One then expects the moment on the order ofN of
the to scale as . This signal will be competing against2(1�N )a llm

the fluctuations due to the disconnected (or Gaussian) part,
which is proportional to , the former therefore dom-�(2N�1)/2N!l
inating for . Since the power spectrum for white noiseN 1 2
has constant amplitude, the signal-to-noise ratio as a function
of scale will have the same form as the scale-invariant power
spectrum itself, therefore being larger for smallerl, i.e., larger
angular scales.
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Fig. 1.—Six estimators of the normalized trispectrum applied to the EC data
(circles) and NEC data (crosses); 95% of all simulated Gaussian skies lie
within the solid lines. Although removing the eclipse data changes the noise
properties, we find that the Gaussian confidence limits remain essentially
unchanged.

3. RESULTS

As an application of the formalism described in § 2, we
estimate the trispectrum of the co-added 53 and 90 GHzCOBE
DMR 4 yr sky maps in HEALPix format (Go´rski, Hivon, &
Wandelt 1999). The resolution of the maps is , orN p 64side

49,152 pixels.
We do not extend our analysis beyond since thel p 20max

signal-to-noise ratio is poor for higherl. Hence, the maximal
number of independent non-Gaussian estimators for the tri-
spectrum is . We set the pixels in the extendedint(l /3) p 6max

Galactic cut (Banday et al. 1997) to zero and subtract the re-
sidual monopole and dipole of the resulting map. After con-
volving the maps with spherical harmonics to extract a set of

-values for , we then apply equation (6). To validatea l ≤ 20lm

our software, we have estimated the bispectrum of theCOBE
DMR 4 yr sky data repixelized in the HEALPix format (denoted
by EC for convenience) and reproduced the results of Ferreira
et al. (1998), in particular the strong non-Gaussian signal pre-
sent at . When an equivalent map, from which that partl p 16
of the DMR time stream contaminated by the “eclipse effect”5

is removed (denoted NEC), is subsequently analyzed, we also
reproduce the results of Banday et al. (2000), namely, that the
non-Gaussian signal is no longer detected. For our subsequent
analysis we will present the trispectra ofboth the EC and NEC
data.

One of our primary concerns is to compare our results with
the assumption that the CMB sky measured byCOBE DMR
is Gaussian. To do so, we generate 10,000 full-sky maps at the
same resolution using a scale-invariant power spectrum nor-
malized to K (Górski et al. 1998). We convolveQ p 18 mrms�PS

each map with the DMR beam and add uncorrelated pixel noise
with rms amplitude , (where is1/2j p 15.95 mK/ (N ) Nn obs obs

the number of times a given pixel was observed); we then
subject the synthetic map to the same procedure as the original
data.

Figure 1 shows the trispectra of the DMR data together with
Gaussian 95% confidence limits. Instead of the “raw” estimator
(6), we prefer to use the normalized trispectrum,(a)t pl

for (where ), thus ef-2 2ˆ ˆT̂ /C a 1 1 C p [1/ (2l � 1)] � Fa Fml; a l l lm

fectively removing the dependence on the power spectrum. This
prevents fluctuations in the power spectrum from introducing
spurious signals and from masking real non-Gaussianities. Fig-
ure 1 shows that in this case, most values fall within the 95%
confidence lines and demonstrate the scatter expected for a
Gaussian random field.

Of particular interest is the value of the normalized at(3)t
in Figure 1. One finds that 99.9% of the Gaussianl p 16

models in the EC case have a smaller than the measured(3)t
one. This is clearly a manifestation of the non-Gaussianity
found in Ferreira et al. (1998), which is highly localized inl
space. However, if we estimate for the NEC we find that(3)t
it falls comfortably within the 95% confidence limits. This leads
us to believe that this detection of non-Gaussianity results from
the eclipse effect, consistent with the hypothesis of Banday et
al. (2000).

We construct a goodness of fit for our statistic. In Ferreira
et al. (1998), a modified was constructed that took into2x
account the non-Gaussian distribution of each method: as
above, the distribution of each estimator for a Gaussian sky

5 The eclipse effect was an orbitally modulated signal that took place for
approximately 2 months every year around the June solstice when theCOBE
spacecraft repeatedly flew through the Earth’s shadow.

was constructed and used as an approximate likelihood function
to evaluate the goodness of fit. One shortcoming of such a
method was that correlations between the estimates for different
l-values were discarded. To include them, we use the Gaussian
ensemble of data sets to derive the expectation valuesA…SG

and the covariance matrixC for both the power spectrum,
, and all seven trispectrum estimators, to . We proceed(0) (6)C t tl l l

to calculate the -value for the estimator and the data set2x E
,D

2 �1x [E, D] { [ E � E(D) ]C [ E � E(D) ], (13)′ ′ ′� G H G Hl l ll l lG G′l, l

using as data sets the EC and NEC data. Finally, we use another
10,000 Gaussian realizations to estimate the expected distri-
bution of the for both the EC and the NEC data.2x

For all normalized non-Gaussian trispectrum estimators
( to ), we find that 94% of the Gaussian models have a(1) (6)t t
smaller than the EC data, as can be seen in Figure 2. As2x
expected, the main contribution to the for the EC data stems2x
from at ; indeed, this is the only normalized tri-(3)t l p 16
spectrum estimator that exhibits any significant non-Gaussian-
ity, in this case at about 99.9%. If we use the NEC data, the
detection vanishes. In this case, 60% of all Gaussian models
have a lower when computed over all six trispectrum es-2x
timators (83% for alone). Hence, the NEC data is com-(3)t
patible with Gaussianity.

4. DISCUSSION

In this Letter, we have derived an estimator for the trispec-
trum of a scalar random field on the sphere. Application of
this estimator, normalized by the power spectrum (a procedure
adopted in Ferreira et al. 1998 for the bispectrum; see also
Komatsu et al. 2002 for a detailed discussion), to theCOBE
DMR data provides evidence for non-Gaussianity at the 94%
confidence level. As in the case of the bispectrum, the signal
is mainly present in the multipole (and the estimator(3)l p 16 t
here). However, when data is excluded to correct for the eclipse
effect, the non-Gaussian behavior is removed, allowing us to
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Fig. 2.— distribution of the Gaussian models (histogram) and actual data2x
value (dotted line) for the EC (top row) and NEC (bottom row) data sets. The
left two graphs showt (3), which contains the main contribution to the non-
Gaussian signal, while the right two graphs show the total over all six non-2x
Gaussian estimators,t (1) to t (6).

conclude that the non-Gaussianity present in the uncorrected
sky maps is not cosmological in origin.

The detection of a signal that is so strongly localized inl space
provides convincing support to our contention that the trispec-
trum is an important and sensitive probe of non-Gaussianity in
the frequency (scale) domain. It affords complementary infor-

mation to the bispectrum since it is an even moment and, despite
the higher computational effort required, has the obvious ad-
vantage in that it can probe all values ofl, not just the even
ones.

Interestingly enough, from a theoretical perspective there may
be some possible sources of non-Gaussianity for which the tri-
spectrum provides a far more sensitive test than the bispectrum.
In many cases, a given moment of the -values can be expressedalm

as the projection of a cosmological field. If that field is vector-
like in nature (as in the case of the Doppler effect or the Ostriker-
Vishniac effect and its non-linear extensions), any odd moment
may suffer from the Sunyaev-Kaiser cancellation, where the in-
tegral of a given wavenumberk over a smoothly varying pro-
jection function with widthj tends to suppress the moment by
a factor on the order of (Sunyaev 1978; Kaiser 1984;21/(jk)
Scannapieco 2000). For even moments one can always construct
a scalar component that will not be subject to this cancellation.
Such a tool will be of great use in the analysis of the data sets
from the Microwave Anisotropy Probe and Planck Surveyor
satellites.
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6 See http://www.eso.org/science/healpix.
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