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Abstract 
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smaller CRB; the penalty resulting from frequency estimation irrespective of the carrier phase 

decreases with increasing observation interval. 
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1 Introduction 

The Cramer -Rao bound (CRB) is a lower bound on the error variance of any unbiased 

estimate, and as such serves as a useful benchmark for practical estimators [1]. In many cases, 

the statistics of the observation depe nd not only on the vector parameter to be estimated, but 

also on a nuisance vector parameter we do not want to estimate. The presence of this nuisance 

parameter makes the analytical computation of the CRB very hard, if not impossible.  

In order to avoid the computational complexity caused by the nuisance parameters, a 

modified CRB (MCRB) has been derived in [2, 3]. The MCRB is much simpler to evaluate 

than the CRB, but is in general looser than the CRB. In [4], the high-SNR limit of the CRB 

has been evaluated analytically, and has been shown to coincide with the MCRB when 

estimating the delay, the frequency offset or the carrier phase of a linearly modulated 

waveform.  

The true Cramer-Rao bound related to joint carrier phase and frequency estimation 

(but not frequency estimation irrespective of the carrier phase) has been derived for BPSK 

and QPSK in [5] and for QAM in [6], assuming a simplified observation model. In this 

model, frequency error correction is applied after the matched filter, and the observation 

consists of the matched filter output samples (taken at the decision instants) before frequency 

correction. The simplification consists of neglecting the signal reduction and ISI that occur at 

the matched filter output when the frequency offset is nonzero. In [7], the low -SNR limit of 

the CRB for carrier phase and frequency estimation, again assuming this simplified 

observation model, has been obtained analytically for M-PSK, M-QAM and M-PAM. 

In this contribution we investigate the true CRBs related to frequency estimation 

irrespective of the carrier phase, and to joint phase and frequency estimation. The data 

symbols are either known (e.g., training sequence) or random, and are taken from an M-PSK 

constellation. The corresponding low-SNR limits of these CRBs are presented as well. We 

consider both the correct model (where the observation consists of the noisy PSK signal at the 

receiver input) and the simplified observation model adopted in [5-7]. The transmit pulse is a 

square-root Nyquist pulse and we assume the time delay to be known. Results are presented 

for various PSK constellations and several transmitted sequence lengths. The main 

conclusions are: (a) both observation models yield essentially the same results for moderate 

and high SNR, and (b) frequency estimation irrespective of the carrier phase exhibits a 

performance penalty as compared to joint frequency and phase estimation, but this penalty 

decreases with increasing observation interval. 
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2 Problem formulation 

Let us consider the complex baseband representation r(t) of a noisy PSK signal : 

( ) )()2(exp)()( twFtjkTthatr
K

Kk
k ++−= ∑

−=

θπε  (1) 

where a = (a-K, ... aK) is a vector of L = 2K+1 M-PSK symbols (|ak|2= 1); h(t) is a real-valued 

unit-energy square-root Nyquist pulse; F is the carrier frequency offset; θ  is the carrier phase 

at t = 0; T is the symbol interval; w(t) is complex-valued zero-mean Gaussian noise with 

independent real and imaginary parts, each having a normalized power spectral density of 1/2; 

ε = (Es/N0)1/2 , with Es and N0 denoting the symbol energy and the noise power spectral 

density, respectively. Depending on the scenario to be considered, the M-PSK symbols are 

either a priori known to the receiver (training sequence), or they are statistically independent 

and uniformly distributed over the M-PSK constellation (random data).  

In [5-7], Cramer-Rao bounds related to frequency estimation have been derived, 

assuming the following observation model: 

( ) KKkwFkTjar kkk ,,)2(exp L−=++= θπε  (2) 

where {wk} is a sequence of independent zero-mean complex-valued Gaussian random 

variables, with independent real and imaginary parts that each have variance equal to 1/2. In 

(2), rk stands for the matched filter output sample taken at the correct decision instant kT, 

when r(t) from (1) is applied to the matched filter and the frequency offset is assumed to be 

small (i.e., |FT|<<1) (see Fig. 1a). It is important to realise that the observations r(t) from (1) 

and {rk} from (2) are not equivalent, as will be pointed out in the sequel.  

Suppose that one is able to produce from an observation vector r an unbiased estimate 

û  of a deterministic vector parameter u. Then the estimation error variance is lower bounded 

by the Cramer-Rao bound (CRB) [1]: )(CRB])uû[(E i
2

ii ur ≥− , where CRB i(u) is the i-th 

diagonal element of the inverse of the Fisher information matrix J (u). The (i,j)-th element of 

J(u) is given by 
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Note that J(u) is a symmetrical matrix. The probability density p(r;u) of r, corresponding to a 

given value of u , is called the likelihood function of u, while ln(p(r;u)) is the log-likelihood 

function of u. The expectation E r[.] in (3) is with respect to p( r;u ).  

When the observation r depends not only on the parameter u to be estimated but also 

on a nuisance vector parameter v , the likelihood function of u is obtained by averaging the 
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joint likelihood function p(r|v;u) of the vector (u,v ) over the a priori distribution of the 

nuisance parameter : )];|(p[E);(p uvrur v= . 

We investigate two scenarios. For each scenario, the data symbols are either known 

(e.g., training sequence) or random to the receiver. Also, the effect of the observation model 

(correct/simplified) will be considered.  

• Scenario (i) :  estimation of F, irrespective of θ.  

The useful parameter is given by u = F. The nuisance parameter is given by v = θ when the 

transmitted data symbols are known, or by v = (θ, a) when the data symbols are random. In 

this scenario, θ  is considered as uniformly distributed in (-π , π ). 

• Scenario (ii) :  joint estimation of (F, θ).  

The useful parameter is given by u = (F, θ). There is no nuisance parameter when the 

transmitted data symbols are known. In the case of random data, the nuisance parameter is 

given by v = a. 

For both scenarios, the joint likelihood function p(r|v;u) is, within a factor not 

depending on (u,v), given by 

( )∏
−=

−=
K

Kk

j
kk eFxaFp θ)(,);|( uvr  (4) 

where 

( ) ( )θθθ εε j
kk

j
kk

j
kk eFxaeFxaeFxaF −− += )()(exp)(, **  (5) 

When using the simplified observation model (2), the vector r is given by (r-K, …, rK) and kx  

equals )(Frk
(  given by 

)2exp()( FkTjrFr kk π−=(  (6) 

As indicated in Fig. 1a, the quantity kr  is obtained by feeding r(t) to a filter matched to the 

transmit pulse h(t), and sampling the matched filter output at instant kT. The quantity )(Frk
(  

is obta ined by applying to kr  a rotation of -2πFkT rad. When using the correct observation 

model (1), r is a vector representation of the signal r(t) from (1), and )(Fxk  equals )(Fz k
(  

given by 

∫ −−= dtkTthFtjtrFz k )()2exp()()( π(  (7) 

As indicated in Fig. 1b, the quantity )(Fz k
(  is obtained by first applying to r(t) a constant-

speed rotation of -2πF rad/s, feeding the result to a filter matched to the transmit pulse h(t), 

and sampling the matched filter output at instant kT. Note the similarity between expressions 
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(6) and (7). However, unless F=0, it follows from Fig. 1 that )()( FzFr kk
((

≠ . Actually, 

{ )(Fz k
( } cannot be computed from { )(Frk

( }, and therefore estimating F from { kr } instead of 

r(t) is suboptimum.  

The log-likelihood function ln(p(r;u)) resulting from (4) is given by 

( ) 
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Computation of the CRB requires the substitution of (8) into (3), and the evaluation of the 

various expectations included in (8) and (3). 

As the evaluation of the expectations involved in J(u) and p(r;u) is quite tedious, a 

simpler lower bound, called the modified CRB (MCRB), has been derived in [2, 3], i.e., 

)(MCRB)(CRB])uû[(E ii
2

ii uur ≥≥− . The MCRB for frequency estimation, is given by 

[2,3] 
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where L = 2K+1 denotes the number of symbols transmitted within the observation interval. 

When using the simplified observation model (2), the MCRB (9) is valid for both scenarios (i) 

and (ii), irrespective of the data symbols being known or random. When using the correct 

observation model (1), the resulting MCRB converges to (9) for large L, for both scenarios 

and both cases of known or random data symbols. In [4] it has been shown that for high SNR 

(i.e., Es/N0 → ∞) the CRB for frequency estimation converges to the MCRB corresponding to 

the considered scenario.  

Also, a closed-form expression can be derived for the low-SNR limit (i.e. Es/N0 → 0) 

of the CRB, which we call the asymptotic CRB (ACRB). In [7] this has been accomplished 

for scenario (ii) with random data and using the simplified observation model.  

In this paper we compute the CRBs resulting from the scenarios mentioned above, and 

present the expressions for the corresponding ACRBs. It should be noted that these ACRBs 

do not necessarily provide a lower bound on the actual frequency error variance for moderate 

and large SNR. 
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3 Evaluation of the true CRB 

3.1 Estimation of F irrespective of θ; random data symbols 

Taking in (8) v = (a, θ), the log-likelihood function ln(p(r|F)) is (within an arbitrary constant) 

given by 

( ) 





= ∫

−

π

π

θθ dFKFp ))(,(ln)|(ln xr  (10) 

where ( ))(...,),()( FxFxF KK−=x ,  

( ) ( )∏
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K
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j
k eFxIFK θθ )()(, x  (11) 
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j
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and {α0, α1, ...,αΜ−1} is the set of PSK constellation points. Differentiation of (10) yields 
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and the subscript F denotes differentiation with respect to F. In these expressions 

)()( FrFx kk
(

=  or )()( FzFx kk
(

=  and )(2)( FrkTjFx kFk
(

π−=  or )()( FzFx FkFk
(

= , 

according to the observation model that is being used. As the variable F in (6) and (7) 

corresponds to the actual frequency offset, the quantities )(Frk
( , )(Fzk

(  and )(FzFk
(  can be 

decomposed as 

( )kNaFzFr kkk +== ε)()( ((  (17) 

( )kNakTjFz FkFk +−= επ2)((  (18) 

where N(k) and NF(k) are zero-mean complex Gaussian random varia bles, with  
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As M(θ,x (F)), H(α i,xk(F)e -jθ,xFk(F)e -jθ) and K(θ,x(F)) are periodic in θ  with period equal to 

2π , there is no need to include a carrier phase in the first term of (17) and (18).  Noting that 

the statistics of )(Frk
( , )(Fzk

(  and )(FzFk
(  in (17) and (18) do not depend on F, we drop the 

variable F in the sequel.  

Taking (13) into account, we derive from (3): 
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where 
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and E[.] denotes averaging over the data symbols and the noise. Using the method outlined in 

[8], expression (21) can be further simplified by making use of the statistical properties of 

1Fkx  and 
2Fkx , conditioned on x :  
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In equation (22), the captions ‘si’ and ‘co’ refer to the observation model (si: simplified, co: 

correct). The average in (21) is computed by first taking the expectation conditioned on x , and 

then averaging over x . We obtain 

( )








⋅

−
= LM

N
E

A
TLL

N
E

CRB
ss

sirai ,,
3

141

0

222

0
,),(

π  (23a) 

( ) 







⋅+= ∫

+∞

∞−

LM
N
E

BdtthtL
N
E

CRBCRB
ss

siraicorai ,,811

0

22

0

2
,),(,),( π  (23b) 

where 

( )( ) ( )( ) ( )( )[ ]mkk
s xmNxkNxkNELM

N
E

A xxx ,Im,Im,Im,, 2

0

−=







 (24) 



 8 

( )[ ]2

0

,,, xkNELM
N
E

B s =







 (25) 

and 
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In (24) xk and xm represent two statistically independent quantities (k≠m). The three 

superscripts in (23) and in subsequent equations related to the CRBs refer to the scenario ((i) 

or (ii)), to the receiver's knowledge about the data symbols (ra : random, kn : known) and to 

the observation model (si : simplified, co : correct). We observe from (23) that 1/CRB(i),ra,co 

equals the sum of 1/CRB(i),ra,si and an additional positive term. Hence, CRB(i),ra,co  < CRB(i),ra,si , 

which is in keeping with the fact that frequency estimation from {r k} in (2) is suboptimum. As 

outlined in Appendix, 1/CRB(i),ra,si dominates at high E s/N0 (for large L), whereas at low SNR-

values the additional term becomes the largest. Consequently, the simplified observation 

model will provide a CRB that approaches the CRB from the correct observation model at 

sufficiently high SNR. Note that A(Es/N0, M, L) and B(Es/N0, M, L) depend on Es/N0, on the 

size of the constellation and on the transmitted sequence length, but not on the shape of the 

square-root Nyquist transmit pulse. The shape of the transmit pulse affects only the 

coefficient of B(Es/N0, M, L) in (23b).  

For low SNR, (23a) and (23b) converge to the corresponding ACRBs. The 

computation of these ACRBs is outlined in Appendix; we obtain, for the simplified 

observation model, 

( )( )
2

22

2

0

2

2
,),( 1

)1(2

!13
T

LL
N
E

MACRB M

s

sirai
F

−






−=

π

 (27) 

where L= 2K+1 and M represents the number of constellation points. The ACRB (27) is 

proportional to (Es/N0)-2M and to L -4. With the correct model we get the following expression 

for the ACRB: 
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which is only proportional to (E s/N0)-2 and to L-1. Note that (28) is independent of the 

constellation size M, but is affected by the transmit pulse h(t).  
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3.2 Estimation of F irrespective of θ; known data symbols 

When the transmitted data symbols are known at the receiver, the nuisance parameter 

is given by v = θ; and no averaging over the data is required. Equations (20) -(22) remain 

valid, provided we remove in (12) the summations over the constellation points and replace αi 

by the actual symbol ak. The average in (21) is computed by first taking the expectation 

condit ioned on N  = (N -K, …, NK), and then averaging over N. We obtain 
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Note that for symbols taken from a PSK constellation, the statistics of M(θ, x) do not depend 

on the specific data sequence transmitte d; hence, CRB(i),kn,si from (29) does not depend on the 

particular training sequence. The second term of (30) indicates that the CRB corresponding to 

the correct observation model does depend on the transmitted data sequence. However, for 

large L this depe ndence is very weak. Indeed, for long training sequences with symbols drawn 

independently from a PSK constellation, the statistical fluctuation of the second term in (30) 

can be ignored as compared to the mean of this term. Therefore we can approximate this term 

by its mean over all possible training sequences, which corresponds to keeping in (30) only 

the terms with k1=k2. From the resulting expression it follows that the ratio of the first to the 

second term of (30) is proportional to L2, so that the second term can be safely ignored for 

large L. This indicates that CRB(i),kn,si and CRB (i),kn,co are essentially the same for long training 

sequences.  

The corresponding low-SNR limit can be derived as in [7]. For the simplified model we 

obtain (see Appendix): 
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which is proportional to (E s/N0)-2 and to L-4. For the correct observation model, the resulting 

cokni
FACRB ,),(  converges for large L to sikni

FACRB ,),(  from (31). 
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3.3 Joint estimation of F and θ ; random data symbols  

Now we take in (8) v = a. We obtain 
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where {α0, α1, ...,αΜ−1} is the set of PSK constellation points. Differentiation of (32) yields 
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Taking (33) and (34) into account, JFF and JFθ from (3) can be represented as  

( ) ( )[ ]∑ ∑
−=

−

=

−−−−=
K

Kkk

M

ii

j
Fk

j
ki

j
Fk

j
ki

s
FF eFxeFxHeFxeFxHE

N
E

J
21 21

222111
,

1

0,0

)(,)(,)(,)(, θθθθ αα  (35) 

( ) ( )[ ]∑ ∑
−=

−

=

−−−− −=
K

Kkk

M

ii

j
k

j
ki

j
Fk

j
ki

s
F eFjxeFxHeFxeFxHE

N
E

J
21 21

222111
,

1

0,0

)(,)(,)(,)(, θθθθ
θ αα  (36) 

where E[.] denotes averaging over the data symbols and the noise. As in section 3.1, 
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depending on the observation model. The decomposition of θj
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Fk eFz −)((  yields the same result as the decomposition of )(Frk
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section 3.1 (see (17) -(19)), so we drop the dependence on F. Note that ( θj
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1
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1
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We observe that 1/CRB(ii),ra,co equals the sum of 1/CRB(ii),ra,si and an additional positive term, 

which implies CRB(ii),ra,co < CRB(ii),ra,si. Again, the term 1/ CRB(ii),ra,si dominates at high Es/N0 

(for large L), whereas at low SNR the additional term becomes the largest (see Appendix). 

The remarks from section 3.1, concerning the behavior of the CRBs at sufficiently high SNR 

and the effect of the pulse shape, are also valid here. Note that CRB(ii),ra,si from (37a) for 

BPSK and QPSK yields the CRB for frequency estimation presented in [5]. 

The low-SNR limit based on the simplified observation model has been derived in [7]: 
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2
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)1(2
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MACRB
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F

−





π

=  (40) 

In contrast with (27), this ACRB is pr oportional to (Es/N0)-M and to L-3. For the correct 

observation model we must distinguish between M>2 and M=2. For M>2, coraii
FACRB ,),(  

resulting from (37b) is the same as corai
FACRB ,),( from (28); this indicates that estimating F 

independently of θ  or jointly with θ yields the same ACRB when M>2 and the correct 

observation model is used. For M=2, we find that for large L coraii
FACRB ,),(  converges to 

siraii
FACRB ,),(  from (40), evaluated for M=2; hence, for M=2 both observation models yield 

essentially the same ACRB. 

3.4 Joint estimation of F and θ ; known data symbols 

In this specific case it is a simple matter to compute CRB(ii),kn,si and CRB(ii),kn,co 

analytically, because there are no nuisance parameters. It is easily shown that the parameters 

F and θ  are decoupled (J θF = 0). The resulting CRBs are nothing but the MCRBF given by (9).  

4 Numerical Results and Discussion 

As no further analytical simplification of (24)-(25), (29)-(30) and (38) -(39) seems 

possible; we have to resort to numeric al computation. This involves numerical integrations 

with respect to θ  in (26), (29) and (30), and replacing the statistical expectations in (24) -(25), 
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(29)-(30) and (38)-(39) by arithmetical averages over a number of computer-generated vectors 

x. 

4.1 Known data symbols 

In the case of known data symbols, the CRBF resulting from the joint estimation of F 

and θ equals MCRBF. Hence, for any other scenario the ratio CRB/MCRB is a measure of the 

penalty occurred by not knowing the data symbols and/or not estimating θ  jointly with F. 

Fig. 2 shows the ratio CRB/MCRB related to the estimation of F independently of θ , 

i.e., scenario (i), along with the corresponding ACRB/MCRB. We have pointed out in section 

3.2 that both observation models yield the same ACRB; our numerical results indicate that 

also the resulting CRBs are essentially the same (when using the approximation of CRB(i),kn,co , 

outlined in section 3.2). For small (large) SNR, the CRBs converge to the corresponding 

ACRB (to the MCRB). Increasing the observation interval from L1 to L2 shifts the curve of 

CRB/MCRB to the left by an amount of 10log(L 2/L1) dB; hence the value of Es/N0 at which 

the CRB comes close to the MCRB is shifted by the same amount. Note that for SNR values 

of practical interest, CRB/MCRB is close to 1, even for a moderate length of the observation 

interval. 

4.2 Random data symbols, M>2 

It follows from sections 3.1 and 3.3 that in the case of random data symbols with M>2, 

the correct observation model yields essentially the same ACRBs irrespective of whether F is 

estimated jointly with or independently of θ . However, the ACRBs resulting from these two 

scenarios are much different when using the simplified observation model. 

Figs. 3 and 4 show, for 8-PSK and 4-PSK respectively, the ratios CRB/MCRB and the 

corresponding ACRB/MCRB, for scenarios (i) and (ii), and for both observation models. The 

behavior of the various curves is as follows.     

• For small SNR (say, Es/N0 ≤ -10 dB), the CRBs are close to the corresponding ACRBs. 

We have verified that also for 8-PSK the CRB (i),ra,si is very close to the ACRB(i),ra,si for 

Es/N0 ≤ -10 dB, but because of the steepness of the ACRB (40) for higher constellation 

sizes M, the ACRB at Es/N0 = -10 dB takes a very large value (about 1E20) that is outside 

the range shown in Fig. 3. Hence, the convergence of the CRB to the ACRB is quite 

constellation-size independent. 

• For a given observation model, scenario (i) yields the larger CRB. This indicates that 

estimating F jointly with θ is potentially more accurate than estimating F irrespective of θ. 
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Indeed, as F and θ  are uncoupled, the joint estimation of F and θ yields the same CRBF as 

estimating F when θ  is a priori known, and this CRBF is smaller than the one resulting 

from estimating F irrespective of θ. 

• For a given scenario, the simplified observation model yields the larger CRB. Indeed, as 

the transformation from r(t) to {rk} cannot be inverted, estimating F from {rk} instead of 

r(t) is suboptimum. 

• We have pointed out in section 3.3 that both observation models yield the same CRB for 

large values of Es/N0. Our numerical results indicate that for scenario (i) as well as for 

scenario (ii) the two observation models yield essentially the same CRB for SNR values 

of practical interest. The difference between these observation models becomes apparent 

only at small or even very small SNR. Consequently, the shape of the transmit pulse has 

no effect on the CRB at moderate and high SNR.  

• For given scenario and observation model, the CRB at a fixed Es/N0 increases with 

increasing M. This indicates that frequency estimation becomes more dif ficult for larger 

constellations. This effect is more pronounced for the estimation of F irrespective of θ  

(with ACRB being proportional to (E s/N0)-2M),  than for joint estimation of F and θ (with 

ACRB being proportional to (Es/N0)-M). 

• When Es/N0 is sufficiently large, the CRB converges to the MCRB. The value of Es/N0 at 

which the CRB comes close to the MCRB increases with the number M of constellation 

points. 

• For small enough SNR, the CRB corresponding to the correct observation model is very 

close to the associated ACRB. Increasing SNR yields a CRB that for large M clearly 

exceeds the ACRB. In this context, it is instructive to consider the high-SNR limit (i.e., 

Es/N0→∞) ACRB ∞ of the CRB when the constellation size is infinite (which corresponds 

to continuous instead of discrete data symbols). Using the method outlined in [4], we 

obtain 

( )∫
∞+

∞−

∞ =
dtthtL

E
N

ACRB
s 222

0

4

1
2

π

 (41) 

which is proportional to (Es/N0)-1 and to L-1. Expression (41) indicates that for large E s/N0, 

the CRB in the case of infinite-size constellations does not approach the MCRB (9). 

According to [4], this is because of the non-diagonal nature of the Fisher information 

matrix, related to the joint estimation of the continuous data symbols and the frequency 
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offset. For large but finite M, with increasing SNR the CRB tends to ACRB∞, but a further 

increase of SNR eventually makes the CRB approach the MCRB. 

4.3 Random data symbols, M=2 

We have pointed out in sections 3.1 and 3.3 that in the case of random data symbols 

with M=2, both observation models yield essentially the same ACRB when F is estimated 

jointly with θ. However, when estimating F irrespective of θ, the ACRBs resulting from the 

two observation models are much different from each other. 

Assuming M=2, Fig. 5 shows the ratios CRB/MCRB and the corresponding 

ACRB/MCRB, for scenarios (i) and (ii), and for both observation models. The behavior of the 

various curves is as follows.     

• As for M>2, the CRBs converge to the corresponding ACRBs (to the MCRB) for small 

(large) SNR. The CRB resulting from scenario (i) is larger than the CRB corresponding to 

scenario (ii), when the observation model is given. Also, when the scenario is given, the 

correct observation model yields the smaller CRB. 

• For scenario (ii), both observation models yield essentially the same CRB. 

• For scenario (ii), the CRBs resulting from the two observation models behave in a similar 

way as for  M>2. When Es/N0 exceeds -30 dB, both observation models yield essentially 

the same CRB. 

• For SNR values of practical interest, the CRB for any scenario and any observation model 

is very close to the MCRB. 

4.4 Effect of observation interval (random data) 

For both observation models and both scenarios, we consider the ratio CRB/MCRB 

and the corresponding ACRB/MCRB for different lengths L of the observation interval, 

assuming random QPSK modulation. We have verified that the same behavior applies to other 

M-PSK constellations.  

For both observation models, the results related to scenarios (i) and (ii) are shown in 

Figs. 6 and 7, respectively. In scenario (i), the ratio CRB/MCRB at SNR values of practical 

interest decreases with L, whereas in scenario (ii) this ratio does not depend on L. This is 

consistent with the observation that for the simplified model, which is relevant for practical 

values of SNR, ACRB is proportional to L-4 (to L-3) in scenario (i) (in scenario (ii)). Hence, 

taking into account that the MCRB is proportional to L-3, it follows that for the simplified 
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observation model ACRB/MCRB is proportional to L-1 (independent of L) in scenario (i) (in 

scenario (ii)).  

Fig. 8 compares the ratios CRB/MCRB for both scenarios (i) and (ii), assuming the 

simplified observation model. We have verified that, for the ranges of Es/N0 and of 

CRB/MCRB considered in Fig. 8, the correct observation model yields virtually the same 

curves. For given Es/N0, increasing L makes CRB(i),ra approach CRB(ii),ra, and hence reduces 

the penalty, caused by treating θ as a nuisance parameter; for given L this penalty is 

considerably larger than in the case of known data symbols. The ratio CRB(ii),ra/MCRB being 

independent of L indicates that the penalty, caused by treating the data symbols as nuisance 

parameters, cannot be reduced by increasing the observation interval. 

5 Conclusions and remarks 

In this contribution, we have considered the CRB related to the carrier frequency 

estimation of a noisy linearly modulated signal with arbitrary square -root Nyquist transmit 

pulse. We have handled both random and a priori known data symbols; and have contrasted 

the results obtained from the correct observation model with those resulting from an 

approximation of the correct model, used in [5-7]. The CRB for joint phase and frequency 

estimation (scenario (ii)) has been compared to the CRB for frequency estimation irrespective 

of the carrier phase (scenario (i)). The numerical evaluation of the CRBs requires the 

approximation of each statistical expectation by an arithmetical average and, for scenario (i), 

also numerical integration is needed. These averages and numerical integration depend on 

Es/N0 and on the constellation size (and, for scenario (i), on the transmitted sequence length), 

but not on the pulse shape. The effect of the pulse shape is analytically accounted for. 

The numerical results indicate that the correct and the simplified model yield CRBs 

that are substantially different only at low Es/N0. The influence of the pulse shape is restricted 

to these low SNR values. For both small Es/N0 and very large Es/N0, the effect of the 

constellation on the CRB is small. For moderate Es/N0, the CRB increases with increasing 

constellation size. Frequency estimation irrespective of the carrier phase yields a larger CRB 

than joint freque ncy and phase estimation, which implies that the latter strategy is potentially 

the better one. For given SNR, the penalty of the former strategy with respect to the latter 

decreases with increasing observation interval. When the data symbols are known, this 

penalty can be neglected for practical values of SNR, even for moderate observation intervals. 

In the case of random data symbols, considerably longer observation intervals are required to 

make the penalty very small.  
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When the carrier frequency and phase are estimated jointly, we have considered the 

CRB for frequency estimation only. As for both observation models the frequency and phase 

are not coupled (i.e., JFθ = 0), the CRB for phase estimation is the same as in the case where F 

is a priori known to be zero. For F=0, the two observation models are equivalent, and the 

resulting CRB for phase estimation is the same as in [5,6].   

The simplified model of the matched filter output samples ignores the ISI and the 

reduction of the useful symbol magnitude, which are caused by the frequency offset F at the 

input of the matched filter. For Es/N0 up to 30 dB we have verified (details not reported here) 

that the useful signal magnitude is reduced by less than 0.01 dB and the ISI power is at least 

20 dB below the noise power, provided that |FT| < 0.015 (|FT| < 0.030) for a rolloff factor of 

20 % (of 100%). Hence, the simplified observation model is valid as long as the maximum 

frequency offset is in the order of 1 % of the symbol rate.  

The behavior of the true CRB for frequency estimation in the presence of coding is a 

topic for further research. 

Appendix: High and Low SNR limits of the true CRBs 

A.1 High SNR limits of the true CRBs 

For large Es/N0, we obtain an approximation of the CRB by keeping in the summation 

over the constellation points only the dominant term, i.e. the term with αi = ak. 

A.1.1 Scenario (i) 

Keeping only the dominant terms and taking into account the decomposition (17) of 

xk, we obtain for the quantities A(Es/N0, M, L) and B(Es/N0, M, L) from (24) and (25): 
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Substitution of (A.1) in (23a) yields 1/MCRBF; substitution of (A.1) and (A.2) in (23b) yields 

the sum of 1/MCRBF and an additional term which can be neglected for large L. 
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A.1.2 Scenario (ii) 

Keeping only the dominant terms and taking into account the decomposition (17) of 

xke-jθ, we obtain for the quantities C(Es/N0, M) and D(Es/N0, M) from (38) and (39): 
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Substitution of (A.3) in (37a) yields 1/MCRBF; substitution of (A.3) and (A.4) in (37b) yields 

the sum of 1/MCRBF and an additional term which again can be neglected for large L. 

A.2  Low SNR limits of the log-likelihood functions 

For small Es/N0, we obtain an approximation of the log-likelihood function by 

expanding the exponential function in (8) into a Taylor series and keeping only the relevant 

terms that correspond to the smallest powers of ε .  
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A.2.1 Random data symbols 

The random data symbols have to be considered as nuisance parameters. 

Consequently, in (8) averaging over the data is required.  
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Since we assume a M-PSK constellation, we obtain  
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Hence, the log-likelihood function ln p( r|u) can be approximated as follows: 
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where w is a vector of nuisance parameters other than the data. All other non-zero terms in 

(A.8) contain a power of ε  larger than M. 

Scenario (i); simplified observation model 

Take in (A.8) w = θ and FkTj
kkk errx π2−==

( . The terms in l
kx 2  are independent of F 

and for small ε  these terms can be neglected as compared to the term 1. Keeping only the 

terms that correspond to the smallest powers of ε  and taking into account that 

[ ] 0;0 ≠∀= xeE jxθ
θ (with x integer), we obtain for the log-likelihood function 
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Scenario (i); correct observation model 

Take in (A.8) w=θ and kk zx (= . In this case, l
kx 2 is function of F so that higher order 

terms can be neglected as compared to the term in 2ε . Taking into account that 

[ ] 0;0 ≠∀= xeE jxθ
θ  (with x integer), we obtain for the log-likelihood function 
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Scenario (ii); simplified observation model 

Computed in [7]. 

Scenario (ii); correct observation model 

Take kk zx
(

= ; no average has to be taken. Again, l
kx 2 is function of F so that higher 

order terms can be neglected as compared to the term in 2ε . We must distinguish between 

M>2 and M=2. For M>2, the terms in Mε can be neglected as compared to the term in 2ε . We 

obtain for the log-likelihood function 
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For M=2, the log-likelihood function becomes 
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This indicates that for M=2 only the in-phase component of kz(  is needed to estimate (F, θ).  

A.2.2 Known data symbols 

No averaging over the data symbols is required. This implies that in (A.5) the first 

order terms are the dominant terms. Hence, keeping only the terms that correspond to the 

smallest powers of ε, equation (8) can be approximate d as follows 
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Scenario (i); simplified observation model 

Take in (A.13) v = θ and FkTj
kkk errx π2−== ( . As the average of the term in ε  over θ  is 

zero, we obtain for the log-likelihood function  
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Scenario (i); correct observation model 

Take in (A.13) v  = θ and kk zx (= . Again, only the terms in ε2 should be considered, as 

the average of the terms in ε  over θ is zero. We obtain for the log-likelihood function 
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Scenario (ii); correct and simplified observation model 

In this case CRB=ACRB=MCRB. 
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A.3 Low-SNR limits of the true CRBs 

The application of (3) to (A.9), (A.10), (A.11), (A.12), (A.14) and (A.15) is 

straightforward but tedious. Keeping only the relevant terms corresponding to the smallest 

powers of ε  and taking into account the decomposition (17) of kx or θj
kex − we obtain (the 

dominant part of) J . Inverting J  then gives rise to the low -SNR limits of the CRBs.  

Acknowledgements  

This work has been supported by the Interuniversity Attraction Poles Program of the 

Belgian State - Federal Office for Scientific Technical and Cultural Affairs. 

References 

[1] H.L. Van Trees, Detection, Estimation and Modulation Theory. New York: Wiley, 
1968 
[2] A.N. D’Andrea, U. Mengali and R. Reggiannini, “The modified Cramer-Rao bound 
and its applications to synchronization problems,” IEEE Trans. Commun ., vol. COM-24, pp. 
1391-1399, Feb./Mar./Apr. 1994 
[3] F. Gini, R. Reggiannini and U. Mengali, "The modified Cramer-Rao bound in vector 
parameter estimation," IEEE Trans. Commun., vol. CON-46, pp. 52-60, Jan. 1998 
[4] M. Moeneclaey, “On the true and the modified Cramer-Rao bounds for the estimation 
of a scalar parameter in the presence of nuisance parameters,” IEEE Trans. Commun., vol. 
COM-46, pp. 1536-1544, Nov. 1998 
[5] W.G. Cowley, “Phase and frequency estimation for PSK packets: Bounds and 
algorithms,” IEEE Trans. Commun., vol. COM-44, pp. 26-28, Jan. 1996 
[6] F. Rice, B. Cowley, B. Moran, M. Rice, “Cramer-Rao lower bounds for QAM phase 
and frequency estimation,” IEEE Trans. Commun ., vol. 49, pp 1582-1591, Sep. 2001 
[7] H. Steendam and M. Moeneclaey, "Low -SNR limit of the Cramer-Rao bound for 
estimating the carrier phase and frequency of a PAM, PSK or QAM waveform," IEEE 
Communications Letters , vol. 5, pp. 215-217, May 2001.  
[8] N. Noels, H. Steendam and M. Moeneclaey, “The true Cramer-Rao bound for timing 
recovery from a bandlimited linearly modulated wafeform,” in Proc. IEEE Int. Conf. 
Communications 2002, New York, Paper D08-1, April 2002 
 


