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The tropical Grassmannian
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Abstract. In tropical algebraic geometry, the solution sets of polynomial equations are
piecewise-linear. We introduce the tropical variety of a polynomial ideal, and we identify it
with a polyhedral subcomplex of the Gröbner fan. The tropical Grassmannian arises in this
manner from the ideal of quadratic Plücker relations. It parametrizes all tropical linear spaces.
Lines in tropical projective space are trees, and their tropical Grassmannian G2; n equals the
space of phylogenetic trees studied by Billera, Holmes and Vogtmann. Higher Grassmannians
o¤er a natural generalization of the space of trees. Their faces correspond to monomial-free
initial ideals of the Plücker ideal. The tropical Grassmannian G3; 6 is a simplicial complex glued
from 1035 tetrahedra.

1 Introduction

The tropical semiring ðRU fyg;min;þÞ is the set of real numbers augmented by in-
finity with the tropical addition, which is taking the minimum of two numbers, and
the tropical multiplication which is the ordinary addition [10]. These operations sat-
isfy the familiar axioms of arithmetic, e.g. distributivity, with y and 0 being the
two neutral elements. Tropical monomials xa1

1 . . . xan
n represent ordinary linear formsP

i aixi, and tropical polynomials

Fðx1; x2; . . . ; xnÞ ¼
X
a AA

Caxa1

1 xa2

2 . . . xan
n ; with AHNn; Ca A R; ð1Þ

represent piecewise-linear convex functions F : Rn ! R. To compute FðxÞ, we take
the minimum of the a‰ne-linear forms Ca þ

Pn
i¼1 aixi for a A A. We define the trop-

ical hypersurface TðFÞ as the set of all points x in Rn for which this minimum is at-
tained at least twice, as a runs over A. Equivalently, TðF Þ is the set of all points
x A Rn at which F is not di¤erentiable. Thus a tropical hypersurface is an ðn � 1Þ-
dimensional polyhedral complex in Rn.

The rationale behind this definition will become clear in Section 2, which gives
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a self-contained development of the basic theory of tropical varieties. For further
background and pictures see [14, §9]. Every tropical variety is a finite intersection of
tropical hypersurfaces (Corollary 2.3). But not every intersection of tropical hyper-
surfaces is a tropical variety (Proposition 6.3). Tropical varieties are also known as
logarithmic limit sets [2], Bieri–Groves sets [4], or non-archimedean amoebas [7]. Trop-
ical curves are the key ingredient in Mikhalkin’s formula [9] for planar Gromov–
Witten invariants.

The object of study in this paper is the tropical Grassmannian Gd;n which is a poly-
hedral fan in R

n
dð Þ defined by the ideal of quadratic Plücker relations. All of our main

results regarding Gd;n are stated in Section 3. The proofs appear in the subsequent
sections. In Section 4 we prove Theorem 3.4 which identifies G2;n with the space of
phylogenetic trees in [5]. A detailed study of the fan G3;6 HR20 is presented in Sec-
tion 5. In Section 6 we introduce tropical linear spaces and we prove that they are
parametrized by the tropical Grassmannian (Theorem 3.6). In Section 7 we show that
the tropical Grassmannian G3;7 depends on the characteristic of the ground field.

2 The tropical variety of a polynomial ideal

Let K be an algebraically closed field with a valuation into the reals, denoted
deg : K � ! R. We assume that 1 lies in the image of deg and we fix t A K � with
degðtÞ ¼ 1. The corresponding local ring and its maximal ideal are

RK ¼ fc A K : degðcÞd 0g and MK ¼ fc A K : degðcÞ > 0g:

The residue field k ¼ RK=MK is algebraically closed. Given any ideal

I HK ½x� ¼ K ½x1; x2; . . . ; xn�;

we consider its a‰ne variety in the n-dimensional algebraic torus over K ,

VðIÞ ¼ fu A ðK �Þn : f ðuÞ ¼ 0 for all f A Ig:

Here K � ¼ Knf0g. In all our examples, K is the algebraic closure of the rational
function field CðtÞ and ‘‘deg’’ is the standard valuation at the origin. Then k ¼ C,
and if c A C½t� then degðcÞ is the order of vanishing of c at 0.

Every polynomial in K ½x� maps to a tropical polynomial as follows. If

f ðx1; . . . ; xnÞ ¼
X
a AA

caxa1

1 . . . xan
n with ca A K � for a A A: ð2Þ

and Ca ¼ degðcaÞ, then tropð f Þ denotes the tropical polynomial F in (1).
The following definitions are a variation on Gröbner basis theory [13]. Fix

w A Rn. The w-weight of a term ca � xa1

1 . . . xan
n in (2) is degðcaÞ þ a1w1 þ � � � þ anwn.

The initial form inwð f Þ of a polynomial f is defined as follows. Set ~ff ðx1; . . . ; xnÞ ¼
f ðtw1 x1; . . . ; twn xnÞ. Let n be the smallest weight of any term of f , so that t�n ~ff is a
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non-zero element in RK ½x�. Define inwð f Þ as the image of t�n ~ff in k½x�. We set
inwð0Þ ¼ 0. For K ¼ CðtÞ and k ¼ C this means that the initial form inwð f Þ is a
polynomial in C½x�.

Given any ideal I HK ½x� its initial ideal is defined to be

inwðIÞ ¼ hinwð f Þ : f A IiH k½x�:

Theorem 2.1. For an ideal I HK ½x� the following subsets of Rn coincide:

(a) The closure of the set fðdegðu1Þ; . . . ; degðunÞÞ : ðu1; . . . ; unÞ A VðIÞg;

(b) The intersection of the tropical hypersurfaces Tðtropð f ÞÞ where f A I ;

(c) The set of all vectors w A Rn such that inwðIÞ contains no monomial.

The set defined by the three conditions in Theorem 2.1 is denoted TðIÞ and is
called the tropical variety of the ideal I . Variants of this theorem already appeared in
[14, Theorem 9.17] and in [7, Theorem 6.1], without and with proof respectively. Here
we present a short proof which is self-contained.

Proof. First we show that (b) contains (a). As (b) is clearly closed, it is enough to
consider any point w ¼ ðdegðu1Þ; . . . ; degðunÞÞ in the set (a) and show it lies in (b).
For any f A I we have f ðu1; . . . ; unÞ ¼ 0 and this implies that the minimum in the
definition of F ¼ tropð f Þ is attained at least twice at w. This condition is equivalent
to inwð f Þ not being a monomial. This shows that (a) is contained in (b), and (b) is
contained in (c). It remains to prove that (c) is contained in (a). Consider any vector
w in (c) such that w ¼ ðdegðv1Þ; . . . ; degðvnÞÞ for some v A ðK �Þn. Since the image of
the valuation is dense in R and the set defined in (a) is closed, it su‰ces to prove that
w ¼ ðdegðu1Þ; . . . ; degðunÞÞ for some u A VðIÞ. By making the change of coordinates
xi ¼ xi � v�1

i , we may assume that w ¼ ð0; 0; . . . ; 0Þ.
Since inwðIÞ contains no monomial and since k is algebraically closed, by the Null-

stellensatz there exists a point u A VðinwðIÞÞH ðk �Þn. Let m denote the maximal ideal
in k½x� corresponding to u. Let S be the set of polynomials f in RK ½x� whose reduc-
tion modulo MK is not in m. Then S is a multiplicative set in RK ½x� disjoint from I .
Consider the induced map

j : RK ! S�1RK ½x�=S�1ðI VRK ½x�Þ:

We claim that j is injective. Suppose not, and pick c A RKnf0g with jðcÞ ¼ 0, so we
can find f A S such that cf A I . Since c�1 exists in K , this implies f A I which is a
contradiction.

The injectivity of j implies that there is some minimal prime P of the ring on the
right hand side such that PnRK

K is a proper ideal in K ½x�=I . There exists a maximal
ideal of K ½x�=I containing PnRK

K , and since K is algebraically closed, this maximal
ideal has the form hx1 � u1; . . . ; xn � uni for some u A VðIÞH ðK �Þn. We claim that
ui A RK and ui G ui mod MK . This will imply degðu1Þ ¼ � � � ¼ degðunÞ ¼ 0 and hence
complete the proof.

Consider any xi � ui A I . By clearing denominators, we get aix � bi A I VRK ½x�
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with bi=ai ¼ ui, and not both ai and bi lie in MK . If ai A MK , then aix � bi G
�bi mod MK . Hence inwðIÞ contains the reduction of bi modulo MK , which is a
unit of K � and hence equals the unit ideal. This is a contradiction. If ai B MK and
�bi=ai Z ui mod MK then the reduction of aix � bi modulo MK does not lie in m.
This means that aix � bi A S and is a unit of S�1RK ½x�, so P is the unit ideal. But then
P is not prime, also a contradiction. This completes the proof. r

The key point in the previous proof can be summarized as follows:

Corollary 2.2. Every zero over k of the initial ideal inwðIÞ lifts to a zero over K of I.

By a zero of an ideal I in K ½x� we mean a point on its variety in ðK �Þn. The notion
of (reduced) Gröbner bases is well-defined for ideals I HK ½x� and (generic) weight
vectors w, and, by adapting the methods of [13, §3] to our situation, we can com-
pute a universal Gröbner basis UGBðIÞ. This is a finite subset of I which contains a
Gröbner basis for I with respect to any weight vector w A Rn. From Part (c) of The-
orem 2.1 we derive:

Corollary 2.3 (Finiteness in Tropical Geometry). The tropical variety TðIÞ is the

intersection of the tropical hypersurfaces Tðtropð f ÞÞ where f A UGBðIÞ.

The following result is due to Bieri and Groves [4]. An alternative proof using
Gröbner basis methods appears in [14, Theorem 9.6].

Theorem 2.4 (Bieri–Groves Theorem). If I is a prime ideal and K ½x�=I has Krull

dimension r, then TðIÞ is a pure polyhedral complex of dimension r.

We shall be primarily interested in the case when k ¼ C and K ¼ CðtÞ. Under
this hypothesis, the ideal I is said to have constant coe‰cients if the coe‰cients ca of
the generators f of I lie in the ground field C. This implies Ca ¼ degðcaÞ ¼ 0 in (1),
where F ¼ tropð f Þ. Our problem is now to solve a system of tropical equations all of
whose coe‰cients are identically zero:

F ðx1; x2; . . . ; xnÞ ¼
X
a AA

0 � xa1

1 xa2

2 . . . xan
n : ð3Þ

Here the tropical variety is a subfan of the Gröbner fan of an ideal in C½x�.

Corollary 2.5. If I has constant coe‰cients then TðIÞ is a fan in Rn.

3 Results on the tropical Grassmannian

We fix a polynomial ring in n
d

� �
variables with integer coe‰cients:

Z½ p� ¼ Z½ pi1i2...id : 1c i1 < i2 < � � � < id c n�:
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The Plücker ideal Id;n is the homogeneous prime ideal in Z½ p� consisting of the alge-
braic relations among the d � d-subdeterminants of any d � n-matrix with entries
in any commutative ring. The ideal Id;n is generated by quadrics, and it has a well-
known quadratic Gröbner basis (see e.g. [12, Theorem 3.1.7]). The projective variety
of Id;n is the Grassmannian Gd;n which parametrizes all d-dimensional linear sub-
spaces of an n-dimensional vector space.

The tropical Grassmannian Gd;n is the tropical variety TðId;nÞ of the Plücker ideal
Id;n, over a field K as in Section 2. Theorem 2.1 (c) implies

Gd;n ¼ fw A R
n
dð Þ : inwðId;nÞ contains no monomialg:

The ring ðZ½ p�=Id;nÞnK is known to have Krull dimension ðn � dÞd þ 1. Therefore
Theorem 2.4 and Corollary 2.5 imply the following statement.

Corollary 3.1. The tropical Grassmannian Gd;n is a polyhedral fan in R
n
dð Þ. Each of its

maximal cones has the same dimension, namely ðn � dÞd þ 1.

We show in Section 7 that the fan Gd;n depends on the characteristic of K if d ¼ 3
and nd 7. All results in Sections 2–6 are valid over any field K .

It is convenient to reduce the dimension of the tropical Grassmannian. This can

be done in three possible ways. Let j denote the linear map from Rn into R
n
dð Þ which

sends an n-vector ða1; a2; . . . ; anÞ to the n
d

� �
-vector whose ði1; . . . ; idÞ-coordinate is

ai1 þ � � � þ aid . The map j is injective, and its image is the common intersection of all
cones in the tropical Grassmannian Gd;n. Note that the vector ð1; . . . ; 1Þ of length n

d

� �
lies in imageðjÞ. We conclude:

. The image of Gd;n in R
n
dð Þ=Rð1; . . . ; 1Þ is a fan G 0

d;n of dimension dðn � dÞ.
. The image of Gd;n or G 0

d;n in R
n
dð Þ=imageðjÞ is a fan G 00

d;n of dimension ðd � 1Þ �
ðn � d � 1Þ. No cone in this fan contains a non-zero linear space.

. Intersecting G 00
d;n with the unit sphere yields a polyhedral complex G 000

d;n. Each max-

imal face of G 000
d;n is a polytope of dimension nd � n � d 2.

We shall distinguish the four objects Gd;n;G
0

d;n;G
00

d;n and G 000
d;n when stating our the-

orems below. In subsequent sections less precision is needed, and we sometimes iden-
tify Gd;n;G

0
d;n;G

00
d;n and G 000

d;n if there is no danger of confusion.

Example 3.2. ðd ¼ 2; n ¼ 4Þ The smallest non-zero Plücker ideal is the principal ideal
I2;4 ¼ hp12 p34 � p13p24 þ p14 p23i. Here G2;4 is a fan with three five-dimensional cones
R4 �Rd0 glued along R4 ¼ imageðjÞ. The fan G 00

2;4 consists of three half rays ema-

nating from the origin (the picture of a tropical line). The zero-dimensional simplicial
complex G 000

2;4 consists of three points.

Example 3.3. ðd ¼ 2; n ¼ 5Þ The tropical Grassmannian G 000
2;5 is the Petersen graph

with 10 vertices and 15 edges. This was shown in [14, Example 9.10].
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The following theorem generalizes both of these examples. It concerns the case
d ¼ 2, that is, the tropical Grassmannian of lines in ðn � 1Þ-space.

Theorem 3.4. The tropical Grassmannian G 000
2;n is a simplicial complex known as the

space of phylogenetic trees. It has 2n�1 � n � 1 vertices, 1 � 3 . . . ð2n � 5Þ facets, and its

homotopy type is a bouquet of ðn � 2Þ! spheres of dimension n � 4.

A detailed description of G2;n and the proof of this theorem will be given in Section
4. Metric properties of the space of phylogenetic trees were studied by Billera, Holmes
and Vogtmann in [5] (our n corresponds to Billera, Holmes and Vogtmann’s n þ 1.)
The abstract simplicial complex and its homotopy type had been found earlier by
Vogtmann [16] and by Robinson and Whitehouse [11]. The description has the fol-
lowing corollary. Recall that a simplicial complex is a flag complex if the minimal
non-faces are pairs of vertices. This property is crucial for the existence of unique
geodesics in [5].

Corollary 3.5. The simplicial complex G 000
2;n is a flag complex.

We do not have a complete description of the tropical Grassmannian in the general
case d d 3 and n � d d 3. We did succeed, however, in computing all monomial-free
initial ideals inwðId;nÞ for d ¼ 3 and n ¼ 6:

Theorem 3.6. The tropical Grassmannian G 000
3;6 is a 3-dimensional simplicial complex

with 65 vertices, 550 edges, 1395 triangles and 1035 tetrahedra.

The proof and a complete description of G3;6 will be presented in Section 5. We
shall see that G3;6 di¤ers in various ways from the tree space G2;n. Here is one in-
stance of this, which follows from Theorem 5.4. Another one is Corollary 4.4 versus
Proposition 5.5.

Corollary 3.7. The tropical Grassmannian G 000
3;6 is not a flag complex.

If X is a d-dimensional linear subspace of the vector space K n, then (the topolog-
ical closure of ) its image degðX Þ under the degree map is a polyhedral complex in
Rn. Such a polyhedral complex arising from a d-plane in K n is called a tropical d-

plane in n-space. Since X is invariant under scaling, every cone in degðXÞ contains
the line spanned by ð1; 1; . . . ; 1Þ, so we can identify degðX Þ with its image in Rn=

Rð1; 1; . . . ; 1ÞFRn�1. Thus degðXÞ becomes a ðd � 1Þ-dimensional polyhedral com-
plex in Rn�1. For d ¼ 2, we get a tree.

The classical Grassmannian Gd;n is the projective variety in P
n
dð Þ�1 defined by the

Plücker ideal Id;n. There is a canonical bijection between Gd;n and the set of d-planes
through the origin in K n. The analogous bijection for the tropical Grassmannian G 0

d;n

is the content of the next theorem.

Theorem 3.8. The bijection between the classical Grassmannian Gd;n and the set of d-
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planes in K n induces a unique bijection w 7! Lw between the tropical Grassmannian

G 0
d;n and the set of tropical d-planes in n-space.

Theorems 3.4, 3.6 and 3.8 are proved in Sections 4, 5 and 6 respectively.

4 The space of phylogenetic trees

In this section we prove Theorem 3.4 which asserts that the tropical Grassmannian of

lines G2;n coincides with the space of phylogenetic trees [5]. We begin by reviewing the
simplicial complex Tn underlying this space.

The vertex set VertðTnÞ consists of all unordered pairs fA;Bg, where A and B are
disjoint subsets of ½n� :¼ f1; 2; . . . ; ng having cardinality at least two, and AUB ¼ ½n�.
The cardinality of VertðTnÞ is 2n�1 � n� 1. Two vertices fA;Bg and fA 0;B 0g are con-
nected by an edge in Tn if and only if

AHA 0 or AHB 0 or BHA 0 or BHB 0: ð4Þ

We now define Tn as the flag complex with this graph. Equivalently, a subset
sJVertðTnÞ is a face of Tn if any pair ffA;Bg; fA 0;B 0ggJ s satisfies (4).

The simplicial complex Tn was first introduced by Buneman (see [1, §5.1.4]) and
was studied more recently by Robinson–Whitehouse [11] and Vogtmann [16]. These
authors obtained the following results. Each face s of Tn corresponds to a semi-
labeled tree with leaves 1; 2; . . . ; n. Here each internal node is unlabeled and has at
least three neighbors. Each internal edge of such a tree defines a partition fA;Bg of
the set of leaves f1; 2; . . . ; ng, and we encode the tree by the set of partitions repre-
senting its internal edges. The facets (¼ maximal faces) of Tn correspond to trivalent

trees, that is, semi-labeled trees whose internal nodes all have three neighbors. All
facets of Tn have the same cardinality n � 3, the number of internal edges of any tri-
valent tree. Hence Tn is pure of dimension n � 4. The number of facets (i.e. trivalent
semi-labeled trees on f1; 2; . . . ; ng) is the Schröder number

ð2n � 5Þ!! ¼ ð2n � 5Þ � ð2n � 7Þ � � � � � 5 � 3 � 1: ð5Þ

It is proved in [11] and [16] that Tn has the homotopy type of a bouquet of ðn � 2Þ!
spheres of dimension n � 4. The two smallest cases n ¼ 4 and n ¼ 5 are discussed in
Examples 3.2 and 3.3. Here is a description of the next case:

Example 4.1. ðn ¼ 6Þ The two-dimensional simplicial complex T6 has 25 vertices, 105
edges and 105 triangles, each coming in two symmetry classes:

15 vertices like f12; 3456g; 10 vertices like f123; 456g;

60 edges like ff12; 3456g; f123; 456gg; 45 edges like ff12; 3456g; f1234; 56gg;

90 triangles like ff12; 3456g; f123; 456g; f1234; 56gg;

15 triangles like ff12; 3456g; f34; 1256g; f56; 1234gg:

Each edge lies in three triangles, corresponding to restructuring subtrees.
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We next describe an embedding of Tn as a simplicial fan into the 1
2 nðn � 3Þ-

dimensional vector space R
n
2ð Þ=imageðjÞ. For each trivalent tree s we first define a

cone Bs in R
n
2ð Þ as follows. By a realization of a semi-labeled tree s we mean a one-

dimensional cell complex in some Euclidean space whose underlying graph is a tree
isomorphic to s. Such a realization of s is a metric space on f1; 2; . . . ; ng. The dis-

tance between i and j is the length of the unique path between leaf i and leaf j in that
realization. Then we set

Bs ¼ fðw12;w13; . . . ;wn�1;nÞ A R
n
2ð Þ : �wij is the distance from

leaf i to leaf j in some realization of sg þ imageðjÞ:

Let Cs denote the image of Bs in the quotient space R
n
2ð Þ=imageðjÞ. Passing to this

quotient has the geometric meaning that two trees are identified if their only di¤er-
ence is in the lengths of the n edges adjacent to the leaves.

Theorem 4.2. The closure Cs is a simplicial cone of dimension jsj with relative interior

Cs. The collection of all cones Cs, as s runs over Tn, is a simplicial fan. It is isometric

to the Billera–Holmes–Vogtmann space of trees.

Proof. Realizations of semi-labeled trees are characterized by the four point condi-

tion (e.g. [1, Theorem 2.1], [6]). This condition states that for any quadruple of leaves
i; j; k; l there exists a unique relabeling such that

wij þ wkl ¼ wik þ wjl cwil þ wjk: ð6Þ

Given any tree s, this gives a system of n
4

� �
linear equations and n

4

� �
linear inequal-

ities. The solution set of this linear system is precisely the closure Bs of the cone Bs

in R
n
2ð Þ. This follows from the Additive Linkage Algorithm [6] which reconstructs the

combinatorial tree s from any point w in Bs.
All of our cones share a common linear subspace, namely,

Bs V�Bs ¼ imageðjÞ: ð7Þ

This is seen by replacing the inequalities in (6) by equalities. The cone Bs is the direct
sum (8) of this linear space with a jsj-dimensional simplicial cone. Let feij : 1c i <

j c ng denote the standard basis of R
n
2ð Þ. Adopting the convention eji ¼ eij , for any

partition fA;Bg of f1; 2; . . . ; ng we define

EA;B ¼
X
i AA

X
j AB

eij :

These vectors give the generators of our cone as follows:

Bs ¼ imageðjÞ þRd0fEA;B : fA;Bg A sg: ð8Þ
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From the two presentations (6) and (8) it follows that

Bs VBt ¼ BsVt for all s; t A Tn: ð9Þ

Therefore the cones Bs form a fan in R
n
2ð Þ, and this fan has face poset Tn. It follows

from (8) that the quotient Cs ¼ Bs=imageðjÞ is a pointed cone.
We get the desired conclusion for the cones Cs by taking quotients modulo the

common linear subspace (7). The resulting fan in R
n
2ð Þ=imageðjÞ is simplicial of

pure dimension n � 3 and has face poset Tn. It is isometric to the Billera–Holmes–
Vogtmann space in [5] because their metric is flat on each cone Cs FRjsj

d0 and ex-
tended by the gluing relations Cs VCt ¼ CsVt. r

We now turn to the tropical Grassmannian and prove our first main result. We
shall identify the simplicial complex Tn with the fan in Theorem 4.2.

Proof of Theorem 3.4. The Plücker ideal I2;n is generated by the n
4

� �
quadrics

pijpkl � pikpjl þ pilpjk for 1c i < j < k < l c n:

The tropicalization of this polynomial is the disjunction of linear systems

wij þ wkl ¼ wik þ wjl cwil þ wjk or

wij þ wkl ¼ wil þ wjk cwik þ wjl or

wik þ wjl ¼ wil þ wjk cwij þ wkl :

Every point w on the tropical Grassmannian G2;n satisfies this for all quadruples
i; j; k; l, that is, it satisfies the four point Condition (6). The Additive Linkage Algo-
rithm reconstructs the unique semi-labeled tree s with w A Cs. This proves that every
relatively open cone of G2;n lies in the relative interior of a unique cone Cs of the fan
Tn in Theorem 4.2.

We need to prove that the fans Tn and G2;n are equal. Equivalently, every cone
Cs is actually a cone in the Gröbner fan. This will be accomplished by analyzing
the corresponding initial ideal. In view of (9), it su‰ces to consider maximal faces s

of Tn. Fix a trivalent tree s and a weight vector w A Cs. Then, for every quadruple
i; j; k; l, the inequality in (6) is strict. This means combinatorially that ffi; lg; f j; kgg
is a four-leaf subtree of s.

Let Js denote the ideal generated by the quadratic binomials pijpkl � pikpjl corre-
sponding to all four-leaf subtrees of s. Our discussion shows that Js J inwðI2;nÞ. The
proof will be completed by showing that the two ideals agree:

Js ¼ inwðI2;nÞ: ð10Þ

This identity will be proved by showing that the two ideals have a common initial
monomial ideal, generated by square-free quadratic monomials.
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We may assume, without loss of generality, that �w is a strictly positive vector, cor-
responding to a planar realization of the tree s in which the leaves 1; 2; . . . ; n are ar-
ranged in circular order to form a convex n-gon (Figure 1).

Let M be the ideal generated by the monomials pikpjl for 1c i < j < k < l c n.
These are the crossing pairs of edges in the n-gon. By a classical construction of in-
variant theory, known as Kempe’s circular straightening law (see [12, Theorem 3.7.3]),
there exists a term order0circ on Z½ p� such that

M ¼ in0circ
ðI2;nÞ: ð11Þ

Now, by our circular choice w of realization of the tree s, the crossing monomials
pikpjl appear as terms in the binomial generators of Js. Moreover, the term order0circ

on Z½ p� refines the weight vector w. This implies

in0circ
ðinwðI2;nÞÞ ¼ in0circ

ðI2;nÞ ¼ M J in0circ
ðJsÞ: ð12Þ

Using Js J inwðI2;nÞ we conclude that equality holds in (12) and in (10). r

The simplicial complex DðMÞ represented by the squarefree monomial ideal M is
an iterated cone over the boundary of the polar dual of the associahedron; see [12,
page 132]. The facets of DðMÞ are the triangulations of the n-gon. Their number is
the common degree of the ideals I2;n, Js and M:

the ðn � 2Þnd Catalan number ¼ 1

n � 1

2n � 4

n � 2

� �
:

6

5

4

3

2

1

Figure 1. A Circular Labeling of a Tree with Six Leaves
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The reduced Gröbner basis of (11) has come to recent prominence as a key example
in the Fomin–Zelevinsky theory of cluster algebras [8]. Note also:

Corollary 4.3. There exists a maximal cone in the Gröbner fan of the Plücker ideal I2;n

which contains, up to symmetry, all cones of G2;n.

Proof. The cone corresponding to the initial ideal (11) has this property. r

Corollary 4.4. Every initial binomial ideal of I2;n is a prime ideal.

Proof. If inwðI2;nÞ is a binomial ideal then w must satisfy the four point Condition (6)
with strict inequalities. Hence inwðI2;nÞ ¼ Js for some semi-labeled trivalent tree s.
The ideal Js is radical and equidimensional because its initial ideal M ¼ in0circ

ðJsÞ is
radical and equidimensional (unmixed).

To show that Js is prime, we proceed as follows. For each edge e of the tree s we
introduce an indeterminate ye. Consider the polynomial ring

Z½y� ¼ Z½ye : e edge of s�:

Let c denote the homomorphism Z½ p� ! Z½y� which sends pij to the product of all
indeterminates ye corresponding to edges on the unique path between leaf i and leaf
j. We claim that kernelðcÞ ¼ Js.

A direct combinatorial argument shows that the convex polytope corresponding to
the toric ideal kernelðcÞ has a canonical triangulation into 1

n�1
2n�4
n�2

� �
unit simplices

(namely, DðMÞ). Hence kernelðcÞ and Js are both unmixed of the same dimension
and the same degree. Since kernelðcÞ is obviously contained in Js, it follows that the
two ideals are equal. r

Corollary 4.5. The tropical Grassmannian G2;n is characteristic-free.

This means that we can consider the Plücker ideal I2;n in the polynomial ring
K ½ p� over any ground field K when computing its tropical variety. All generators
pijpkl � pikpjl of the initial binomial ideals Js have coe‰cients þ1 and �1, so Js n k

contains no monomial in k½ p�, even if charðkÞ > 0.

5 The Grassmannian of 3-planes in 6-space

In this section we study the case d ¼ 3 and n ¼ 6. The Plücker ideal I3;6 is minimally
generated by 35 quadrics in the polynomial ring in 20 variables,

Z½ p� ¼ Z½ p123; p124; . . . ; p456�:

We are interested in the 10-dimensional fan G3;6 which consists of all vectors w A R20

such that inwðI3;6Þ is monomial-free. The four-dimensional quotient fan G 00
3;6 sits

in R20=imageðjÞFR14 and is a fan over the three-dimensional polyhedral complex
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G 000
3;6. Our aim is to prove Theorem 3.6, which states that G 000

3;6 consists of 65 vertices,
550 edges, 1395 triangles and 1035 tetrahedra.

We begin by listing the vertices. Let E denote the set of 20 standard basis vectors

eijk in R
6
3ð Þ. For each 4-subset fi; j; k; lg of f1; 2; . . . ; 6g we set

fijkl ¼ eijk þ eijl þ eikl þ ejkl :

Let F denote the set of these 15 vectors. Finally consider any of the 15 tripartitions

ffi1; i2g; fi3; i4g; fi5; i6gg of f1; 2; . . . ; 6g and define the vectors

gi1i2i3i4i5i6 :¼ fi1i2i3i4 þ ei3i4i5 þ ei3i4i6 and

gi1i2i5i6i3i4 :¼ fi1i2i5i6 þ ei3i5i6 þ ei4i5i6 :

This gives us another set G of 30 vectors. All 65 vectors in E UF UG are regarded as
elements of the quotient space R

6
3ð Þ=imageðjÞFR14. Note that

gi1i2i3i4i5i6 ¼ gi3i4i5i6i1i2 ¼ gi5i6i1i2i3i4 :

Later on, the following identity will turn out to be important in the proof of Theorem
5.4:

gi1i2i3i4i5i6 þ gi1i2i5i6i3i4 ¼ fi1i2i3i4 þ fi1i2i5i6 þ fi3i4i5i6 : ð13Þ

Lemma 5.1 and other results in this section were found by computation.

Lemma 5.1. The set of vertices of G3;6 equals E UF UG.

We next describe all the 550 edges of the tropical Grassmannian G3;6.

(EE) There are 90 edges like fe123; e145g and 10 edges like fe123; e456g, for a total of
100 edges connecting pairs of vertices both of which are in E. (By the word
‘‘like’’, we will always mean ‘‘in the S6 orbit of ’’, where S6 permutes the indices
f1; 2; . . . ; 6g.)

(FF) This class consists of 45 edges like f f1234; f1256g.

(GG) Each of the 15 tripartitions gives exactly one edge, like fg123456; g125634g.

(EF) There are 60 edges like fe123; f1234g and 60 edges like fe123; f1456g, for a total of
120 edges connecting a vertex in E to a vertex in F .

(EG) This class consists of 180 edges like fe123; g123456g. The intersections of the
index triple of the e vertex with the three index pairs of the g vertex must have
cardinalities ð2; 1; 0Þ in this cyclic order.

(FG) This class consists of 90 edges like f f1234; g123456g.

Lemma 5.2. The 1-skeleton of G 000
3;6 is the graph with the 550 edges above.
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Let D denote the flag complex specified by the graph in the previous lemma. Thus
D is the simplicial complex on E UF UG whose faces are subsets s with the property
that each 2-element subset of s is one of the 550 edges. We will see that G3;6 is a sub-
complex homotopy equivalent to D.

Lemma 5.3. The flag complex D has 1,410 triangles, 1,065 tetrahedra, 15 four-
dimensional simplices, and it has no faces of dimension five or more.

The facets of D are grouped into seven symmetry classes:

Facet FFFGG: There are 15 four-dimensional simplices, one for each partition of
f1; . . . ; 6g into three pairs. An example of such a tripartition is ff1; 2g; f3; 4g; f5; 6gg.
It gives the facet f f1234; f1256; f3456; g123456; g125634g. The 75 tetrahedra contained in
these 15 four-simplices are not facets of D.

The remaining 990 tetrahedra in D are facets and they come in six classes:

Facet EEEE: There are 30 tetrahedra like fe123; e145; e246; e356g.

Facet EEFF1: There are 90 tetrahedra like fe123; e456; f1234; f3456g.

Facet EEFF2: There are 90 tetrahedra like fe125; e345; f3456; f1256g.

Facet EFFG: There are 180 tetrahedra like fe345; f1256; f3456; g123456g.

Facet EEEG: There are 240 tetrahedra like fe126; e134; e356; g125634g.

Facet EEFG: There are 360 tetrahedra like fe234; e125; f1256; g125634g.

While D is an abstract simplicial complex on the vertices of G 000
3;6, it is not em-

bedded as a simplicial complex because relation (13) shows that the five vertices of
the four dimensional simplices only span a three dimensional space. Specifically, they
form a bipyramid with the F-vertices as the base and the G-vertices as the two cone
points.

We now modify the flag complex D to a new simplicial complex D0 which has pure
dimension three and reflects the situation described in the last paragraph. The com-
plex D0 is obtained from D by removing the 15 FFF-triangles f f1234; f1256; f3456g,
along with the 30 tetrahedra FFFG and the 15 four-dimensional facets FFFGG con-
taining the FFF-triangles. In D0, the bipyramids are each divided into three tetrahedra
arranged around the GG-edges. The following theorem implies both Theorem 3.6
and Corollary 3.7.

Theorem 5.4. The tropical Grassmannian G 000
3;6 equals the simplicial complex D0. It is

not a flag complex because of the 15 missing FFF-triangles. The homology of G 000
3;6 is

concentrated in (top) dimension 3; H3ðG 000
3;6;ZÞ ¼ Z126.

The integral homology groups were computed independently by Michael Joswig
and Volkmar Welker. We are grateful for their help.

This theorem is proved by an explicit computation. The correctness of the result
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can be verified by the following method. One first checks that the seven types of cones
described above are indeed Gröbner cones of I3;6 whose initial ideals are monomial-
free. Next one checks that the list is complete. This relies on a result in [7] which
guarantees that G3;6 is connected in codimension 1. The completeness check is done
by computing the link of each of the known classes of triangles. Algebraically, this
amounts to computing the (truly zero-dimensional) tropical variety of inwðI3;6Þ where
w is any point in the relative interior of the triangular cone in question. For all but
one class of triangles the link consists of three points, and each neighboring 3-cell is
found to be already among our seven classes. The links of the triangles are as follows:

Triangle EEE: The link of fe146; e256; e345g consists of e123; g163425; g142635.

Triangle EEF: The link of fe256; e346; f1346g consists of f1256; g132546; g142536.

Triangle EEG: The link of fe156; e236; g142356g consists of e124; e134; f1456.

Triangle EFF: The link of fe135; f1345; f2346g consists of e236; e246; g153426.

Triangle EFG: The link of fe235; f2356; g143526g consists of e145; f1246; e134.

Triangle FFG: The link of f f1236; f1345; g134526g consists of e126; e236; g132645.

Triangle FGG: The link of f f1456; g142356; g145623g consists of f2356 and f1234.

The FGG triangle lies in the interior of our bipyramid FFFGG and is incident to
two of the three FFGG tetrahedra which make up the triangulation of that bipyr-
amid. It is not contained in any other facet of G 000

3;6.
The 15 bipyramids are responsible for various counterexamples regarding G3;6.

This includes the failure of Corollaries 3.5 and 4.4 to hold for d d 3.

Proposition 5.5. Not every initial binomial ideal of I3;6 is prime. More precisely, if w is

any vector in the relative interior of an FFGG cone, then inwðI3;6Þ is the intersection of

two distinct codimension 10 primes in Z½ p�.

Proof. We may assume that w ¼ f1256 þ f3456 þ g123456 þ g125634. Explicit computa-
tion (using [13, Corollary 1.9]) reveals that inwðI3;6Þ is generated by

p124 p135 � p123 p145; p123 p146 � p124 p136; p125 p136 � p126 p135;

p125 p146 � p126 p145; p135 p146 � p136 p145; p123 p245 � p124 p235;

p123 p246 � p124 p236; p126 p235 � p125 p236; p125 p246 � p126 p245;

p134 p235 � p135 p234; p136 p234 � p134 p236; p136 p235 � p135 p236;

p134 p245 � p145 p234; p134 p246 � p146 p234; p146 p245 � p145 p246;

p135 p346 � p136 p345; p146 p345 � p145 p346; p135 p245 � p145 p235;

p135 p256 � p156 p235; p156 p245 � p145 p256; p135 p456 � p145 p356;

p136 p246 � p146 p236; p136 p256 � p156 p236; p146 p256 � p156 p246;
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p136 p456 � p146 p356; p235 p246 � p236 p245; p235 p346 � p236 p345;

p245 p346 � p246 p345; p235 p456 � p245 p356; p246 p356 � p236 p456;

p136 p245 � p135 p246; p145 p236 � p135 p246; p146 p235 � p135 p246;

p123 p456 � p124 p356; p134 p256 � p156 p234:

The ideal inwðI3;6Þ is the intersection of the two codimension 10 primes

P ¼ inwðI3;6Þ þ hp125 p346 � p126 p345i and

Q ¼ inwðI3;6Þ þ hp135; p136; p145; p146; p235; p236; p245; p246i:

The degrees of the ideals P;Q and I3;6 are 38, 4 and 42 respectively. r

We close this section with one more counterexample arising from the triangu-
lated bipyramid in G 000

3;6. It was proved in [3] that the d � d-minors of a generic d � n-
matrix form a universal Gröbner basis. A question left open in that paper is whether
the maximal minors also form a universal sagbi basis. It is well-known that they form
a sagbi basis for a specific term order. See [13, Theorem 11.8] and the discussion in
Section 6 below. The question was whether the sagbi basis property holds for all other
term orders. We show that the answer is ‘‘no’’: the maximal minors are not a univer-
sal sagbi basis.

Corollary 5.6. There exists a term order on 18 variables such that the 3 � 3-minors of a

generic 3 � 6-matrix are not a sagbi basis in this term order.

Proof. Consider the 3 � 6-matrix in [15, Example 1.8 and Proposition 3.13]:

W ¼

0
B@

2 1 2 1 0 0

1 2 0 0 2 1

0 0 1 2 1 2

1
CA

Let w A R
6
3ð Þ be its vector of tropical 3 � 3-minors. The coordinates of w are

wijk ¼ minfW1i þ W2j þ W3k;W1i þ W3j þ W2k;W2i þ W1j þ W3k;

W2i þ W3j þ W1k;W3i þ W1j þ W2k;W3i þ W2j þ W1kg:

This vector represents the centroid of our bipyramid: w ¼ g123456 þ g125634. We con-
sider the 3 � 3-minors of the following matrix of indeterminates:

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

z1 z2 z3 z4 z5 z6

0
@

1
A ð14Þ
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The initial forms of its 3 � 3-minors with respect to the weights W are

p123 ¼ z1x2 y3; p124 ¼ z1x2 y4; p125 ¼ y1z2x5; p126 ¼ y1z2x6;

p134 ¼ �z1 y3x4; p135 ¼ �z1 y3x5; p136 ¼ �z1 y3x6; p145 ¼ �z1 y4x5;

p146 ¼ �z1 y4x6; p156 ¼ z1x5 y6; p234 ¼ �z2 y3x4; p235 ¼ �z2 y3x5;

p236 ¼ �z2 y3x6; p245 ¼ �z2 y4x5; p246 ¼ �z2 y4x6; p256 ¼ z2x5 y6;

p345 ¼ �z3 y4x5; p346 ¼ �z3 y4x6; p356 ¼ y3z5x6; p456 ¼ y4z5x6:

Fix any term order 0 which refines W . The criterion in [13, §11] will show that the
3 � 3-minors are not a sagbi basis with respect to0. The toric ideal of algebraic rela-
tions on the twenty monomials above is precisely the prime P in the proof of Propo-
sition 5.5. The ideal P strictly contains inwðI3;6Þ. Both have codimension 10 but their
degrees di¤er by 4. Using [13, Theorem 11.4] we conclude that the 3 � 3-minors are
not a sagbi basis for0. r

6 Tropical planes

The Grassmannian Gd;n is the parameter space for all d-dimensional linear planes in
K n. We now prove the analogous statement in tropical geometry (Theorem 3.8). But
there are also crucial di¤erences between the classical planes and tropical planes. For
instance, most tropical planes are not complete intersections of tropical hyperplanes
(see Example 6.2 and Proposition 6.3). Our combinatorial theory of tropical d-planes
is a direct generalization of the Buneman representation of trees (the d ¼ 2 case) and
thus o¤ers mathematical tools for possible future applications in phylogenetic anal-
ysis.

Proof of Theorem 3.8. The tropical Grassmannian G 0
d;n is a fan of dimension ðn � dÞd

in R
n
dð Þ=Rð1; 1; . . . ; 1ÞFR

n
dð Þ�1. We begin by describing the map which takes a point

w in G 0
d;n to the associated tropical d-plane Lw HRn. Given w, we consider the trop-

ical polynomials

FJðx1; . . . ; xnÞ ¼
X
j A J

wJnf jg � xj; ð15Þ

where J runs over all subsets of cardinality d þ 1 in ½n�. We define Lw as the subset of
Rn which is the intersection of the n

dþ1

� �
tropical hypersurfaces TðFJÞ. We claim

that Lw is a tropical d-plane. Pick a point x A ðK �Þ
n
dð Þ which is a zero of Id;n and

satisfies w ¼ degðxÞ. The d-plane X represented by x is cut out by the n
dþ1

� �
linear

equations derived from Cramer’s rule:

fJðx1; . . . ; xnÞ ¼
X
j A J

GxJnf jg � xj ¼ 0 ð16Þ

David Speyer and Bernd Sturmfels404

Bereitgestellt von | UniversitÃ© de Bordeaux 1 (UniversitÃ© de Bordeaux 1)
Angemeldet | 172.16.1.226

Heruntergeladen am | 19.01.12 08:51



The tropicalization of this linear form is the tropical polynomial in (15), in symbols,
tropð fJÞ ¼ FJ . It is known that the fJ form a universal Gröbner basis for the ideal
they generate [13, Proposition 1.6]. Therefore, Corollary 2.3 shows that Lw is indeed
a tropical d-plane. In fact, we have

degðX Þ ¼ Lw ¼ LdegðxÞ:

This proves that the map w 7! Lw surjects the tropical Grassmannian onto the set of
all tropical d-planes, and it is the only such map which is compatible with the classi-
cal bijection between Gd;n and the set of d-planes in K n.

It remains to be shown that the map w 7! Lw is injective. We do this by construct-
ing the inverse map. Suppose we are given Lw as a subset of Rn. We need to recon-
struct the coordinates wi1...id of w up to a global additive constant. Equivalently, for
any ðd � 1Þ-subset I of ½n� and any pair j; k A ½n�nI , we need to reconstruct the real
number wIUf jg � wIUfkg.

Fix a very large positive rational number M and consider the ðn � d þ 1Þ-
dimensional plane defined by xi ¼ M for i A I . The intersection of this plane with Lw

contains at least one point x A Rn, and this point can be chosen to satisfy xj fM for
all j A ½n�nI . This can be seen by solving the d � 1 equations xi ¼ tM on any d-plane
X HK n which tropicalizes to Lw.

Now consider the tropical polynomial (15) with J ¼ I U f j; kg. Since x lies in
TðFJÞ, and since maxðxj; xkÞfM ¼ xi for all i A I , we conclude

wJnfkg þ xk ¼ wJnf jg þ xj:

This shows that the desired di¤erences can be read o¤ from the point x:

wIUf jg � wIUfkg ¼ xj � xk: ð17Þ

We thus reconstruct w A Gd;n by locating n
d�1

� �
special points on Lw. r

The above proof o¤ers an (ine‰cient) algorithm for computing the map w 7! Lw,
namely, by intersecting all n

dþ1

� �
tropical hypersurfaces TðFJÞ. Consider the case

d ¼ 2. Here the n
3

� �
tropical polynomials FJ in (15) are

Fijk ¼ wij � xk þ wik � xj þ wjk � xi:

The tropical hypersurface TðFijkÞ is the solution set to the linear system

wij þ xk ¼ wik þ xj cwjk þ xi or

wij þ xk ¼ wjk þ xi cwik þ xj or

wij þ xk ¼ wjk þ xi cwik þ xj:

The conjunction of these n
3

� �
linear systems can be solved e‰ciently by a variant of
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the tree reconstruction algorithm in [6]. If r and s A Rn=Rð1; . . . ; 1Þ are vertices of
this tree connected by an edge e, then r ¼ s þ c

P
i AS ei for some c > o where S H ½n�

is the set of leaves on the s side of e. We regard the tree as a metric space by assigning
the length c to edge e. The length of each edge is measured in lattice distance, so we
get the tree with metric �2w.

Corollary 6.1. Let w be a point in G2;n which lies in the cone Cs for some tree s. The

image of Lw in Rn=Rð1; . . . ; 1Þ is a tree of combinatorial type s.

The bijection w 7! Lw of Theorem 3.8 is a higher-dimensional generalization of re-
covering a phylogenetic tree from pairwise distances among n leaves. For instance,
for d ¼ 3 we can think of w as data giving a proximity measure for any triple among
n ‘‘leaves’’. The image of Lw in Rn=Rð1; . . . ; 1Þ is a ‘‘phylogenetic surface’’ which is a
geometric representation of such data.

The tropical Grassmannians Gd;n and Gn�d;n are isomorphic because the ideals Id;n

and In�d;n are the same after signed complementation of Plücker coordinates. Theo-
rem 3.8 allows us to define the dual ðn � dÞ-plane L� of a tropical d-plane L in Rn.
If L ¼ Lw then L� ¼ Lw� where w� is the vector whose ð½n�nIÞ-coordinate is the I -
coordinate of w, for all d-subsets I of ½n�. One can check that a tropical hyperplaneP

ai � xi ¼ 0 contains L� i¤ ðaiÞ A Lw and that ðL�Þ� ¼ L.

Example 6.2. Let w ¼ e12 þ e34 þ e56 in R
6
2ð Þ. Then Lw is a tropical 2-plane in R6. Its

image in R6=Rð1; . . . ; 1Þ is a tree as in Figure 1, of type s ¼ ff12; 3456g; f34; 1256g;
f56; 1234gg. The Plücker vector dual to w is

w� ¼ e3456 þ e1256 þ e1234 A G4;6 HR
6
4ð Þ:

We shall compute the tropical 4-plane Lw� by applying the algorithm in the proof of
Theorem 3.8. There are 6 tropical polynomials FJ as in (15), namely,

F12345 ¼ 0 � x1 þ 0 � x2 þ 0 � x3 þ 0 � x4 þ 1 � x5

F12346 ¼ 0 � x1 þ 0 � x2 þ 0 � x3 þ 0 � x4 þ 1 � x6

F12356 ¼ 0 � x1 þ 0 � x2 þ 1 � x3 þ 0 � x5 þ 0 � x6

F12456 ¼ 0 � x1 þ 0 � x2 þ 1 � x4 þ 0 � x5 þ 0 � x6

F13456 ¼ 1 � x1 þ 0 � x3 þ 0 � x4 þ 0 � x5 þ 0 � x6

F23456 ¼ 1 � x2 þ 0 � x3 þ 0 � x4 þ 0 � x5 þ 0 � x6

The tropical 4-plane Lw� is the intersection of these six tropical hyperplanes:

TðF12345ÞVTðF12346ÞVTðF12356ÞVTðF12456ÞVTðF13456ÞVTðF23456Þ:

We claim that Lw� is not a complete intersection, i.e., there do no exist two tropical
linear forms F and F 0 such that Lw � ¼ TðFÞVTðF 0Þ. A tropical linear form F ¼
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a1x1 þ � � � þ a6x6 vanishes on the dual 4-plane Lw� if and only if the point a ¼
ða1; . . . ; a6Þ lies in the 2-plane Lw. There are 9 types of such tropical linear forms F ,
one for each of the 9 edges of the tree Lw. For instance, the bounded edge f56; 1234g
represents the tropical forms

F ¼ a � ðx1 þ x2 þ x3 þ x4Þ þ b � ðx5 þ x6Þ where 0 < ac b:

By checking all pairs of the 9 edges, we find that any conceivable intersection
TðF ÞVTðF 0Þ must contain a 5-dimensional cone like fx1 þ c ¼ x2 f x3; x4; x5; x6g,
fx3 þ c ¼ x4 f x1; x2; x5; x6g or fx5 þ c ¼ x6 f x1; x2; x3; x4g.

This example can be generalized as follows.

Proposition 6.3. Let Lw be a tropical 2-plane in Rn whose tree is not combinatorially

isomorphic to s ¼ ff1; . . . ; ig; fi þ 1; . . . ; ng : i ¼ 2; 3; . . . ; n � 2g. Then the dual trop-

ical ðn � 2Þ-plane Lw� is not a complete intersection.

The special tree s in Proposition 6.3 is called the caterpillar in the phylogenetic
literature (see Figure 2).

Proof. Suppose for contradiction that Lw � is the intersection of the hyperplanesP
ai � xi ¼ 0 and

P
bi � xi ¼ 0. The vectors a ¼ ða1; . . . ; anÞ and b ¼ ðb1; . . . ; bnÞ,

regarded as elements of Rn=Rð1; . . . ; 1Þ, lie in the tree Lw. Denote by g the path
through Lw from a to b. Since Lw is not a caterpillar tree, the path g goes through
fewer than n � 1 edges, so deleting those edges divides L into fewer than n connected
components. Thus, there are two leaves of L, call them j and k, such that the none
of the edges of g separate j from k. Every edge of g connects two points r and s with
s ¼ r þ c

P
i AS ei where, in each case, either j and k both lie in S or neither do. Thus,

aj � ak ¼ bj � bk. Therefore, the intersection of the hyperplanes
P

ai � xi ¼ 0 andP
bi � xi ¼ 0 contains every point ðxiÞ with xj þ aj ¼ xk þ ak and xi � xj su‰ciently

positive for all i 0 j; k. But this is a codimension one subset of Rn=Rð1; . . . ; 1Þ and
we know that Lw� is pure of codimension two. r

Our next goal is to give a combinatorial encoding of tropical planes. The basic ob-
ject in our combinatorial encoding is a d-partition fA1; . . . ;Adg. By a d-partition we
mean an unordered partition of ½n� into d subsets Ai. Let Lw be a tropical d-plane and
F a maximal cell of Lw. Thus F is a d-dimensional convex polyhedron in Rn. The

...
1

2 4 n–2 

n

n–13

Figure 2. A Caterpillar Tree
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a‰ne span of F is a d-dimensional a‰ne space which is defined by equations of the
special form

xk � xj ¼ wJnf jg � wJnfkg ðthe right hand side is a constantÞ

Such a system of equations defines a d-partition fA1; . . . ;Adg, namely, two indices j

and k lie in the same block Ai if and only if the di¤erence xk � xj is constant on F .
The number of blocks clearly equals d, the dimension of F .

Remark 6.4. A maximal face F of Lw is uniquely specified by its d-partition
fA1; . . . ;Adg. It is a (bounded) polytope in Rn if and only if jAijd 2 for all i. Hence
a tropical d-plane Lw HRn has no bounded d-faces if nc 2d � 1.

We define the type of a tropical d-plane L, denoted typeðLÞ, to be the set of all
d-partitions arising from the maximal faces of L. If d ¼ 2 and L ¼ Lw with w A Cs,
then typeðLÞ is precisely the set s together with the pairs ffig; ½n�nfigg representing
the unbounded edges of the tree L. This follows from Corollary 6.1. Thus typeðLÞ
generalizes the Buneman representation of semi-labeled trees (Section 4) to higher-
dimensional tropical planes L.

The type of a tropical plane Lw is a strong combinatorial invariant, but it does not
uniquely determine the cone of Gd;n which has w in its relative interior. We will see
this phenomenon in the example below.

Example 6.5. We present three of the seven types in G3;6. In each case we display
typeðLwÞ with the 15 obvious tripartitions fi; j; ½6�nfi; jgg removed.

We begin with a type which we call the sagbi type:

EEFF1:

ff1; 23; 456g; f1; 56; 234g; f2; 13; 456g; f2; 56; 134g;
f3; 12; 456g; f3; 56; 124g; f4; 12; 356g; f4; 56; 123g;
f5; 12; 346g; f5; 46; 123g; f6; 12; 345g; f6; 45; 123g; f12; 34; 56gg

The next type is the bipyramid type. All three tetrahedra in a bipyramid FFFGG have
the same type listed below. As the faces of G 000

3;6 contain those w inducing di¤erent
initial ideals inwðId;nÞ, this example demonstrates that typeðLwÞ does not determine
inwðId;nÞ.

FFGG:

ff1; 34; 256g; f1; 56; 234g; f2; 34; 156g; f2; 56; 134g
f3; 12; 456g; f3; 56; 124g; f4; 12; 356g; f4; 56; 123g
f5; 12; 346g; f5; 34; 126g; f6; 12; 345g; f6; 34; 125g; f12; 34; 56gg

For all but one of the seven types in G3;6, the tropical plane Lw has 28 facets. The
only exception is the type EEEE. Here the tropical plane Lw has only 27 facets, all of
them unbounded.
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EEEE:

ff1; 23; 456g; f1; 234; 56g; f2; 13; 456g; f2; 135; 46g
f3; 12; 456g; f3; 126; 45g; f4; 26; 135g; f4; 126; 35g
f5; 16; 234g; f5; 126; 34g; f6; 15; 234g; f6; 135; 24gg

7 Dependence on the characteristic

Our definition of the tropical Grassmannian implicitly depended on the fields K and
k. The ideal Id;n makes sense over any field and has the same generators (the classical
Plücker relations). Nonetheless, the properties of the initial ideal inwðId;nÞ might de-
pend on k, in particular, whether or not this ideal contains a monomial might depend
on the characteristic of k. Hence, whether or not w A Gd;n might depend on the char-
acteristic of k.

In Corollary 4.5 we saw that this does not happen for d ¼ 2, and it follows from
the explicit computations in Section 5 that this does not happen for G3;6 either. In
both of these cases, the tropical Grassmannian is characteristic-free. Another result
that we observed in both of these nice cases is that it was enough to look at quadratic
polynomials in Id;n to define the tropical Grassmannian. We shall see below that the
same results do not hold for the next case G3;7. We summarize our result in the fol-
lowing theorem.

Theorem 7.1. Let d ¼ 2 or (d ¼ 3 and n ¼ 6). Then every monomial-free initial ideal of

Id;n is generated by quadrics, and the tropical Grassmannian Gd;n is characteristic-free.
Both of these properties fail if d ¼ 3 and nd 7.

Proof. It su‰ces to consider the case d ¼ 3 and n ¼ 7. An easy lifting argument will
extend our example to the general case d ¼ 3 and nd 7. The Plücker ideal I3;7 is
minimally generated by 140 quadrics in a polynomial ring k½ p123; p124; . . . ; p567� in 35
unknowns over an arbitrary field k.

We fix the following zero-one vector. The appearing triples are gotten by a cyclic
shift, and they correspond to the lines in the Fano plane:

w ¼ e124 þ e235 þ e346 þ e457 þ e156 þ e267 þ e137 A R
6
3ð Þ:

We next compute the initial ideal inwðI3;7Þ under the assumption that the character-
istic of k is zero. In a computer algebra system, this is done by computing the reduced
Gröbner basis of I3;7 over the field of rational numbers with respect to the (reverse
lexicographically refined) weight order defined by �w. The reduced Gröbner basis is
found to have precisely 196 elements, namely, 140 quadrics, 52 cubics, and 4 quart-
ics. The initial ideal inwðI3;7Þ is generated by the w-leading forms of the 196 elements
in that Gröbner basis.

Among the 52 cubics in the Gröbner basis of I3;7, we find the special cubic

f ¼ 2 � p123 p467 p567 � p367 p567 p124 � p167 p467 p235 � p127 p567 p346

� p126 p367 p457 � p237 p467 p156 þ p134 p567 p267 þ p246 p567 p137 þ p136 p267 p457:
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Since charðkÞ0 2, the leading form of this polynomial is the monomial

inwð f Þ ¼ p123 p467 p567:

This proves that w is not in the tropical Grassmannian G3;7.
On the other hand, suppose now that the characteristic of k equals two. In that

case, the leading form of f is a polynomial with seven terms

inwð f Þ ¼ �p367 p567 p124 � p167 p467 p235 � � � � þ p246 p567 p137:

This is not a monomial. In fact, none of the leading forms of the 196 Gröbner basis
elements is a monomial. This proves that the initial ideal inwðI3;7Þ contains no mon-
omial, or equivalently, that w lies in the tropical Grassmannian G3;7 when charðkÞ ¼
2. In fact, there is no inclusion in either direction between the tropical Grassmannians
G3;7 in characteristic two and in characteristic zero. To see this, we modify our vector
w as follows:

w 0 ¼ w � e124 ¼ e235 þ e346 þ e457 þ e156 þ e267 þ e137 A R
6
3ð Þ:

Then inw 0 ð f Þ ¼ 2 � p123 p467 p567 � p367 p567 p124, which is not monomial if charðkÞ ¼ 0,
but it is a monomial if charðkÞ ¼ 2. This shows that w 0 does not lie in G3;7 if the
characteristic of k is two. By recomputing the Gröbner basis in characteristic zero, we
find that the initial ideal inw 0 ðI3;7Þ contains no monomial, and hence does lie in G3;7 if
the characteristic of k is zero.

The above argument also shows that, in any characteristic, either inwðI3;7Þ or
inw 0 ðI3;7Þ will be a monomial-free initial ideal which has a minimal generator of de-
gree three. Quadrics do not su‰ce for d ¼ 3 and nd 7. r

It is worth taking a moment to think about the intuitive geometry behind this

argument. Let B be any subset of ½n�
d

� �
; we can study the collection of points on the

Grassmannian Gd;n over the field k where the Plücker coordinate PI is nonzero ex-
actly for those I A B. Such points exist exactly if B is the set of bases of a matroid of
rank d on n points realizable over k.

Thus, when the characteristic of k is 2 there is a point x A G3;7 with xijk ¼ 0 exactly
when i; j and k are collinear in the Fano plane and no such point should exist in
characteristic other than 2. Passing to the tropicalization, one would expect that in
characteristic 2 there should be a point y A Gd;n with yijk ¼ y for i; j and k collinear
in the Fano plane and yijk ¼ 0 otherwise. Intuitively, w is a perturbation of y so that
wijk is 1 and not y.
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