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Abstract. We show that the skeleton of the Deligne-Mumford-
Knudsen moduli stack of stable curves is naturally identified with
the moduli space of extended tropical curves, and that this is com-
patible with the “naive” set-theoretic tropicalization map. The
proof passes through general structure results on the skeleton of a
toroidal Deligne-Mumford stack. Furthermore, we construct tauto-
logical forgetful, clutching, and gluing maps between moduli spaces
of extended tropical curves and show that they are compatible with
the analogous tautological maps in the algebraic setting.
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1. Introduction

A number of researchers have introduced and studied the moduli
spaces M trop

g,n , parametrizing certain metric weighted graphs called trop-
ical curves, and exhibited analogies to the Deligne-Mumford-Knudsen
moduli stacks of stable pointed curves, Mg,n, and to the Kontsevich
moduli spaces of stable maps [Mik06, Mik07, GM08, GKM09, Koz09,
CV10, Koz11, BMV11, Cap11, Cha12, CMV12]. The paper [Cap11]
describes, in particular, an order reversing correspondence between
the stratification of M trop

g,n and the stratification of Mg,n, along with

a natural compactification M
trop

g,n , the moduli space of extended trop-
ical curves, where the correspondence persists. A seminal precursor
for all of this work is the paper of Culler and Vogtmann on moduli of
graphs and automorphisms of free groups, [CV86], in which a space of
metric graphs called “outer space” was introduced.

The analogies between moduli of curves and moduli of graphs go
further than the natural stratifications of compactifications. As we

show in Section 8, the moduli spaces M
trop

g,n admit natural maps

πtrop
g,n : M

trop

g,n+1 →M
trop

g,n , i = 1, . . . , n+ 1

associated to “forgetting the last marked point and stabilizing,” anal-
ogous to the forgetful maps πg,n on the moduli spaces of curves. There
are also clutching and gluing maps

κtrop
g1,n1,g2,n2

: M
trop

g1,n1+1 ×M
trop

g2,n2+1 →M
trop

g1+g2,n1+n2

and

γtrop
g,n : M

trop

g−1,n+2 →M
trop

g,n

covering the boundary strata of M
trop

g,n rM trop
g,n , analogous to the corre-

sponding clutching and gluing maps κg1,n1,g2,n2
and γg,n on the moduli

spaces of curves. When the various subscripts g, n are evident we sup-
press them in the notation for these maps.

The main purpose of this paper is to develop these analogies into
a rigorous and functorial correspondence. We start with set-theoretic
maps from the Berkovich analytic stacks M

an

g,n to the tropical moduli

spaces M
trop

g,n , described in Definition 1.1.1 below, and use Thuillier’s
construction of canonical skeletons of toroidal Berkovich spaces [Thu07]
to show that these maps are continuous, proper, surjective, and com-
patible with the tautological forgetful, clutching, and gluing maps. We
work extensively with the combinatorial geometry of extended general-
ized cone complexes, as presented in Section 2.5.
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To study the skeleton of Mg,n, we require a mild generalization of
Thuillier’s construction, presented in Section 6, below; the main tech-
nical results are Propositions 6.1.2, 6.1.6 and 6.2.6. Given a proper
toroidal Deligne–Mumford stack X with coarse moduli space X, we
functorially construct an extended generalized cone complex, the skele-
ton Σ(X ), which is both a topological closed subspace of the Berkovich
analytic space Xan associated to X, and also the image of a canonical
retraction

pX : Xan → Σ(X ).

Composing with the analytic coarse moduli space map we obtain a map
pX : X an → Σ(X). The compactified moduli space of tropical curves

M
trop

g,n is similarly an extended generalized cone complex, and one of

our primary tasks is to identify the tropical moduli space M
trop

g,n with

the skeleton Σ(Mg,n). See Theorem 1.2.1 for a precise statement.

1.1. The tropicalization map. There is a natural set theoretic trop-
icalization map

Trop : M
an

g,n →M
trop

g,n ,

well-known to experts [Tyo10, BPR11, Viv12], defined as follows. A
point [C] in M

an

g,n is represented, possibly after a field extension, by a
stable n-pointed curve C of genus g over the spectrum S of a valuation
ring R, with algebraically closed fraction field and valuation denoted
valC . Let G be the dual graph of the special fiber, as discussed in
Section 3.2 below, where each vertex is weighted by the genus of the
corresponding irreducible component, and with legs corresponding to
the marked points. For each edge ei in G, choose an étale neighborhood
of the corresponding node in which the curve is defined by a local
equation xy = fi, with fi in R.

Definition 1.1.1. The tropicalization of the point [C] ∈ M
an

g,n is the
stable tropical curve Γ = (G, ℓ), with edge lengths given by

ℓ(ei) = valC(fi).

See [Viv12, Lemma 2.2.4] for a proof that the tropical curve Γ so defined
is independent of the choices of R, C, étale neigborhood, and local
defining equation, so the map Trop is well defined.

1.2. Main results. Our first main result identifies the map Trop with
the projection from M

an

g,n to its skeleton Σ(M
an

g,n).

Theorem 1.2.1. Let g and n be non-negative integers.
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(1) There is an isomorphism of generalized cone complexes with
integral structure

Φg,n : Σ(Mg,n)
∼

−→M trop
g,n

extending uniquely to the compactifications

Φg,n : Σ(Mg,n)
∼

−→M
trop

g,n .

(2) The following diagram is commutative:

M
an

g,n

p
Mg,n

//

Trop
''PPPPPPPPPPPPPP Σ(Mg,n)

Φg,n

��

M
trop

g,n .

In particular the map Trop is continuous, proper, and surjec-
tive.

The theorem is proven in Section 7.

Our second main result shows that the map Trop is compatible with
the tautological forgetful, clutching, and gluing maps.

Theorem 1.2.2. The following diagrams are commutative.

The universal curve diagram:

M
an

g,n+1

Trop
//

πan

��

M
trop

g,n+1

πtrop

��

M
an

g,n

Trop
// M

trop

g,n ,

the gluing diagram:

M
an

g−1,n+2

Trop
//

γan

��

M
trop

g−1,n+2

γtrop

��

M
an

g,n

Trop
// M

trop

g,n ,

and the clutching diagram:

M
an

g1,n1+1 ×M
an

g2,n2+1

Trop×Trop
//

κan

��

M
trop

g1,n1+1 ×M
trop

g2,n2+1

κtrop

��

M
an

g,n

Trop
// M

trop

g,n .
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Both notation and proofs are provided in Section 8

1.3. Fans, complexes, skeletons and tropicalization. There are
several combinatorial constructions in the literature relating algebraic
varieties to polyhedral cone complexes, and we move somewhat freely
among them in this paper. The following is a brief description of the
key basic notions, more details will be given in the sequel.

Classical tropicalization studies a subvariety of a torus T over a
valued field by looking at its image in NR, the real extension of the
lattice of 1-parameter subgroups of the torus, under the coordinate-
wise valuation map. This basic idea has been generalized in sev-
eral ways. For algebraic subvarieties of toric varieties, there are ex-
tended tropicalization maps to natural partial compactifications on NR

[Kaj08, Pay09a, Rab12]. Similar ideas about extending and compacti-
fying tropicalizations appeared earlier in [Mik07, SS09].

Tropicalization is closely related to several other classical construc-
tions:

1.3.1. Fans of toric varieties. A toric variety X with dense torus T cor-
responds naturally to a fan Σ(X) in NR. These appear in [KKMSD73,
I.2], where they are called “f.r.p.p. decompositions”. See also [Oda88,
1.1] and [Ful93, 1.4]. One key feature of fans, as opposed to abstract
cone complexes, is that all of the cones in a fan come with a fixed
embedding in an ambient vector space.

1.3.2. Complexes of toroidal embeddings. In [KKMSD73, Chapter II],
the construction associating a fan to a toric variety is generalized to
spaces that look locally sufficiently like toric varieties. To each toroidal
embedding without self intersection U ⊂ X, they associate an abstract
rational polyhedral cone complex with integral structure, also denoted
Σ(X). Some authors also refer to these cone complexes as fans [Kat94,
Thu07], although they do not come with an embedding in an ambient
vector space. For a toroidal embedding U ⊂ X with self intersections,
Thuillier constructs a generalized cone complex, obtained as a colimit
of a finite diagram of rational polyhedral cones with integral structure,
which we again denote Σ(X). See [Thu07, 3.3.2]. Note that both
fans and cone complexes associated to toroidal embeddings without self
intersection are special cases of Thuillier’s construction, so the notation
is not ambiguous.

1.3.3. Extended complexes and skeletons. Thuillier also introduced nat-
ural compactifications of his generalized cone complexes; the more clas-
sical Σ(X) is an open dense subset of this extended generalized cone
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complex Σ(X). The boundary Σ(X) r Σ(X), is sometimes called the
“part at infinity”, and then Σ(X) is referred to as the “finite part” of
Σ(X). See [Thu07, Sections 3.1.2 and 3.3.2]. The extended generalized
cone complex Σ(X) is also called the skeleton of the toroidal scheme
X. It is an instance of a skeleton of a Berkovich space [Ber99, HL10],
and comes with a canonical retraction

p : Xi → Σ(X)

such that p−1(Σ(X)) = Xi ∩ Uan. Here we use the notation Xan

for the usual Berkovich analytic space of X, and Xi is the subset
of Xan consisting of points over valued fields that extend to Spec of
the valuation ring. Notice that if X is proper Xan = Xi, hence p is a
canonical retraction of Xan onto the skeleton Σ(X) that maps Uan onto
the cone complex Σ(X). In Section 6, we extend these constructions to
toroidal embeddings of Deligne–Mumford stacks. This generalization
is straightforward; no new ideas are needed.

1.3.4. Logarithmic geometry. The cone complex of [KKMSD73] is fur-
ther generalized to logarithmic schemes in [GS11, Appendix B], where
the complex associated to a logarithmic scheme X is called the tropi-
calization of X.

1.3.5. Tropicalization. Roughly speaking all of these fans, cone com-
plexes, and skeletons are in some sense tropicalizations of the corre-
sponding varieties. Put another way, tropical geometry may be in-
terpreted as the study of skeletons of Berkovich analytifications. The
exact relation between compactifications of subvarieties of tori and clas-
sical tropicalization is explained by the theory of geometric tropicaliza-
tion, due to Hacking, Keel, and Tevelev [Tev07, HKT09].

We revisit the relations between tropicalization and skeletons of
toroidal embeddings in more detail in Sections 5 and 6.

1.4. Acknowledgements. Thanks are due to M. Chan, J. Denef, J.
Rabinoff, T. Schlanck, M. Temkin, I. Tyomkin, M. Ulirsch, A. Vistoli,
F. Viviani for helpful conversations on the subject of this article. The
article was initiated during AGNES at MIT, Spring 2011; we thank J.
McKernan and C. Xu for creating that opportunity.

2. Extended and generalized complexes

2.1. Cones and extended cones. Recall that a polyhedral cone with
integral structure, (σ,M), is a topological space σ, together with a
finitely generated abelian group M of continuous real-valued functions
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on σ, such that the induced map σ → Hom(M,R) is a homeomorphism
onto a strictly convex polyhedral cone in the real vector space dual to
M . The cone is rational if its image is rational with respect to the dual
lattice Hom(M,Z).

Throughout, all of the cones that we consider are rational polyhedral
cones with integral structure, and we refer to them simply as cones.
When no confusion seems possible, we write just σ for the cone (σ,M).

Let σ be a cone, and let Sσ be the dual monoid, consisting of linear
functions u ∈ M that are nonnegative on σ. Then σ is canonically
identified with the space of monoid homomorphisms

σ = Hom(Sσ,R≥0),

where R≥0 is taken with its additive monoid structure. The associated
extended cone is

σ = Hom(Sσ,R≥0 ⊔ {∞}).

A face of σ is the subset τ where some linear function u ∈ Sσ van-
ishes. Each face inherits an integral structure, by restricting the func-
tions in M , and every face of a rational cone is rational. If τ is a face of
σ, then the closure of τ in σ is canonically identified with the extended
cone τ , and we refer to τ as a face of σ.

2.2. Cone complexes and extended cone complexes. A rational
cone complex with integral structure is a topological space obtained
from a finite disjoint union of rational polyhedral cones with integral
structure by gluing distinct cones along isomorphic faces in such a way
that each cone maps homeomorphically onto its image in the complex.
Every face of a cone in the complex is considered as a cone in the
complex. See [KKMSD73, II.1] and [Pay09b, Section 2] for further
details. All of the polyhedral cone complexes that we consider are
rational, with integral structure, so we refer to them simply as cone
complexes.

Note that cone complexes differ from the fans considered in the the-
ory of toric varieties [Oda88, 1.1], [Ful93, 1.4] in two essential ways.
First, unlike a fan, a cone complex does not come with any natural
embedding in an ambient vector space. Furthermore, while the inter-
section of any two cones in a fan is a face of each, the intersection of
two cones in a cone complex may be a union of several faces. The
latter is similar to the distinction between simplicial complexes and ∆-
complexes in cellular topology. See, for instance, [Hat02, Section 2.1].
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To each cone complex Σ, we associate the extended cone complex Σ
obtained by gluing the extended cones σ along the extended faces τ ,
whenever τ is a face of σ in Σ.

Write σi for the cones in Σ, and σ◦
i for the relative interiors. By def-

inition, σ◦
i is the interior of σ in Hom(M,R). It is also the complement

of the union of all faces of positive codimension in σ. We write σ◦
i for

the complement of the union of all faces of positive codimension in the
extended cone σ.

Every point in a cone σ is contained in the relative interior of a
unique face, and this generalizes to cone complexes and extended cone
complexes in the evident way:

Proposition 2.2.1. Let Σ be a cone complex. Then Σ = ⊔σ◦
i and

Σ = ⊔σ◦
i .

2.3. Barycentric subdivisions. Each extremal ray, or one-dimen-
sional face, of a cone σ is spanned by a unique primitive generator,
i.e. a point whose image in Hom(M,R) is a primitive lattice point
in Hom(M,Z). The barycenter of σ is the ray in its relative interior
spanned by the sum of the primitive generators of extremal rays. The
iterated stellar subdivision along the barycenters of cones in Σ, from
largest to smallest, produces the barycentric subdivision B(Σ) of a cone
complex Σ. See [KKMSD73, Example III.2.1]. The barycentric subdi-
vision of any cone complex is simplicial, and isomorphic to a fan. See
[AMR99, Lemma 8.7].

We define the barycentric subdivision B(Σ) of the extended cone com-
plex Σ to be the compact simplicial complex whose cells are the closures
in Σ of the cones in the barycentric subdivision of Σ. Note that the
barycentric subdivision B(Σ) of Σ is not the extended cone complex

B(Σ) of the barycentric subdivision of Σ For instance, if Σ = σ = R2
≥0

is a single quadrant the picture is given in Figure 1.

2.4. Cone morphisms, face morphisms, and colimits. A cone
morphism σ → σ′ is a continuous map induced by a homomorphism
M ′ → M . In particular, cone morphisms respect the integral struc-
tures. A morphism of cone complexes Σ → Σ′ is a continuous map
obtained by gluing cone morphisms. A face morphism is a morphism
of cone complexes Σ → Σ′ in which each cone σ in Σ maps isomorphi-
cally onto a cone in Σ′.

Note that any cone complex Σ is the colimit of a finite diagram of face
morphisms, obtained by gluing its cones along the natural inclusions
of faces.
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·
(0,∞)

·
(∞,∞)

·
(0,0)

·
(∞,0)

σ

· ·

��
��

��
��

�

· ·

B(σ)

· ·
??
·??
??

��
��

��
��

� ·

·
�

�

·

B(σ)

Figure 1. Barycentric subdivisions

2.5. Generalized complexes. In addition to cone complexes, we will
consider the following more general objects. A generalized cone complex
is the colimit of an arbitrary finite diagram consisting of cones σi and
face morphisms ψj,

Σ = lim
−→

(σi, ψj).

A morphism of generalized cone complexes Σ → Σ′ is a continuous
map induced by a cone morphism between suitably chosen diagrams
representing Σ and Σ′. Similar objects were named stacky fans in
[BMV11, CMV12], but that term is also standard for combinatorial
data associated to toric stacks [BCS05]. Generalized cone complexes
allow for gluing two faces of the same cone to each other, or for taking
the quotient of a cone by a subgroup of its automorphism group. Note
that the image of an open cone σ◦

i in the generalized cone complex
Σ is not necessarily homeomorphic to an open cone. Nevertheless,
the space underlying a generalized cone complex has a natural cone
complex structure, induced from the barycentric subdivisions of the
cones σi. We call this cone complex the barycentric subdivision B(Σ)
of Σ.

A generalized cone complex Σ has an associated generalized extended
cone complex Σ, obtained by taking the colimit of the corresponding
diagram of face maps of extended cones. The barycentric subdivision
of the cones induces a simplicial complex structure B(Σ) on Σ. Again,

this is not the same as the extended complex B(Σ) of the barycentric
subdivision of Σ (Figure 2).

Proposition 2.2.1 does not hold as stated for generalized cone com-
plexes: if Σ = lim

−→
(τi, φj) is a generalized cone complex and if τ1, τ2 are

faces, there may be more than one face map φ : τ1 → τ2 over Σ. We
may assume all faces of all cones are included in the diagram. We may
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·�

��
�

�
�

�
�

�
�

�

(∞,∞)

·
(0,0)

·
(∞,0)

σ
/

(Z/2Z)

·

��
��

��
��

�

· ·

B
(
σ

/
(Z/2Z)

)

·??

��
��

��
��

� ·

· ·

B
(
σ

/
(Z/2Z)

)

Figure 2. The barycentric subdivision of an extended
generalized cone complex is not the extended cone com-
plex of the barycentric subdivision. The dashed line on
the left indicates folding.

also replace {τi} by a set of representatives {σi} under isomorphisms
over Σ, and {φj} by the collection {ψj} of all resulting face maps over
Σ between σi. Note that a self-face map σi → σi is by definition an
isomorphism; the composition of such isomorphisms over Σ is an iso-
morphism over Σ, so they form a group Hi. Now a point of Σ is in the
image of the relative interior σ◦

i of a unique cone σi, and two points
in σ◦

i have the same image if and only if they are identified by the
diagram, nam ely they are in the same orbit of Hi.

Therefore the correct analogue of Proposition 2.2.1 is the following:

Proposition 2.5.1. Let Σ be a generalized cone complex. Then Σ =
⊔σ◦

i /Hi and Σ = ⊔σ◦
i /Hi, where the union is over all cones of Σ.

3. Algebraic curves, dual graphs, and moduli

3.1. Stable curves. Fix an algebraically closed field k. An n-pointed
nodal curve (C; p1, . . . , pn) of genus g over k is a projective curve C
with arithmetic genus g = g(C) over k with only nodes as possible
singularities, along with n ordered distinct smooth points pi ∈ C(k).
The curve is stable if it is connected and the automorphism group
Aut(C, pi) of C fixing the points pi is finite.

A curve C over an any field is said to be stable if the base change to
the algebraic closure is stable.

3.2. The dual graph of a pointed curve. The material here can
be found with slightly different notation in [ACG11, Cap11]. See also
[BMV11].
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Recall that to each n-pointed curve (C; p1, . . . , pn) with at most
nodes as singularities over an algebraically closed field one assigns its
weighted dual graph, written somewhat succinctly as

GC = G = (V,E, L, h),

where

(1) the set of vertices V = V (G) is the set of irreducible compo-
nents of C;

(2) the set of edges E = E(G) is the set of nodes of C, where an
edge e ∈ E is incident to vertices v1, v2 if the corresponding
node lies in the intersection of the corresponding components;

(3) the ordered set of legs of L = L(G) correspond to the marked
points, where a marking is incident to the component on which
it lies.

(4) the function h : V → N is the genus function, where h(v) is the
geometric genus of the component corresponding to v.

Note that a node of C that is contained in only one irreducible com-
ponent corresponds to a loop in GC .

•T
l1

1
. TTTTTTT

.. T

j

l2
. jjjjjjj

.. j

O o:�
o O•T

.TTTTTTT

. .l4
T

j

.jjjjjjj
. .l3

2
j

:�

Figure 3. A four-legged weighted graph of genus 6

Remark 3.2.1. As customary, the notation suppresses some data,
which are nevertheless an essential part of G:

(1) The incidence relations between edges and vertices is omitted.
(2) Consistently with [BM96, ACG11, Cap11] we view an edge e ∈

E(G) as a pair of distinct half-edges; the effect of this is that if
e is a loop, there is a nontrivial graph involution switching the
two half edges of e.

When we talk about a graph we will always mean a weighted graph,
unless we explicitly refer to the underlying graph of a weighted graph.

The valence nv of a vertex v ∈ V is the total number of incidences of
edges and legs at v, where each loop contributes two incidences. The
graph is said to be stable if it is connected and satisfies the following:
for every v ∈ V :
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• if h(v) = 0 then nv ≥ 3; and
• if h(v) = 1 then nv ≥ 1.

Note that a pointed nodal curve C is stable if and only if the graph
GC is stable.

The genus g(G) of a connected weighted graph is

h1(G,Q) +
∑

v∈V

h(v),

and for a connected pointed nodal curve C we have

g(C) = g(GC).

In essence this means that the weight h(v) can be imagined as a re-
placement for h(v) infinitely small loops hidden inside v, or even an
arbitrary, infinitely small graph of genus h(v) hidden inside v.

By the automorphism group Aut(G) of G we mean the set of graph
automorphisms preserving the ordering of the legs and the genus func-
tion h.

A weighted graph contraction π : G → G′ is a contraction of the
underlying graph (composition of edge contractions), canonically en-
dowed with weight function h′ given by

h′(v′) = g(π−1v′),

for v′ in V (G′). Note that weighted graph contractions preserve the
genus, and any contraction of a stable weighted graph is stable.

3.3. Strata of the moduli space of curves. We consider the mod-
uli stack Mg,n and its coarse moduli space M g,n. The stack Mg,n is
smooth and proper, and the boundary Mg,n rMg,n is a normal cross-
ings divisor; this endows Mg,n with a natural toroidal structure given
by the open embedding Mg,n ⊂ Mg,n. See [DM69, ACG11, HM98] for
generalites on moduli spaces, and [KKMSD73] for an introduction to
toroidal embeddings.

The toroidal structure on Mg,n induces a stratification, described as
follows. Each stable graph G of genus g with n legs corresponds to a
smooth, locally closed stratum MG ⊂ Mg,n. The curves parametrized
by MG are precisely those whose dual graph is isomorphic to G. The
codimension of MG inside Mg,n is the number of edges of G, and
MG is contained in the closure of MG′ if and only if there is a graph
contraction G → G′.
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3.4. Explicit presentation of MG. The stratum MG parametriz-
ing curves with dual graph isomorphic to G has the following explicit
description in terms of moduli of smooth curves and graph automor-
phisms, see [ACG11, Section XII.10]:

Recall that the valence of a vertex v ∈ V (G) is denoted nv. Consider

the moduli space M̃G =
∏

v Mh(v),nv
. The stack M̃G can be thought of

as the moduli stack of “disconnected stable curves”, where the universal

family C̃dis
G is the disjoint union of the pullbacks of the universal families

Ch(v),nv
→ Mh(v),nv

. The disconnected curves parametrized by M̃G

have connected components corresponding to V (G), no nodes, and

markings in the disjoint union L̃ = ⊔v{p
v
1, . . . , p

v
nv
}. The data of the

graph G indicate a gluing map C̃dis
G → C̃G, and C̃G → M̃G is a family

of connected curves, with irreducible components identified with V (G),

marked points identified with L(G) ⊂ L̃, nodes identified with E(G)

and branches of nodes identified with Ẽ = L̃ r L(G). Indeed, the

family of glued curves exhibits M̃G as the moduli space of curves with

graph identified with G. There are sections M̃G → C̃G landing in the

nodes, which are images of the sections M̃G → C̃dis
G determining the

branches.

The group Aut(G) acts on C̃G → M̃G giving a map [M̃G/Aut(G)] →

MG such that [C̃G/Aut(G)] → [M̃G/Aut(G)] is the pullback of the
universal family CG → MG.

Proposition 3.4.1. The quotient stack
[
M̃G/Aut(G)

]
is canonically

isomorphic to MG, and
[
C̃G/Aut(G)

]
is canonically isomorphic to CG.

Proof. In [ACG11, Proposition XII.10.11] one obtains a description of

the compactification
[
M̃G /Aut(G)

]
as the normalization of the clo-

sure MG of MG in Mg,n. Since the open moduli space MG is already

normal, and since
[
C̃G/Aut(G)

]
is the universal family, the proposition

follows. ♣

4. Tropical curves and their moduli

4.1. Tropical curves and extended topical curves. A tropical
curve is a metric weighted graph

Γ = (G, ℓ) = (V,E, L, h, ℓ),

where ℓ : E → R>0. When studying moduli of tropical curves we can
(and will) restrict our attention to curves whose underlying weighted
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graph G is stable, as in every equivalence class of tropical curves there
is a unique representative whose underlying weighted graph is stable,
see [Cap11]; sometimes such tropical curves are referred to as “stable”.

One can realize a tropical curve as an “extended” metric space (keep-
ing the weights on the vertices) by realizing an edge e as an interval of
length ℓ(e),

v1 •
ℓ(e)

• v2

and realizing a leg as a copy of R≥0 ⊔ {∞} where 0 is attached to its
incident vertex:

v •
∞
•

Note that the infinite point on a leg of a tropical curve is a distinguished
point which does not correspond to a vertex. Removing these infinite
points gives a usual metric graph which is not compact.

We identify Aut(Γ) ⊂ Aut(G) as the subgroup of symmetries pre-
serving the length function ℓ.

An extended tropical curve is an extended metric weighted graph Γ =
(G, ℓ) = (V,E, L, h, ℓ), where this time ℓ : E → R>0 ⊔ {∞}; we realize
an extended tropical curve as an extended metric space by realizing an
edge e with ℓ(e) = ∞ as

(R≥0 ⊔ {∞}) ∪ ({−∞} ⊔ R≤0)

where the points at infinity are identified:

v1 • ∞
• • v2.

We again realize a leg of an extended tropical curve as a copy of R≥0 ⊔
{∞}, with 0 ∈ R≥0 ⊔ {∞} attached to its incident vertex.

4.2. Moduli of tropical curves: fixed weighted graph. The open
cone of dimension |E|

σ◦
G = (R>0)

E

parametrizes tropical curves together with an identification of the un-
derlying graph with G, where each coordinate determines the length
of the corresponding edge. There is a natural universal family over σ◦

G

(see for instance [LPP11, Section 5]), so we view it as a fine moduli
space for tropical curves whose underlying graphs are identified with
G.

Tropical curves whose underlying graphs are isomorphic to G are
parametrized by

M trop
G = σ◦

G/Aut(G),
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•

Γℓ

.gggggggggg

.....

gggggggggg

◦
XXXXXXXXXX

•

.WWWWWWWWWW

.....

��

◦ • ......
ℓ∈R>0

Example: G = • • σ◦
G = R>0.

since the identification of the underlying graph with G is defined only
up to automorphisms of G. Note that M trop

G is not even homeomorphic
to an open cone, in general. However, there is a natural cone complex
structure on σG/Aut(G), induced by the barycentric subdivision of
σG, and σ◦

G is a union of relative interiors of cones in this complex.
Note that in general the universal family of σ◦

G does not descend to
the quotient, but there is a natural complex over σG/Aut(G) whose
fiber over a point [Γ] is canonically identified with Γ/Aut(Γ). See
Section 8.2.

◦
WWWWWWWWWW ____________

Γℓ/Aut(Γℓ)
•

.WWWWWWWWWW

.....

��

◦ • ......
ℓ∈R>0

G = •
h h

• M trop
G = R>0.

Similarly, the extended cone σ◦
G = (R>0 ⊔ {∞})E is a fine moduli

space for extended tropical curves whose underlying graph is identified
with G, and the quotient

M
trop

G = σ◦
G/Aut(G)

coarsely parametrizes extended tropical curves whose underlying graph
is isomorphic to G.

4.3. Moduli of tropical curves: varying graphs. Here we con-
struct the moduli of tropical curves by taking the topological colimit
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of a natural diagram of cones, in which the arrows are induced by con-
tractions of stable weighted graphs. This approach is not original; it is
quite similar, for instance, to the constructions in [Koz11].

As one passes to the boundary of the cone σ◦
G parametrizing tropical

curves whose underlying graph is identified with G, the lengths of some
subset of the edges go to zero. The closed cone σG then parametrizes
tropical curves whose underlying graph is identified with a weighted
contraction of G, as defined in Section 3.2. If ̟ : G → G′ is a
weighted contraction, then there is a canonical inclusion

̟ : σG′ →֒ σG

identifying σG′ with the face of σG where all edges contracted by ̟
have length zero.

As a topological space, the coarse moduli space of tropical curves

M
trop

g,n is the colimit of the diagram of cones σG obtained by gluing the
cones σG along the inclusions ̟ for all weighted contractions ̟:

(1) M trop
g,n = lim

−→
(σG, ̟) .

It is therefore canonically a generalized cone complex. Note that every
automorphism of a weighted graph G is a weighted contraction, so
the map from σG to the colimit M trop

g,n factors through σG/Aut(G).
Furthermore, two points are identified in the colimit if and only if
they are images of two points in some open cone σ◦

G that differ by an
automorphism of G. Therefore, M trop

g,n decomposes as a disjoint union

M trop
g,n =

⊔

G

M trop
G =

⊔

G

σ◦
G/Aut(G),

over isomorphism classes of stable weighted graphs of genus g with n
legs. This is not a cell decomposition, but M trop

g,n does carry a natural
cone complex structure, induced from the barycentric subdivisions of
the cones σG, in which each M trop

G is a union of relative interiors of
cones. There is also a “universal family,” whose fiber over a point [Γ]
is canonically identified with Γ/Aut(Γ). Again, see Section 8.2.

Similarly, the coarse moduli space of extended tropical curves M
trop

g,n

is the generalized extended cone complex

M
trop

g,n = lim
−→

(σG, ̟) ,

which decomposes as a disjoint union

M
trop

g,n =
⊔

G

M
trop

G =
⊔

G

σ◦
G/Aut(G).
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Remark 4.3.1. As in Section 2, while M trop
g,n inherits a cone complex

structure from its barycentric subdivision B(M trop
g,n ), the compactifica-

tion M
trop

g,n has a simplicial structure in the form B(M
trop

g,n ), which is

not the same as the associated extended cone complex B(M trop
g,n ).

5. Thuillier’s skeletons of toroidal schemes

Here we recall the basic properties of cone complexes associated to
toroidal embeddings, and Thuillier’s treatment of their natural com-
pactifications as analytic skeletons.

5.1. Thuillier’s retraction. We begin by briefly discussing Thuillier’s
construction of the extended cone complex and retraction associated
to a toroidal scheme without self-intersection. Recall that a toroidal
scheme is a pair U ⊂ X that étale locally looks like the inclusion of
the dense torus in a toric variety: every point p ∈ X has an étale
neighborhood α : V → X which admits an étale map β : V → Vσ

to an affine toric variety, such that β−1T = α−1U , where T ⊂ Vσ is
the dense torus. It is a toroidal embedding without self-intersection if
each irreducible component of the boundary divisor X r U is normal,
in which case V can be taken to be a Zariski open subset of X. For
further details, see [KKMSD73, Thu07].

Remark 5.1.1. Thuillier defines toroidal embeddings in terms of étale
charts, whereas in [KKMSD73] they are defined in terms of formal com-
pletions. In [KKMSD73, IV.3.II, p. 195] the approaches are shown to
be equivalent for toroidal embeddings without self intersection. A short
argument of Denef [Den12] shows that the approaches are equivalent
in general.

We work over an algebraically closed field k, equipped with the triv-
ial valuation, which sends k∗ to zero. The usual Berkovich analytic
space associated with a variety X over k is denoted Xan. One also
associates functorially another nonarchimedean analytic space in the
sense of Berkovich, denoted Xi; here i is the Hebrew letter bet:

Definition 5.1.2. The space Xi is the compact analytic domain in
Xan whose K-points, for any valued extension K|k with valuation ring
R ⊂ K, are exactly those K-points of X that extend to SpecR.

In particular, we have natural identifications

Xi(K) = X(R),
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for all such valued extensions. If X is proper, then every K-point of X
extends to SpecR, and Xi is equal to Xan. See [Thu07, Sections 1.2,
1.3].

Example 5.1.3. Let X be a toric variety with dense torus T , corre-
sponding to a fan Σ in NR. A K-point x of T extends to a point of X
over SpecR if and only if Trop(x) is contained in the fan Σ. In other
words, Xi∩T an is precisely the preimage of Σ under the classical trop-
icalization map. The extended tropicalization map takes X(K) into
a partial compactification of NR, and the closure of Σ in this partial
compactification is the extended cone complex Σ. The preimage of Σ
under the extended tropicalization map is exactly Xi.

Given a toroidal embedding U ⊂ X over k, Thuillier defines a natural
continuous, but not analytic, idempotent self-map pX : Xi → Xi.

Definition 5.1.4. The skeleton Σ(X) ⊂ Xi is the image of the map
pX .

The map pX is referred to as the retraction of Xi to its skeleton; we
write simply p when no confusion seems possible.

If U ⊂ X is a toroidal embedding without self intersection then the
image of Uan∩Xi is canonically identified with the cone complex Σ(X)
associated to the toroidal embedding, as constructed in [KKMSD73].
Then Σ(X) is the closure of Σ(X) in Xi, and is canonically identified
with the extended cone complex of Σ(X). The toroidal structure de-
termines local monomial coordinates on each stratum of X, and the
target of the retraction Σ(X) is the space of monomial valuations in
these local coordinates; see [FJ04, Section 1.5.4] for details on mono-
mial valuations. Thuillier shows, furthermore, that p is naturally a
deformation of the identity mapping on Xi, giving a canonical strong
deformation retraction of Xi onto Σ(X).

Remark 5.1.5. There is a natural order reversing bijection between
the strata of the boundary divisor X r U and the cones in Σ(X),
generalizing the order reversing correspondence between cones in a fan
and the boundary strata in the corresponding toric variety, as follows.
Let x be a point ofXi over a valued extension fieldK|k whose valuation
ring is R. Then x is naturally identified with an R-point ofX. We write
x for the reduction of x over the residue field. Then p(x) is contained
in the relative interior σ◦ of a cone σ if and only if the reduction x is
in the corresponding locally closed boundary stratum Xσ in X, over
the residue field, and x is in U . In other words, the preimage of σ◦

is the subset of Xi ∩ Uan consisting of points over valued fields whose
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reduction lies in the corresponding stratum of X r U over the residue
field.

Remark 5.1.6. The order reversing bijection between strata in XrU
and cones in Σ(X) described in Remark 5.1.5, which comes from the
reduction map onXi, should not be confused with the order preserving
bijection between strata in X r U and strata in Σ(X) r Σ(X). Quite
simply, the preimage under p of a boundary stratum in Σ(X) r Σ(X)
is a stratum in the boundary divisor (X r U)an.

5.2. Explicit realization of the retraction. In this section we de-
scribe Thuillier’s retraction to the extended cone complex more explic-
itly in local coordinates, for a toroidal embedding U ⊂ X without self
intersection.

The toroidal scheme without self intersectionsX is covered by Zariski
open toric charts

Vσ V
β

oo �
� α // X .

Recall that the cone σ can be described in terms of monoid homo-
morphisms, as follows. Let M be the group of Cartier divisors on V
supported in the complement of U , and let Sσ ⊂M be the submonoid
of such Cartier divisors that are effective. Then the cone σ is the space
of monoid homomorphisms to the additive monoid of nonnegative real
numbers,

σ = Hom(Sσ,R≥0),

equipped with its natural structure as a rational polyhedral cone with
integral structure. The associated extended cone σ is

σ = Hom(Sσ,R≥0 ⊔ {∞}).

Let x be a point in Xi. Then x is represented by a point of X over a
valuation ring R with valuation val. Let x be the reduction of x, which
is a point of X over the residue field of R, and let V ⊂ X be an open
subset that contains x and has a toric chart V → Vσ. Then p(x) ∈ σ
is the monoid homomorphism that takes an effective Cartier divisor D
on V with support in the complement of U and local equation f at x
to

(2) p(x)(D) = val(f).

This is clearly a monoid homomorphism to R≥0 ⊔ {∞}, and it is non-
negative because D is effective. It is also independent of the choice of
chart, the choice of extension field over which x is rational, and the
choice of defining equation for D. See [Thu07, Lemma 2.8, Proposition
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3.11]. This describes p as a projection to a natural extended cone com-
plex; we now explain how this cone complex may be seen as a subset
of Xi.

First, we may assume that the open set V ⊂ X is affine. Then
V an is the space of valuations on the coordinate ring k[V ] that extend
the given trivial valuation on k [Ber90, Remark 3.4.2], and V i is the
subspace of valuations that are nonnegative on all of k[V ]. Shrinking
the toric variety Vσ, if necessary, we may assume that there is a point x
in V mapping to a point xσ in the closed orbit Oσ ⊂ Vσ; note that the
following construction is independent of the choice of x. Since V → Vσ

is étale, the completed local ring ÔX,x is identified with ÔVσ ,xσ
, which

is a formal power series ring

k[[y1, ..., yr]][[Sσ]],

with exponents in Sσ and coefficients in a formal power series ring
in r parameters. Here, r is the dimension of Oσ. For each function
f ∈ k[V ], let

∑
u∈Sσ

au(f)zu be the image of f in this power series
ring. Then, to each point v in σ, we associate the monomial valuation
valv : k[V ] → R ∪ {∞} taking f to

(3) valv(f) = min{〈u, v〉 | au(f) 6= 0}.

Since v is in the extened dual cone of Sσ, the valuation valv is non-
negative on k[V ], so this construction realizes σ as a subset of V i. As
V ranges over an open cover of X, the subsets V i cover Xi, and the
union of the cones σ, one for each stratum in X, is the extended cone
complex Σ(X) ⊂ Xi.

Remark 5.2.1. From this description of p, we see that p(x) is con-
tained in the relative interior σ◦ of σ as defined in Section 2.2 if and only
if x is contained in the smallest stratum of V . Also, p(x) is contained
in the boundary σr σ if and only if x itself is contained in the bound-
ary of V . These two properties of p determine both the order reversing
correspondence between cones of Σ(X) and strata of X, and the order
preserving correspondence between boundary strata in Σ(X) r Σ(X)
and boundary strata in X r U , discussed in Remarks 5.1.5 and 5.1.6,
above.

We recall that Thuillier also constructs a canonical homotopy HV :
V i × [0, 1] → V i, such that

HV × {0} = idV : V i → V i,

and
HV × {1} = pV : V i → ΣV ,
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giving a strong deformation retraction of V i onto the skeleton Σ(V ) ⊂
Xi, and that this construction is functorial for étale morphisms of
toroidal schemes. Our goal in Section 6 is to show that a similar con-
struction applies to toroidal Deligne–Mumford stacks.

5.3. Functoriality. A morphism X → Y of toroidal embeddings is
toroidal if for each x ∈ X there is a commutative diagram

Vσ

��

VX
oo //

��

X

��

Vτ VY
oo // Y

where the top row is a toric chart at x, the bottom row is a toric chart
at f(x), and the arrow Vσ → Vτ is a dominant torus equivariant map of
toric varieties; this is a so called toric chart for the morphism X → Y .
Toroidal morphisms were introduced in [AK00, Section 1] and coincide
with the logarithmically smooth maps of [Kat94].

More generally, we say that a morphism X → Y as above is sub-
toroidal if Vσ → Vτ is only assumed to dominate a torus invariant
subvariet of Vτ . A key example is when X → Y is the normalization
of a closed toroidal stratum X ′ ⊂ Y .

Proposition 5.3.1. The formation of Σ(X) is functorial for sub-
toroidal morphisms: If f : X → Y is a sub-toroidal morphism of
toroidal embeddings without self intersections, and fi : Xi → Y i is
the associated morphism of Berkovich spaces, then fi restricts to a
map of generalized extended cone complexes Σ(f) : Σ(X) → Σ(Y ). In
particular pY ◦ fi = Σ(f) ◦ pX , and if Y → Z is another sub-toroidal
morphism, then Σ(g) ◦ Σ(f) = Σ(g ◦ f).

Proof. We first prove the result for toroidal morphisms, and then indi-
cate the changes necessary for sub-toroidal morphisms.

The result is local, so we may assume there is a toric chart for f which
covers X and Y , in which case Σ(X) = σ and Σ(Y ) = τ . If Sσ and
Sτ are the monoids of effective Cartier divisors on X and Y supported
away from UX and UY , then we have a pullback homomorphism Sτ →
Sσ, which is evidently compatible with composition with a further toric
morphism Y → Z. This induces a map Σ(f) : σ → τ compatible with
compositions. By Equation (2) of Section 5.2 we have pY ◦ fi =
Σ(f) ◦ pX . By Equation (3) we also have Σ(f) = fi|σ, as needed.

For sub-toroidal morphisms we only need to replace Sσ by S ′
σ :=

Sσ ⊔ {∞} and similarly for S ′
τ . We define f ∗ : S ′

τ → S ′
σ by declaring

that f ∗(∞) = ∞ and, if f(X) ⊂ D for some nonzero divisor D ∈ S ′
τ ,



22 ABRAMOVICH, CAPORASO, AND PAYNE

then also f ∗D = ∞. The induced map σ → τ maps σ to an infinite face
of τ (see [Thu07, Proposition 2.13]), and the rest of the proof works as
stated. ♣

6. Skeletons of toroidal Deligne–Mumford stacks

Here we generalize Thuillier’s retraction of the analytification of
a toroidal scheme onto its canonical skeleton to the case of toroidal
Deligne–Mumford stacks. We follow the construction of [Thu07, Sec-
tion 3.1.3], where toroidal embeddings with self intersections are treated.

6.1. Basic construction. Let X be a Deligne–Mumford stack over k,
with coarse moduli space X. Let U ⊂ X an open substack and, for
any morphism V → X , let UV ⊂ V be the preimage of U .

Definition 6.1.1. The inclusion U ⊂ X is a toroidal embedding of
Deligne–Mumford stacks if, for every morphism from a scheme V → X ,
the inclusion UV ⊂ V is a toroidal embedding of schemes.

When U is understood, we refer to X as a toroidal Deligne–Mumford
stack. The property of being a toroidal embedding is étale local on
schemes, so the inclusion U ⊂ X is a toroidal embedding if and only if,
for a single étale covering V → X , the embedding UV ⊂ V is toroidal.

Let X be a toroidal Deligne–Mumford stack with coarse moduli
space X, and V → X an étale covering by a scheme, where UV ⊂ V
is a toroidal embedding without self-intersections. We write V2 =
V ×X V . Then V2

−→
−→V → X is a right-exact diagram of schemes,

and V i
2

−→
−→V i → Xi is a right-exact diagram of analytic spaces.

Proposition 6.1.2. There is a canonical continuous map HX : [0, 1]×
Xi → Xi connecting the identity to an idempotent self-map pX . Writ-
ing Σ(X ) for the image of pX , we have a commutative diagram

V i
2

//
//

pV2

��

V i

pV

��

// Xi

pX

��

Σ(V2)
//
// Σ(V ) // Σ(X ),

with right exact rows. In particular, Xi is contractible and Σ(X ) is
the topological colimit of the diagram Σ(V2)−→−→Σ(V ).
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Proof. Since V2
−→
−→V → X is right exact it follows that the map HX :

[0, 1] ×X → X making the diagram

[0, 1] × V i //

HV

��

[0, 1] ×Xi

HX

��

V i // Xi

commutative exists and is unique. To check that the map is indepen-
dent of the choice of V it suffices to consider a different étale cover
by a scheme V ′ → X that factors through V → X . This induces a
map H ′

X : [0, 1] ×Xi → Xi commuting with HV ′ as in the preceding
diagram, and a map p′

X : Xi → Σ(X ) commuting with pV ′ as in the
first diagram. By [Thu07, Lemma 3.38] we also have a commutative
diagram

[0, 1] × V ′i //

HV ′

��

[0, 1] × V i

HV

��

V ′i // V i.

It follows that HX = H ′
X , and necessarily p′

X = pX . ♣

Remark 6.1.3. One can define Σ(X ) as the topological colimit of the
diagram Σ(V2)−→−→Σ(V ), describe it explicitly as in Proposition 6.2.6
and prove its functorial properties as in Proposition 6.1.6, without re-
course to Berkovich analytification, similarly to the work of [KKMSD73]
or [GS11]. However Part (2) of Theorem 1.2.1 requires the analytic
context.

Remark 6.1.4. Citing a similar argument, Thuillier notes that the
skeleton Σ(X) of a toroidal embedding with self-intersection inherits
the structure of a cell complex. We mention one minor gap in the proof
of this claim, which is easily corrected. Lemma 3.33 in Thuillier states
that every cone of Σ(V ) maps isomorphically to its image in Σ(X),
which is not true in general, as seen in Example 6.1.5. Nevertheless,
Thuillier’s argument does show that cones of the barycentric subdi-
vision of Σ(V ) map isomorphically to their images in Σ(X), so the
topological space Σ(X) inherits the structure of a cone complex, in-
duced from this barycentric subdivision. The same holds for a toroidal
Deligne–Mumford stack X : the skeleton Σ(X ) inherits a simplicial
complex structure induced from the barycentric subdivision of Σ(V ).
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Example 6.1.5. Consider X = A3 r {y = 0} and let U be the com-
plement of the divisor

D = {x2y − z2 = 0}.

Since D is a normal crossings divisor, the inclusion U ⊂ X is a toroidal
embedding. Note that D is irreducible but not normal, so X is a
toroidal variety with self intersection. Moreover, the preimage of the
singular locus in the normalization of D is irreducible. Roughly speak-
ing, this is because the fundamental group of the singular locus acts
transitively on the branches of D at the base point. This phenomenon
of monodromy is discussed systematically in Section 6.2.

We now consider a toric chart on X. Let V = A3 r {u = 0} and

DV = V (x2u2 − z2) ⊂ V,

there is a degree 2 étale cover V → X given by u2 = y. Now V is a
toroidal embedding without self intersections. The coordinate change
z1 = z/u gives the equation x2 = z2

1 , so V is isomorphic to A2 × Gm

with its standard toric structure - the toric divisors on V are {x = z1}
and {x = −z1}. The corresponding cone is σ = R2

≥0. The group Z/2Z
acts freely on V , by interchanging the sheets of the étale cover, with
quotient X; the involution sends (x, u, z1) to (x,−u,−z1). The fiber
product V2 = V ×X V is therefore V ×Z/2Z, and the étale equivalence
relation V2

−→
−→V has quotient X. Now the skeleton Σ(V2) is σ × Z/2Z,

and the equivalence relation Σ(V2)−→−→Σ(V ) identifies σ with itself by
the reflection that switches the two coordinates, since the toric divisors
{x = z1} and {x = −z1} are interchanged by the involution. It follows
that Σ(X) is the quotient σ/(Z/2Z).

·
(0,∞)

·
(∞,∞)

·
(0,0)

·
(∞,0)

Σ(V ) = σ

·�

��
�

�
�

�
�

�
�

�

(∞,∞)

·
(0,0)

·
(∞,0)

Σ(X) = σ
/

(Z/2Z)

The image of σ◦ is not homeomorphic to the relative interior of any
cone, but the cones of the barycentric subdivision of Σ(V ) map isomor-
phically to their images, giving Σ(X) the structure of a cone complex,
as in Figure 2 of Section 2.5.

The functorial properties of pX also carry over to toroidal stackes:
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Proposition 6.1.6. The construction of pX is functorial: if f : X →
Y is a sub-toroidal morphism of toroidal Deligne–Mumford stacks, then
fi : Xi → Y i restricts to a map of generalized extended cone com-
plexes Σ(f) : Σ(X) → Σ(Y ). In particular pY ◦ fi = Σ(f) ◦ pX , and
if g : Y → Z is another sub-toroidal morphism, then Σ(g) ◦ Σ(f) =
Σ(g ◦ f).

Proof. Let V → Y and W → V ×Y X be étale coverings by schemes
such that the induced toroidal embeddings are without self intersection.
Then in the diagram

Wi //

��

&&MMM
MM Xi

��

&&MMMM

V i //

��

Y i

��

Σ(W ) //

%%KKK
Σ(X )

$$

Σ(V ) // Σ(Y)

the dotted arrow exists since fi(Σ(X )) lies in the image of Σ(V ). It
is a morphism of extended generalized cone complexes, since it is cov-
ered by the morphism of extended cone complexes Σ(W ) → Σ(V ).
Now all but the right square are already known to be commutative,
and the horizontal arrows are surjective, therefore the right square is
commutative as well. ♣

Remark 6.1.7. When constructing skeletons of toroidal Deligne–Mum-
ford stacks, it may be tempting to take colimits of diagrams of cone
complexes in the category of topological stacks rather than in the cat-
egory of topological spaces. We avoid this for three reasons. First, the
cone complex Σ(X ) is a subset of Xan that lies over the generic point
of X. If X does not have generic stabilizers, then no point of Σ(X )
has stabilizers, when considered as a point of X an. Next, the same
distinction between the colimit in the category of topological stacks
and the colimit in the category of topological spaces appears already
for toroidal embeddings of varieties with self intersection, even when
the underlying toroidal space has no nontrivial stack structure, as seen
in Example 6.1.5. Finally, the colimit of the diagram Σ(V2)−→−→Σ(V ) in
the category of topological stacks depends on the choice of étale cover,
while the colimit in the category of topological spaces is independent
of all choices. The following example illustrates this possibility.

Example 6.1.8. Let U ⊂ X be a toroidal scheme, so the embedding of
U×Gm in X×Gm is also toroidal. Fix an integer n ≥ 2. Then X×Gm

has a natural étale cover V induced by z 7→ zn on Gm. The resulting
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diagram Σ(V2)−→−→Σ(V ) realizes Σ(X) as the quotient of Σ(V ) by the
trivial action of a cyclic group of order n. In particular, the colimit in
the diagram of topological spaces is Σ(V ), whereas the colimit in the
category of topological stacks has a nontrivial stabilizer at every point
that depends on the choice of n.

The issue seems to come from the fact that the underlying topolog-
ical space of a scheme or a Berkovich space should come with a stack
structure; possibly points should be replaced by the classifying stacks
of appropriate Galois groups. This seems compatible with results of
[CMV12]. The simplicial space giving the étale topological type of Xi

and its restriction to Σ(X) may provide an appropriate formalism.

6.2. Monodromy of toroidal embeddings. Let U ⊂ X be a toroidal
Deligne–Mumford stack. For each étale morphism from a scheme V →
X , let MV be the group of Cartier divisors on V that are supported
on the boundary V r UV , and let SV ⊂ MV be the submonoid of ef-
fective divisors. Let M and S be the étale sheaves associated to these
presheaves, respectively. In the language of logarithmic geometry, S
is the characteristic monoid sheaf associated to the open embedding
U ⊂ X , and M is the characteristic abelian sheaf.

Proposition 6.2.1. The sheaves S and M are locally constant in the
étale topology on each stratum W ⊂ X .

Proof. It suffices to check this for M , and it is enough to exhibit an
étale cover on W where the sheaf M is constant. Since X has an étale
cover by a toroidal embedding of schemes without self intersections, this
follows from the fact thatM is constant on each stratum of any toroidal
embedding without self-intersection [KKMSD73, Lemma II.1.1, p. 60].

♣

Fix a stratum W ⊂ X and a geometric point w of W . The stalk Mw

is the group of étale local germs of Cartier divisors at w supported on
X rU , and Sw is the submonoid of germs of effective Cartier divisors.
Note that Mw is a finitely generated free abelian group and Sw is a
sharp, saturated, and finitely generated submonoid that generates Mw

as a group. Hence the dual cone σw, the additive submonoid of linear
functions on Mw that are nonnegative on Sw, is a strictly convex, full-
dimensional, rational polyhedral cone in Hom(Mw,R). Since Mw is
étale locally constant, there is a natural action of πet

1 (W,w) on Mw

that preserves Sw. See [Noo04] for details on étale fundamental groups
of Deligne–Mumford stacks.
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Definition 6.2.2. The monodromy groupHw is the image of πet
1 (W,w)

in Aut(Mw).

The action of πet
1 (W,w) on Mw is determined by the induced permuta-

tions of the extremal rays of σw. In particular, the monodromy group
Hw is finite.

Remark 6.2.3. Note that any two geometric points w and w′ in the
same stratum W ⊂ X have isomorphic monodromy groups, where the
isomorphism is well-defined up to conjugation. Similarly, the cones
σw and σw′ are isomorphic, by isomorphisms that are compatible with
the actions of Hw and Hw′ , and well-defined up to conjugation by these
actions. In particular, the quotient σw/Hw depends only on the stratum
W , and not on the point w.

To study the monodromy group Hw at a point w in a stratum W ⊂
X , we therefore study local charts given by étale covers by toroidal
embeddings of schemes without self-intersection, where the monodromy
is trivialized.

Definition 6.2.4. An étale morphism from a scheme V → X is a small
toric chart around a point w if

(1) the toroidal embedding UV ⊂ V is without self intersections,

(2) there is a unique closed stratum W̃ ⊂ V , and

(3) the image of W̃ contains w.

Fix a small toric chart V → X and a point w̃ of W̃ lifting w. Since
V is without self-intersection, the étale sheaves M and S are constant

on W̃ , so πet
1 (W̃ , w̃) acts trivially on Mw. The skeleton Σ(V ) is simply

the extended cone

σV = Hom(SV ,R≥0 ⊔ {∞}).

Remark 6.2.5. The monodromy group Hw can be detected from a
single small toric chart V around w, as follows. Let V2 = V ×X V .

Consider a point y ∈ V2 lying over x1, x2 ∈ W̃ , mapping to w ∈ W .

Since M is constant on W̃ , we can identify Mx1
≃ H0(W̃V ,M) ≃

Mx2
. On the other hand pulling back we get Mx2

≃ My ≃ Mx1
. This

determines an automorphism of Mw, and every element of Hw occurs
in this way.

We now state and prove the main technical result of this section,
which says that the skeleton of an arbitrary toroidal embedding of
Deligne–Mumford stacks decomposes as a disjoint union of extended



28 ABRAMOVICH, CAPORASO, AND PAYNE

open cones, one for each stratum, modulo the action of the respective
monodromy groups.

Proposition 6.2.6. Let W1, . . . ,Ws be the strata of a toroidal Deligne–
Mumford stack X , and let wi be a point in Wi. Write σi for the dual
cone of Swi

and Hi for the monodromy group at wi. Let σ◦
i be the

relative interior of σi. Then we have natural decompositions

Σ(X ) = σ◦
1/H1 ⊔ · · · ⊔ σ◦

s/Hs,

and

Σ(X ) = σ◦
1/H1 ⊔ · · · ⊔ σ◦

s/Hs.

Furthermore, if Vi → X is a small toric chart around wi, with V ′ =
V1 ⊔ · · · ⊔ Vs and V ′

2 = V ′ ×X V
′, then the natural map

lim
−→

(
Σ(V ′

2)
−→
−→Σ(V ′)

)
→ Σ(X )

is an isomorphism of generalized cone complexes, and

lim
−→

(
Σ(V ′

2)
−→
−→Σ(V ′)

)
→ Σ(X )

is an isomorphism of extended generalized cone complexes.

Proof. First, note that it suffices to prove the statements for Σ(X ).
The decomposition statement for Σ(X ) follows from the one for Σ(X ),
because σ◦

i = σ◦
i ∩ Σ(X ). Similarly, the isomorphism statement for

Σ(X ) follows from the one for Σ(X ) because Σ(V ′) and Σ(V ′
2) are the

preimages of Σ(X ) in Σ(V ′) and Σ(V ′
2), respectively.

Since each Vi is a small toric chart, its skeleton is the single extended
cone Σ(Vi) = σi, and hence

Σ(V ′) = σ1 ⊔ · · · ⊔ σs.

We write Im(σ◦
i ) for the image of σ◦

i in Σ(X ). First, we show that
σ◦

1 ⊔ · · · ⊔ σ◦
s surjects onto Σ(X ). This does not follow from the def-

inition of the skeleton, since V1 ⊔ · · · ⊔ Vs need not surject onto X .
However, suppose V ∗ → X is a small toric chart around a point in Wi.
Then V ∗ ×X Vi contains a small toric chart, whose skeleton maps iso-
morphically by the two projections to σV ∗ and σi, see [Thu07, Lemma
3.28 (2)]. Hence the natural map σV ∗ → Σ(X ) factors through an iso-
morphism to σi. Therefore, we can extend V1 ⊔ · · · ⊔ Vs to a cover of
X by small toric charts and conclude that σ1 ⊔ · · · ⊔ σs surjects onto
Σ(X ). Finally, each face of σi corresponds to a stratum of X whose
closure contains Wi, so the image of each face of positive codimension
in σi is also in the image of a lower dimensional cone, and we conclude
that σ◦

1 ⊔ · · · ⊔ σ◦
s surjects onto Σ(X ).



THE TROPICALIZATION OF THE MODULI SPACE OF CURVES 29

Next, we observe that the images of σ◦
1, . . . , σ

◦
s are disjoint, since a

point of σ◦
i , considered as a point of Xi, extends to a point over SpecR

whose reduction lies in Wi. This shows Σ(X ) = Im(σ◦
1)⊔ · · · ⊔ Im(σ◦

s).

To prove the decomposition statement, it remains to show Im(σ◦
i ) =

σ◦
i /Hi. Shrinking Vi if necessary and writing W̃i ⊂ Vi for the closed

stratum, we may assume that the étale map of strata W̃i → Wi is finite

onto its image. SayW ′
i ⊂ Wi is the image of W̃i. Since each stratum Wi

is smooth, the fundamental group πet
1 (W ′

i , wi) surjects onto πet
1 (Wi, wi).

The sheaves M and S are trivial on W ′
i , so every monodromy operator

g ∈ Hi is induced by some geometric point y of Wi ×X Wi over a pair
of points w and w′ in W ′

i that lie over wi. Let V ′
i be the component

of Vi ×X Vi containing y. Then the projections σV ′
i

−→
−→σi induce the

identification g : σi
∼
−→ σi Therefore, two points in σ◦

i that differ by an
element of Hi have the same image in Σ(X ). Conversely, if v and v′

are points in σ◦
i that have the same image in X, then we can consider

each as a point of V i
i , and consider a point y in V i

i ×X V
i
i lying over

v and v′. Then the monodromy operator associated to the reduction
of y maps v to v′ in σ◦

i . This proves the decomposition statement.

We now turn to the isomorphism statement. We have seen that the
natural map

lim
−→

(
Σ(V ′

2)
−→
−→Σ(V ′)

)
→ Σ(X )

is surjective. Let X ′ ⊂ X be the image of V ′. Then

lim
−→

(
Σ(V ′

2)
−→
−→Σ(V ′)

)
→ Σ(X ′)

is an isomorphism. In particular, it is injective. Composing with the
inclusions Σ(X ′) ⊂ X ′i and X ′i ⊂ Xi shows that the map from the
colimit to Σ(X ) is injective, and hence bijective. Being a continuous
bijection between compact Hausdorff spaces, it is a homeomorphism.
Finally, since all of the maps in the diagram are face maps, the natural
extended cone complex structures are preserved, and the homeomor-
phism is an isomorphism of extended generalized cone complexes. ♣

7. The skeleton of Mg,n

In this section, we interpret the general construction of the retrac-
tion of a toroidal Deligne–Mumford stack onto its canonical skeleton in
the special case of Mg,n ⊂ Mg,n and show that Σ(Mg,n) is naturally

identified with the tropical moduli space M
trop

g,n .

7.1. Versal deformation spaces. We begin by recalling some facts
about deformations of stable curves [ACG11, Chapters XI, XII]. Fix
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a point p in Mg,n corresponding to a stable curve C. Then p has
an étale neighborhood Vp → Mg,n in which the locus parametrizing
deformations of C in which the node qi persists is a smooth and ir-
reducible principal divisor Di with defining equation fi, and the col-
lection of divisors corresponding to all nodes of C has simple normal
crossings. Shrinking Vp if necessary, we may assume that the locus in
Vp parametrizing singular curves is the union of these divisors and, for
each collection of nodes {qi}i∈I , the corresponding intersection

WI =
⋂

i∈I

Di

is irreducible. The completion of Vp at p is a formal affine space and the
fi are a subset of a system of formal local coordinates. Furthermore,
the dual graph of any curve in the family parametrized by Vp is a
contraction of the dual graph G of C.

The curves parametrized by Di are exactly those having dual graphs
in which the edge ei corresponding to the node qi is not contracted.
More generally, the locally closed stratum

W ◦
I ⊂ WI ,

consisting of points that are in Di if and only if i ∈ I, parametrizes
those curves whose dual graph is G/E′ , the graph in which the edges
in E ′ are contracted and only the edges {ei}i∈I remain, where E ′ =
{ej}j /∈I .

Since the defining equation fi of Di on Vp measures deformations of
the node qi ∈ C, it has the following interpretation in terms of the
local defining equations of the curve at the node. Consider a valuation
ring R and a morphism φ : SpecR → Vp, corresponding to a curve CR

over SpecR. Assume the closed point in SpecR maps into the stratum
W ◦

I . Then, for i ∈ I, the node qi in the special fiber of CR has an étale
neighborhood in CR with defining equation xy = fi, where we identify
fi with its image in R.

7.2. Monodromy on Σ(Mg,n). Let V → Mg,n be a small toric chart
around a point p in the stratum MG, such as the versal deformation
spaces discussed above. Then the skeleton Σ(V ) is a single copy of the
extended cone σG. By Proposition 6.2.6, the image of σ◦

G in Σ(Mg,n)
is the quotient of σ◦

G by the monodromy group HG. Recall that, by
definition, HG is the image of πet

1 (MG, p) in Aut(σG).

Proposition 7.2.1. The monodromy group HG is the image of Aut(G)
in the set of permutations of E(G).
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Proof. To compute the monodromy group HG, we consider the Galois

cover M̃G → MG, with Galois group Aut(G), from Section 3.4. The

pullbacks of the sheaves M and S are trivial on M̃G because, by con-

struction, the cover M̃G → MG trivializes the locally constant sheaves
of sets on MG whose stalk at a point x is the set of nodes of the cor-
responding curve Cx. By the discussion of versal deformations above,
these sets form a group basis for M and a monoid basis for S. The
action of πet

1 (MG, p) therefore factors through its quotient Aut(G),
acting in the natural way on σG. ♣

Corollary 7.2.2. The skeleton Σ(Mg,n) decomposes as a disjoint union

Σ(Mg,n) =
⊔

G

σ◦
G/Aut(G).

7.3. Proof of Theorem 1.2.1. We have seen that both the skeleton
Σ(Mg,n) and the tropical moduli space M

trop

g,n decompose naturally as
disjoint unions over isomorphism classes of stable graphs of genus g
with n legs

Σ(Mg,n) =
⊔

G

σ◦
G/Aut(G) = M

trop

g,n .

We now show that these bijections induce an isomorphism of extended
generalized cone complexes and are compatible with the naive set the-
oretic tropicalization map from Definition 1.1.1.

Choose a small toric chart VG → Mg,n around a point in each stra-
tum MG. Let

V =
⊔

G

VG,

with its étale map V → Mg,n. Then Σ(V ) =
⊔

G σG and, by Proposi-

tion 6.2.6, the skeleton Σ(Mg,n) is naturally identified with the colimit
of the diagram Σ(V2)−→−→Σ(V ), where V2 = V ×Mg,n

V . By Proposi-
tion 2.5.1, we can replace this diagram with one in which each cone σG

appears exactly once. By Proposition 7.2.1, the self-maps σG → σG

in this diagram are exactly those induced by an automorphism of G.
Furthermore, by the discussion of versal deformations in Section 7.1,
the closure in Mg,n of any stratum corresponding to a contraction
of G contains MG, so the proper inclusions of faces  : σG′ → σG

in this diagram are exactly those corresponding to graph contractions
̟ : G → G′.

The same diagram of extended cones is considered in Section 4.3,

where its colimit is identified with M
trop

g,n , giving an isomorphism Φg,n
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of extended generalized cone complexes, which restricts to an isomor-
phism of generalized cone complexes Φg,n : Σ(Mg,n) → M trop

g,n , as re-
quired.

It remains to check that this identification agrees with the naive
set theoretic tropicalization map. Suppose C = Cp is a curve over
a valued field K that extends to a curve CR over SpecR, and let G

be the dual graph of the special fiber. Then the point p has an étale
neighborhood in Mg,n in which each node qi of the reduction of C is
defined by an equation xy = fi, with fi in R. The naive set theoretic
tropicalization map takes p to the metric graph with underlying G

in which the length of the edge ei corresponding to qi is valC(fi); see
Definition 1.1.1. By the discussion of versal deformations in Section
7.1, the divisors Di = (fi) also give a basis for the monoid Sp. The
explicit description of the retraction to the skeleton, from Section 5.2,
then shows that this retraction takes p to the same metric graph, and
the theorem follows. ♣

Remark 7.3.1. We note that our proof of Part (1) of Theorem 1.2.1

is based on the observation that Σ(X) and M
trop

g,n are put together in
the same way from the same extended cones, and does not require the
analytic interpretation of Σ(X) as a skeleton.

8. Tropical tautological maps

8.1. Curves and tropical curves: the analogy of strata. As dis-
cussed in Section 3.3, the strata in Mg,n correspond to stable graphs
G, and the codimension of the stratum MG is the number of edges
in G. Furthermore, MG is contained in MG′ if and only if there is a
graph contraction G → G′.

The natural stratification of the tropical moduli space M trop
g,n is simi-

lar, but the inclusions are reversed, as seen in Section 4.3. The stratum
M trop

G parametrizing stable tropical curves with underlying graph G is

contained in M trop
G′ if and only if there is a graph contraction G′ → G.

As the orders are reversed, dimension and codimension are also inter-
changed; the dimension of M trop

G is equal to the number of edges in G;
see [Cap11, Thm. 4.7].

This order reversing correspondence between stratifications may be
seen as a consequence of Theorem 1.2.1. The tropical moduli space is
the finite part of the skeleton of the moduli space of curves, and there
is a natural order reversing correspondence between strata in a toroidal
space and cones in the associated complex. See Remark 5.1.5.
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8.2. Tropical forgetful maps and their sections. Assume as usual
2g − 2 + n > 0. In the algebraic situation there is a natural forgetful
morphism

π = πg,n : Mg,n+1 −→ Mg,n

obtained functorially by forgetting the last marked point and replacing
the curve by its stabilization, if necessary. It was shown by Knudsen
that this exhibits Mg,n+1 as the universal curve over Mg,n. On the
level of coarse moduli spaces, we have that the fiber of M g,n+1 →M g,n

over the point [(C; p1, . . . , pn)] is the quotient C/Aut(C; p1, . . . , pn).

The forgetful map πg,n has n tautological sections, σ1, . . . , σn, cor-
responding to the marked points. Knudsen identified the image of σi

as the locus in Mg,n+1 where the marked points pi and pn+1 lie on a
smooth rational component meeting the rest of the curve in a unique
point, and containing no other marked point.

Let us construct a natural forgetful map in the tropical setting.

πtrop
g,n = πtrop : M

trop

g,n+1 −→M
trop

g,n .

Given a tropical curve Γ ∈ M
trop

g,n+1, denote by v the vertex where the
n + 1-st leg of Γ is attached; let us remove this leg and denote by Γ∗

the resulting tropical curve. If Γ∗ is not stable, then h(v) = 0 and the
valence of v in Γ∗ is 2; it is clear that one of the two following cases
occurs. Case (1): adjacent to v there are a leg l and an edge e1, whose
second endpoint we denote by v1. Case (2): adjacent to v there are
two edges e1, e2, the second endpoint of which we denote by v1 and v2

respectively. In these cases we replace Γ∗ by a stable tropical curve,

Γ̂∗, as follows.

In case (1) we remove e1 and v, and reattach a leg l′ at v1, as in the
following picture.

Γ∗ = · · · •
e1

v1 v
◦

l

∞
• Γ̂∗ = · · · •

l′

∞
•

In case (2) we define Γ̂∗ to be the graph obtained by removing v, e1, e2
from Γ∗, and adding an edge e′ with endpoints v1, v2 and length equal
to ℓ(e1) + ℓ(e2):

Γ∗ = · · · •
e1

v1 v
◦

e2

v2
• · · · Γ̂∗ = · · · •

v1 v2

e′
• · · ·

Notice that in both cases we have a canonical point (not a vertex),

pv, on Γ̂∗ corresponding to v. Indeed, in case (1), if the length of e1 is
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finite, pv is the point on l′ at distance ℓ(e1) from v1. If ℓ(e1) is infinite,
then pv is the infinity point on the new leg l′.

In case (2), if the edge e1 (say) has finite length, then the point pv

is the point of e′ at distance ℓ(e1) from v1. If ℓ(e1) = ℓ(e2) = ∞, then
pv is defined to be the infinity point on the new edge e′.

We thus obtain a continuous cellular map, πtrop : M
trop

g,n+1 → M
trop

g,n

sending Γ to Γ∗ if stable, and to Γ̂∗ otherwise.

Let us now show that the tropical forgetful map realizes M
trop

g,n+1 as

the universal curve over M
trop

g,n .

Proposition 8.2.1. Let Γ ∈ M
trop

g,n and let FΓ be the fiber of πtrop :

M
trop

g,n+1 → M
trop

g,n over Γ. Then FΓ is homeomorphic to Γ/Aut(Γ).
Moreover, if Γ ∈M trop

g,n then FΓ is isometric to Γ/Aut(Γ).

Proof. We have a map FΓ → Γ/Aut(Γ) by sending a tropical curve
with n+1 legs (the last of which adjacent to the vertex v) to the point
pv corresponding to v. To obtain the inverse, we identify Γ/Aut(Γ) to
the space of points p ∈ Γ up to isometries preserving the weights on
the vertices. Then by attaching a leg at p we obtain a tropical curve,
Γp, with n + 1 marked points. More precisely, we have the following
possibilities. If p is a vertex of Γ then we simply add a leg adjacent to
p. If p is not a vertex of Γ, then we declare p to be a vertex of weight
zero, and attach a leg at it; the new vertex p has thus valency 3, and
hence the tropical curve Γp is stable.

It is clear that as p varies in its Aut(Γ)-orbit, the isomorphism class
of Γp does not change. So the above construction descends to a map
Γ/Aut(Γ) → FΓ, which is the inverse of the map defined before.

It is clear that this map is a homeomorphism, and an isometry if all
edges of Γ have finite length. ♣

Remark 8.2.2. It would be interesting to develop the theory on a
stack level in such a way that the fiber is exactly the curve.

Example 8.2.3. Consider M
trop

1,1 . It has two strata, one of dimension
zero and one of dimension one. The dimension zero stratum corre-
sponds to the (unique) curve Γ0 with one vertex v of weight 1, no
edges, and a leg attached to v. Thus Aut(Γ0) = 0.

Figure 4 represents FΓ0
⊂ M

trop

1,2 and its isometry with Γ0; at the
top we have the three types of curves parametrized by FΓ0

, and at
the bottom corresponding the point of Γ0. Notice that the curves on
the right and on the left are unique, whereas in the middle they vary
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FΓ0
: •�

l2

v l1
•
v

ℓ
◦�

l2

l1
•
v

∞
◦�

l2

l1

_

��

?

����
��

��
�

��?
??

??
?

Γ0 = •
v p

ℓ
•

∞
•

Figure 4. Fiber of πtrop over the smallest stratum of M
trop

1,1

with ℓ ∈ R>0. The one-dimensional stratum of M
trop

1,1 is a copy of
R>0 ⊔ {∞}; it parametrizes curves Γd whose graph has one vertex of
weight zero, one loop-edge of length d ∈ R>0 ∪ {∞}, and one leg.
Then Aut(Γd) = Z/2Z where the involution corresponds to switching
the orientation on the loop-edge. The quotient Γd/Aut(Γd) is drawn
below

oo d
2

//

Γd =

d

◦
v l1 ∞

• Γd/AutΓd = •
p0

◦
v l1 ∞

•

The following Figure 5 represents at the top one-dimensional families
of curves of FΓd

; the curves on the left vary with 0 < ℓ < d
2
, while on

the right with ℓ′ ∈ R>0. The middle row represents the three remaining
points of FΓd

.

Finally, Figure 6 depicts the forgetful map from M
trop

1,2 to M
trop

1,1 .

Proof of the commutativity of the first diagram of Theorem 1.2.2. Hav-
ing defined the map πtrop we can consider the diagram

M
an

g,n+1

Trop
//

πan

��

M
trop

g,n+1

πtrop

��

M
an

g,n

Trop
// M

trop

g,n
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◦_
l1

ℓ

d−ℓ

◦_
l2

◦d
ℓ′

◦o
l1

O
l2

]

��

\

��

◦_
l1

d
2

d
2

◦_
l2

◦d o

l1

O
l2 ◦d

∞
◦o

l1

O
l2

_

��

_

��

_

��

Γd/AutΓd = •
p0 p

ℓ
• ◦

p′v

ℓ′
•

∞
•

oo d
2

//

Figure 5. Fiber of πtrop over [Γd] ∈M
trop

1.1 with d > 0.

• • •

M
trop

1,2 =

•

Γ0

SSSSSSS •

d
2

Γd/AutΓd

•

Γ∞/AutΓ∞

•

SSSSSSS

πtrop
1,1

��
•

M
trop

1,1 = •
Γ0

•
Γd Γ∞

•

Figure 6. The forgetful map πtrop
1,1 .

where πan is the morphism canonically associated to the algebraic for-
getful map π : Mg,n+1 −→ Mg,n (explicitly described below). Let

[C] ∈ M
an

g,n+1, so that [C] is represented by a pair

(valC : K −→ R ⊔ {∞}, µC : SpecR −→ Mg,n+1)
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(recall that valC is a valuation of the field K ⊃ k extending the trivial
valuation on k, and R ⊂ K is its ring of integers). The morphism µC

corresponds to a family of stable curves, C → SpecR; we write Cs and
CK for its special and generic fiber. Now set [C ′] := πan([C]) ∈ M

an

g,n;
this point is is represented by the pair

(valC : K −→ R ⊔ {∞}, π ◦ µC : SpecR −→ Mg,n).

It is clear that the special fiber C ′
s of C ′ → SpecR is equal to π(Cs).

Denote by G the dual graph of Cs. Recall that we have Trop([C]) =
(G, ℓC) where the length function ℓC is determined by the valuation
valC , and by the local geometry of the family C → SpecR at the
nodes of its special fiber, Cs; see Definition 1.1.1. Similarly, writing
G′ = GC′

s
, we have

Trop(πan([C])) = Trop([C ′]) = (G′, ℓC′).

Now, by our description of the map πtrop, it is clear that the graph
underlying πtrop(Trop([C])) = πtrop(G, ℓC) is equal to the dual graph of
the algebraic curve π(Cs); on the other hand π(Cs) = C ′

s. We conclude
that the graph underlying Trop(πan([C])) and πtrop(Trop([C])) is the
same. It remains to prove that the length functions of these two points
are the same. Let us write

πtrop(Trop([C])) = πtrop(G, ℓC) = (G′, ℓ̃ )

where ℓ̃ is determined by πtrop, as explained before the statement of

Proposition 8.2.1. To show that ℓC′ = ℓ̃, notice that they depend on
the same valuation, namely valC ; hence we have to analyse the total
spaces of the families locally at the nodes of their special fibers.

If the curve Cs remains stable after removing its (n+1)-st marked
point, then the total space of the family C ′ → SpecR (regardless of
its marked points) is exactly the same as that of C → SpecR, and the
dual graph of C ′

s is obtained from G by removing one leg; so the edges

are the same and ℓC′ and ℓ̃ are both equal to ℓC .

Now suppose Cs is not stable after the removal of its last marked
point. The situation is identical to the one we had in the tropical
setting, when defining the map πtrop; as on that occasion, we now
distinguish two cases. In case (1) the removal of the last marked point
from Cs creates a “one-pointed rational tail”, i.e. a smooth rational
component, E, attached to the rest of Cs at only one node, and having
only one marked point on it. In the family C ′ → SpecR the component
E is contracted to a smooth point of C ′

s, and the local geometry of C ′

near the rest of C ′
s is the same. So, the graph G′ has one fewer edge
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than G and both ℓC′ and ℓ̃ coincide with the restriction of ℓC to the
edges of G′.

The remaining case (2) is more interesting. Here the removal of the
last marked point creates an “unpointed exceptional component”, i.e.
a smooth rational component, E, with no marked points and such that

E ∩ Cs r E = {q1, q2},

with q1 and q2 nodes of Cs. Let xy = fi be the local equation of C at
qi. Then, denoting by ei ∈ E(G) the edge corresponding to qi, we have

(4) ℓC(ei) = valC(fi), i = 1, 2.

The curve C ′
s is obtained from Cs by collapsing E to a node; its dual

graph is obtained from the dual graph of Cs by removing the last
leg (adjacent to the vertex, v, corresponding to E), removing v, and
“merging” e1 and e2 into a unique edge e′. Now, the total space of C ′,
locally at the node of C ′

s corresponding to e′, has equation xy = f1f2

and hence

ℓC′(e′) = valC(f1f2) = valC(f1) + valC(f2).

On the other hand, by definition of πtrop, we have

ℓ̃(e′) = ℓC(e1) + ℓC(e2) = valC(f1) + valC(f2)

by (4). Hence ℓC′(e′) = ℓ̃(e′). Of course, all the remaining edges of G′

are naturally identified with edges of G, and the values of ℓC′ and ℓ̃ on
them is equal to the value of ℓC . The proof of the commutativity of
the first diagram in Theorem 1.2.2 is complete. ♣

We now proceed to define the “tautological sections” of the forgetful
maps, in analogy with the algebraic case. Let Γ = (V,E, L, h, ℓ) be a

tropical curve in M
trop

g,n . For i ∈ {1, . . . , n} we define the tropical curve

Γi = (V i, Ei, Li, hi, ℓi)

as follows. Let li ∈ L be the i-th leg of Γ and v ∈ V its endpoint. Γi is
obtained by attaching an edge e0 at v whose second endpoint we denote
by v0. We set V i = V ∪ {v0} and Ei = E ∪ {e0}; the weight function
hi is the extension of h such that hi(v0) = 0; the length function ℓi

is the extension of ℓ such that ℓi(e0) = ∞. Finally we remove the
leg li and attach two legs at v0, denoted by l′i and ln+1; summarizing
Li = Lr {li} ∪ {l′i, ln+1}. Here is an picture with i = n = 1:

Now we can state
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Γ = • •
v l1

Γ1 = • •
e0

v
◦n

l2

v0 l′1

Proposition 8.2.4. The tropical forgetful map πtrop : M
trop

g,n+1 →M
trop

g,n

admits n continuous sections σtrop
i : M

trop

g,n →: M
trop

g,n+1, with σtrop
i (Γ) :=

Γi for every Γ ∈M
trop

g,n . The diagram

M
an

g,n

σan
i

��

Trop
// M

trop

g,n

σtrop

i

��

M
an

g,n+1

Trop
// M

trop

g,n+1

is commutative.

Proof. It is clear that Γi ∈M
trop

g,n+1 and that the map σtrop
i is continuous.

We need to prove that πtrop(Γi) = Γ. Indeed removing the last leaf
from Γi gives a tropical curve (Γi)∗ which is not stable, as the vertex

v0 has valency 2. Hence πtrop(Γi) = (̂Γi)∗; as (̂Γi)∗ = Γ the first
statement is proven. The proof of commutativity is identical to the
proof of commutativity of the clutching diagram below. ♣

8.3. Tropical clutching maps. In the algebro-geometric setting, if
g = g1 + g2 and n = n1 +n2, always assuming 2gi −2+ni > 0, we have
the so-called clutching maps κ = κg1,n1,g2,n2

Mg1,n1+1 × Mg2,n2+1
κ

−→ Mg,n

(C1; p
1
1, . . . , p

1
n1+1) , (C2; p

2
1, . . . , p

2
n2+1) 7→ (C; p1, . . . , pn).

These are obtained by gluing C1 with C2 by identifying p1
n1+1 = p2

n2+1 in
such a way that in C the intersection of C1 with C2 consists of exactly
one (separating) node.

We now construct the analogous maps in the tropical setting, always
keeping the numerical assumptions of the algebraic case. To define the
tropical clutching map,

κtrop :M
trop

g1,n1+1 ×M
trop

g2,n2+1 −→M
trop

g,n

Γ1 , Γ2 7→ Γ
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we attach the last leg of Γ1 (adjacent to the vertex v1) to the last leg
of Γ2 (adjacent to v2) by identifying their infinite points

. . . •
v1 ∞1

• oo ///o/o/o •
∞2

• . . .
v2

to form an edge e of Γ with endpoints v1 and v2:

. . . •
v1 v2

e
• . . .

The length of e is, quite naturally, set to be equal to ∞. Since the new
edge e is a bridge (i.e. a disconnecting edge) of the underlying graph,
we have that the genus of Γ is equal to the sum of the genera of Γ1

and Γ2. Hence we have that the image of κtrop lies in M
trop

g,n . Observe
that this image is entirely contained in the locus of extended tropical
curves having at least one bridge of infinite length.

Proof of the commutativity of the clutching diagram of Theorem 1.2.2.
We begin by reviewing the map κan of our diagram:

M
an

g1,n1+1 ×M
an

g2,n2+1

Trop×Trop
//

κan

��

M
trop

g1,n1+1 ×M
trop

g2,n2+1

κtrop

��

M
an

g,n

Trop
// M

trop

g,n .

The map κan is defined by functoriality of analytification, and can be
understood as follows. Fix again an algebraically closed field K with
valuation val : K → R ⊔ {∞}, valuation ring R and special point
s. Consider a K-point [C1, C2] ∈ M

an

g1,n1+1 × M
an

g2,n2+1. The point is

simply a morphism SpecK → Mg1,n1+1 ×Mg2,n2+1; since the moduli
space is proper it extends to a morphism we denote

µ1 × µ2 : SpecR → Mg1,n1+1 ×Mg2,n2+1.

For i = 1, 2 the two projections provide us with K valued points
[Ci] ∈ M

an

gi,ni+1 represented by

µi : SpecR → Mgi,ni+1,

giving two stable pointed curves Ci → SpecR.

Write κan([C1, C2]) = [C] ∈ M
an

g,n; it is represented by the composi-
tion

κ ◦ (µ1 × µ2) : SpecR → Mg,n,

in effect gluing the two families of curves Ci → SpecR along the two
sections σni+1 : SpecR → Ci.
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Now, Trop×Trop([C1, C2]) =
(
(G1, ℓ1), (G2, ℓ2)

)
with Gi = GCi

s
and

ℓi defined in Definition 1.1.1. Next

κtrop(Trop × Trop([C1, C2])) = (G, ℓ̃)

where, according to our description above, G is obtained from G1 and
G2 by merging their respective last legs into one edge, denoted by e

(which is thus a bridge of G). The definition of ℓ̃ is as follows:

ℓ̃(ẽ) =

{
ℓi(ẽ) if ẽ ∈ E(Gi), i = 1, 2.
+∞ otherwise i.e. if ẽ = e.

Consider now [C] and its associated family, C → SpecR. We have a
diagram

C1 ⊔ C2
η

//

&&LLLLLLLLLL C

��

SpecR

where the map η glues together the last marked points of C1 and C2;
let us write C∗ = C1 ⊔ C2 for simplicity.

The special fiber of C is Cs = κ([C1
s , C

2
s ]) and hence its dual graph

is equal to G.

Let us look at the local geometry at a node of Cs. Pick the node
corresponding to the new edge e, then the generic fiber CK has a node
specializing to it (the node corresponding to the gluing of the last
marked point of C1

K with the last marked point of C2
K) and hence the

local equation at this node is xy = 0. Therefore ℓC(e) = ∞ = ℓ̃(e), as
required.

Consider now a node corresponding to an edge ẽ 6= e; without loss
of generality this edge ẽ corresponds to a node of C1

s , at which the
local equation of C1 is xy = f with f ∈ R. This also serves as a local
equation of C∗ at the corresponding node, and since it is disjoint from
σn1+1, also a local equation of C. Therefore

ℓC(ẽ) = val(f) = ℓ̃(ẽ)

and we are done. ♣

8.4. Tropical gluing maps. In the algebraic setting, for g > 0 there
is a map

γ : Mg−1,n1+2 → Mg,n

obtained by gluing the last two marked points. We now define the
tropical gluing maps

γtrop : M
trop

g−1,n+2 −→M
trop

g,n
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(always assuming g > 0). The procedure is similar to the definition of
the tropical clutching map; γtrop maps a tropical curve Γ with n + 2
legs to the tropical curve Γ′ obtained by attaching the last two legs of
Γ, so as to form an edge e′ of infinite length for Γ′. It is clear that Γ′

has now only n legs, and its genus is gone up by one, as the new edge
e′ is not a bridge of Γ′.

Proof of the commutativity of the gluing diagram of Theorem 1.2.2.
The diagram whose commutativity we must prove is the following.

M
an

g−1,n+2

Trop
//

γan

��

M
trop

g−1,n+2

γtrop

��

M
an

g,n

Trop
// M

trop

g,n .

The proof follows the same pattern used to prove the commutativity of
the first diagram in the theorem. Let [C] ∈ M

an

g−1,n+2 be represented
by the pair

(valC : K −→ R ⊔ {∞}, µC : SpecR −→ Mg−1,n+2).

Denote by G the dual graph of Cs. Now set γan([C]) = [C ′] ∈ M
an

g,n,
represented by the pair

(valC : K −→ R ⊔ {∞}, γ ◦ µC : SpecR −→ Mg,n).

The special fiber C ′
s of C ′ → SpecR is equal to γ(Cs). It is clear

that the graph underlying Trop(γan([C])) and the graph underlying
γtrop(Trop([C])) are isomorphic to the dual graph of γ(Cs), denoted by
G′. It remains to show the length functions on E(G′) of Trop(γan([C]))
and γtrop(Trop([C])) coincide.

Recall that G′ is obtained from G by adding a new edge, e′, joining
the endpoints of the last two legs (and removing these two legs). The
length of e′ in the tropical curve γtrop(Trop([C])) is set to be equal to
∞, whereas the length of every other edge e ∈ E(G′) r {e′} = E(G)
is ℓC(e).

Now consider Trop(γan([C])) = (G′, ℓC′); recall that ℓC′ depends on
the local geometry of C ′ → SpecR near the nodes of C ′

s. Consider the
node q′ corresponding to the new edge e′; the generic fiber of C ′ →
SpecR also has a node specializing to q′, therefore the local equation
of C ′ at q′ is xy = 0. Hence

ℓC′(e′) = valC(0) = ∞
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just as in γtrop(Trop([C])). Locally at every other node of C ′
s we have

that C and C ′ are isomorphic, hence on the corresponding edges of G′

we have ℓC′ = ℓC . The proof is now complete ♣.

8.5. Functorial interpretation of the maps. We have defined trop-
ical forgetful, clutching and gluing maps, as well as sections, using the

modular meaning of M
trop

g,n . Theorem 1.2.1 allows us to interpret these
maps in terms of the functorial properties of the maps p.

First note that all the algebraic tautological maps are sub-toroidal:
the map π is toroidal since it is a family of nodal curves, see [AK00,
2.6]. The section σi is an isomorphism onto a toroidal substack, and the
clutching and gluing maps factor through an étale covering of degree
one or two followed by a normalization map, by [ACG11, Proposition
XII.10.11], so they are indeed sub-toroidal. By Proposition 6.1.6 we
have a commutative diagram

M
an

g,n+1

p
//

πan

��

Σ(Mg,n+1)

Σ(π)

��

M
an

g,n

p
// Σ(Mg,n)

and similarly for the maps σi, γ, κ. Theorem 1.2.1 extends this to a
commutative diagram

M
an

g,n+1 p
//

πan

��

Trop

++

Σ(Mg,n+1)

Σ(π)

��

Φ

∼ // M
trop

g,n+1

��

M
an

g,n

p
//

Trop

33Σ(Mg,n)
Φ

∼
// M

trop

g,n+1.

Since the two arrows designated by Φ are isomorphisms, there is neces-

sarily a unique arrow Φ◦Σ(π)◦Φ
−1

making the diagram commutative;
it therefore must coincide with the map πtrop we defined above. The
same holds for the maps σi, γ, and κ.

8.6. Variations on the tropical gluing and clutching maps. In
the algebro-geometric situation, the clutching and gluing maps together
cover the entire boundary of Mg,n, since the result of desingularizing
a node while adding its two branches as marked points is either the
disjoint union of two stable curves with suitable genera g1, g2, and
suitable n1 + 1 and n2 + 1 marked points, or one curve of genus g − 1
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with n+2 marked points. The situation is quite different in the tropical
setting, indeed we have the following fact.

Lemma 8.6.1. In M
trop

g,n the union of the image of γtrop
g,n with the images

of all the clutching maps κtrop
g1,n1,g2,n2

is equal to M
trop

g,n r M trop
g,n , i.e. to

the locus of tropical curves having at least one edge of infinite length.

Proof. We just need to prove that a point of Γ ∈M
trop

g,n rM trop
g,n lies in

the image of a clutching or gluing map. Let e be an edge of Γ having
infinite length, write v1 and v2 for its (possibly equal) endpoints. Let
Γ′ be the tropical curve obtained by removing e and attaching a leg l1
at v1 and a leg l2 at v2. If e is not a bridge, Γ′ is easily seen to be a
stable tropical curve of genus g− 1 with n+2 marked ponts (which we
order so that l1 and l2 are the last ones); it is clear that the image of
Γ′ via the gluing map is Γ.

If e is a bridge, then Γ′ = Γ1 ⊔ Γ2, with Γi containing the vertex vi;
it is clear that Γi is a stable tropical curve whose last leg we set equal
to li, for i = 1, 2. Then Γ is equal to κtrop(Γ1,Γ2). ♣

The locus of smooth algebraic curves in Mg,n corresponds in the
tropical moduli space to the smallest stratum, that is the single point

•g,n ∈M
trop

g,n parametrizing the tropical curve whose graph has a unique

vertex of weight g (and no edges). Hence the boundary of Mg,n corre-

sponds the open subset M
trop

g,n r {•g,n}.

In this sense, a tropical counterpart of the fact that the algebraic
and gluing maps cover the boundary of Mg,n should be that some

generalized tropical gluing and clutching maps cover M
trop

g,n r {•g,n}.

We shall now define a generalization of the previously defined gluing
and clutching maps having that goal in mind.

We denote R+ = R>0 ⊔ {∞}. For every pair (x, y) ∈ R+ × R+ We
have a new tropical gluing map γtrop[x, y]

γtrop[x, y] : M
trop

g−1,n+2 →M
trop

g,n

constructed as follows. Denote by ln+1 and ln+2 the last two legs of

Γ′ ∈ M
trop

g−1,n+2, and by vn+1 and vn+2 the vertex they are adjacent to.

As in the definition of γ in the previous section, we send Γ′ to a curve in

Γ ∈M
trop

g,n by merging ln+1 and ln+2 into one edge e of Γ. The difference
is that now the new edge will have length equal to ℓ(e) = x + y. This
is obtained by fixing on ln+1 a point pn+1 of distance x from vn+1, and
“clipping off” the remaining infinite line; similarly, we fix a point pn+2

of distance y from vn+2, on ln+2 and disregard the rest of the leg; then
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we glue pn+1 to pn+2 obtaining an edge between vn+1 and vn+2 of length
x+ y. It is clear that γtrop[x, y] is continuous. Observe that γtrop[x, y]
depends only on x+ y (and hence it is symmetric) and that the “more
natural” gluing map γtrop defined before is obtained as

γtrop = γtrop[∞, x] = γtrop[∞,∞].

Summarizing, we have defined a continuous family of maps

γtrop[ , ] : M
trop

g−1,n+2 × R+ × R+ −→M
trop

g,n .

In a completely analogous way we define the generalized clutching maps
κtrop[ , ] = κtrop

g1,n1,g2,n2
[ , ]:

κtrop[ , ] : M
trop

g1,n1+1 ×M
trop

g2,n2+1 × R+ × R+ −→M
trop

g,n .

As before, κtrop[x, y] = κtrop[x, y] and the original clutching map is
recovered as

κtrop = κtrop[x,∞] = κtrop[∞,∞].

Remark 8.6.2. It is clear that the union of the image of γtrop
g−1,n+2[ , ]

with the images of the maps κtrop
g1,n1,g2,n2

[ , ] is equal to M
trop

g,n r {•g,n}.

Remark 8.6.3. It would be interesting to find a lifting of these gen-
eralized clutching and gluing maps to Berkovich analytic spaces.
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