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THE TROTTER-KATO THEOREM AND
APPROXIMATION OF PDEs

KAZUFUMI ITO AND FRANZ KAPPEL

ABSTRACT. We present formulations of the Trotter-Kato theorem for approx-
imation of linear Cgp-semigroups which provide very useful framework when
convergence of numerical approximations to solutions of PDEs are studied.
Applicability of our results is demonstrated using a first order hyperbolic equa-
tion, a wave equation and Stokes’ equation as illustrative examples.

1. INTRODUCTION

In this paper versions of the Trotter-Kato theorem [8], [15] for approximating a
linear Cy-semigroup 7'(t) on a Banach space X are derived, which are useful for
studying convergence of numerical approximations of solutions to partial differential
equations. Our study is motivated by the version of the Trotter-Kato theorem
discussed in [11, Section 3.6]. The goal is to provide a general approach, which is
flexible enough to cover a variety of approximation schemes for infinite dimensional
systems. Of course it is not possible to get precise error estimates at this level of
generality. In order to get those one usually has to exploit the special structure of
a system, what we shall demonstrate in a few situations.

In Section 2 we present a version of the Trotter-Kato theorem which is standard
except for the fact that the state space on which the semigroup is defined is a closed
proper subspace of an ambient Banach or Hilbert space. The approximating spaces
are isomorphic to subspaces of this ambient space but not necessarily of the state
space. Furthermore, we present in this section error estimates for smooth initial
data in the general case and also for analytic semigroups. In Section 3 we discuss
possibilities to verify the basic assumptions of the Trotter-Kato theorem, i.e., how
to establish the stability and the consistency property. Applicability of the results
is demonstrated in Section 4 for a first order wave equation, a second order wave
equation in one space dimension and Stokes’ equation as illustrative examples.

2. THE TROTTER-KATO THEOREM

2.1. Statement and proof of the theorem. Let Z and X,, be Banach spaces
with norms |||, || - ||n, » = 1,2, ..., respectively, and X be a closed linear subspace
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22 KAZUFUMI ITO AND FRANZ KAPPEL

of Z. On X a Cg-semigroup 7T'(-) with infinitesimal generator A is given. The
goal is to construct approximating generators A,, on the spaces X,, such that the
Cop-semigroups T, (-) generated by A, approximate T'(-) in a sense which will be
made precise below. We will make the following assumptions:

For every n = 1,2,... there exist bounded linear operators P, : Z — X,, and
E, : X,, — Z satistying
(A1) ||P.]| £ My, ||En|| £ Ma, where My, M, are independent of n,

(A2) ||EpPpr —z|| = 0asn — oo forall z € X,
(A3) P,E, = I,, where I, is the identity operator on X,,.

Assumption (A2) is a consequence of each of the two equivalent statements in the
Trotter-Kato theorem. Therefore when choosing the spaces X,, and the operators
P,, E, one has to make sure that (A2) is also satisfied. However, (A2) need not
be assumed explicitly in the theorem. In many situations one has X = Z, but
Section 4.3, where we consider Stokes’ equation, presents an example where it is
advantageous to define the operators P,, E, first for an ambient space Z which
contains the actual state space for the equation as a proper closed subspace.

The general setting can be phrased in an equivalent way for subspaces of Z. In
order to see this define the subspaces Z, of Z and the mappings m, : Z — Z,, by

Z, =rangeE, and w,=FE,P,, n=12....

The subspaces Z, are endowed with the Z-norm. It is easy to see that the Z,
are closed subspaces of Z and that 7, are projections Z — Z,, ie., 72 = 7,
and rangem, = Z,. Furthermore, Tn(t) = E,T,(t)P, |z,, t > 0, defines a Cq-
semigroup on Z, with infinitesimal generator fln given by dom /in = E,dom A,
and A, = E,A,P, |z,. Assumption (A1) implies that there exists a constant

M > 0 such that
(B1) Imall <M, n=12,...,
is true, whereas from assumption (A2) we get

(B2) lim 7,z =% forall z € X.

n—oo

Note that by the uniform boundedness principle assumption (B1) is automatically
satisfied if (B2) holds for all z € Z. In general we do not have Z, C X. See
Section 4.3 for an example. If one has numerical approximation in mind, then the
spaces Z, are finite dimensional, of course.

Conversely, let Z,,, n = 1,2, ... , be a sequence of subspaces of Z with projections
7n + Z — Zp, and canonical injections ¢, : Z,, — Z. We assume that (B1) and (B2)
are satisfied. Then obviously assumption (B1) implies (A1) and (B2) implies (A2)
for X,, = Z,,, P, = 7, and E,, = 1,,. (A3) is trivially satisfied.

The most frequent situation where the setting introduced at the beginning of this
section occurs is when we start with a sequence of finite dimensional subspaces of
Zy, dim Z,, = k,. For each subspace Z,, we choose a basis z7,.. ., z};n and define the

kn

mapping p, : Z, — X, := RF by p,z = (ay,...,a4,)" for z = 10525 € Znp.

Jj=
The norm on X, is defined by ||z|x, = ||p;'z||z. If we define the mappings
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THE TROTTER-KATO THEOREM 23

P,:Z—-X,, FE,: X, — Z by
Pnz=p,mnz, 2€Z,
Eyx = anglx, z € Xy,

then assumptions (A1) — (A3) are satisfied.

Before we state the Trotter-Kato theorem we introduce the following notation:
Ae GIM,w,X), M > 1, w € R, means that A is the infinitesimal generator of a
Co-semigroup T'(t), t > 0, satisfying ||T'(t)|| < Me“t, t > 0. Of course, if A is the
infinitesimal generator of a Cy-semigroup, then A € G(M,w, X) for some M > 1
and w € R.

Theorem 2.1 (Trotter-Kato). Assume that (Al) and (A3) are satisfied. Let A
resp. An be in G(M,w,X) resp. in G(M,w,X,,) and let T(t) and T,(t) be the
semigroups generated by A and A, on X and X,,, respectively. Then the following
statements are equivalent:

(a) There exists a Ao € p(A) N, p(Ay) such that, for all x € X,

| En(Xoln — Ap) ' Poz — (Mol — A)7 'z =0 asn — oo.
(b) For every x € X and t > 0,
BT, (t)Pox — T(t)z|| = 0 asn — oo

uniformly on bounded t-intervals.
If (a) or (b) is true, then (a) holds for all A with Re A > w.

Proof. If we set Z, = rangeE,, and 7, = E,P,, n=1,2,..., then the theorem is
proved if we establish equivalence of the following two statements:

(8) There exists a \g € p(A) N2, p(A,) such that, for all z € X,
[(Noln — Ap) tmpz — (Mol — A) 7'zl -0 as n— oo.

(b) Forevery x € X and ¢t > 0,
| T (t)pe — T(t)z|| — 0 as n— oo
uniformly on bounded t-intervals.

For the rest of the proof we shall write T,,(¢) and A,, instead of Tn(t) and A,
respectively. It is no loss of generality if we assume that (&) holds for Ay = 0.

a) We first show that (&) implies (b). For x € X we define
en(t) = (Ta(t)mn — mT(t)2z, n=1,2,..., t>0.
For x € dom A, the function u,(t) defined by
un(t) = A te,(t), t>0, n=12,...
is in C'*(0, 00; Z,,) and satisfies
Uy = Apupn + T AR AT (t)z,
u,(0) =0,

)

(2.1)

where we have set
A,=A"1— A;lﬁn.

Indeed, A, T, (t)m,x = T, (t) A, tm,z is continuously differentiable on [0, c0), be-
cause A, lm,x is in dom A,,, whereas A7, T(t)z is continuously differentiable,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



24 KAZUFUMI ITO AND FRANZ KAPPEL

because x € dom A and A, ', is a bounded operator X — Z,. An easy calcula-
tion proves (2.1).

From (2.1) we obtain by the variation of parameter formula that, for ¢ > 0,
x € dom A,

Un(t) = /0 T (t — T)mn Ay AT (1) dr.

For x € dom A? integration by parts implies

Un(t) = —A; ' 1, AL AT ()2 4+ A T, ()T, A, Az

(2.2) t
+ At / Tt — T A AT ()2 dr, > 0.
0

Here we have used A, T, (t—7)y = — LT, (t—7)y, y € Zn, and LT (7)z = AT (1),
2 € dom A. From this representation of ., (t) we obtain the error representation:

en(t) = —mpn AR AT (H)x + T, (t) T Ay Az

(2.3) t ) )
—l—/ T,(t — T)mp A AT (T)xdr, t>0, z € domA”.
0

In order to prove lim, . e,(t) = 0 uniformly for ¢ in bounded intervals, we
consider the terms on the right-hand side of (2.3) separately. For any 7' > 0 the
set {T'(t)Az | 0 <t < T} is compact. Therefore we have

A, AT (t)x — 0 as n — oo

uniformly on [0,7]. For the second term on the right-hand side of (2.3) this is
obvious, because ||T,,(t)|| < Me“t, t >0, n=1,2,... .

Since, for x € dom A2, the set {A%T(7)z | 0 < 7 < T} is compact, we see that
|A,A2T(7)z|| — 0 asn — oo uniformly on [0, T]. Therefore also the integral on the
right-hand side of (2.3) converges to zero uniformly on [0, T]. Thus we have proved
that lim,, o €, (t) = 0 uniformly on 0 < ¢ < T for any z € dom A%. By a standard
density argument we see that this is true for all z € X (note that, by definition
of e,(t), there exists a constant ¢ > 0 such that supy,7 |len(t)]| < coe*T ||z,
reX,n=1,2,...). o

It remains to prove that

lim |7, T(t)z — T(¢)x|| =0 uniformly on [0,T].

n—oo

By compactness of {T'(t)x | 0 <t < T} we only have to prove lim,, .o T2 = z for
all z € X. For z € dom A we get (observing that ker(I — ) = Z,,)

(2.4) Tt —x = (my, — I)Ap Ax.

This implies lim,, .o 7,z = x for x € dom A. The result for z € X follows by a
density argument. }
b) Assume now that (b) holds and that Re A > w. Then

(AL, — Ay) rrpz — (N — A) 7tz < / e” BT (Ompx — T(t)z]| dt.
0

The right-hand side of this inequality tends to zero as n — oo by (b), the choice of
X and Lebesgue’s dominated convergence theorem. O
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THE TROTTER-KATO THEOREM 25

Remarks. 1. The proof of Theorem 2.1 as given above is a slight modification of
Kato’s proof putting more emphasis on the representation of the error e, (t) which
will be useful in the next subsection.

2. The assumption A, € G(M,w, X,,), n = 1,2,..., or equivalently ||T,(¢)|n, <
Me*t, n = 1,2,..., usually is called the stability property of the approximations,
whereas statement (a) is called the consistency property of the approximations.
With this terminology the Trotter-Kato theorem essentially states that, under the
assumption of stability, consistency is equivalent to convergence (as characterized
in statement (b)).

Using the uniform boundedness principle and the standard proof for the fact that
any Co-semigroup 7'(-) satisfies an estimate of the form ||T(t)|| < Me“t, t > 0, it is
easy to see that on the other hand convergence implies stability (and consequently
also consistency). Compare Theorem 4.4 in [10].

3. Consider the setting used in the proof of Theorem 2.1. With the operators A

and fln, n=1,2,..., we can associate the steady state problems
(2.5) Au=Xdu—y, yeX,

on X and

(2.6) Aty = Aoty — Ty

on Z,. The consistency hypothesis (&) just means that these steady state problems,
for all y € X, have unique solutions w resp. u,, which depend continuously on y and
(2.7) lim w, = u.

n—oo
Indeed, the assumptions on the solvability of the steady state problems are equiv-
alent to Ao € p(4) N2, p(A,) and (2.7) is just the strong convergence of the
resolvent operators, because u = (Aol — A) "'y and u, = (Ao, — Ap) ' mpy.

In view of these considerations the Trotter-Kato theorem states that, under the
assumption of stability, convergence of the solutions of the steady state problems
associated with the semigroup generators implies convergence of the semigroups.
This point of view was stressed in [10], where it was also shown that convergence
rates are also preserved. We shall address this question in the next subsection.

4. The error function e, (t) is continuously differentiable on [0, c0), if z € dom A
and m,x € dom A,,, which is certainly the case if the A,’s are bounded. The most
common situation where the A,,’s are bounded occurs when the spaces X, are finite
dimensional. Then e, (t) is the solution of

én = Apen + Apmn ALAT (), t >0,

2.
(28) e, (0) = 0.
This implies
t
(2.9) en(t) = / ATt — T)mn AR AT () dr, ¢ > 0.
0

From this representation we can get (2.3) by integration by parts directly provided
x € dom A2. Thus the introduction of w,(t) is not necessary in cases where e, (t)
is differentiable.
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26 KAZUFUMI ITO AND FRANZ KAPPEL

5. A somewhat different proof of Theorem 2.1 can be given using the approach
followed in [10]. Let the setting be that used in the proof of Theorem 2.1 and
define the “elliptic” projections ¢, : dom A — Z,, by

Gn zfl;lﬂ'nA, n=12....

For = € dom A? we introduce the error

fn(t) = Tn(t)an - an(t)l', t >0,
vyhich is continuously differentiable. This follows from g,z € dom A,, and g T (t)x =
A, T(t)Ax. We have f,(0) = 0 and
fu(t) = Ap fr(t) + mn(I — qu)T(t) Az, t>0.
This gives
t
falt) = / T (t — 8)mn (I — qn)T(s) Az ds

0

and

T(t)x — Ty (t)gnz = (I — ¢)T(t)z — /0 T (t — s)mn(I — qu)T(s)Azds, t>0.

Observing that, for y € dom A, we have (I —g,)y = (A~' — A 1x,) Ay we see that
the same arguments used in the proof of Theorem 2.1 give

lim T, (t)gnz = T(t)z, = € dom A,

uniformly on bounded t-intervals. In order to get T, (t)m,z — T(t)z uniformly on
bounded ¢-intervals for any « € X one has to choose a sequence (xy) C dom A with
xr — x and to apply the standard arguments to the estimate

1T(t)x — Tn(t)mnz| < [|T(t)(x — zx)| + [[(T'(E) = Ta(t)gn )zl
+ |1 T(t) (gnar — m) |
< Me![|lz — @) + [(T(8) = Tu(t)gn )l
+ Me (lanwe — zill + ok — Tail| + l17n | 2 — ).
2.2. Error estimates for smooth initial data. The proof of the Trotter-Kato
theorem as given in the previous subsection offers also the possibility to obtain
error estimates for the approximations. However, because of the generality of The-
orem 2.1 we cannot expect to get error estimates which are sharp in specific situa-
tions. In order to get sharp estimates one has to exploit the special structure of the
problem at hand. See for instance [2] for parabolic equations and [9], [5] for delay

equations of retarded type. In the following let || - ||dom A« denote the graph norm
on dom A%, o > 0.

Proposition 2.2. Let the assumptions of Theorem 2.1 be satisfied and, for any
)\0 S p(A) n ﬂzozl p(An), set An(/\()) = En()\()]n — An)_lpn — ()\0] — A)_l Then
the following is true:

a) For any T > 0 and any o > 0, there exists a constant v = (T, a) > 0 such that
[ EnTn(t)Prz — T(t)z]| < v[|An(Ao)l£dom a2, x) [Z(ldom Ae+2, 0 <t < T,

for all z € dom A°*2 andn =1,2,... .
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THE TROTTER-KATO THEOREM 27

b) If, in addition, the semigroup T(-) is analytic, then for any T > 0, ¢ > 0 and
a > 0, there exists a constant v = (T, e,a) > 0 such that

[ EnTn(t) Paz — T()]| < 71[An(X0) |l £(dom ax )1l dom active, 0 <t <T,
for all x € dom A*T1+e gndn=1,2,... .

Proof. As in the proof of Theorem 2.1 we can assume without restriction of gen-
erality that 0 € p(A) NN _, p(A,). Furthermore, for the proof we adopt the
same setting as in the proof of Theorem 2.1 and write again T),(t) and A,, instead
of Ty,(t) and A,,, respectively. Correspondingly we also set A, = A" — A,
n=1,2,... . In the following ‘const.” always denotes a positive constant which
does not depend on x or ¢ (in the given sets) and may have different values at
different occurrences.

The proof for part a) is straightforward, estimating the terms on the right-hand
sides of (2.3) and (2.4). We have to observe that the restriction of the semigroup
T(-) to (dom A%, || - ||dom A=) is also of type G(M,w,dom A%) and || A%z qom ae <
const.|| x| qom aa+s.

For the proof of part b) we observe first that in case of an analytic semigroup the
representation (2.3) of e, (t) is valid for € dom A'*® § > 0. The integration by
parts which leads to (2.2) can also be performed under the present conditions. We
only have to observe that for an analytic semigroup we have T'(7)z € dom A*, k =
1,2,..., 7 € X and 7 > 0. Furthermore, we have to use the estimate || A2T'(7)z|| =
|AY=8T (1) AlHox|| < const.r— 1| T (1) A x|, 7 > 0, 2 € dom A0,

We only have to consider the integral term on the right-hand side of (2.3),
because for the other two terms and the term on the right-hand side of (2.4) we
see immediately that, for € > 0,

| Az||qom A« < const.||z||gom aat1, = € dom A>T
and

1T (t) Az || aom Ao < MQWTHAx”domA"‘ < const.|[z]|qom ao+1,

for z € dom A**! and 0 < ¢t < T. For the integral term we get the estimate

t
||/Tn(t — T)ﬁnAnA2T(T)3: dTH
0

_ T
< MeT)| A £ (dom e ) / | 42T ()2 qom avdr
0

IN

T
const.||An||L(domAa)X)/ ||A1_5A1+5T(T)x||dom Ae dT
0

T 4

IN

Fl—¢ ”AH_ET(T)x”dom AedT

COHSt.||An||£(domA°‘7X)/
0

N

~ ConSt-”An”L(doon‘,X) ||(E||d0m Aca+lte
for x € dom A®tT1Te. With respect to properties of fractional powers of closed
operators which have been used in this proof we refer to [11], for instance. |

In case of second order parabolic equations with a selfadjoint uniformly elliptic
operator it was shown in [2] that we can take ¢ = 0 in part b) of Proposition 2.2.
Using basically the same ideas as in [2] we can prove an analogous result for analytic
semigroups on a Hilbert space with arbitrary selfadjoint infinitesimal generator.
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28 KAZUFUMI ITO AND FRANZ KAPPEL

Proposition 2.3. Let Z and X, be Hilbert spaces and assume that (Al), (A3)
are satisfied. Furthermore, assume that A generates an analytic semigroup on X
and that the A, are selfadjoint bounded operators on X, with the property that,
for a Xo € p(A) NN, p(An), the operators A, — Xol,, are dissipative, i.e., A, €
G(1, X0, X,,). Then the following is true:

a) For any T > 0 and any o > 0 there exists a v = v(T,a) > 0 such that
[ EnTn(t) Pra — T()z] < v An(Xo)ll £(dom a,x) %] dom 4+
for all t €[0,T] and all x € dom A®*1,

b) Assume that in addition statement (a) of Theorem 2.1 is true. Then for any
6> 1 and a > 0 there exists a v = v(6, &) > 0 such that

[EnTn () Pox = T ()| < 7 An(A0)l 2(om a2, x) 12l aom ac+1/2
for all t € [1/6,6] and all € dom A*+1/2,

Proof. The general setting is as in the proofs of Theorem 2.1 and Proposition 2.2,
respectivley. Instead of equation (2.8) we first define v, (t) = te,(t), which, for
x € dom A%, a > 0, satisfies

Up = Apvp, + en(t) + tA,mn AL AT (H)z, ¢ > 0,
v, (0) = 0.
By the variation of constants formula we get

t t
v (t) = / To(t — T)en(T)dr + / ATt — T)mn ApTAT (T)2 dr, t > 0.
0 0

Integration by parts in the second integral gives

en(t) = % /O To(t — 7)en(7) dr — mn Ay AT (t)z
(2.10) + % / Tt — Py AL AT (1) dr
0

1 t
+ z/ Tt — T)Tn AT AT (T)zdr, >0, € dom A”.
0

Observe that ||7A%T(7)z|| = ||[TA%2~°T(1)A%| < const.7—1T%||A%| for = €
dom A%, which guarantees that the last integral in (2.10) exists. Analogously one
sees that the other integrals also exist. From equation (2.8) we get, for z € dom A<,

en(t) = A en(t) — AL AT ()2, ¢ > 0.

Taking inner products with e, () on both sides, observing that by selfadjointness
of A, we have

1A ent), A7 en(t))

Re(en(t), A7 é0(t) = 57

and integrating from 0 to ¢, we get
t t
[ llen(nldr = 3 (en(t). A7 en(0) ~ Re [ (en(r). 7 8, AT (1)) dr
0 0

1/t 1 [t
< —/ llen(T)||2dr + —/ T A AT (7)2||2dr, >0,
2 /o 2 Jo
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THE TROTTER-KATO THEOREM 29

where we have also used dissipativeness of A,,. Consequently we have
t t
/ lew(r)|2dr g/ ImaAn AT (r)a|2dr, > 0, z € dom A*.
0 0

From this we get

(2.11)

H_/ (t = r)ea(r)dr] < 3 /IIT )|%ar) /2(/()t||€n(r)||2dr)l/2

. 1/2
< METE 2 A cgaom a ) /||AT(T)||§0mAadT) L t>o0.
0

In order to prove part a) we choose r € dom A**L. Then ||AT(7)z||dom A« <
Me!“!IT||z|| qom ao+1 Which shows that

H—/ ot = T)en(r) dr]| < const.l|An com an.x) 2]l dom Aett.

for t € [0,7).

The second and third term on the right-hand side of (2.10) can easily be esti-
mated by const.||Ay]|£(dom A, x)||Z]|dom ae+1 for all ¢ € [0,T] and z € dom A>*1.
For the fourth term we get

||—/ — )T AT AT ( )xdr”
L[
< const | Anlegaom ae )7 | TIAPT ()l adr
0

1 t
SCOHS’G-||An||£(domAa,X)¥/ |7 (7) Az || dom A dT
0
< const.||Ap || £(dom A, x) |7 | dom Aa+1

for 0 <t <T and = € dom A1,

For the proof of b) we choose x € dom A*T1/2 and observe first that selfad-
jointness of the A, together with (&) implies that also A has to be selfadjoint.
Consequently we have

IAT ()2 3om ae = AT (T)2||* + | AT (1) A%x||?

1d
= 5 (TN A2, T(r) A 2z)
1
+ 53—( (1) A+ 20, T(7) A+ 2e), 7 >0,
—

and consequently
' 2 1 /2,12 2
/O IAT(7)2|Gom aedT < ST (t)A P2]| Fom 4o < const[|z 3, gasrjzs 0.

This and (2.11) prove that

H— / (t —T7)en( )dTH < const.|[An || £(dom Ao, x) 1T ]| dom Aa-+1/2
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30 KAZUFUMI ITO AND FRANZ KAPPEL

for all t € [1/6,6] and all 2 € dom A®*1/2. For the other terms in (2.10) we get the
analogous estimates if we observe

K t
/ | AT (7)||dom AedT < const.||AY 2| qom Ae / r1/2qr,
0 0
¢ t
[ 1T el vt = [ AT (D) A o e
0 0
t
< const. || A2z gom e / 17247
0
for t € [0, 6]. -

Remarks. 1. Note the difference in the two statements of Proposition 2.3. The
first one requires x € dom A“*! but gives an estimate on intervals [0, 7], whereas
the second one requires x € dom A*1/2 only and gives an estimate on compact
t-intervals which exclude ¢ = 0. The assumption, that the consistency property (a)
is satisfied, in part b) is only used in order to prove that A is also selfadjoint.

2. Without restriction of generality we take the setting used in the proof of Propo-
sition 2.2 and set (note that A, = A= — A1)

F(?’L) = ||An||l:(domA°‘7X)-
This means that for any x € dom A% we have

(2.12) A7 e — A || < F(n)||@]ldom Ao

If we observe that v = A~z resp. u, = A, 'm,x are the unique solutions of the
steady state problems

Au==x resp. Apu, =m,T
we can rewrite inequality (2.12) as
(2.13) [u = un| = [[u = gnull < F(n)[[Aulldom A« < F(n)|[ullaom aa+1-

Therefore Proposition 2.2, a) can be stated as follows: If the estimate (2.13) is
true for an approximation scheme for the steady state problem Au = x, then we
have the same rate estimate for the corresponding approximation scheme for the
Cauchy problem @ = Au, u(0) = x, provided z € dom A*™2 (i.e., z € dom A and
Ax € dom A**1). This shows that the results of this section are closely related to
results in [10]. For instance, the assumption that the estimate (2.13) is satisfied is
exactly the assumption in [10] that “Theorem T” is true for X = dom A**! (see
[10, p. 130]). Proposition 2.2, a) essentially is Theorem 4.2 in [10] with the differ-
ence that in [10] the estimate is for T),(t)g,x — T(t)x instead of T, (t)m,z — T'(t)x.
Furthermore, the results of this section show that the smoothness assumption
x € dom A®*? can be relaxed considerably. In case of general analytic semigroups
in Banach spaces we need x € dom A®T*€ (Proposition 2.2, b)). If in addition we
assume that the spaces are Hilbert spaces and the generators are selfadjoint, then
x € dom A resp. x € dom A*+1/2 is sufficient (Proposition 2.3).
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3. HOW TO ESTABLISH STABILITY AND CONSISTENCY

In order to apply Theorem 2.1 one faces the following major difficulties:

a) In general it is very difficult to verify the stability property, i.e., to prove that
A, € G(M,w,X,,), n =1,2,..., for some M > 1, w € R, when M > 1is
necessary.

b) Direct verification of the consistency property (a) involves computation of the
resolvents (Al — A,)~ !, which in general is almost impossible.

Of course, the Hille-Yosida generation theorem for Cy-semigroups tells us among

other things that A, € G(M,w, X,,) if A € p(A,) for Re A > w and
M

(Re A — w)k’
But to establish these inequalities for the powers of the resolvent operators in par-
ticular for the approximating generators A, is in most cases (i.e., except M = 1)
impossible. In general, the only way to verify the stability property is to use dissipa-
tivity estimates possibly after renorming the spaces X,, with uniformly equivalent
norms.

Concerning the consistency property one tries at any case to avoid computation
of the resolvent operators (A, — A,)~! and direct verification of condition (a).
Usually it is very easy to compute explicit representations of the approximating
generators A,. Therefore one would like to replace (a) by a condition involving
convergence of the operators A, to A in some sense. The following result is well
known, the proofs perhaps are different (see for instance [11]):

(A, — A,) 7k < Red>w, k=1,2,... .

Proposition 3.1. Let the assumptions of Theorem 2.1 be satisfied. Then state-
ment (a) of Theorem 2.1 is equivalent to (A2) and the following two statements:

(C1)  There exists a subset D C dom A such that D = X and (Aol — A)D
=X for a A > w.
(C2)  For all u € D there exists a sequence (Up)nen with W, € dom A,, such that

lim E,u, =u and lim E,A,u, = Au.

Proof. Without restriction of generality we can assume Ag = 0 for the proof. We
first prove that (a) implies (A2) and (C1), (C2). To this end we first set D = dom A
which implies AD = X, i.e., (C1) is satisfied. In the proof of Theorem 2.1 we have
already shown that (a) implies (A2) (compare (2.4)).

We next fix u € dom A, choose z € X with u = A~z and set u,, = A ' P, Au.
Then we have

E,u, —u= EnA,ijnx — A 'z =0
as n — oo by (a). Furthermore, we have (using (A2))
B A, — Au = EnAnAganx —AA s =E,Px—x—0

as n — oo. Thus we see that (C2) is also true.

In order to prove that (A2) and (C1), (C2) imply (a) we use the identity
(3.1) E,A'P, — AT ' = E,(A'P,A— P)A™  + (B, P, — 1)A™".
For z € AD we choose u € D with x = Au and set u,, = A 1P, 2 = A, 1P, Au.
Furthermore, for u, we choose %,, according to (C2). Then we get

Han - Pnu”ﬂ = ”Pn(Enﬂn - u)||n < M1||Enﬂn - u|| —0
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as n — oo and
[n — wnlln < ||A’r_7,1H | Antin — PnAully,
< ”A;lH | Pl | B Antin — Aul| — 0

as n — oo. Note that |4, || is uniformly bounded, because 4, € G(M,w, X,,) for
all n. The last two estimates prove that

[Pnt = unlln < [[Pott = Tnlln + [T — unfln — 0
as n — oo. This estimate together with (3.1) and (A2) implies
|En AL Pz — A7 || < || En(un — Pow)|| + || EnPou — ul
< Ms||un — Poullp + || EnPou — ul| — 0

asm — oo for all z € AD. A density argument finishes the proof for (a) (note that
|E, AP, | is uniformly bounded). |

Remark. In fact, conditions (C1) and (C2) provide a formulation of the consistency
property which is essentially the original one. See for instance [12, Chapter 3] for
difference approximations.

The example in Subsection 4.1 below demonstrates the usefulness of conditions
(C1) and (C2). However, in many applications, in particular if the abstract Cauchy
problem is the abstraction of a PDE-problem, the generator A is defined via a
sesquilinear form o, which is given on a densely and continuously embedded sub-
space V' of the state space X. Then the approximating generators A, usually are
defined by sesquilinear forms o, on the approximating state spaces X,. These
sesquilinear forms o,, are obtained from restrictions of ¢ to appropriate subspaces
V, of V which are isomorphic to X,,. Of course, in such a case one would like
to establish the stability and consistency property by using the approximating
sesquilinear forms o,. Instead of formulating some general results in this direc-
tion we demonstrate the ideas by the examples in Subsections 4.2 and 4.3. The
main reason for this approach to the problem is the fact that usually one has to ex-
ploit the special structure of the problem under consideration, which makes it very
difficult to provide simple general conditions which cover a wide range of special
cases.

Parabolic problems allow much stronger results, which will be presented in a
different paper.

4. EXAMPLES

In this section we demonstrate applicability of the results developed in the pre-
vious sections. As already mentioned in the introduction the goal is to show that a
variety of concrete situations is covered by the general framework presented in this

paper.

4.1. A first order hyperbolic PDE. In this example the role of the operators
P, and E,, appearing in conditions (A1)—(A3) and the usefulness of Proposition 3.1
are demonstrated. Consider the first order hyperbolic PDE

0 0
u(t,0) = 0.
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The equation is studied in three different state spaces: X = L(0,1), X = L?(0,1)
and X = Cy(0, 1), respectively, where Cy(0, 1) is the space of continuous functions
on [0,1] vanishing at = 0. It is not difficult to show that the linear operator A
defined by

Ap=—¢/, ¢ domA,

with domA = {¢ € X | ¢ is absolutely continuous on [0,1] with ¢ € X and
#(0) = 0} generates a Cgp-semigroup on X. The numerical method analyzed here
is the first order finite difference scheme

d _ uk_l(t) — uk(t)

—ur(t) = k=1,...
(4.2) g () Az ’ th
(%) (t) = 0,
where col (u1,...,u,) € X, = R™ and uy(t) represents an approximating value for

u(t, z) at the k-th nodal point xp, = k Az with Az = 1/n. From equations (4.2) it
is clear that the approximating generators A,, on R™ are given by

1
(Apu)k = E(uk_l —ug), k=1,...,n

where we set ug = 0.

Case 1. X = L'(0,1).
Let P,, F,, and | - ||, be defined as

nU—ZUkX (Th_1,28] u € Xn,
(Pa) A/ de)dr, 1<k<n oEX,

[l = AZEZ lugl, € X,.

It is easy to show that the conditions (A1l)-(A3) are satisfied. For an element
u € Xp \ {0} the elements v in the duality set F,,(u) C X are given by

v = Az||ull, (a1, ..., an),
where ay, = sgnuy, if up # 0 and |ag| <1 if up = 0. Then it is easy to see that
(Apu,v) <0 for all v € F,(u),
which establishes the stability property.

In order to verify the consistency property we choose D = domA = {¢ €
C1(0,1) | ¢(0) = 0} which establishes condition (C1) in Proposition 3.1 with w = 0.
For u € dom A we define u,, € X,, by
(4.3) Uy, = col (u(zy), ... u(zy,)).

Then simple computations show that
| Entin, — ullpr < Az ||| 11,

which proves lim,, o Fpi, = u.
Furthermore we have

Tk
| EnAptiy, — Auljpr < — Z/ / [/ (1) — u/(0)| do dr < w(u'; Ax),
Tk—1 Y Tk—1
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which proves lim,_,o0 EnAn, = Au. Here h — w(u'; h) denotes the modulus of
continuity for u’. Consistency now follows from Proposition 3.1.

Case 2. X = L?(0,1).
Let P,, E, be as in Case 1 and || - ||,, be given by

n
l|ul|2 = AZEZ lug?, w € X,.

In this case the inner product on X, is defined by (u,v), = (E,u, E,v)p2. Then
stability is obvious from

n

(Apu,u), = Z(uk_luk - |uk|2) <0, wueX,.
k=1

In order to verify consistency let D = dom A and define 4, by (4.3). We have

Bt — ul?: <Z/zk ([ wtetas)ar
/wk (@ / ' (o) [2dor dr
/ / 71(1:;6 —7)dr do

lz/ 0)[2do (Az)? = (A:f:)"’llu’ll%%

which tends to zero as n — oco. Concerning A, @, we have

1 2 " Lk Tk 2
||EnAn’lj/n — AU”%z < (A_JJ) Z‘/m ) (‘/wkl‘u/(’r) — u/(0)| dO’) dr
Ax Z/zk lAa: /zkk1|u’(7') - u’(0)|2d0dr

<w(u';Az)? =0

IN

TTM: HMS

l\D

as n — oo. This finishes the proof of (C2) in Proposition 3.1.

Case 3. X = Cp(0,1).
Assume that P,, E, and || - ||, are defined as

E,u= ZukBk(x), u € Xy,

(Pod)i = dlan), 1<k<n, $€X,

||, = max lugl, u€ Xy,
<k<n

where the first order B-spline Bi(z), k =1,...,n , for 0 <z <1, is given by
n(x —zk-1), =€ [Tr—_1,Tk],

(4.4) Bi(z) = S n(zg41 — x), @ € [Tk, Ty1),
otherwise.

o
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Obviously, assumptions (A1)—(A3) are satisfied. For (A2) one has to observe that
E, P,u is the first order spline interpolating u at the meshpoints.
For u € X,, the elements v € F, (u) are given by

) lullnsgnu;  for k=1,
"o for k # 1,

where i is an index such that |u;| = maxy |ug|. Then it is easy to see that (A, u,v) <
0 for all v € F,,(u), i.e., the stability property is satisfied.
For the consistency property, we again choose D = dom A and @, € X, for

u € dom A as in the previous cases. Then we have

lim ||Epan — ul|eo =0,

n—oo
because E,u, is the first order spline interpolating the continuously differentiable
function u at the meshpoints. Moreover, we get for numbers & € (vx_1,x) the
estimate

~ U\ L — —u\r ~
1B At~ Ao = |3 WD) gyl = 3 (6 Bl
k=1 k=1

n

<l = 3w ) Belloe + e (ax) — o' (6)]
k=1

< |ju" — Zu’(a:k)Bka +w(;Az) -0 asn — oo.
k=1

The first term on the right-hand side tends to zero, because Y ,_, u'(x) By, is the
first order spline interpolating the continuous function u’ at the meshpoints (note
that «/(0) = 0). This finishes the proof for (C2).

4.2. A second order wave equation in one space dimension. This example
demonstrates how to use sesquilinear forms in order to prove stability and consis-
tency of approximations. We consider the wave equation

0? 0?
4. —u(t = — <zx<l1
(45) u(ta) = sl e), 0<z <l
with boundary conditions
u(t,0) =0,
0 0
k—u(t,1) + =—u(t,1) =0, k£>0.
g+ gyt =0, k>
Defining z; = u and 23 = %u one can write (4.5) as the system of first order
equations
8 Z1 O 1 21
4'6 _ =
s 72z oG
with

z1(t,0) =0 and kzo(t,1) + %zl(t, 1)=0.
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a) Well-posedness of the problem. Let the Hilbert space V = {¢ € H'(0,1) | $(0) =
0} be equipped with the norm [|¢|y = (fol |gb’|2dac)1/2 and set Z = X =V x L?
(L? = L?(0,1)). The linear operator A on X is defined by
dom A = {(¢1,¢2) € X | ¢1 € H*(0,1), ¢ € V and ke(1) + ¢} (1) = 0},
A((bla ¢2) ((b?a //) for ((bla (b?) € dom A.

It is easy to verify that A is m-dissipative and thus generates a Cp-semigroup on
X (note that A is densely defined, because X is a Hilbert space).
For ¢ = (¢1,¢2) € dom A and ¢ = (¢1,12) € X we set

o(p, ) = (A, ) = (p2, V1) + (P, 1h2) 12
/ (P} + ¢ap2) d.

If also 12 € V, then we can integrate by parts and obtain (using also the boundary
condition at z = 1)

1
(4.7) o(d, ) = /O (640, — Bh) dar — ko(1)ha(1).

This equation makes sense for all ¢, € V = VxV. Trivially V' is densely
embedded in X. We define the sesquilinear form o : V x V — R by (4.7). It is not
difficult to see that ¢ € V is in dom A if and only if |o(¢, )| < K(¢)||¢||x for all
pevV.

b) The approzimating spaces. We consider a mixed finite element method and try
to approximate solutions of (4.6) by

(1) t 3: Zaz
(2) (t,z) Zﬁz

where x; = i/n, i = 0,...,n, B;(z) are the first order B-splines defined by (4.4)
and S;(-) = %X( no, fori=1,...,n. We define X,, = V,, x Hy, where

(4.8)

Ti—1,Tit1)

Vn={¢€‘7|¢zzai3i, a; € RY,

=1

H,={¢eL’|y=" BiSi B €R},
i=1
are equipped with the inner product induced from V resp. L2. As projections

X — X,, we choose the orthogonal projections P, = (P,El), P(2)) and set E,, = P},
i.e., E, is the canonical injection X,, — X. Obviously, assumptions (A1)—(A3)
are satisfied. Since P( ) is the orthogonal projection V — V, with respect to
the V-inner product, it is easy to see that, for f € v, P,gl) f is the first order
spline which interpolates f at the meshpoints x; = i/n, i = 0,...,n . Note that

F0)=(PMf)0)=0
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¢) The approzimating operators. Since X, is not a subspace of V', we cannot define
op, to be the restriction of o to X,,. However, D,, = V,, x V,, is a subspace of V', so
that we can define the sesquilinear forms &, : D, X D,, — R by ¢, = 0 |p, xD, -
Moreover, the spaces D,, are isomorphic to X,,, an isomorphism i, : D, — X,
given by

in(u,v) = (u,P,(f)v) for (u,v) € D,

A simple computation shows that

PP ¢ = Zn:aisi for ¢ = iaiBi ev,.
=1

i=1
We define the sesquilinear forms o, : X,, X X, by

1 1

y) = o(iy ziyty), z,y € Xa,

and the approximating operators A,, by

on(2,y) = Gnliy a, iy,

(Apz,v) = op(x,v), z,vE X,

From this it is easy to compute the matrix representations for the operators A,
with respect to the bases By,..., B, of V,, and S1,...,S5, of H,. Let

xr = (i OziBi, i ﬁlSz) and Anl' = (i 'YiBia i (5151)
=1 =1 =1 =1

We set o = col(aq,...,an), B8 = col(B1,...,0n), v = col(y1,...,7,) and § =

col (61,...,6,). Then simple computations show that
(4.9) Qn6=—-H,a—F,8 and ~ =7,
where
2 1 0 0 2 -1 0 0
1 2 -1 2
Q= % 0 0|, H,=n| 0 0],
2 1 2 -1
0 0 1 1 0 0 -1 1
0 -+ -+ 0
F, =
0 0
0 0 &k

We note that the matrix

0 I,
_Q;IHn _leFn
is nonsingular, which follows from det @, # 0, det H, # 0. This in particular
implies 0 € p(A,), n=1,2,... .
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d) The stability property. For x € X,, we have
(Apz,2) = op(w,2) = o(ir tayi te) <0
by (4.7), i.e., A, € G(1,0,X,,) for all n.

e) The consistency property. We have already shown that 0 € p(A) N2, p(A,).
For (f,g) € X let (u,v) = A71(f,g) and (un,v,) = A P, (f,g). From A(u,v) =
(v,u") = (f,g) we conclude v = f and (u”, 1)) = (g, 1) for all 1) € V. Integration
by parts and (u,v) € dom A imply

(4.10) — (Y = (g, ) + kf(1)(1) forally € V.

We next derive an equation analogous to (4.10) for the approximations. By
definition of the A,, we have, for arbitrary (¢, ¥,) € X,

(411) <Pn(fa g)a (d)na 1/)n)> = <An(una Un) (¢n71/)n)> = U( 1(una Un)a i;1(¢na 1/)71))
We define ﬁnad;n eV, by ir_y,l(uny'Un) = (’UJn,’LN)n) and Z;l((bn,l/)n) = (¢n71/~)n)7 i.e
v = PP, and ¥, = P4, From (4.11) with 1, = 0 we obtain

(P F, b)Y = (Bn, n)p for all ¢y, € V.

This proves Pﬁl) f = v, and consequently
— P(2 p(1 Z f(z)S

Again using (4.11) we get (also using 9,,(1) = (P,gl)f)(l) = f(1))
(4.12) —(up, ) = (PP g, PPn) + kf(1)iha(1)  for all ¥, € V.
We choose @, = P\"u € V,,. Then we get from (4.10) with ¢ = ¢, and (4.12)
< Uy, — n7w > < 2)9 P2)1/’ > < 7wn>
(4.13) = (PPg— g, PPUn) + (9, PP — )
= <gv Prg,2)1/;n - 1/~)n>a fOI‘ au 1/)11 S Vn
Here we have also used (u/,9,) = (u,¥,)q = <P7§1)u,z/~1n>‘~/n = (@, 1). Equation
(4.13) implies
‘@n - umq;n>\"/| < llgllzz ~SUE’/ ||Prg2)>~<n — Xnllz2
Xn&Vn
Xnllo<1
for all ¢, € V;, with |9, || < 1. Taking ¢y, = ||y — un|| = (@ — un) we get
= B (2) ~ Ry
(4.14) [tn = unlly < llgllz sup P37 Xn — Xnll L2
Xn€Vn
”)271”\7§1

By compactness of {x € V | |[x| < 1} in L? we see that the right-hand side of
(4.14) tends to zero as n — oo. Thus we have

(4.15) [|in — unl|ly — 0 asn — oo.

Since u € H? and @, = Prgl)u is the first order spline which interpolates u at the
meshpoints, we also have

(4.16) |an —ully =0 asn— oo.
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Finally we get

|EnAn Pa(f.9) — AN 9P = ([ (s vn) — (w,0)]|* = [|(wn, P PD £) — (u, £
= [lun —ullZ + |PP PO f - flI3
< 20w = @nll3 + 200 — unllZ + 2| PO f — flI72 + 20 f — PP fI3

From (4.15), (4.16), the fact that P,gl)f is the interpolating first order spline for f
and that P,€2) f is the orthogonal projection of f onto H, we conclude that

1B, AL Po(f,9) = ATH(f,9)l = 0 asn— o0

for all (f,g) € X. Therefore we see from Theorem 2.1 that, for all initial conditions
(u(0,-), 8%(0, ) € X,

ou
at

”En (an)(tv ')7 27(12) (tv )) - (u(tv ')7 (tv )) ||X —0 asn— o0

uniformly on bounded t¢-intervals. The approximations 20 (t,z), 22 (t,x) are given

by (4.8), V\;here a(t) = col (a1 (t),...,an(t)) and B(t) = col(B1(t),...,0n(t)) are
solutions o

do

% = 67
g
QnE - _Hna - Fnﬁ
with initial data «(0), 3(0) determined by
n n a
(D2 ai0)B., Y 6:(0)S:) = Pa(u(0, ), 5:(0,)).
i=1 i=1

4.3. Stokes equation. This example demonstrates that it is useful to consider
situations where X is a closed proper linear subspace of Z, because it can be very
natural to choose the spaces X, as subspaces of Z but not of X. Consider the
homogeneous Stokes equation (e.g., see [14] resp. [4] for the stationary case)

ur + gradp = Au,
(4.17) divu=0, z€Q,t>0,
u |F: 07 t 2 07
where Q is a connected bounded open set in R, N = 2, 3, with Lipschitz continuous

boundary I'. Of course, A denotes the Laplacian in RV,

a) Well-posedness of the problem. We shall consider solutions of (4.17) in a weak
sense. We introduce the following spaces (see [4], [14]):

V= {veDQ)?" | divv =0},
V = closure of V in W = Hj(Q)",
X = closure of V in Z = L*(Q)".

Equivalently the spaces V' and X can be defined as V = {v € W | dive = 0} and
X ={v € Z | divv = 0}, where the derivatives are understood in the distributional
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sense (see [4, Corollary 1.2.5 and Theorem 1.2.8]). On W we introduce the inner
product

N
o(v,w) = Z/Qgradvi -gradw; dx, v,w e W,
i=1

which is equivalent to the standard inner product. Of course, V and X are equipped
with the inner products coming from W resp. Z. Furthermore, V is dense in X
with continuous injection. The inner product o(-,-) and therefore also its restriction
to V x V satisfies the estimates

|0(u,v)| < HUHVHU”Vﬂ u,v €V,
(4.18) 9
U(U,u) = ||u||Va u e Va
which show that o is bounded and coercive. Therefore the operator A defined by
dom A = {u € V| there exists a k = k(u) such that
|o(u, )| < K[l x for all ¢ € Vi,
(Au, ) = —o(u,¢), wedomA, €V,

is the infinitesimal generator of an analytic semigroup 7'(-) on X and, moreover,
0 € p(A). The operator A is explicitly given by

dom A =V n H*(Q)V,
Au=mAwu, u€ domA,

where 7 is the orthogonal projection Z — X (see also [16, Section IIL.1]). In
order to define the approximating generators we shall use the following variational
formulation of (4.17) (see [4] for the stationary problem):

Lt ), 9), = —olult, ), ) + b, p(t, ), £>0, weW,

(4.19) dt
b(u(t7 ),pm) =0, t=0, L%(Q)v
where L3(Q) = {x € L*(Q) | [,xdz = 0} and

b(v, p) = / pdivedz, (v,p) € W x L3(Q).
Q
Note that “grad” is an isomorphism from L2(Q) onto {y € H=1(Q)N | (y,v) =
0 for all v € V'} (see [4, Corollary 1.2.4]).

b) Setting of the approzimation framework. For linearly independent elements ¢ €
HY Q)N i=1,... k,, and pu? € L3(Q),i = 1,...,m,, we define the spaces

W, =span (¢7,....¢p ), Hy,=span (uf,...,up5 )
and the subspaces V,, of W,, by
Vi ={p €W, |bl¢p,u) =0 forall p€ Hy,}

equipped with the V-norm. Furthermore, we define X,, to be V,, equipped with the
L?(Q)N-norm. Note that neither V,, is contained in V nor is X,, in X, because H,,
is a proper subspace of L3(2).
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Let P,, be the orthogonal projection Z — X,, and FE,, be the canonical injection
X, — Z. Then obviously (A1) and (A3) are satisfied. The sesquilinear forms o,
and the operators A,, are defined by o,, = o |y, xv, and

(Anz,y) = —op(z,y), z,y € X,.
Since (4.18) is also true for o,,, we conclude that 0 € p(4,), n=1,2,..., and
(Apz,z) = —0(2,2) = —||z||} <0, =€ X,
which establishes the stability property.

¢) The consistency property. We impose the following conditions on the spaces W,,

and H,,:
(i) For all u € V there exist elements w,, € W,,, n =1,2,..., with
(4.20) |lu —wyllw — 0 asn — oco.

(ii) The uniform inf-sup condition (see [4]) is satisfied, i.e., there exists a constant
B > 0 such that for all n

b s n
(4.21) sup blwn, ptn) > Bllpnll2)  for all p, € Hy,.

wnewn\{o} ||wn||W

We identify W, and H, with their duals and define the operator ¥,, : H, —
Wi =W, by

<\Ijn/14nawn>W = b(wnaun)v Wn € W’I’L? Un € Hn
From (4.21) we get

ol = sup Tt tdw gy, bl in)
(4.22) weew\ {0} [[wallw waew,\ {0} [[wnllw

> ﬁ”ﬂ””lﬁ(ﬂ)v Hn € Hp.

This proves that ¥,, is injective. The dual operator ¥} : W,, — H,, is given by
v, = b(vn,"), vn € W,. It is easy to see that ker U* = V;,. Thus we have
range ¥ = (ker ¥,,)t = H,, and range¥,, = (ker ¥})+ = VL. Thus = = ¥} lve
is a bijective mapping V.- — H,, (see also [4, Lemma 1.4.1]). Moreover, Z is the
adjoint of =,, : H,, — an- defined by =, ptn, = Yo i, by € Hy. For the norms of =,

=k
and =7 we get

b(wn, pin)
1Enll e, viey = 1SRl v 1, = sup .
e Wit = engoy Timllzzllwnllw
wn€V,,"\{0}
Therefore it follows from (4.22) that
4.23 Zn)t =||g;" <1
(4.23) 1) Neir, vy = I1E leve m) < I

Given w, € W,, and u € V we define f € H, by (f, itn)12(0) = b(u — Wy, i) for
all p, € H,. We set z, = (2¢)~'f € V;-. This implies

<E;§Zm ,Un>L2(Q) = b(Zn, ,Un) = <fa ,Un>L2(Q) = b(u — Wn, ,un)v Hn € o,.
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Moreover, (4.23) implies

1 1 (fs in)L2(0)
lznllw < <l fllLe@) == sup ———F——
5 ) B unera\foy linllzz)

1 b(u — Wy fn 1
Sl Mo Ly
B pneHa\{0} ||Hn||L2(Q)
b
where [|b]| = sup,cwn (0}, uerz(@ b, )] . The element v, = wy, + 2,

A ||UHW||#||L§(Q)
satisfies (note that u € V

)
b(vna llfn) b(Zn, Mn) + b(wna ljfn) = b(u — Wp, ljfn) + b(wn7 Mn)
b

(u, i) =0 for all u,, € Hy,

i.e., v, € V,,. Therefore we have
[[o]
o= wnllw < flu = wnllw +lznllw < (14 T8 ) = wallw-

This and assumption (4.20) imply that for all u € V there exist o,, € V,, such that
(4.24) lim |lu— ,|lw = 0.
Let ¢ € X be given. Then by density of V in X there exists a sequence (vg) in

V with ||¢ — vk||z — 0. By (4.24) there exists for each vy an element o € Vj, such
that ||vy — x|z < 1/k. But then ||¢ — x|z — 0 and consequently

(4.25) Jim [|¢ = Puollz =0
(note that X,, = V,, as sets). This also proves (A2). In order to establish the
consistency property we first observe that 0 € p(4) N(N,_, p(A4,). For ¢ € X we

choose u € dom A such that ¢ = Au and set u,, = A, 1 P,¢ € X,,. For u we choose
Up € Vo, n=1,2, ..., such that (4.24) is true. By definition of A and A,, we have

o(u, Uy, — Up) = (), Up, — Up) 7,
(U, Uy, — T) = (Pr@, up, — Un)z
and consequently
0(Up — Uy Uy — Up) = (U — Up, Up — Tp) + (P — &, Up — Tn) 2.
Observing (4.18) we get
||un - T}n”W < Hu - T}nHW”un - T}n”W + || Pt — ¢||Z||un - EnHZ
< Nun = wnllw (e = allw + K11 Pag = dll2 ).

where K is the embedding constant for the embedding W — Z. This together with
(4.24) and (4.25) implies

(4.26) lim ||un — pllw = 0.

n—oo

Using the definitions of v and u,, we see that
A7 — En AT Pagllw = [lu — unllw

< |l = Opllw + ||t — Tnllww = 0 asn — oo
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by (4.24) and (4.26). This in particular implies that the consistency property (a)
is true. By Theorem 2.1 we get

nh_{go ||Tn(t)Pn¢ - T(t)¢||Z =0
uniformly on bounded t-intervals for each ¢ € X.
In order to see how one computes T, (t)P,¢ set ®" = ((b?, .. .7¢};‘n), M"™ =

(pf,...,pu% ) and assume that u,(t) = @y, (t) together with p,(t) = M"B,(t),
an(t) € RF» 3, (t) € R™n | solve

S un(t), )2 = 0w (6 9) + bW, pu(0)), £ 0,
(4.27) b(un(t), i) = 0, >0,
Un(O) = Pn¢a

for all ¢,, € W,, and p,, € H,,. The second equation in (4.27) implies that wu,(t) €
Xp, t > 0. If we take 9, € X,,, then b(¢y, pn(t)) = 0 and (4.27) implies

i<’U’71(t)71/)7’L>Z == —O'(Un(t), u}n) == <Anun(t)a ¢n>Z7 t Z 07

dt
for all ¥,, € X,, or, equivalently,
Un(t) = Apun(t), t>0,

un(0) = Ppo.
This proves uy,(t) = T, (t)Poo, t > 0. Equations (4.27) imply that a,(t) and 3,(t)
satisty
Qnan(t) = - nan(t) + Bnﬁn(t)a t >0,
(4.28) -
an(t)* B, =0, t>0,
where

e Gts), ,

i,k=1,....kn

Qn = (( ?’¢Z>Z)i,k:1,mk”
B, = (b( ?7#2))

From (4.18) it is not difficult to conclude that rank B,, = m,, < k. The second
equation together with the first equation in (4.28) implies

0= Bgan(t) = _BEQ;ISnOZn(t) + BEQrlenﬁn(t)a t>0.

Because of rank B,, = m,,, the matrix R, := BXQ; !B, is positive definite and
therefore R, ! exists. This implies
(4.29) Bn(t) = R;'BYQ 1S, an(t), t>0.

Then the first equation in (4.28) gives
(430) an(t) = (In - Q;anRngE)lesnan(t)v t>0.

An easy computation shows that (a2)TB,, = 0 implies a,,(t)T B, =0, where a,(t)
is the solution of (4.30) with initial value a?.
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Remark. As already mentioned above we can prove stronger results in case the
semigroup is analytic. Using the parabolic character of this problem one can show
that

nh_)ngo ”Tn(tL)Pn(l5 - T(t)(b”W =0
uniformly for ¢ in intervals [1/6, 8] for arbitrary ¢ > 1.
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