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Abstract

We study a large family of metric-affine theories with a projective symmetry, 

including non-minimally coupled matter fields which respect this invariance. 

The symmetry is straightforwardly realised by imposing that the connection 

only enters through the symmetric part of the Ricci tensor, even in the 

matter sector. We leave the connection completely free (including torsion), 

and obtain its general solution as the Levi-Civita connection of an auxiliary 

metric, showing that the torsion only appears as a projective mode. This 

result justifies the widely used condition of setting vanishing torsion in these 

theories as a simple gauge choice. We apply our results to some particular 

cases considered in the literature, including the so-called Eddington-inspired-

Born–Infeld theories among others. We finally discuss the possibility of 

imposing a gauge fixing where the connection is metric compatible, and 
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comment on the genuine character of the non-metricity in theories where the 

two metrics are not conformally related.

Keywords: modified gravity, metric-affine theories, torsion,  

non-minimal couplings

1. Introduction

The remarkable properties of Born–Infeld electromagnetism [1], originally aimed at resolv-

ing divergences of point-like charged particles, motivated the search for a similar route to 

resolve the singularities of general relativity [2]. Among the different proposals, the so-called 

Eddington-inspired-Born–Infeld (EiBI) theory [3] has attracted a lot of attention in recent 

years due to its extraordinary ability to get rid of cosmological and black hole singularities, 

and numerous works have been devoted to constrain the model using different types of obser-

vation [4]. Extensions and modifications of that model also lead to interesting results in cos-

mological and black hole scenarios [5–8]. The exploration of these theories showed that their 

natural habitat is the framework of metric-affine geometries, and precisely this for mulation 

permitted the aforementioned progress (see [9] for a review). The reason for the necessity of 

considering these theories in the metric-affine approach is the avoidance of ghost-like insta-

bilities that would otherwise be present in the metric formulation of theories with non-linear 

curvature terms in the action [10]. The metric-affine (sometimes also called Palatini) for-

mulation is characterised by unlocking the affine structure and disentangling it from the metric 

structure, which amounts to assuming that the geometry is not Riemannian a priori, but of 

metric-affine type, where the metric and the connection are regarded as fully independent 

objects. The spirit of this approach is that only the resulting field equations should specify 

the full geometrical structure of the spacetime and, in particular, the relation between the 

metric and the connection with the matter fields. In this regard, it must be noted that the EiBI 

theory has been systematically analysed for a constrained family of connections by assum-

ing a vanishing torsion tensor9. Given the growing interest in this theory and its applications, 

we find expedient a careful analysis of the role of torsion in its field equations, and—with a 

little extra effort—extend the analysis to a much larger class of affine theories. This issue has 

been treated with care in [9] for minimally coupled fields, which corresponds to the case in 

many practical applications. In the present work, we will extend the analysis to more general 

cases that include non-minimally coupled matter fields. We will see that the structure of the 

equations remains essentially the same, but some differences arise that could have interesting 

phenomenological consequences.

The role of torsion in metric-affine theories of gravity has been previously considered in 

the literature in the context of e.g. f (R) and f (R,RµνR
µν) theories of gravity [17–23]. The 

case of f (R) theories is particularly relevant to our discussion because a degeneracy between 

different formulations of those theories was observed when torsion was explicitly considered 

in the dynamics [17, 21, 24]. To make a long story short, one can say that (i) the torsionless 

Palatini formulation of f (R) theories and (ii) the metric compatible (∇Γ

µgαβ = 0) for mulation 

of these theories with torsion yield the same field equations. This result, non-trivial at first 

sight, suggests an intimate relation between torsion and non-metricity in metric-affine theories 

of gravity. The question of whether an analogous relation also exists in the EiBI theory is an 

9 We refer here to the most widely explored Born–Infeld inspired theories of gravity—the EiBI model being the 

paradigmatic example. A noteworthy exception is the class of Born–Infeld theories based on the teleparallel  

form ulation of gravity, where the torsion is actually the fundamental object [11–16].
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issue that we will explicitly address and clarify in this work. As we will see, the non-metricity 

structure of the EiBI theory is much richer than in the f (R) case, while their torsional proper-

ties are much closer. As a consequence, there is no possible trade between the torsional and 

the non-metricity properties, making it impossible to find a metric-compatible representation 

of the theory with torsion. This result is rooted in the existence of a projective symmetry in the 

theory, and the fact that the torsion only enters as a projective mode, which can then be gauged 

away. This symmetry will also explain the different non-metric structure of f (R) and EiBI, as 

a consequence of the existence of a gauge where the non-metricity vanishes.

An important step forward that we make in the present work is the inclusion of  non-minimally 

coupled matter fields. However, these non-minimal interactions must be introduced carefully, 

in order not to give rise to inconsistent equations. Since the projective invariance proves to 

be a crucial ingredient, we will only allow non-minimal couplings respecting this symmetry. 

The most straightforward procedure to realise it is by simply allowing non-minimal couplings 

only to the symmetric part of the Ricci tensor (which is exactly projective invariant). Although 

this might seem like a severe restriction, it is actually quite natural, and permits a large class 

of couplings. In fact, very much like the metric-affine formalism opens up the possibility for 

much more general gravitational actions than the metric formalism allows, the same applies 

for non-minimal couplings. Within the metric formalism, it is known that derivative couplings 

of scalar fields to the curvature must be of a very specific form, in order to avoid ghosts [25]. 

For vector fields, non-derivative couplings to the curvature already need to be carefully con-

structed, but non-minimal derivative couplings are even more contrived [26]. On the other 

hand, we will show that, within the realm of the metric-affine theories with a projective invari-

ance considered in this work, the allowed couplings of matter fields to the curvature without 

Ostrogradski instabilities are much more general and, in fact, they will not be subject to any 

additional constraints. For all these theories, the torsion will still enter as a projective mode—

and, therefore, with no physical consequence. Our results thus provide a solid and safe justi-

fication for the widely adopted condition of setting the torsion to zero, simply amounting to a 

choice of gauge, for a very large class of theories.

The content of the paper is organised as follows. We present in section 2 a derivation of the 

field equations in a general class of metric-affine theories and apply it to the EiBI and the so-

called f (R) and f (R, T) theories. We then generalise the formalism to include non-minimal 

couplings in section 3, and we discuss the Einstein frame representation of the theories in 

section 4. In section 5 we discuss the conditions for the existence of metric compatible gauge 

fixing. We conclude in section 6 with a summary and discussion of our results.

2. General field equations for metric-affine theories

For the sake of generality, in this section we derive the field equations of a general family 

of theories whose gravitational sector Lagrangian is a function of a metric and the Riemann 

tensor of an independent connection. This will allow to set-up a general formalism and make 

direct contact with previous results. In order to avoid unnecessary notational complications, 

we will assume minimally coupled fields for the moment. We will come back to this point in 

section 3, to straightforwardly add non-minimal couplings complying with our requirements. 

Our starting point is thus the action [27]

S =
1

2κ2

∫

d4x
√
−gF [gµν ,Rα

βµν(Γ)] + Sm[gµν ,ψ], (1)

where Sm is the matter action, ψ represents the matter fields collectively, κ2 is a constant with 

suitable dimensions, g is the determinant of the spacetime metric gµν, F(gµν ,Rα
βµν) is an 

V I Afonso et alClass. Quantum Grav. 34 (2017) 235003
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arbitrary scalar function constructed with the metric and the Riemann tensor, the field strength 

of the connection Γα
µβ, with components

R
α
βµν = ∂µΓ

α
νβ − ∂νΓ

α
µβ + Γα

µλΓ
λ
νβ − Γα

νλΓ
λ
µβ . (2)

We assume a symmetric metric tensor, gµν = gνµ, and the usual definitions for the Ricci ten-

sor, Rµν ≡ R
ρ
µρν, and the Ricci scalar, R ≡ gµνRµν.

The Palatini variation of the action (1) leads to

δS =
1

2κ2

∫

d4x
√
−g

[(

∂F

∂gµν
− F

2
gµν

)

δgµν + Pα
βµν

δRα
βµν

]

+ δSm.

 (3)

where we have introduced the tensor

Pα
βµν

≡
∂F

∂Rα
βµν

, (4)

which inherits from the Riemann tensor the antisymmetry in the last two indices. Straightforward 

manipulations show that δRα
βµν can be written as

δR
α
βµν = ∇µ

(

δΓα
νβ

)

−∇ν

(

δΓα
µβ

)

+ 2Sλ
µν(δΓ

α
λβ), (5)

where Sλ
µν ≡

1
2
(Γλ

µν − Γλ
νµ) is the torsion tensor. Integrating by parts, and introducing the 

current Jµ ≡ Pα
βµν

δΓα
νβ, the sector of the action that concerns the variation with respect to 

the connection takes the form

IΓ ≡
1

κ2

∫

d4x
√
−gPα

βµν
(

∇µδΓ
α
νβ + Sλ

µν δΓ
α
λβ

)

=
1

κ2

∫

d4x
{

∇µ(
√
−gJµ)−

[

∇µ

(√
−gPα

βµν
)

−
√
−gPα

βµλSν
µλ

]

δΓα
νβ

}

,

 

(6)

where we can isolate a boundary term as follows

IΓ =
1

κ2

∫

d4x
{

∂µ(
√
−gJµ)−

[

∇µ

(√
−gPα

βµν
)

− 2Sσ

σµ

√
−gPα

βµν
]

δΓα
νβ

}

.

 

(7)

Using this result, the complete variation of the action (3) reads

δS =
1

2κ2

∫

d4x

{√
−g

(

∂F

∂gµν
− F

2
gµν

)

δgµν + 2∂µ
(√

−gJµ
)

+ 2
√
−g

[

− 1√
−g

∇µ

(√
−gPα

βµν
)

+ Sν
σρPα

βσρ + 2Sσ
σµPα

βµν

]

δΓα
νβ

}

+ δSm,

 

(8)

with associated field equations

κ2Tµν =
∂F

∂gµν
− F

2
gµν (9)

κ2Hα
νβ = − 1√

−g
∇µ

(√
−gPα

βµν
)

+ Sν
σρPα

βσρ + 2Sσ
σµPα

βµν , (10)

where Tµν ≡ −
2

√

−g

δSm

δgµν  is the energy-momentum tensor of the matter and Hα
νβ

≡ −
1

√

−g

δSm

δΓα
νβ

 

is the hypermomentum that results from the coupling of matter to the connection. As 

V I Afonso et alClass. Quantum Grav. 34 (2017) 235003



5

commented above, we will assume that the matter fields do not couple to the connection, so 

that Hα
νβ = 0, and discuss the effects of non-minimal couplings later on. The first of these 

equations  represents the generalisation of Einstein’s equations, while the connection field 

equations will fix the relation between the affine and metric structures.

In order to disentangle the symmetric part Cα
µν of the connection from the antisymmetric 

one—namely, the torsion Sα
µν—we write the connection as

Γα
µν = Cα

µν + Sα
µν . (11)

Then, for any vector Vν  we have ∇µVν = ∂µVν − Cα
µνVα − Sα

µνVα = ∇C
µVν − Sα

µνVα, and 

for the squared root of the metric determinant we have ∇µ

√
−g = ∇C

µ

√
−g − Sα

µα

√
−g, where 

∇C
µ  denotes the covariant derivative associated to the symmetric connection Cα

µν. Accordingly, 

equation (10) reduces to

1√
−g

∇
C
µ

(√
−gPα

βµν
)

= Sλ
µαPλ

βµν
− S

β
µλPα

λµν . (12)

After deriving the equations for a general case, we will proceed to consider the class of theo-

ries of interest for us in the present work.

2.1. Connection field equations for Ricci-based theories

We now restrict our initial family of gravity theories to those in which only the Ricci tensor 

appears. A general analysis of these theories can also be found in [9]. The action that describes 

these Ricci-based theories is a particular case of (1) where the dependence on the Riemann 

tensor is replaced by the dependence on the Ricci tensor:

S =
1

2κ2

∫

d4x
√
−gF [gµν ,Rµν(Γ)] + Sm[gµν ,ψ] . (13)

For this kind of theory, the P-tensor introduced in (4) takes the following form

Pα
µβν = Zµρ

δ
βν
αρ , (14)

where the Z-tensor is defined as the derivative of the gravity Lagrangian with respect to the 

Ricci tensor,

Zµν
≡

∂F

∂Rµν

, (15)

and δβναρ ≡
1
2

(

δβαδ
ν
ρ − δβρ δ

ν
α

)

. In terms of the Z-tensor, equation (12) reads

1√
−g

∇
C
µ

(√
−g Zβρ

)

δ
µν
αρ = Sλ

µαZβρ
δ
µν
λρ − S

β
µλZλρ

δ
µν
αρ , (16)

which, once traced over να, provides the relation

− 1√
−g

∇C
µ

(√
−g Zβµ

)

=
2

3
Sλ
λµZβµ

δ
µν
λρ − S

β
λµZλµ . (17)

Using this result, equation (16) turns into

1√
−g

∇
C
α

(√
−g Zβν

)

= −
2

3
δ
ν
αZβµSλ

λµ + ZβνSλ
λα − Sν

µαZβµ + Sβ
µαZµν .

 (18)

V I Afonso et alClass. Quantum Grav. 34 (2017) 235003
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It happens that this equation can be further simplified by performing a projective transforma-

tion of the form10

Γ̃
λ
µν = Γ

λ
µν +

2

3
Aµδ

λ
ν , (19)

with the symmetric and antisymmetric part of Γ̃λ
µν  related to those of Γλ

µν  by

C̃λ
µν = Cλ

µν +
2

3
δ
λ
(νAµ), (20)

S̃λ
µν = Sλ

µν +
2

3
δ
λ
[νAµ]. (21)

The vector Aµ ≡ Sλ

λµ is chosen in such a way that S̃λ
λµ = 0. Using these new variables, equa-

tion (18) reads

1√
−g

∇
C̃
α

(√
−g Zβν

)

= S̃β
µαZµν

− S̃ν
µαZβµ. (22)

Whenever it is possible to define the inverse of Zµν , which we denote as Zµν, an immediate 

consequence of (22) is

1√
−g

∇
C̃
α

(√
−g Zβν

)

Zνβ = 0 . (23)

Expanding this expression, one finds the useful relation

C̃λ
αλ = ∂α

(

ln |g| − 1

2
ln |Z|

)

, (24)

where |Z| ≡ | det Zµν |. This last equation can be used to simplify (22), yielding
(

∇̃α + Vα

)

Zβν
= 2 S̃ν

αλZβλ, (25)

where we introduced Vα ≡
1
2
∂α ln

∣

∣

∣

Z
g

∣

∣

∣ and we used ∇̃α referring to the covariant derivative of 

the connection Γ̃
µ
αβ = C̃

µ
αβ + S̃

µ
αβ  defined in (19). In order to remove the vector Vα from the 

above equation, we redefine the Z-tensor as follows

Zµν =

√

∣

∣

∣

g

Z

∣

∣

∣
Z̃µν , (26)

which leads to

∇̃αZ̃βν = 2 S̃ν
αλZ̃βλ. (27)

Guided by the standard approach of general relativity to derive the expression of the connec-

tion, we properly sum cyclic permutations of the last equation with lowered indices,

∇̃α Z̃µν = 2 S̃λ
µαZ̃λν , (28)

to finally obtain

∂α Z̃µν + ∂ν Z̃αµ − ∂µ Z̃να = 2 Γ̃λ
µαZ̃[λν] + 2 Γ̃λ

αν Z̃(λµ) + 2 Γ̃λ
νµZ̃[αλ]. (29)

10 This shift in the connection is known as projective transformation because it leaves the geodesic paths invariant 

up to a redefinition of the affine parameter.

V I Afonso et alClass. Quantum Grav. 34 (2017) 235003
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Symmetrising and antisymmetrising this equation in αν one obtains, respectively,

C̃λ
αν Z̃(λµ) =

1

2

(

∂α Z̃(µν) + ∂ν Z̃(αµ) − ∂µ Z̃(να)

)

+ S̃λ
αµZ̃[λν] + S̃λ

νµZ̃[λα],

 

(30)

1

2

(

∂α Z̃[µν] + ∂ν Z̃[αµ] − ∂µ Z̃[αν]

)

= C̃λ
αµZ̃[λν] + C̃λ

µν Z̃[αλ] + S̃λ
αν Z̃(µλ).

 

(31)

The above two equations are key elements of this paper, as the following application shows. 

From the definition (15), it is immediately seen that if the Lagrangian only depends on the 

symmetric part of the Ricci tensor, then Z̃µν , and its inverse Z̃µν, must also be symmetric. As 

a result, for such theories we have Z̃[µν] = 0, and equations (30) and (31) boil down to

C̃λ
αν =

1

2
Z̃µλ

(

∂α Z̃µν + ∂ν Z̃αµ − ∂µ Z̃να

)

, S̃λ
αν = 0 . (32)

This implies that the symmetric part of the connection Γ̃α
µν  coincides with the Levi-Civita 

connection of the (inverse) auxiliary metric Z̃µν , while its torsion tensor S̃λ
αν  vanishes. The 

connection Γλ
αβ can thus be written as

Γλ
αβ = C̃λ

αβ − 2

3
Aαδ

λ
β , (33)

with its torsion fully determined by Aµ as Sλ
µν = 1

3
(δλµAν − δ

λ
ν Aµ). Note that the resulting 

connection corresponds to a particular case of the general family of connections with vector 

distortion introduced in [28].

Let us now return to the definition of the Ricci tensor and its representation using the above 

variables

Rµν(Γ) = Rµν(C̃) +
2

3
∇

C̃
[νAµ] +∇

C̃
λS̃λ

νµ − S̃λ
κµS̃κ

νλ . (34)

From this expression, it is immediately seen that with this choice of connection variables, 

namely Γα
µν  split in a symmetric part C̃α

µν, an antisymmetric traceless part S̃α
µν, and a vector 

Aα representing the projective freedom, the symmetrised Ricci tensor takes the form

R(µν)(Γ) = R(µν)(C̃)− S̃λ
κ(µS̃κ

ν)λ, (35)

which is manifestly independent of the projective degrees of freedom Aα. Theories of gravity 

based on the symmetric part of the Ricci tensor11, therefore, are insensitive to this projective 

mode, which remains undetermined by the field equations. To further reinforce this point, 

note that, as we have shown above, when in such theories the matter is not coupled to the con-

nection one also finds that S̃λ
αν = 0, which implies R(µν)(Γ) = R(µν)(C̃). The equations of 

motion that follow from variation of the metric, therefore, must only depend on C̃α
µν, having 

no trace of Aα.

The impossibility of determining Aα is simply a reflection of the fact that theories based on 

the symmetric part of the Ricci tensor are projectively invariant and Aα precisely corresponds 

to the projective mode that was expected to remain undetermined by the field equations. This 

can be clearly seen from the variation of the Ricci tensor under a general projective transfor-

mation Γα
µβ → Γα

µβ −
2
3
Aµδ

α
β  that is given by

11 In particular, any theory depending on the Ricci scalar, as R = gµνRµν = gµνR(µν) for gµν symmetric.

V I Afonso et alClass. Quantum Grav. 34 (2017) 235003
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Rµν(Γ) → Rµν(Γ)−
4

3
∂[µAν], (36)

where we confirm that the projective mode does not contribute to the symmetric part of the 

Ricci tensor. Note that theories containing the full Ricci tensor will still have a pure gra-

dient projective symmetry, i.e. they are invariant under a projective transformation where 

Aµ = ∂µθ, with θ an arbitrary scalar. This already suggests that giving up on the projective 

symmetry, and allowing for the general Ricci tensor, will make the projective mode become 

a Maxwellian field.

The arbitrary local character of the projective invariance has a direct consequence on the 

field equations, by enforcing an off-shell constraint on the theory given by the vanishing of the 

trace of the connection field equations; i.e. these theories will satisfy

δS

δΓα
µβ

δ
β
α = 0. (37)

This constraint is unaffected by the matter sector because we have assumed it to be minimally 

coupled so that the corresponding hypermomentum is identically zero. We will see later how 

to add non-minimal couplings to the matter field such that the hypermomentum also satisfies 

this constraint. Before proceeding to that we will first consider two specific cases that will 

serve us as proxies for our discussion on the possibility of getting rid of the non-metricity by 

a suitable choice of the projective mode.

2.2. EiBI theory

In this section, we specify the approach of the previous section to the EiBI gravity theory, 

which is defined by the action [3]

SEiBI =
1

ǫκ2

∫

d4x
[
√

−|gµν + ǫR(µν)(Γ)| − λ
√−g

]

, (38)

where κ2
≡ 8πG/c4 is the usual Einstein coupling constant, ε is a parameter with dimen-

sions of length squared, the Ricci tensor is a function solely of the affine connection, which is  

a priori independent of the physical metric gµν, and the parameter λ is related to an effective 

cosmological constant as λ = 1 + ǫΛeff . Note that we have made explicit the fact that the 

Lagrangian only depends on the symmetric part of the Ricci tensor. Recall, in this sense, that 

in the metric-affine formulation the Ricci tensor is not necessarily symmetric by construction, 

as can be seen from (34). The non-symmetric case will be considered elsewhere (see also the 

discussion at this respect in [9]).

In order to take advantage of the general approach to Ricci based theories, one just needs 

to identify the Z-tensor (15). Therefore, we need (38) to match the form of expression (1). To 

this end, we identify the argument of the square root as an auxiliary metric

qµν ≡ gµν + ǫR(µν)(Γ), (39)

which is manifestly symmetric, and we introduce the deformation matrix

Ωρ
ν ≡ δ

ρ
ν + ǫ gρσRσν , (40)

such that qµν = gµρ Ω
ρ
ν  (or (q−1)µν ≡ qµν = (Ω−1)µ

σ
gσν). This allows to rewrite action 

(38) as

SEiBI =
1

κ2ǫ

∫

d4x
√
−g

(√
Ω− λ

)

, (41)
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where Ω = detΩ
ρ

ν
. Thus, for the EiBI gravity we can identify F(gµν ,Rµν) = (

√

Ω− λ) 

leading directly to the Z-tensor

Zµν =
√
Ω qνµ. (42)

With this result at hand, the traceless field equation for the connection (18), assumes the form

∇
C
α

(√
−q qµβ

)

=
√
−q

[

−2qλ[µS
β]
αλ +

(

δ
λ
αqµβ − 2

3
δ
µ
αqλβ

)

Aλ

]

. (43)

Upon substituting the set of variables (19), equation (43) takes the simplified form

1√
−q

∇
C̃
α

(√
−q

(

q−1
)µν

)

= S̃
µ
αλqλν − S̃ν

αλqµλ. (44)

Following the general procedure worked out in the previous section, it is not difficult to 

verify that this equation can be put as

(

∇̃α + Vα

)(

√

|Ω| qµν
)

= 2S̃ν
αλqλµ, Vα ≡ −

1

2
∂α ln |Ω| . (45)

This can be further simplified using the redefinition (26), which in the present case reads

Zµν =
√
Ω qνµ =

√
Ω Z̃µν

⇒ Z̃µν
= qνµ . (46)

Note that this last result, namely that Z̃µν = qνµ, is consistent with our interpretation of Z̃µν  

as the inverse of the proper auxiliary metric. Finally, we are left with the analogue of (28)

∇̃αqµν = 2S̃ν
αλqλµ . (47)

Now, following the same steps as in the previous section, we end up with equation (32) par-

ticularised to the EiBI symmetric case

C̃λ
αν =

1

2
qµλ (∂α qµν + ∂ν qαµ − ∂µ qνα) , S̃λ

αν = 0 . (48)

Actually, there is a shortcut to obtain the same result starting from (44) and noticing that 

we assumed the Ricci tensor to be symmetric, which implies that qµν is symmetric as well. 

Therefore, for consistency, the equation (44) splits into two equations

∇
C̃
α

(√
−q qµν

)

= 0, qλ[µS̃
ν]
λα = 0 . (49)

Recalling that for any tensor aµν with determinant a and inverse aµν, the following identity 

holds

∂α

√

|a| = −
1

2

√

|a|aνµ∂αaµν , (50)

it is straightforward to prove that the first equation of (49) is the analogue of the metricity 

condition for qµν, leading directly to

C̃α
µν =

1

2
qαρ (∂µqρν + ∂νqρµ − ∂ρqµν) . (51)

Concerning the second equation in (49), lowering free indices, one is left with S̃[µν]ρ = 0, i.e. 

the torsion in the new variables is symmetric in its first two indices. Therefore, it is a matter of 

simple algebra to conclude that S̃α
µν = 0 which, in turn, implies that
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Sλ
µν =

2

3
δ
λ
[µAν] (52)

as a consequence of (21). This proves that when the field equations for the connection are 

(algebraically) solved, the torsion tensor still depends on the expected four projective degrees 

of freedom that are not fixed by the dynamics of the theory.

For completeness, and for future reference, we note that the variation of (41) with respect 

to the metric leads to

√

−qqµν −
√

−ggµν = −ǫκ
2Tµν . (53)

With algebraic manipulations, one can solve for qµν in terms of gµν and the matter as 

qµν = gµαΩ
α
ν, where
√

|Ω|(Ω−1)µν = λδ
µ
ν − ǫκ

2Tµ
ν . (54)

This shows that the relative deformation between the physical and auxiliary metrics is fully 

determined by the stress-energy tensor of the matter sources. The field equations for qµν can 

be obtained from equation (39) using the fact that R(µν)(Γ) = R(µν)(C̃), and take the form

Gµ
ν(q) =

κ2

√

|Ω|

[

Tµ
ν − δ

µ
ν

(

LG +
T

2

)]

, (55)

where LG = (
√

|Ω| − λ)/(ǫκ2) represents the EiBI gravity Lagrangian, Gµ
ν(q) ≡ qµαGαν(q), 

and Tµ
ν ≡ gµαTαν . This Einstein-like representation of the field equations for the auxiliary 

metric qµν provides an explicit example at the equations level of our general discussion in 

section 4. This general representation was also rigorously derived for the general case in [9].

2.3. f (R) and f (R, T ) theories

Other classes of theories to which the general method of section 2.1 can be applied are the 

so-called f (R) theories [24, 29, 30], with R ≡ gµνRµν(Γ). For the same price we can also 

consider the f (R, T) theories, with T representing the trace of the stress-energy tensor of the 

matter fields, that have recently received some attention in the literature [31–35]. Furthermore, 

this will be our first step towards including non-minimal couplings, case that will be fully 

addressed in the next section. In both cases, the dependence on R guarantees the projective 

invariance. For these theories, the action is the same as (1) provided the function F is replaced 

by the corresponding f (from now on we use just f to denote both f (R) and f (R, T) theories). 

The restricted dependence of the function F specifies the form of the Z-tensor (15) as follows

Zµν = fR gµν , (56)

where fR ≡ ∂Rf  (for both, f (R) and f (R, T) theories). Plugging this expression into (16), 

the field equations for the connection become

1√
−g

∇
C
µ

(√
−gfR gσβ

)

δ
µν
ασ =

1

2
fR

(

Sλ
λαgνβ − S

β
αλgνλ

− Sν
σαgσβ

)

. (57)

which can be further simplified using its trace equation and the shift transformation of the 

connection (19), to end up with the analogue of (22):

1√
−g

∇
C̃
α

(√
−gfR gµν

)

= 2fRS̃
[µ
λα gν]λ . (58)
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This equation makes it manifest that, as a consequence of the symmetry of the metric, both 

sides must identically vanish, yielding

1
√

−g
∇

C̃
α(
√

−g fR gβν) = 0 (59)

S̃ανβ − S̃βνα = 0 ⇔ S̃λ
µν = 0 . (60)

The general procedure of section 2.1, allows to identify the auxiliary metric in the form

hµν = Z̃µν = f−2
R

Zµν =
1

fR
gµν , (61)

leading to the conclusion (32) that the symmetric part of the shifted connection coincides with 

the Christoffel symbol associated to the auxiliary metric, that is,

C̃α
µν =

1

2
hαρ (∂µhρν + ∂νhρµ − ∂ρhµν) . (62)

We thus see that the connection is generated by a metric that is conformally related to 

the spacetime metric, so that the deformation matrix is proportional to the identity matrix 

Ωα
β = fRδ

α
β. As we will show later, this simple relation between the two metrics has an 

important impact on the existence of a metric-compatible projective gauge.

3. General projectively invariant non-minimal couplings

In the previous section, we have considered a type of theory in which matter fields can couple 

non-minimally through the trace of the energy-momentum tensor; the same results found for 

minimally coupled fields apply to this case as well. The specific coupling through the trace of 

the energy-momentum tensor does not have any special structure, and we will show in the fol-

lowing that it is nothing but a particular case of a larger class of theories with non-minimally 

coupled matter fields.

Let us then consider general affine theories in the presence of matter fields with  non-minimal 

couplings. We will restrict the couplings so as to maintain the projective invariance in a very 

simple way—specifically, by allowing couplings to the curvature only through the symmetric 

part of the Ricci tensor, so that we will consider theories generally described by the following 

action

S =
1

2κ2

∫

d4xF(gµν ,R(µν)(Γ),ψ, ∂ψ) (63)

with F an arbitrary function of the metric, the symmetric part of the Ricci tensor and the 

matter fields collectively denoted by ψ. Note that we only allow up to first derivatives of the 

matter fields, and we have intentionally spelled out that such derivatives are indeed partial 

derivatives, and not covariant ones. For bosonic fields this is actually the natural situation. If ψ 

corresponds to a scalar field ϕ, the covariant derivatives reduce to partial derivatives (assum-

ing we are dealing with true scalar fields and not scalar densities) ∇µφ = ∂µφ. Thus, we 

can include non-minimimal couplings like e.g. Rµν∂µϕ∂νϕ that would lead to Ostrogradski 

instabilities in the metric formalism. For vector fields Aµ, we assume that all derivatives enter 

through the corresponding field strength Fµν = ∂µAν − ∂νAµ. We adopt the standard defini-

tion of the field strength as the exterior derivative of the vector field, which naturally extends 

our considerations to higher p-forms. Sometimes the field strength in curved spacetime is 
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defined by promoting partial derivatives to covariant ones in the flat spacetime definition of 

Fµν , in which case an explicit coupling to the torsion arises (that would not be allowed by our 

requirements). In this case, we can include interactions of the form RµνAµAν or RµνFµαFν
α 

that, again, would give rise to ghost-like instabilities in the purely metric framework. Things 

are more subtle when including fermions into the picture, since they couple directly to the spin 

connection with minimal interactions. Fortunately, the minimally coupled Dirac Lagrangian 

still exhibits a projective symmetry—and, thus, our analysis can be consistently extended to 

the case of fermionic fields. However, adding non-minimal couplings for fermions with our 

requirements must be done with more care than with bosonic fields. For simplicity, in the deri-

vation of our main result we will assume that the independent connection Γα
µν  only appears 

through the Ricci tensor. In that case, the variation of the action with respect to the connection 

leads to

δS =
1

2κ2

∫

d4x
√
−g

∂F

∂R(µν)
δR(µν)(Γ), (64)

and the manipulations of section 2.1 recover the same results as we found there for minimally 

coupled theories. In particular, we see that we can introduce the auxiliary metric Z̃µν defined 

by

√
−g

∂F

∂R(µν)
≡

√

−Z̃Z̃µν
 (65)

so that the resolution of the connection field equations follows identically, and the connection 

will thus be given by the Levi-Civita connection of the auxiliary metric Z̃µν up to the pro-

jective mode. Obviously, similarly to the minimally coupled case, the auxiliary metric itself 

depends on all the arguments of the function F, among which we find the Ricci tensor. The 

crucial point is once again that the metric field equations

∂F

∂gµν
− 1

2
Fgµν = κ

2Tµν (66)

make it possible to obtain the symmetric part of the Ricci tensor algebraically, in terms of the 

spacetime metric and the matter fields. This is where the differences between minimally and 

non-minimally coupled theories arise. If the couplings are restricted to be minimal, then the 

matter fields only appear on the RHS of the above equation, and the symmetric part of the 

Ricci tensor will be given in terms of gµν and the usual energy-momentum tensor of the corre-

sponding matter fields. For non-minimally coupled fields, the LHS will also depend on the 

matter fields—so that, although we will still be able to express the Ricci tensor in terms of gµν 

and the matter fields, the latter will appear in arbitrary combinations, not necessarily through 

the energy-momentum tensor.

Finally, it is important to note that the hypermomentum Hµβ
α  of the matter fields will not 

vanish—and will, therefore, contribute non-trivially to the connection field equations. As we 

have discussed, this fact can be easily handled, and the resulting effect will be a different 

dependence of the auxiliary metric on the matter fields. Moreover, the existence of the projec-

tive symmetry in the non-minimal couplings will guarantee that the off-shell constraint given 

in (37) will not be violated, i.e. we will have Hµα
α = 0. It is sometimes argued that the pro-

jective symmetry in metric-affine theories (mainly within the context of the Einstein–Hilbert 

action as in [36]) leads to inconsistencies in the field equations when introducing matter fields. 

However, as discussed, for instance, in [9], even in the presence of non-minimal couplings, 

inconsistencies do not necessarily arise, and our results here provide an explicit realisation of 
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this general argument by simply imposing the same projective symmetry in the matter sector, 

which is in fact a natural manner of introducing non-minimal couplings within the framework 

of these theories.

4. Einstein frame representation

In the previous sections, we have worked with the field equations directly to show that the 

connection is given by the Levi-Civita connection of the auxiliary metric and the torsion only 

enters as a projective mode, which can therefore be gauged away. We will now re-obtain the 

same results from a different approach, by showing the existence of an Einstein frame repre-

sentation for generic gravity Lagrangians which depend on the symmetric part of the Ricci 

tensor, including the non-minimal couplings discussed in the preceding section. This naturally 

extends the Einstein frame representation constructed in [9] for the case of minimally coupled 

fields to the case of non-minimally coupled fields, and the full discussion given in that refer-

ence will be valid for the more general theories under consideration here. The Einstein frame 

is achieved by first performing a Legendre transformation, so that the action is written in the 

equivalent form

S =
1

2κ2

∫

d4x
√

−g

[

F (gµν ,Σµν ,ψ, ∂ψ) +
∂F

∂Σµν

(

R(µν) − Σµν

)

]

+ Sm[gµν ,ψ, ∂ψ],

 (67)

where Σµν  is an auxiliary field. One can easily verify that variation with respect to Σµν  leads 

to R(µν)(Γ) = Σµν (provided F is a non-linear function of Σµν), which inserted back into 

the action recovers the theory (13) in the Ricci symmetric case. A key reason to introduce 

the above action is that, unlike (63), this is linear in the Ricci tensor R(µν)(Γ). We can now 

introduce the field redefinition given by

√

−Z̃Z̃µν =
√
−g

∂F

∂Σµν

, (68)

that makes it possible to express Σµν  in terms of the new field Z̃µν, the spacetime metric 

gµν and the matter field, i.e. Σµν = Σµν(Z̃µν , gαβ ,ψ, ∂ψ). In terms of the new field Z̃µν, the 

action can be written as

S =
1

2κ2

∫

d4x
[
√

−Z̃Z̃µν
R(µν)(Γ)−

√
−gV(gαβ , Z̃αβ ,ψ, ∂ψ)

]

+ Sm[gµν ,ψ, ∂ψ],

 (69)

where the potential V(gαβ , Z̃αβ ,ψ, ∂ψ) is defined as

V(gαβ , Z̃αβ ,ψ, ∂ψ) =
∂F

∂Σµν

Σµν − F . (70)

Here, the field Σµν  must be replaced by its expression obtained from solving (68). This is 

the step where the differences between minimally and non-minimally coupled theories arise, 

since in the minimally coupled case this potential does not depend on the matter fields. On the 

other hand, we can see from the equivalent action (69) that the field Z̃µν has now the standard 

Einstein–Hilbert kinetic term, and the spacetime metric gµν only enters algebraically—i.e. 

it is an auxiliary field that can be integrated out by solving its field equations. Since now 

the potential V also depends on the matter fields, the solution for gµν does not need to be a 

function of the energy-momentum tensor, as it occurs in the minimally coupled case. The 
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corresponding solution will thus provide gµν = gµν(Z̃αβ ,ψ, ∂ψ) that can be plugged in the 

action to finally obtain

S =
1

2κ2

∫

d4x
√

−Z̃Z̃µν
R(µν)(Γ) + S̃m[Z̃µν ,ψ, ∂ψ], (71)

where S̃m stands for the modified matter sector resulting from integrating the spacetime met-

ric out. Since the auxiliary metric Z̃µν now has the usual Einstein–Hilbert kinetic term in the 

Palatini formalism, we can now use the extensive machinery developed for this simple action, 

and we can immediately conclude that the connection will be nothing but the Levi-Civita con-

nection of Z̃µν up to the projective mode [36], which remains as a pure gauge freedom (see e.g 

[37, 38]). The only difference now is that we have generated new matter interactions.

We thus recover the results obtained above when working at the field equations level. In 

this representation, we can see again the difference between minimally and non-minimally 

coupled cases—specifically, while in the former the matter fields only enter through the usual 

energy-momentum tensor in the relation of the two metrics, the latter gives rise to a more gen-

eral dependence on the matter fields, not necessarily through the energy-momentum tensor. A 

very straightforward application of our result concerns the extension of the f (R, T) theories 

proposed in [39] to include general couplings of the Ricci tensor and the energy-momentum 

tensor, so that the action depends on an arbitrary function f (R, T ,RµνTµν). Although these 

theories give rise to interesting cosmological phenomenology in their metric formulation, it 

was shown in [40] that the additional coupling to the Ricci tensor inevitably introduces ghost-

like instabilities when considered as universal. We see, however, that these theories can be 

rendered ghost-free in their metric-affine formulation according to the results obtained here, 

since they correspond to a particular case of the general matter couplings considered above.

5. Projective gauge fixing and existence of a metric gauge

In the previous sections we have extensively studied the consistency of theories with a projec-

tive symmetry, including non-minimal couplings. Due to this symmetry, we have encountered 

the expected presence of four gauge degrees of freedom in the solution of the connection 

encoded in the vector Aµ = Sλ
λµ. In this section, we will exploit this symmetry, and discuss the 

existence of special gauge choices. In particular, we will analyse the conditions under which 

a gauge without non-metricity is possible.

Let us first consider the case of f (R) and f (R, T) theories already explored above. In 

those theories, the projective modes can be used to obtain different representations of the same 

theory in such a way that one can have (i) a torsionless theory with nontrivial non-metricity 

or (ii) a metric compatible theory with torsion. Obviously, these two representations—being 

simply two different gauge choices—are physically equivalent, but the geometrical frame-

works differ12. In order to explicitly show this, we will consider the general solution for the 

connection (33), which consists of the piece compatible with the auxiliary metric, that in the 

present case is given by hµν = fR gµν, plus the projective mode. By taking the Γ-covariant 

derivative of this expression we then have ∇Γ

αhµν = 4
3
Aαhµν, so that the covariant derivative 

of the spacetime metric is given by

12 Let us comment that equivalent representations in terms of different geometrical entities of the same gravity  

theory already exist in the literature. Perhaps, the paradigmatic example is the equivalence between general 

 relativity, with gravity represented by the curvature of the Levi-Civita connection, and its teleparallel equivalent, 

where there is no curvature and gravity is ascribed to the torsion of the Weitzenböck connection.
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∇
Γ

αgµν =

(

4

3
Aα − ∂α log fR

)

gµν . (72)

In the study of f (R) and f (R, T) theories à la Palatini, it is common to set the torsion 

to zero (Aα = 0) at the onset of the analysis, which implies that the non-metricity tensor 

QΓ

αµν ≡ ∇
Γ

αgµν takes the value QΓ

αµν = −gµν ∂α log fR. However, the above equation (73) 

shows that the choice Aα = 3
4
∂α log fR leads to QΓ

αµν = 0, which implies a  metric-compatible 

connection, but with torsion. An explicit analysis of the resulting field equations puts forward 

that these two representations are physically equivalent, as a consequence of the freedom in 

the choice of Aα—see [24] for details.

Let us now investigate whether the Born–Infeld gravity theory exhibits similar features. 

The most commonly (if not uniquely) studied case is the torsionless gauge (frequently without 

explicit mention to that being a gauge choice of the projective mode). We want to discern here 

whether this theory could also admit a metric-compatible representation with some nontrivial 

torsion. We are now ready to check this by explicitly computing ∇Γ

α gµν having in mind that, 

unlike in the f (R)/f (R, T) case, the particular relation between gµν and qµν is no longer 

conformal, but of the form qµν = gµα Ω
α
ν , with Ωα

ν satisfying (54). In this case, we find

∇
Γ

α gµν =
4

3
Aαgµν +∇

C̃
αgµν . (73)

The computation of ∇C̃
αgµν can be efficiently done by employing the relation gµν =  

= qµβ(Ω
−1)βν = (Ω−1)ν

β
qβµ, and the fact that ∇C̃

αqµν = 0, leading to

∇
Γ

α gµν =
4

3
Aαgµν + 2Ωλ

β

[

gλ(µ∇
C̃
α(Ω

−1)βν)

]

=
4

3
Aαgµν − 2

[

∇
C̃
αΩ

λ
β

]

gλ(µ(Ω
−1)βν)

 (74)

that can be more compactly written as13

∇
Γ

α gµν =

[

4

3
Aαδ

λ
ν −∇

Γ

α

(

log Ω̂
)λ

ν

]

gµλ, (75)

which nicely generalises the expression (73) to the case of Born–Infeld theories. Furthermore, 

since we only used that the two metrics are related by means of the deformation matrix Ωµ
ν to 

obtain the above expression, it is in fact completely general for the class of theories considered 

in the preceding sections built in terms of the symmetric part of the Ricci tensor. Note also that 

∇Γ

αΩ
µ
ν = ∇C̃

αΩ
µ
ν, because Ωµ

ν is a (1, 1)-tensor; thus, one can easily show that the Aα-piece 

of the Γ-covariant derivative identically vanishes. As is apparent from (75), those theories for 

which the deformation matrix is proportional to the identity, i.e. the two metrics are confor-

mally related, admit a gauge such that the non-metricity tensor vanishes. In the general case, 

wherein the deformation matrix has a more involved structure (like in Born–Infeld theories for 

instance), one cannot, in general, find a gauge with vanishing non-metricity.

Let us obtain more explicit conditions on the theories that permit a metric-compatible 

gauge. For that, let us start from the condition

4

3
Aαδ

λ
ν −∇

Γ

α

(

log Ω̂
)λ

ν = 0. (76)

13 We drop the explicit symmetrisation, since one can show that the object on the RHS is symmetric by construc-

tion [9]. Moreover, the logarithm introduced must be understood as a shortcut defined by ∇ log Ω̂ = ∇ΩΩ̂−1. This 

should not be confused with the formal definition of the logarithm of a matrix for which the former relation only 

holds if the matrix and its derivative commute.
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The existence of solutions for this equation will guarantee the existence of a gauge without 

non-metricity. If we take the trace with respect to λ and ν we obtain

Aα =
3

16
∂α logΩ, (77)

where we recall that Ω = det Ω̂, and we have used that Tr log Ω̂ = log det Ω̂. We can now 

insert this expression in (76) to rewrite it purely in terms of the deformation matrix as

∇
Γ

α

[

logΩλ
ν −

1

4
(logΩ)δλν

]

= 0. (78)

Since the deformation matrix is fully determined by the form of the action, this equation gives 

the desired condition for the existence of a metric gauge. We will not analyse here in detail the 

most general theories satisfying these equations. In fact, it is conceivable that some theories 

exhibit solutions of the field equations compatible with (78), so that the non-metricity can only 

be removed from some specific solutions, but not in general—as we will illustrate below for 

a particular case. However, the condition (78) immediately shows that theories giving rise to 

a deformation matrix proportional to the identity, like those where the curvature only enters 

through the Ricci scalar R, admit a gauge without non-metricity. For those theories, one can 

entirely trade the torsion and the non-metricity with the corresponding equivalent representa-

tions of the theory.

In order to gain some insight on the conditions needed to obtain a metric compatible gauge 

for the general case, we will now consider a scenario in which all off-diagonal terms in Ωλ
β 

vanish, leaving only a diagonal object of the general form Ωλ
β = ω(β) δ

λ
β, with up to four dif-

ferent functions ω(β) (no summation over repeated indices). This is also a physically relevant 

case, as many applications involving perfect fluids, scalar fields, electric fields, etc in spheri-

cally symmetric or cosmological scenarios typically involve a diagonal deformation matrix 

Ωλ
β [9]. For instance, considering a perfect fluid of density ρ and pressure P as matter source 

in homogeneous and isotropic cosmological models, one finds Tµ
ν = diag[−ρ, P, P, P], 

whose symmetries allow for a deformation matrix of the form Ωµ
ν = diag[ω0,ω1,ω1,ω1], 

with ω0 and ω1 being functions of the cosmic time t. In static stellar models, we find a similar 

decomposition, but with ω0 and ω1 being functions of the radial coordinate. In black hole 

scenarios with electric charge q, we find Tµ
ν = q2

8πr4 diag[−1,−1,+1,+1], whose symmetries 

can again be assumed for the deformation matrix, namely Ωµ
ν = diag[ω0,ω0,ω1,ω1], with ω0 

and ω1 now being functions of the radial coordinate [41]. A similar structure appears in the 

case of certain anisotropic fluids [42, 43]. For a static, spherically symmetric scalar field, one 

has Tµ
ν = diag[T0, T1, T0, T0], so one can assume Ωµ

ν = diag[ω0,ω1,ω0,ω0], with ω0 and ω1 

being again functions of the radial coordinate [44]. Note that these algebraic properties are 

quite general, and are also valid in theories different from the EiBI gravity model.

In the diagonal cases, we then have that (75) reduces to

∇
Γ

α
gµν =

(

4

3
Aα − ∂α lnω(ν)

)

gµν . (79)

According to this expression, for the simplest set-ups—specifically, those with diagonal Tµ
ν 

and Ωµ
ν—it is not possible in general to set the right-hand side of (79) to zero (vanishing non-

metricity) by specifying the form of Aα due to the freedom in the choice of the four gradients 

∂αω(ν). Only when Ωµ
ν represents a conformal transformation (which is the case in theories 

where the curvature only enters through the Ricci scalar like in f (R) and f (R, T) theories) 

is it possible to completely remove the non-metricity in favour of a specific type of torsion.  
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In all the examples mentioned above, where the functions ω(ν) depend only on one coordinate 

(time or radius), the vector Aα can only absorb one of the gradients of the ω(ν), wherefore the 

resulting theories possess genuine non-metricity.

Summarising, the results for this simple scenario put forward that only in the case in 

which the four ω(ν) are the same function one can use the projective gauge freedom to get 

rid of all the non-metricity terms. This case in fact corresponds to a conformal transforma-

tion between the physical and the auxiliary metrics, which is characteristic of theories where 

the deformation matrix is proportional to the identity, as happens for theories depending only 

on the Ricci scalar R. In the EiBI theory, however, this does not happen in general, except 

for a restricted class of solutions supported by very specific matter sources—e.g. the case of 

a cosmological constant. This illustrates our discussion for the general case of how the non-

metricity can be removed for some solutions even if the general deformation matrix of the 

theory does not identically fulfil the condition (78).

6. Summary and conclusion

In this work we have developed a general formalism for metric-affine theories of gravity with 

a projective invariance that is implemented by considering Lagrangians where the connection 

only enters through the symmetric part of the Ricci tensor. We have naturally extended the 

results of [9] to the case of non-minimally coupled fields. In order to comply with the projec-

tive symmetry, the non-minimal couplings are again imposed to contain only the symmetric 

part of the Ricci tensor. For this very large class of theories, we have obtained the general solu-

tion for the connection. We have shown that the torsion only appears as a projective mode, and 

can thus be gauged away. On the other hand, the symmetric part of the connection (carrying 

the physical information) is given by the Levi-Civita connection of an auxiliary metric that 

is non-trivially related to the spacetime metric and the matter fields. An important property 

that we have clarified is that the presence of non-minimally coupled matter fields makes the 

dependence of the auxiliary metric on them more general than in the minimally coupled case, 

where matter fields only enter through the energy-momentum tensor. This can, in fact, have 

interesting phenomenological consequences, which will be explored elsewhere.

Finally, we have discussed the existence of a projective gauge choice without non-metricity. 

We have shown that such a gauge always exists for theories where the two metrics are confor-

mally related, essentially reducing this family of theories to those where only the Ricci scalar 

appears. On the other hand, if the two metrics are not conformally related it is, in general, not 

possible to impose a gauge without non-metricity. We have explicitly shown our results for 

the case of f (R) and f (R, T) theories as examples of theories admitting a metric-compatible 

representation and EiBI as an example in which such a representation is not possible—non-

metricity being, therefore, an intrinsic, genuine property of such theories.

We would like to remark an interesting physical difference between the two families of 

theories obtained according to the existence or not of a gauge with vanishing non-metricity. 

From the two frames existing in these theories, one can easily see that gravitons propagate on 

the auxiliary metric14, while photons propagate on the spacetime metric (see the discussion on 

this point in [9])—so that, even though they both are massless particles, their trajectories can 

differ. As we have discussed, the metric gauge exists for theories where the two metrics are 

conformally related, and—since null geodesics are conformally invariant—these theories are 

characterised by the universality of the propagation of massless particles. On the other hand, 

14 The relevance of the auxiliary metric for the propagation of the tensor modes was previously shown in [6] for 

general Palatini theories, and in [45] for braneworld scenarios.
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theories not allowing the gauge with vanishing non-metricity will typically be characterised 

by a different propagation of photons and gravitons, even if they are both massless particles.

Though this work has focused on the properties of projectively invariant theories, the 

master equations (30) and (31) also contemplate cases without this symmetry. The physical 

implications of the breakdown of this symmetry, and the role of the pure tensorial part of the 

torsion, S̃λ
αβ, in cosmological and astrophysical scenarios would be interesting to pursue. On 

the other hand, the noted relationship between the general solution of the connection, includ-

ing the projective mode and the family of geometries with vector distortion introduced in 

[28], also opens an interesting possibility of partially unleashing the torsion or the connection 

with a general vector mode, this time dynamical. This would be at the expense of breaking 

the projective invariance, but with such potentially interesting cosmological scenarios as those 

studied in [46]. Irrespective of the specific route, our results encourage further exploration of 

such metric-affine theories as those considered here, and possible extensions.
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