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THE TROTTER-KATO THEOREM AND

APPROXIMATION OF PDEs

KAZUFUMI ITO AND FRANZ KAPPEL

Abstract. We present formulations of the Trotter-Kato theorem for approx-
imation of linear C0-semigroups which provide very useful framework when
convergence of numerical approximations to solutions of PDEs are studied.
Applicability of our results is demonstrated using a first order hyperbolic equa-
tion, a wave equation and Stokes’ equation as illustrative examples.

1. Introduction

In this paper versions of the Trotter-Kato theorem [8], [15] for approximating a
linear C0-semigroup T (t) on a Banach space X are derived, which are useful for
studying convergence of numerical approximations of solutions to partial differential
equations. Our study is motivated by the version of the Trotter-Kato theorem
discussed in [11, Section 3.6]. The goal is to provide a general approach, which is
flexible enough to cover a variety of approximation schemes for infinite dimensional
systems. Of course it is not possible to get precise error estimates at this level of
generality. In order to get those one usually has to exploit the special structure of
a system, what we shall demonstrate in a few situations.

In Section 2 we present a version of the Trotter-Kato theorem which is standard
except for the fact that the state space on which the semigroup is defined is a closed
proper subspace of an ambient Banach or Hilbert space. The approximating spaces
are isomorphic to subspaces of this ambient space but not necessarily of the state
space. Furthermore, we present in this section error estimates for smooth initial
data in the general case and also for analytic semigroups. In Section 3 we discuss
possibilities to verify the basic assumptions of the Trotter-Kato theorem, i.e., how
to establish the stability and the consistency property. Applicability of the results
is demonstrated in Section 4 for a first order wave equation, a second order wave
equation in one space dimension and Stokes’ equation as illustrative examples.

2. The Trotter-Kato theorem

2.1. Statement and proof of the theorem. Let Z and Xn be Banach spaces
with norms ‖ · ‖, ‖ · ‖n, n = 1, 2, . . . , respectively, and X be a closed linear subspace
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22 KAZUFUMI ITO AND FRANZ KAPPEL

of Z. On X a C0-semigroup T (·) with infinitesimal generator A is given. The
goal is to construct approximating generators An on the spaces Xn such that the
C0-semigroups Tn(·) generated by An approximate T (·) in a sense which will be
made precise below. We will make the following assumptions:

For every n = 1, 2, . . . there exist bounded linear operators Pn : Z → Xn and
En : Xn → Z satisfying
(A1) ‖Pn‖ ≤M1, ‖En‖ ≤M2, where M1, M2 are independent of n,
(A2) ‖EnPnx− x‖ → 0 as n→∞ for all x ∈ X ,
(A3) PnEn = In, where In is the identity operator on Xn.

Assumption (A2) is a consequence of each of the two equivalent statements in the
Trotter-Kato theorem. Therefore when choosing the spaces Xn and the operators
Pn, En one has to make sure that (A2) is also satisfied. However, (A2) need not
be assumed explicitly in the theorem. In many situations one has X = Z, but
Section 4.3, where we consider Stokes’ equation, presents an example where it is
advantageous to define the operators Pn, En first for an ambient space Z which
contains the actual state space for the equation as a proper closed subspace.

The general setting can be phrased in an equivalent way for subspaces of Z. In
order to see this define the subspaces Zn of Z and the mappings πn : Z → Zn by

Zn = rangeEn and πn = EnPn, n = 1, 2, . . . .

The subspaces Zn are endowed with the Z-norm. It is easy to see that the Zn
are closed subspaces of Z and that πn are projections Z → Zn, i.e., π2

n = πn
and rangeπn = Zn. Furthermore, T̃n(t) = EnTn(t)Pn |Zn , t ≥ 0, defines a C0-

semigroup on Zn with infinitesimal generator Ãn given by dom Ãn = En domAn
and Ãn = EnAnPn |Zn . Assumption (A1) implies that there exists a constant

M̃ > 0 such that

‖πn‖ ≤ M̃, n = 1, 2, . . . ,(B1)

is true, whereas from assumption (A2) we get

lim
n→∞πnz = z for all z ∈ X .(B2)

Note that by the uniform boundedness principle assumption (B1) is automatically
satisfied if (B2) holds for all z ∈ Z. In general we do not have Zn ⊂ X . See
Section 4.3 for an example. If one has numerical approximation in mind, then the
spaces Zn are finite dimensional, of course.

Conversely, let Zn, n = 1, 2, . . . , be a sequence of subspaces of Z with projections
πn : Z → Zn and canonical injections ιn : Zn → Z. We assume that (B1) and (B2)
are satisfied. Then obviously assumption (B1) implies (A1) and (B2) implies (A2)
for Xn = Zn, Pn = πn and En = ιn. (A3) is trivially satisfied.

The most frequent situation where the setting introduced at the beginning of this
section occurs is when we start with a sequence of finite dimensional subspaces of
Zn, dimZn = kn. For each subspace Zn we choose a basis zn1 , . . . , z

n
kn

and define the

mapping pn : Zn → Xn := Rkn by pnz = (α1, . . . , αkn)T for z =
∑kn

j=1 αjzj ∈ Zn.

The norm on Xn is defined by ‖x‖Xn = ‖p−1
n x‖Z . If we define the mappings
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THE TROTTER-KATO THEOREM 23

Pn : Z → Xn, En : Xn → Z by

Pnz = pnπnz, z ∈ Z,
Enx = ιnp

−1
n x, x ∈ Xn,

then assumptions (A1) – (A3) are satisfied.
Before we state the Trotter-Kato theorem we introduce the following notation:

A ∈ G(M,ω,X), M ≥ 1, ω ∈ R, means that A is the infinitesimal generator of a
C0-semigroup T (t), t ≥ 0, satisfying ‖T (t)‖ ≤ Meωt, t ≥ 0. Of course, if A is the
infinitesimal generator of a C0-semigroup, then A ∈ G(M,ω,X) for some M ≥ 1
and ω ∈ R.

Theorem 2.1 (Trotter-Kato). Assume that (A1) and (A3) are satisfied. Let A
resp. An be in G(M,ω,X) resp. in G(M,ω,Xn) and let T (t) and Tn(t) be the
semigroups generated by A and An on X and Xn, respectively. Then the following
statements are equivalent:
(a) There exists a λ0 ∈ ρ(A) ∩⋂∞

n=1 ρ(An) such that, for all x ∈ X,

‖En(λ0In −An)−1Pnx− (λ0I −A)−1x‖ → 0 as n→∞.

(b) For every x ∈ X and t ≥ 0,

‖EnTn(t)Pnx− T (t)x‖ → 0 as n→∞
uniformly on bounded t-intervals.

If (a) or (b) is true, then (a) holds for all λ with Reλ > ω.

Proof. If we set Zn = rangeEn and πn = EnPn, n = 1, 2, . . . , then the theorem is
proved if we establish equivalence of the following two statements:

(ã) There exists a λ0 ∈ ρ(A) ∩⋂∞
n=1 ρ(Ãn) such that, for all x ∈ X ,

‖(λ0Ĩn − Ãn)−1πnx− (λ0I −A)−1x‖ → 0 as n→∞.

(b̃) For every x ∈ X and t ≥ 0,

‖T̃n(t)πnx− T (t)x‖ → 0 as n→∞
uniformly on bounded t-intervals.

For the rest of the proof we shall write Tn(t) and An instead of T̃n(t) and Ãn,
respectively. It is no loss of generality if we assume that (ã) holds for λ0 = 0.

a) We first show that (ã) implies (b̃). For x ∈ X we define

en(t) =
(
Tn(t)πn − πnT (t)

)
x, n = 1, 2, . . . , t ≥ 0.

For x ∈ domA, the function un(t) defined by

un(t) = A−1
n en(t), t ≥ 0, n = 1, 2, . . . ,

is in C1(0,∞;Zn) and satisfies

u̇n = Anun + πn∆nAT (t)x,

un(0) = 0,
(2.1)

where we have set

∆n = A−1 −A−1
n πn.

Indeed, A−1
n Tn(t)πnx = Tn(t)A−1

n πnx is continuously differentiable on [0,∞), be-
cause A−1

n πnx is in domAn, whereas A−1
n πnT (t)x is continuously differentiable,
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24 KAZUFUMI ITO AND FRANZ KAPPEL

because x ∈ domA and A−1
n πn is a bounded operator X → Zn. An easy calcula-

tion proves (2.1).
From (2.1) we obtain by the variation of parameter formula that, for t ≥ 0,

x ∈ domA,

un(t) =

∫ t

0

Tn(t− τ)πn∆nAT (τ)x dτ.

For x ∈ domA2 integration by parts implies

un(t) = −A−1
n πn∆nAT (t)x+A−1

n Tn(t)πn∆nAx

+A−1
n

∫ t

0

Tn(t− τ)πn∆nA
2T (τ)x dτ, t ≥ 0.

(2.2)

Here we have used AnTn(t−τ)y = − d
dτ Tn(t−τ)y, y ∈ Zn, and d

dτ T (τ)x = AT (τ)x,
x ∈ domA. From this representation of un(t) we obtain the error representation:

en(t) = −πn∆nAT (t)x+ Tn(t)πn∆nAx

+

∫ t

0

Tn(t− τ)πn∆nA
2T (τ)x dτ, t ≥ 0, x ∈ domA2.

(2.3)

In order to prove limn→∞ en(t) = 0 uniformly for t in bounded intervals, we
consider the terms on the right-hand side of (2.3) separately. For any T > 0 the
set {T (t)Ax | 0 ≤ t ≤ T} is compact. Therefore we have

πn∆nAT (t)x→ 0 as n→∞
uniformly on [0, T ]. For the second term on the right-hand side of (2.3) this is
obvious, because ‖Tn(t)‖ ≤Meωt, t ≥ 0, n = 1, 2, . . . .

Since, for x ∈ domA2, the set {A2T (τ)x | 0 ≤ τ ≤ T} is compact, we see that
‖∆nA

2T (τ)x‖ → 0 as n→∞ uniformly on [0, T ]. Therefore also the integral on the
right-hand side of (2.3) converges to zero uniformly on [0, T ]. Thus we have proved
that limn→∞ en(t) = 0 uniformly on 0 ≤ t ≤ T for any x ∈ domA2. By a standard
density argument we see that this is true for all x ∈ X (note that, by definition

of en(t), there exists a constant c0 > 0 such that sup0≤t≤T ‖en(t)‖ ≤ c0e
ωT ‖x‖,

x ∈ X , n = 1, 2, . . . ).
It remains to prove that

lim
n→∞ ‖πnT (t)x− T (t)x‖ = 0 uniformly on [0, T ].

By compactness of {T (t)x | 0 ≤ t ≤ T} we only have to prove limn→∞ πnx = x for
all x ∈ X . For x ∈ domA we get (observing that ker(I − πn) = Zn)

πnx− x = (πn − I)∆nAx.(2.4)

This implies limn→∞ πnx = x for x ∈ domA. The result for x ∈ X follows by a
density argument.
b) Assume now that (b̃) holds and that Reλ > ω. Then

‖(λIn −An)−1πnx− (λI −A)−1x‖ ≤
∫ ∞

0

e−Reλt‖Tn(t)πnx− T (t)x‖ dt.

The right-hand side of this inequality tends to zero as n→∞ by (b̃), the choice of
λ and Lebesgue’s dominated convergence theorem.
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THE TROTTER-KATO THEOREM 25

Remarks. 1. The proof of Theorem 2.1 as given above is a slight modification of
Kato’s proof putting more emphasis on the representation of the error en(t) which
will be useful in the next subsection.

2. The assumption An ∈ G(M,ω,Xn), n = 1, 2, . . . , or equivalently ‖Tn(t)‖n ≤
Meωt, n = 1, 2, . . . , usually is called the stability property of the approximations,
whereas statement (a) is called the consistency property of the approximations.
With this terminology the Trotter-Kato theorem essentially states that, under the
assumption of stability, consistency is equivalent to convergence (as characterized
in statement (b)).

Using the uniform boundedness principle and the standard proof for the fact that
any C0-semigroup T (·) satisfies an estimate of the form ‖T (t)‖ ≤Meωt, t ≥ 0, it is
easy to see that on the other hand convergence implies stability (and consequently
also consistency). Compare Theorem 4.4 in [10].

3. Consider the setting used in the proof of Theorem 2.1. With the operators A
and Ãn, n = 1, 2, . . . , we can associate the steady state problems

Au = λ0u− y, y ∈ X,(2.5)

on X and

Ãnun = λ0un − πny(2.6)

on Zn. The consistency hypothesis (ã) just means that these steady state problems,
for all y ∈ X , have unique solutions u resp. un which depend continuously on y and

lim
n→∞ un = u.(2.7)

Indeed, the assumptions on the solvability of the steady state problems are equiv-
alent to λ0 ∈ ρ(A) ∩ ⋂∞

n=1 ρ(Ãn) and (2.7) is just the strong convergence of the

resolvent operators, because u = (λ0I −A)−1y and un = (λ0Ĩn − Ãn)−1πny.
In view of these considerations the Trotter-Kato theorem states that, under the

assumption of stability, convergence of the solutions of the steady state problems
associated with the semigroup generators implies convergence of the semigroups.
This point of view was stressed in [10], where it was also shown that convergence
rates are also preserved. We shall address this question in the next subsection.

4. The error function en(t) is continuously differentiable on [0,∞), if x ∈ domA
and πnx ∈ domAn, which is certainly the case if the An’s are bounded. The most
common situation where the An’s are bounded occurs when the spaces Xn are finite
dimensional. Then en(t) is the solution of

ėn = Anen +Anπn∆nAT (t)x, t ≥ 0,

en(0) = 0.
(2.8)

This implies

en(t) =

∫ t

0

AnTn(t− τ)πn∆nAT (τ)x dτ, t ≥ 0.(2.9)

From this representation we can get (2.3) by integration by parts directly provided
x ∈ domA2. Thus the introduction of un(t) is not necessary in cases where en(t)
is differentiable.
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26 KAZUFUMI ITO AND FRANZ KAPPEL

5. A somewhat different proof of Theorem 2.1 can be given using the approach
followed in [10]. Let the setting be that used in the proof of Theorem 2.1 and
define the “elliptic” projections qn : domA→ Zn by

qn = Ã−1
n πnA, n = 1, 2, . . . .

For x ∈ domA2 we introduce the error

fn(t) = T̃n(t)qnx− qnT (t)x, t ≥ 0,

which is continuously differentiable. This follows from qnx ∈ dom Ãn and qnT (t)x =

Ã−1
n πnT (t)Ax. We have fn(0) = 0 and

ḟn(t) = Ãnfn(t) + πn(I − qn)T (t)Ax, t ≥ 0.

This gives

fn(t) =

∫ t

0

T̃n(t− s)πn(I − qn)T (s)Axds

and

T (t)x− T̃n(t)qnx = (I − qn)T (t)x−
∫ t

0

T̃n(t− s)πn(I − qn)T (s)Axds, t ≥ 0.

Observing that, for y ∈ domA, we have (I − qn)y = (A−1− Ã−1
n πn)Ay we see that

the same arguments used in the proof of Theorem 2.1 give

lim
n→∞ T̃n(t)qnx = T (t)x, x ∈ domA,

uniformly on bounded t-intervals. In order to get T̃n(t)πnx → T (t)x uniformly on
bounded t-intervals for any x ∈ X one has to choose a sequence (xk) ⊂ domA with
xk → x and to apply the standard arguments to the estimate

‖T (t)x− T̃n(t)πnx‖ ≤ ‖T (t)(x− xk)‖ + ‖(T (t)− T̃n(t)qn)xk‖
+ ‖T̃n(t)(qnxk − πnx)‖

≤Meωt‖x− xk‖+ ‖(T (t)− T̃n(t)qn)xk‖
+Meωt

(‖qnxk − xk‖+ ‖xk − πnxk‖+ ‖πn‖ ‖xk − x‖).
2.2. Error estimates for smooth initial data. The proof of the Trotter-Kato
theorem as given in the previous subsection offers also the possibility to obtain
error estimates for the approximations. However, because of the generality of The-
orem 2.1 we cannot expect to get error estimates which are sharp in specific situa-
tions. In order to get sharp estimates one has to exploit the special structure of the
problem at hand. See for instance [2] for parabolic equations and [9], [5] for delay
equations of retarded type. In the following let ‖ · ‖domAα denote the graph norm
on domAα, α > 0.

Proposition 2.2. Let the assumptions of Theorem 2.1 be satisfied and, for any
λ0 ∈ ρ(A) ∩⋂∞

n=1 ρ(An), set ∆n(λ0) = En(λ0In − An)−1Pn − (λ0I − A)−1 Then
the following is true:

a) For any T > 0 and any α > 0, there exists a constant γ = γ(T , α) > 0 such that

‖EnTn(t)Pnx− T (t)x‖ ≤ γ‖∆n(λ0)‖L(domAα,X)‖x‖domAα+2 , 0 ≤ t ≤ T ,

for all x ∈ domAα+2 and n = 1, 2, . . . .
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THE TROTTER-KATO THEOREM 27

b) If, in addition, the semigroup T (·) is analytic, then for any T > 0, ε > 0 and
α > 0, there exists a constant γ = γ(T , ε, α) > 0 such that

‖EnTn(t)Pnx− T (t)x‖ ≤ γ‖∆n(λ0)‖L(domAα,X)‖x‖domAα+1+ε , 0 ≤ t ≤ T ,

for all x ∈ domAα+1+ε and n = 1, 2, . . . .

Proof. As in the proof of Theorem 2.1 we can assume without restriction of gen-
erality that 0 ∈ ρ(A) ∩ ⋂∞

n=1 ρ(An). Furthermore, for the proof we adopt the
same setting as in the proof of Theorem 2.1 and write again Tn(t) and An instead

of T̃n(t) and Ãn, respectively. Correspondingly we also set ∆n = A−1 − A−1
n πn,

n = 1, 2, . . . . In the following ‘const.’ always denotes a positive constant which
does not depend on x or t (in the given sets) and may have different values at
different occurrences.

The proof for part a) is straightforward, estimating the terms on the right-hand
sides of (2.3) and (2.4). We have to observe that the restriction of the semigroup
T (·) to (domAα, ‖ · ‖domAα) is also of type G(M,ω, domAα) and ‖Aβx‖domAα ≤
const.‖x‖domAα+β .

For the proof of part b) we observe first that in case of an analytic semigroup the
representation (2.3) of en(t) is valid for x ∈ domA1+δ, δ > 0. The integration by
parts which leads to (2.2) can also be performed under the present conditions. We
only have to observe that for an analytic semigroup we have T (τ)x ∈ domAk, k =
1, 2, . . . , x ∈ X and τ > 0. Furthermore, we have to use the estimate ‖A2T (τ)x‖ =
‖A1−δT (τ)A1+δx‖ ≤ const.τ−1+δ‖T (τ)A1+δx‖, τ > 0, x ∈ domA1+δ.

We only have to consider the integral term on the right-hand side of (2.3),
because for the other two terms and the term on the right-hand side of (2.4) we
see immediately that, for ε > 0,

‖Ax‖domAα ≤ const.‖x‖domAα+1 , x ∈ domAα+1,

and

‖T (t)Ax‖domAα ≤MeωT‖Ax‖domAα ≤ const.‖x‖domAα+1 ,

for x ∈ domAα+1 and 0 ≤ t ≤ T . For the integral term we get the estimate∥∥∫ t

0

Tn(t− τ)πn∆nA
2T (τ)x dτ

∥∥
≤MeωT‖∆n‖L(domAα,X)

∫ T

0

‖A2T (τ)x‖domAαdτ

≤ const.‖∆n‖L(domAα,X)

∫ T

0

‖A1−εA1+εT (τ)x‖domAα dτ

≤ const.‖∆n‖L(domAα,X)

∫ T

0

1

τ1−ε ‖A1+εT (τ)x‖domAαdτ

≤ const.‖∆n‖L(domAα,X)‖x‖domAα+1+ε

for x ∈ domAα+1+ε. With respect to properties of fractional powers of closed
operators which have been used in this proof we refer to [11], for instance.

In case of second order parabolic equations with a selfadjoint uniformly elliptic
operator it was shown in [2] that we can take ε = 0 in part b) of Proposition 2.2.
Using basically the same ideas as in [2] we can prove an analogous result for analytic
semigroups on a Hilbert space with arbitrary selfadjoint infinitesimal generator.
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Proposition 2.3. Let Z and Xn be Hilbert spaces and assume that (A1), (A3)
are satisfied. Furthermore, assume that A generates an analytic semigroup on X
and that the An are selfadjoint bounded operators on Xn with the property that,
for a λ0 ∈ ρ(A) ∩⋂∞

n=1 ρ(An), the operators An − λ0In are dissipative, i.e., An ∈
G(1, λ0, Xn). Then the following is true:

a) For any T > 0 and any α > 0 there exists a γ = γ(T , α) > 0 such that

‖EnTn(t)Pnx− T (t)x‖ ≤ γ‖∆n(λ0)‖L(domAα,X)‖x‖domAα+1

for all t ∈ [0, T ] and all x ∈ domAα+1.

b) Assume that in addition statement (a) of Theorem 2.1 is true. Then for any
δ > 1 and α > 0 there exists a γ = γ(δ, α) > 0 such that

‖EnTn(t)Pnx− T (t)x‖ ≤ γ‖∆n(λ0)‖L(domAα,X)‖x‖domAα+1/2

for all t ∈ [1/δ, δ] and all x ∈ domAα+1/2.

Proof. The general setting is as in the proofs of Theorem 2.1 and Proposition 2.2,
respectivley. Instead of equation (2.8) we first define vn(t) = ten(t), which, for
x ∈ domAα, α > 0, satisfies

v̇n = Anvn + en(t) + tAnπn∆nAT (t)x, t > 0,

vn(0) = 0.

By the variation of constants formula we get

vn(t) =

∫ t

0

Tn(t− τ)en(τ) dτ +

∫ t

0

AnTn(t− τ)πn∆nτAT (τ)x dτ, t ≥ 0.

Integration by parts in the second integral gives

en(t) =
1

t

∫ t

0

Tn(t− τ)en(τ) dτ − πn∆nAT (t)x

+
1

t

∫ t

0

Tn(t− τ)πn∆nAT (τ)x dτ

+
1

t

∫ t

0

Tn(t− τ)πn∆nτA
2T (τ)x dτ, t > 0, x ∈ domAα.

(2.10)

Observe that ‖τA2T (τ)x‖ = ‖τA2−αT (τ)Aαx‖ ≤ const.τ−1+α‖Aαx‖ for x ∈
domAα, which guarantees that the last integral in (2.10) exists. Analogously one
sees that the other integrals also exist. From equation (2.8) we get, for x ∈ domAα,

en(t) = A−1
n ėn(t)− πn∆nAT (t)x, t > 0.

Taking inner products with en(t) on both sides, observing that by selfadjointness
of An we have

Re〈en(t), A−1
n ėn(t)〉 =

1

2

d

dt
〈en(t), A−1

n en(t)〉
and integrating from 0 to t, we get∫ t

0

‖en(τ)‖2dτ =
1

2
〈en(t), A−1

n en(t)〉 − Re

∫ t

0

〈en(τ), πn∆nAT (τ)x〉 dτ

≤ 1

2

∫ t

0

‖en(τ)‖2dτ +
1

2

∫ t

0

‖πn∆nAT (τ)x‖2dτ, t ≥ 0,
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THE TROTTER-KATO THEOREM 29

where we have also used dissipativeness of An. Consequently we have∫ t

0

‖en(τ)‖2dτ ≤
∫ t

0

‖πn∆nAT (τ)x‖2dτ, t ≥ 0, x ∈ domAα.

From this we get

∥∥1

t

∫ t

0

Tn(t− τ)en(τ) dτ
∥∥ ≤ 1

t

(∫ t

0

‖Tn(τ)‖2dτ
)1/2(∫ t

0

‖en(τ)‖2dτ
)1/2

≤MM̃t−1/2e|ω|t‖∆n‖L(domAα,X)

(∫ t

0

‖AT (τ)‖2
domAαdτ

)1/2

, t > 0.

(2.11)

In order to prove part a) we choose x ∈ domAα+1. Then ‖AT (τ)x‖domAα ≤
Me|ω|T‖x‖domAα+1 which shows that∥∥1

t

∫ t

0

Tn(t− τ)en(τ) dτ
∥∥ ≤ const.‖∆n‖L(domAα,X)‖x‖domAα+1 ,

for t ∈ [0, T ].
The second and third term on the right-hand side of (2.10) can easily be esti-

mated by const.‖∆n‖L(domAα,X)‖x‖domAα+1 for all t ∈ [0, T ] and x ∈ domAα+1.
For the fourth term we get∥∥1

t

∫ t

0

Tn(t− τ)πn∆nτA
2T (τ)x dτ

∥∥
≤ const.‖∆n‖L(domAα,X)

1

t

∫ t

0

τ‖A2T (τ)x‖domAαdτ

≤ const.‖∆n‖L(domAα,X)
1

t

∫ t

0

‖T (τ)Ax‖domAαdτ

≤ const.‖∆n‖L(domAα,X)‖x‖domAα+1

for 0 < t ≤ T and x ∈ domAα+1.
For the proof of b) we choose x ∈ domAα+1/2 and observe first that selfad-

jointness of the An together with (ã) implies that also A has to be selfadjoint.
Consequently we have

‖AT (τ)x‖2
domAα = ‖AT (τ)x‖2 + ‖AT (τ)Aαx‖2

=
1

2

d

dτ

〈
T (τ)A1/2x, T (τ)A1/2x

〉
+

1

2

d

dτ

〈
T (τ)Aα+1/2x, T (τ)Aα+1/2x

〉
, τ ≥ 0,

and consequently∫ t

0

‖AT (τ)x‖2
domAαdτ ≤ 1

2
‖T (t)A1/2x‖2

domAα ≤ const.‖x‖2
domAα+1/2 , t ≥ 0.

This and (2.11) prove that∥∥1

t

∫ t

0

Tn(t− τ)en(τ) dτ
∥∥ ≤ const.‖∆n‖L(domAα,X)‖x‖domAα+1/2
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for all t ∈ [1/δ, δ] and all x ∈ domAα+1/2. For the other terms in (2.10) we get the
analogous estimates if we observe∫ t

0

‖AT (τ)x‖domAαdτ ≤ const.‖A1/2x‖domAα

∫ t

0

τ−1/2dτ,∫ t

0

τ‖A2T (τ)x‖domAαdτ =

∫ t

0

τ‖A3/2T (τ)A1/2x‖domAαdτ

≤ const.‖A1/2x‖domAα

∫ t

0

τ−1/2dτ

for t ∈ [0, δ].

Remarks. 1. Note the difference in the two statements of Proposition 2.3. The
first one requires x ∈ domAα+1 but gives an estimate on intervals [0, T̄ ], whereas
the second one requires x ∈ domAα+1/2 only and gives an estimate on compact
t-intervals which exclude t = 0. The assumption, that the consistency property (a)
is satisfied, in part b) is only used in order to prove that A is also selfadjoint.

2. Without restriction of generality we take the setting used in the proof of Propo-
sition 2.2 and set (note that ∆n = A−1 −A−1

n )

F (n) = ‖∆n‖L(domAα,X).

This means that for any x ∈ domAα we have

‖A−1x−A−1
n πnx‖ ≤ F (n)‖x‖domAα .(2.12)

If we observe that u = A−1x resp. un = A−1
n πnx are the unique solutions of the

steady state problems

Au = x resp. Anun = πnx

we can rewrite inequality (2.12) as

‖u− un‖ = ‖u− qnu‖ ≤ F (n)‖Au‖domAα ≤ F (n)‖u‖domAα+1 .(2.13)

Therefore Proposition 2.2, a) can be stated as follows: If the estimate (2.13) is
true for an approximation scheme for the steady state problem Au = x, then we
have the same rate estimate for the corresponding approximation scheme for the
Cauchy problem u̇ = Au, u(0) = x, provided x ∈ domAα+2 (i.e., x ∈ domA and
Ax ∈ domAα+1). This shows that the results of this section are closely related to
results in [10]. For instance, the assumption that the estimate (2.13) is satisfied is

exactly the assumption in [10] that “Theorem T” is true for X̃ = domAα+1 (see
[10, p. 130]). Proposition 2.2, a) essentially is Theorem 4.2 in [10] with the differ-
ence that in [10] the estimate is for Tn(t)qnx− T (t)x instead of Tn(t)πnx− T (t)x.
Furthermore, the results of this section show that the smoothness assumption
x ∈ domAα+2 can be relaxed considerably. In case of general analytic semigroups
in Banach spaces we need x ∈ domAα+1+ε (Proposition 2.2, b)). If in addition we
assume that the spaces are Hilbert spaces and the generators are selfadjoint, then
x ∈ domAα+1 resp. x ∈ domAα+1/2 is sufficient (Proposition 2.3).
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3. How to establish stability and consistency

In order to apply Theorem 2.1 one faces the following major difficulties:

a) In general it is very difficult to verify the stability property, i.e., to prove that
An ∈ G(M,ω,Xn), n = 1, 2, . . . , for some M ≥ 1, ω ∈ R, when M > 1 is
necessary.

b) Direct verification of the consistency property (a) involves computation of the
resolvents (λIn −An)−1, which in general is almost impossible.

Of course, the Hille-Yosida generation theorem for C0-semigroups tells us among
other things that An ∈ G(M,ω,Xn) if λ ∈ ρ(An) for Reλ > ω and

‖(An − λIn)−k‖ ≤ M

(Reλ− ω)k
, Reλ > ω, k = 1, 2, . . . .

But to establish these inequalities for the powers of the resolvent operators in par-
ticular for the approximating generators An is in most cases (i.e., except M = 1)
impossible. In general, the only way to verify the stability property is to use dissipa-
tivity estimates possibly after renorming the spaces Xn with uniformly equivalent
norms.

Concerning the consistency property one tries at any case to avoid computation
of the resolvent operators (λIn − An)−1 and direct verification of condition (a).
Usually it is very easy to compute explicit representations of the approximating
generators An. Therefore one would like to replace (a) by a condition involving
convergence of the operators An to A in some sense. The following result is well
known, the proofs perhaps are different (see for instance [11]):

Proposition 3.1. Let the assumptions of Theorem 2.1 be satisfied. Then state-
ment (a) of Theorem 2.1 is equivalent to (A2) and the following two statements:

(C1) There exists a subset D ⊂ domA such that D = X and (λ0I −A)D
= X for a λ0 > ω.

(C2) For all u ∈ D there exists a sequence (un)n∈N with un ∈ domAn such that

lim
n→∞Enun = u and lim

n→∞EnAnun = Au.

Proof. Without restriction of generality we can assume λ0 = 0 for the proof. We
first prove that (a) implies (A2) and (C1), (C2). To this end we first set D = domA
which implies AD = X , i.e., (C1) is satisfied. In the proof of Theorem 2.1 we have
already shown that (a) implies (A2) (compare (2.4)).

We next fix u ∈ domA, choose x ∈ X with u = A−1x and set un = A−1
n PnAu.

Then we have

Enun − u = EnA
−1
n Pnx−A−1x→ 0

as n→∞ by (a). Furthermore, we have (using (A2))

EnAnun −Au = EnAnA
−1
n Pnx−AA−1x = EnPnx− x→ 0

as n→∞. Thus we see that (C2) is also true.
In order to prove that (A2) and (C1), (C2) imply (a) we use the identity

EnA
−1
n Pn −A−1 = En(A−1

n PnA− Pn)A−1 + (EnPn − I)A−1.(3.1)

For x ∈ AD we choose u ∈ D with x = Au and set un = A−1
n Pnx = A−1

n PnAu.
Furthermore, for u, we choose un according to (C2). Then we get

‖un − Pnu‖n = ‖Pn(Enun − u)‖n ≤M1‖Enun − u‖ → 0
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as n→∞ and

‖un − un‖n ≤ ‖A−1
n ‖ ‖Anun − PnAu‖n

≤ ‖A−1
n ‖ ‖Pn‖ ‖EnAnun −Au‖ → 0

as n→∞. Note that ‖A−1
n ‖ is uniformly bounded, because An ∈ G(M,ω,Xn) for

all n. The last two estimates prove that

‖Pnu− un‖n ≤ ‖Pnu− un‖n + ‖un − un‖n → 0

as n→∞. This estimate together with (3.1) and (A2) implies

‖EnA−1
n Pnx−A−1x‖ ≤ ‖En(un − Pnu)‖+ ‖EnPnu− u‖

≤M2‖un − Pnu‖n + ‖EnPnu− u‖ → 0

as n→∞ for all x ∈ AD. A density argument finishes the proof for (a) (note that
‖EnA−1

n Pn‖ is uniformly bounded).

Remark. In fact, conditions (C1) and (C2) provide a formulation of the consistency
property which is essentially the original one. See for instance [12, Chapter 3] for
difference approximations.

The example in Subsection 4.1 below demonstrates the usefulness of conditions
(C1) and (C2). However, in many applications, in particular if the abstract Cauchy
problem is the abstraction of a PDE-problem, the generator A is defined via a
sesquilinear form σ, which is given on a densely and continuously embedded sub-
space V of the state space X . Then the approximating generators An usually are
defined by sesquilinear forms σn on the approximating state spaces Xn. These
sesquilinear forms σn are obtained from restrictions of σ to appropriate subspaces
Vn of V which are isomorphic to Xn. Of course, in such a case one would like
to establish the stability and consistency property by using the approximating
sesquilinear forms σn. Instead of formulating some general results in this direc-
tion we demonstrate the ideas by the examples in Subsections 4.2 and 4.3. The
main reason for this approach to the problem is the fact that usually one has to ex-
ploit the special structure of the problem under consideration, which makes it very
difficult to provide simple general conditions which cover a wide range of special
cases.

Parabolic problems allow much stronger results, which will be presented in a
different paper.

4. Examples

In this section we demonstrate applicability of the results developed in the pre-
vious sections. As already mentioned in the introduction the goal is to show that a
variety of concrete situations is covered by the general framework presented in this
paper.

4.1. A first order hyperbolic PDE. In this example the role of the operators
Pn and En appearing in conditions (A1)–(A3) and the usefulness of Proposition 3.1
are demonstrated. Consider the first order hyperbolic PDE

∂

∂t
u(t, x) +

∂

∂x
u(t, x) = 0, x ∈ (0, 1),

u(t, 0) = 0.
(4.1)
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The equation is studied in three different state spaces: X = L1(0, 1), X = L2(0, 1)
and X = C0(0, 1), respectively, where C0(0, 1) is the space of continuous functions
on [0,1] vanishing at x = 0. It is not difficult to show that the linear operator A
defined by

Aφ = −φ′, φ ∈ domA,

with domA = {φ ∈ X | φ is absolutely continuous on [0, 1] with φ′ ∈ X and
φ(0) = 0} generates a C0-semigroup on X . The numerical method analyzed here
is the first order finite difference scheme

d

dt
uk(t) =

uk−1(t)− uk(t)

∆x
, k = 1, . . . , n,

u0(t) = 0,
(4.2)

where col (u1, . . . , un) ∈ Xn = Rn and uk(t) represents an approximating value for
u(t, x) at the k-th nodal point xk = k∆x with ∆x = 1/n. From equations (4.2) it
is clear that the approximating generators An on Rn are given by

(Anu)k =
1

∆x
(uk−1 − uk), k = 1, . . . , n,

where we set u0 = 0.

Case 1. X = L1(0, 1).
Let Pn, En and ‖ · ‖n be defined as

Enu =

n∑
k=1

ukχ(xk−1,xk], u ∈ Xn,

(Pnφ)k =
1

∆x

∫ xk

xk−1

φ(x) dx, 1 ≤ k ≤ n, φ ∈ X,

‖u‖n = ∆x
n∑

k=1

|uk|, u ∈ Xn.

It is easy to show that the conditions (A1)–(A3) are satisfied. For an element
u ∈ Xn \ {0} the elements v in the duality set Fn(u) ⊂ X∗

n are given by

v = ∆x‖u‖n(α1, . . . , αn),

where αk = sgnuk if uk 6= 0 and |αk| ≤ 1 if uk = 0. Then it is easy to see that

〈Anu, v〉 ≤ 0 for all v ∈ Fn(u),

which establishes the stability property.
In order to verify the consistency property we choose D = domA = {φ ∈

C1(0, 1) | φ(0) = 0} which establishes condition (C1) in Proposition 3.1 with ω = 0.
For u ∈ domA we define ūn ∈ Xn by

ūn = col
(
u(x1), . . . , u(xn)

)
.(4.3)

Then simple computations show that

‖Enūn − u‖L1 ≤ ∆x ‖u′‖L1 ,

which proves limn→∞ Enūn = u.
Furthermore we have

‖EnAnūn −Au‖L1 ≤ 1

∆x

n∑
k=1

∫ xk

xk−1

∫ xk

xk−1

|u′(τ)− u′(σ)| dσ dτ ≤ ω(u′; ∆x),
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which proves limn→∞EnAnūn = Au. Here h → ω(u′;h) denotes the modulus of
continuity for u′. Consistency now follows from Proposition 3.1.

Case 2. X = L2(0, 1).
Let Pn, En be as in Case 1 and ‖ · ‖n be given by

‖u‖2
n = ∆x

n∑
k=1

|uk|2, u ∈ Xn.

In this case the inner product on Xn is defined by 〈u, v〉n = 〈Enu,Env〉L2 . Then
stability is obvious from

〈Anu, u〉n =

n∑
k=1

(
uk−1uk − |uk|2

) ≤ 0, u ∈ Xn.

In order to verify consistency let D = domA and define ūn by (4.3). We have

‖Enūn − u‖2
L2 ≤

n∑
k=1

∫ xk

xk−1

(∫ xk

τ

|u′(σ)|dσ
)2

dτ

≤
n∑

k=1

∫ xk

xk−1

(xk − τ)

∫ xk

τ

|u′(σ)|2dσ dτ

=

n∑
k=1

∫ xk

xk−1

|u′(σ)|2
∫ σ

xk−1

(xk − τ)dτ dσ

≤ 1

2

n∑
k=1

∫ xk

xk−1

|u′(σ)|2dσ (∆x)2 =
1

2
(∆x)2‖u′‖2

L2 ,

which tends to zero as n→∞. Concerning Anūn we have

‖EnAnūn −Au‖2
L2 ≤

( 1

∆x

)2 n∑
k=1

∫ xk

xk−1

(∫ xk

xk−1

∣∣u′(τ)− u′(σ)
∣∣ dσ)2

dτ

≤
( 1

∆x

)2 n∑
k=1

∫ xk

xk−1

∆x

∫ xk

xk−1

∣∣u′(τ) − u′(σ)
∣∣2dσ dτ

≤ ω(u′; ∆x)2 → 0

as n→∞. This finishes the proof of (C2) in Proposition 3.1.

Case 3. X = C0(0, 1).
Assume that Pn, En and ‖ · ‖n are defined as

Enu =

n∑
k=1

ukBk(x), u ∈ Xn,

(Pnφ)k = φ(xk), 1 ≤ k ≤ n, φ ∈ X,
‖u‖n = max

1≤k≤n
|uk|, u ∈ Xn,

where the first order B-spline Bk(x), k = 1, . . . , n , for 0 ≤ x ≤ 1, is given by

Bk(x) =


n(x− xk−1), x ∈ [xk−1, xk],

n(xk+1 − x), x ∈ [xk, xk+1],

0 otherwise.

(4.4)
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Obviously, assumptions (A1)–(A3) are satisfied. For (A2) one has to observe that
EnPnu is the first order spline interpolating u at the meshpoints.

For u ∈ Xn the elements v ∈ Fn(u) are given by

vk =

{
‖u‖nsgnui for k = i,

0 for k 6= i,

where i is an index such that |ui| = maxk |uk|. Then it is easy to see that 〈Anu, v〉 ≤
0 for all v ∈ Fn(u), i.e., the stability property is satisfied.

For the consistency property, we again choose D = domA and ūn ∈ Xn for
u ∈ domA as in the previous cases. Then we have

lim
n→∞ ‖Enūn − u‖∞ = 0,

because Enūn is the first order spline interpolating the continuously differentiable
function u at the meshpoints. Moreover, we get for numbers ξk ∈ (xk−1, xk) the
estimate

‖EnAnūn −Au‖∞ = ‖
n∑
k=1

u(xk−1)− u(xk)

∆x
Bk + u′‖∞ = ‖u′ −

n∑
k=1

u′(ξk)Bk‖∞

≤ ‖u′ −
n∑
k=1

u′(xk)Bk‖∞ + max
k=1,...,n

|u′(xk)− u′(ξk)|

≤ ‖u′ −
n∑
k=1

u′(xk)Bk‖∞ + ω(u′; ∆x) → 0 as n→∞.

The first term on the right-hand side tends to zero, because
∑n

k=1 u
′(xk)Bk is the

first order spline interpolating the continuous function u′ at the meshpoints (note
that u′(0) = 0). This finishes the proof for (C2).

4.2. A second order wave equation in one space dimension. This example
demonstrates how to use sesquilinear forms in order to prove stability and consis-
tency of approximations. We consider the wave equation

∂2

∂t2
u(t, x) =

∂2

∂x2
u(t, x), 0 ≤ x ≤ 1,(4.5)

with boundary conditions

u(t, 0) = 0,

k
∂

∂t
u(t, 1) +

∂

∂x
u(t, 1) = 0, k > 0.

Defining z1 = u and z2 = ∂
∂tu one can write (4.5) as the system of first order

equations

∂

∂t

(
z1
z2

)
=

(
0 1
∂2

∂x2 0

)(
z1
z2

)
(4.6)

with

z1(t, 0) = 0 and kz2(t, 1) +
∂

∂x
z1(t, 1) = 0.
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a) Well-posedness of the problem. Let the Hilbert space Ṽ = {φ ∈ H1(0, 1) | φ(0) =

0} be equipped with the norm ‖φ‖Ṽ =
(∫ 1

0 |φ′|2dx
)1/2

and set Z = X = Ṽ × L2

(L2 = L2(0, 1)). The linear operator A on X is defined by

domA = {(φ1, φ2) ∈ X | φ1 ∈ H2(0, 1), φ2 ∈ Ṽ and kφ2(1) + φ′1(1) = 0},
A(φ1, φ2) = (φ2, φ

′′
1 ) for (φ1, φ2) ∈ domA.

It is easy to verify that A is m-dissipative and thus generates a C0-semigroup on
X (note that A is densely defined, because X is a Hilbert space).

For φ = (φ1, φ2) ∈ domA and ψ = (ψ1, ψ2) ∈ X we set

σ(φ, ψ) = 〈Aφ, ψ〉 = 〈φ2, ψ1〉Ṽ + 〈φ′′1 , ψ2〉L2

=

∫ 1

0

(
φ′2ψ

′
1 + φ′′1ψ2

)
dx.

If also ψ2 ∈ Ṽ , then we can integrate by parts and obtain (using also the boundary
condition at x = 1)

σ(φ, ψ) =

∫ 1

0

(
φ′2ψ

′
1 − φ′1ψ

′
2

)
dx− kφ2(1)ψ2(1).(4.7)

This equation makes sense for all φ, ψ ∈ V = Ṽ × Ṽ . Trivially V is densely
embedded in X . We define the sesquilinear form σ : V × V → R by (4.7). It is not
difficult to see that φ ∈ V is in domA if and only if |σ(φ, ψ)| ≤ K(φ)‖ψ‖X for all
ψ ∈ V .

b) The approximating spaces. We consider a mixed finite element method and try
to approximate solutions of (4.6) by

z(1)
n (t, x) =

n∑
i=1

αi(t)Bi(x),

z(2)
n (t, x) =

n∑
i=1

βi(t)Si(x),

(4.8)

where xi = i/n, i = 0, . . . , n, Bi(x) are the first order B-splines defined by (4.4)
and Si(·) = 1

2χ(xi−1,xi+1)∩(0,1) for i = 1, . . . , n. We define Xn = Vn ×Hn, where

Vn = {φ ∈ Ṽ | φ =

n∑
i=1

αiBi, αi ∈ R},

Hn = {ψ ∈ L2 | ψ =

n∑
i=1

βiSi, βi ∈ R},

are equipped with the inner product induced from Ṽ resp. L2. As projections

X → Xn we choose the orthogonal projections Pn = (P
(1)
n , P

(2)
n ) and set En = P ∗n ,

i.e., En is the canonical injection Xn → X . Obviously, assumptions (A1)–(A3)

are satisfied. Since P
(1)
n is the orthogonal projection Ṽ → Vn with respect to

the Ṽ -inner product, it is easy to see that, for f ∈ Ṽ , P
(1)
n f is the first order

spline which interpolates f at the meshpoints xi = i/n, i = 0, . . . , n . Note that

f(0) =
(
P

(1)
n f

)
(0) = 0.
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c) The approximating operators. Since Xn is not a subspace of V , we cannot define
σn to be the restriction of σ to Xn. However, Dn = Vn × Vn is a subspace of V , so
that we can define the sesquilinear forms σ̃n : Dn × Dn → R by σ̃n = σ |Dn×Dn .
Moreover, the spaces Dn are isomorphic to Xn, an isomorphism in : Dn → Xn

given by

in(u, v) =
(
u, P (2)

n v
)

for (u, v) ∈ Dn.

A simple computation shows that

P (2)
n φ =

n∑
i=1

αiSi for φ =

n∑
i=1

αiBi ∈ Vn.

We define the sesquilinear forms σn : Xn ×Xn by

σn(x, y) = σ̃n(i−1
n x, i−1

n y) = σ(i−1
n x, i−1

n y), x, y ∈ Xn,

and the approximating operators An by

〈Anx, v〉 = σn(x, v), x, v ∈ Xn.

From this it is easy to compute the matrix representations for the operators An
with respect to the bases B1, . . . , Bn of Vn and S1, . . . , Sn of Hn. Let

x =
( n∑
i=1

αiBi,

n∑
i=1

βiSi

)
and Anx =

( n∑
i=1

γiBi,

n∑
i=1

δiSi
)
.

We set α = col (α1, . . . , αn), β = col (β1, . . . , βn), γ = col (γ1, . . . , γn) and δ =
col (δ1, . . . , δn). Then simple computations show that

Qnδ = −Hnα− Fnβ and γ = β,(4.9)

where

Qn =
1

4n



2 1 0 · · · 0

1 2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 1

0 · · · 0 1 1


, Hn = n



2 −1 0 · · · 0

−1 2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 −1

0 · · · 0 −1 1


,

Fn =


0 · · · · · · 0
...

...
... 0 0

0 · · · 0 k

 .

We note that the matrix (
0 In

−Q−1
n Hn −Q−1

n Fn

)
is nonsingular, which follows from detQn 6= 0, detHn 6= 0. This in particular
implies 0 ∈ ρ(An), n = 1, 2, . . . .
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d) The stability property. For x ∈ Xn we have

〈Anx, x〉 = σn(x, x) = σ(i−1
n x, i−1

n x) ≤ 0

by (4.7), i.e., An ∈ G(1, 0, Xn) for all n.

e) The consistency property. We have already shown that 0 ∈ ρ(A) ∩⋂∞
n=1 ρ(An).

For (f, g) ∈ X let (u, v) = A−1(f, g) and (un, vn) = A−1
n Pn(f, g). From A(u, v) =

(v, u′′) = (f, g) we conclude v = f and 〈u′′, ψ〉 = 〈g, ψ〉 for all ψ ∈ Ṽ . Integration
by parts and (u, v) ∈ domA imply

−〈u′, ψ′〉 = 〈g, ψ〉+ kf(1)ψ(1) for all ψ ∈ Ṽ .(4.10)

We next derive an equation analogous to (4.10) for the approximations. By
definition of the An we have, for arbitrary (φn, ψn) ∈ Xn,

〈Pn(f, g), (φn, ψn)〉 = 〈An(un, vn), (φn, ψn)〉 = σ(i−1
n (un, vn), i−1

n (φn, ψn)).(4.11)

We define ṽn, ψ̃n ∈ Vn by i−1
n (un, vn) = (un, ṽn) and i−1

n (φn, ψn) = (φn, ψ̃n), i.e.,

vn = P
(2)
n ṽn and ψn = P

(2)
n ψ̃n. From (4.11) with ψn = 0 we obtain

〈P (1)
n f, φn〉Ṽ = 〈ṽn, φn〉Ṽ for all φn ∈ Vn.

This proves P
(1)
n f = ṽn and consequently

vn = P (2)
n P (1)

n f
(
=

n∑
i=1

f(xi)Si
)
.

Again using (4.11) we get (also using ṽn(1) = (P
(1)
n f)(1) = f(1))

−〈u′n, ψ̃′n〉 = 〈P (2)
n g, P (2)

n ψ̃n〉+ kf(1)ψ̃n(1) for all ψ̃n ∈ Vn.(4.12)

We choose ūn = P
(1)
n u ∈ Vn. Then we get from (4.10) with ψ = ψ̃n and (4.12)

〈ū′n − u′n, ψ̃
′
n〉 = 〈P (2)

n g, P (2)
n ψ̃n〉 − 〈g, ψ̃n〉

= 〈P (2)
n g − g, P (2)

n ψ̃n〉+ 〈g, P (2)
n ψ̃n − ψ̃n〉

= 〈g, P (2)
n ψ̃n − ψ̃n〉, for all ψ̃n ∈ Vn.

(4.13)

Here we have also used 〈u′, ψ̃′n〉 = 〈u, ψ̃n〉Ṽ = 〈P (1)
n u, ψ̃n〉Ṽn = 〈ū′n, ψ̃′n〉. Equation

(4.13) implies ∣∣〈ūn − un, ψ̃n〉Ṽ
∣∣ ≤ ‖g‖L2 sup

χ̃n∈Vn
‖χ̃n‖Ṽ ≤1

‖P (2)
n χ̃n − χ̃n‖L2

for all ψ̃n ∈ Vn with ‖ψ̃n‖Ṽ ≤ 1. Taking ψ̃n = ‖ūn − un‖−1(ūn − un) we get

‖ūn − un‖Ṽ ≤ ‖g‖L2 sup
χ̃n∈Vn
‖χ̃n‖Ṽ ≤1

‖P (2)
n χ̃n − χ̃n‖L2.(4.14)

By compactness of {χ ∈ Ṽ | ‖χ‖Ṽ ≤ 1} in L2 we see that the right-hand side of
(4.14) tends to zero as n→∞. Thus we have

‖ūn − un‖Ṽ → 0 as n→∞.(4.15)

Since u ∈ H2 and ūn = P
(1)
n u is the first order spline which interpolates u at the

meshpoints, we also have

‖ūn − u‖Ṽ → 0 as n→∞.(4.16)
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Finally we get

‖EnA−1
n Pn(f,g)−A−1(f, g)‖2 = ‖(un, vn)− (u, v)‖2 = ‖(un, P (2)

n P (1)
n f)− (u, f)‖2

= ‖un − u‖2
Ṽ

+ ‖P (2)
n P (1)

n f − f‖2
L2

≤ 2‖u− ūn‖2
Ṽ

+ 2‖ūn − un‖2
Ṽ

+ 2‖P (1)
n f − f‖2

L2 + 2‖f − P (2)
n f‖2

L2.

From (4.15), (4.16), the fact that P
(1)
n f is the interpolating first order spline for f

and that P
(2)
n f is the orthogonal projection of f onto Hn we conclude that

‖EnA−1
n Pn(f, g)−A−1(f, g)‖ → 0 as n→∞

for all (f, g) ∈ X . Therefore we see from Theorem 2.1 that, for all initial conditions(
u(0, ·), ∂u∂t (0, ·)

) ∈ X ,

‖En
(
z(1)
n (t, ·), z(2)

n (t, ·))− (u(t, ·), ∂u
∂t

(t, ·))‖X → 0 as n→∞

uniformly on bounded t-intervals. The approximations z
(1)
n (t, x), z

(2)
n (t, x) are given

by (4.8), where α(t) = col (α1(t), . . . , αn(t)) and β(t) = col (β1(t), . . . , βn(t)) are
solutions of

dα

dt
= β,

Qn
dβ

dt
= −Hnα− Fnβ

with initial data α(0), β(0) determined by( n∑
i=1

αi(0)Bi,

n∑
i=1

βi(0)Si

)
= Pn

(
u(0, ·), ∂u

∂t
(0, ·)).

4.3. Stokes equation. This example demonstrates that it is useful to consider
situations where X is a closed proper linear subspace of Z, because it can be very
natural to choose the spaces Xn as subspaces of Z but not of X . Consider the
homogeneous Stokes equation (e.g., see [14] resp. [4] for the stationary case)

ut + gradp = 4u,
div u = 0, x ∈ Ω, t ≥ 0,

u |Γ= 0, t ≥ 0,

(4.17)

where Ω is a connected bounded open set in RN , N = 2, 3, with Lipschitz continuous
boundary Γ. Of course, 4 denotes the Laplacian in RN .

a) Well-posedness of the problem. We shall consider solutions of (4.17) in a weak
sense. We introduce the following spaces (see [4], [14]):

V = {v ∈ D(Ω)N | div v = 0},
V = closure of V in W = H1

0 (Ω)N ,

X = closure of V in Z = L2(Ω)N .

Equivalently the spaces V and X can be defined as V = {v ∈ W | div v = 0} and
X = {v ∈ Z | div v = 0}, where the derivatives are understood in the distributional
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sense (see [4, Corollary I.2.5 and Theorem I.2.8]). On W we introduce the inner
product

σ(v, w) =
N∑
i=1

∫
Ω

grad vi · gradwi dx, v, w ∈ W,

which is equivalent to the standard inner product. Of course, V and X are equipped
with the inner products coming from W resp. Z. Furthermore, V is dense in X
with continuous injection. The inner product σ(·, ·) and therefore also its restriction
to V × V satisfies the estimates

|σ(u, v)| ≤ ‖u‖V ‖v‖V , u, v ∈ V,
σ(u, u) = ‖u‖2

V , u ∈ V,(4.18)

which show that σ is bounded and coercive. Therefore the operator A defined by

domA = {u ∈ V | there exists a k = k(u) such that

|σ(u, ψ)| ≤ k‖ψ‖X for all ψ ∈ V },
〈Au, ψ〉 = −σ(u, ψ), u ∈ domA, ψ ∈ V,

is the infinitesimal generator of an analytic semigroup T (·) on X and, moreover,
0 ∈ ρ(A). The operator A is explicitly given by

domA = V ∩H2(Ω)N ,

Au = π4 u, u ∈ domA,

where π is the orthogonal projection Z → X (see also [16, Section III.1]). In
order to define the approximating generators we shall use the following variational
formulation of (4.17) (see [4] for the stationary problem):

d

dt

〈
u(t, ·), ψ〉

Z
= −σ(u(t, ·), ψ) + b(ψ, p(t, ·)), t ≥ 0, ψ ∈ W,

b(u(t, ·), µ) = 0, t ≥ 0, L2
0(Ω),

(4.19)

where L2
0(Ω) = {χ ∈ L2(Ω) | ∫

Ω
χdx = 0} and

b(v, µ) =

∫
Ω

µ div v dx, (v, µ) ∈W × L2
0(Ω).

Note that “grad” is an isomorphism from L2
0(Ω) onto {y ∈ H−1(Ω)N | 〈y, v〉 =

0 for all v ∈ V } (see [4, Corollary I.2.4]).

b) Setting of the approximation framework. For linearly independent elements φni ∈
H1

0 (Ω)N , i = 1, . . . , kn, and µni ∈ L2
0(Ω), i = 1, . . . ,mn, we define the spaces

Wn = span
(
φn1 , . . . , φ

n
kn

)
, Hn = span

(
µn1 , . . . , µ

n
mn

)
and the subspaces Vn of Wn by

Vn = {φ ∈Wn | b(φ, µ) = 0 for all µ ∈ Hn}
equipped with the V -norm. Furthermore, we define Xn to be Vn equipped with the
L2(Ω)N -norm. Note that neither Vn is contained in V nor is Xn in X , because Hn

is a proper subspace of L2
0(Ω).
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Let Pn be the orthogonal projection Z → Xn and En be the canonical injection
Xn → Z. Then obviously (A1) and (A3) are satisfied. The sesquilinear forms σn
and the operators An are defined by σn = σ |Vn×Vn and

〈Anx, y〉 = −σn(x, y), x, y ∈ Xn.

Since (4.18) is also true for σn, we conclude that 0 ∈ ρ(An), n = 1, 2, . . . , and

〈Anx, x〉 = −σ(x, x) = −‖x‖2
V ≤ 0, x ∈ Xn,

which establishes the stability property.

c) The consistency property. We impose the following conditions on the spaces Wn

and Hn:

(i) For all u ∈ V there exist elements wn ∈ Wn, n = 1, 2, . . . , with

‖u− wn‖W → 0 as n→∞.(4.20)

(ii) The uniform inf-sup condition (see [4]) is satisfied, i.e., there exists a constant
β > 0 such that for all n

sup
wn∈Wn\{0}

b(wn, µn)

‖wn‖W ≥ β‖µn‖L2(Ω) for all µn ∈ Hn.(4.21)

We identify Wn and Hn with their duals and define the operator Ψn : Hn →
W ∗
n = Wn by

〈Ψnµn, wn〉W = b(wn, µn), wn ∈Wn, µn ∈ Hn.

From (4.21) we get

‖Ψnµn‖W = sup
wn∈Wn\{0}

〈Ψnµn, wn〉W
‖wn‖W = sup

wn∈Wn\{0}

b(wn, µn)

‖wn‖W
≥ β‖µn‖L2(Ω), µn ∈ Hn.

(4.22)

This proves that Ψn is injective. The dual operator Ψ∗
n : Wn → Hn is given by

Ψ∗
nvn = b(vn, ·), vn ∈ Wn. It is easy to see that kerΨ∗

n = Vn. Thus we have
rangeΨ∗

n = (kerΨn)⊥ = Hn and rangeΨn = (kerΨ∗
n)⊥ = V ⊥n . Thus Ξ∗n = Ψ∗

n |V ⊥n
is a bijective mapping V ⊥

n → Hn (see also [4, Lemma I.4.1]). Moreover, Ξ∗n is the
adjoint of Ξn : Hn → V ⊥

n defined by Ξnµn = Ψnµn, µn ∈ Hn. For the norms of Ξn
and Ξ∗n we get

‖Ξn‖L(Hn,V ⊥n ) = ‖Ξ∗n‖L(V ⊥n ,Hn) = sup
µn∈Hn\{0}
wn∈V ⊥n \{0}

b(wn, µn)

‖µn‖L2(Ω)‖wn‖W .

Therefore it follows from (4.22) that

‖(Ξ∗n)−1‖L(Hn,V ⊥n ) = ‖Ξ−1
n ‖L(V ⊥n ,Hn) ≤

1

β
.(4.23)

Given wn ∈Wn and u ∈ V we define f ∈ Hn by 〈f, µn〉L2(Ω) = b(u−wn, µn) for

all µn ∈ Hn. We set zn = (Ξ∗n)−1f ∈ V ⊥
n . This implies

〈Ξ∗nzn, µn〉L2(Ω) = b(zn, µn) = 〈f, µn〉L2(Ω) = b(u− wn, µn), µn ∈ Hn.
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Moreover, (4.23) implies

‖zn‖W ≤ 1

β
‖f‖L2(Ω) =

1

β
sup

µn∈Hn\{0}

〈f, µn〉L2(Ω)

‖µn‖L2(Ω)

=
1

β
sup

µn∈Hn\{0}

b(u− wn, µn)

‖µn‖L2(Ω)
≤ 1

β
‖b‖ ‖u− wn‖W ,

where ‖b‖ = supv∈W\{0}, µ∈L2
0(Ω)\{0}

|b(v, µ)|
‖v‖W‖µ‖L2

0(Ω)

. The element vn = wn + zn

satisfies (note that u ∈ V )

b(vn, µn) = b(zn, µn) + b(wn, µn) = b(u− wn, µn) + b(wn, µn)

= b(u, µn) = 0 for all µn ∈ Hn,

i.e., vn ∈ Vn. Therefore we have

‖u− vn‖W ≤ ‖u− wn‖W + ‖zn‖W ≤
(
1 +

‖b‖
β

)
‖u− wn‖W .

This and assumption (4.20) imply that for all u ∈ V there exist v̄n ∈ Vn such that

lim
n→∞ ‖u− v̄n‖W = 0.(4.24)

Let φ ∈ X be given. Then by density of V in X there exists a sequence (vk) in
V with ‖φ− vk‖Z → 0. By (4.24) there exists for each vk an element v̄k ∈ Vk such
that ‖vk − v̄k‖Z ≤ 1/k. But then ‖φ− v̄k‖Z → 0 and consequently

lim
n→∞ ‖φ− Pnφ‖Z = 0(4.25)

(note that Xn = Vn as sets). This also proves (A2). In order to establish the
consistency property we first observe that 0 ∈ ρ(A) ∩⋂∞

n=1 ρ(An). For φ ∈ X we
choose u ∈ domA such that φ = Au and set un = A−1

n Pnφ ∈ Xn. For u we choose
v̄n ∈ Vn, n = 1, 2, . . . , such that (4.24) is true. By definition of A and An we have

σ(u, un − v̄n) = 〈φ, un − v̄n〉Z ,
σ(un, un − v̄n) = 〈Pnφ, un − v̄n〉Z

and consequently

σ(un − v̄n, un − v̄n) = σ(u − v̄n, un − v̄n) + 〈Pnφ− φ, un − v̄n〉Z .
Observing (4.18) we get

‖un − v̄n‖W ≤ ‖u− v̄n‖W ‖un − v̄n‖W + ‖Pnφ− φ‖Z‖un − v̄n‖Z
≤ ‖un − v̄n‖W

(
‖u− v̄n‖W +K‖Pnφ− φ‖Z

)
,

where K is the embedding constant for the embedding W → Z. This together with
(4.24) and (4.25) implies

lim
n→∞ ‖un − v̄n‖W = 0.(4.26)

Using the definitions of u and un we see that

‖A−1φ− EnA
−1
n Pnφ‖W = ‖u− un‖W

≤ ‖un − v̄n‖W + ‖u− v̄n‖W → 0 as n→∞
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by (4.24) and (4.26). This in particular implies that the consistency property (a)
is true. By Theorem 2.1 we get

lim
n→∞ ‖Tn(t)Pnφ− T (t)φ‖Z = 0

uniformly on bounded t-intervals for each φ ∈ X .
In order to see how one computes Tn(t)Pnφ set Φn =

(
φn1 , . . . , φ

n
kn

)
, Mn =(

µn1 , . . . , µ
n
mn

)
and assume that un(t) = Φnαn(t) together with pn(t) = Mnβn(t),

αn(t) ∈ Rkn , βn(t) ∈ Rmn , solve

d

dt
〈un(t), ψn〉Z = −σ(un(t), ψn) + b(ψn, pn(t)), t ≥ 0,

b(un(t), µn) = 0, t ≥ 0,

un(0) = Pnφ,

(4.27)

for all ψn ∈ Wn and µn ∈ Hn. The second equation in (4.27) implies that un(t) ∈
Xn, t ≥ 0. If we take ψn ∈ Xn, then b(ψn, pn(t)) ≡ 0 and (4.27) implies

d

dt
〈un(t), ψn〉Z = −σ(un(t), ψn) = 〈Anun(t), ψn〉Z , t ≥ 0,

un(0) = Pnφ,

for all ψn ∈ Xn or, equivalently,

u̇n(t) = Anun(t), t ≥ 0,

un(0) = Pnφ.

This proves un(t) = Tn(t)Pnφ, t ≥ 0. Equations (4.27) imply that αn(t) and βn(t)
satisfy

Qnα̇n(t) = −Snαn(t) +Bnβn(t), t ≥ 0,

αn(t)TBn = 0, t ≥ 0,
(4.28)

where

Qn =
(
〈φni , φnk 〉Z

)
i,k=1,...,kn

, Sn =
(
σ(φni , φ

n
k )
)
i,k=1,...,kn

,

Bn =
(
b(φni , µ

n
k )
)
i=1,...,kn
k=1,...,mn

.

From (4.18) it is not difficult to conclude that rankBn = mn ≤ kn. The second
equation together with the first equation in (4.28) implies

0 = BT
n α̇n(t) = −BT

nQ
−1
n Snαn(t) +BT

nQ
−1
n Bnβn(t), t ≥ 0.

Because of rankBn = mn, the matrix Rn := BT
nQ

−1
n Bn is positive definite and

therefore R−1
n exists. This implies

βn(t) = R−1
n BT

nQ
−1
n Snαn(t), t ≥ 0.(4.29)

Then the first equation in (4.28) gives

α̇n(t) =
(
In −Q−1

n BnR
−1
n BT

n

)
Q−1
n Snαn(t), t ≥ 0.(4.30)

An easy computation shows that (α0
n)TBn = 0 implies αn(t)TBn ≡ 0, where αn(t)

is the solution of (4.30) with initial value α0
n.
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Remark. As already mentioned above we can prove stronger results in case the
semigroup is analytic. Using the parabolic character of this problem one can show
that

lim
n→∞ ‖Tn(t)Pnφ− T (t)φ‖W = 0

uniformly for t in intervals [1/δ, δ] for arbitrary δ > 1.
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