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Abstract— A revisited quadrotor model is proposed, including
in particular the so-called rotor drag. It differs from the model
usually considered, even at first order, and much better explains
the role of accelerometer feedback in control algorithms. The
theoretical derivation is supported by experimental data.

I. INTRODUCTION

Quadrotor control has been an active area of investigation
for several years. On the one hand the quadrotor has several
qualities, among them its very simple mechanical design,
and qualifies as a viable concept of mini Unmanned Aerial
Vehicle (UAV) for real-life missions; on the other hand it
is perceived in the control community as a very rich case
study in theoretical and applied control. The first control
objective is to ensure a stable flight at moderate velocities
and in particular in hovering; this fundamental building block
is then used to develop higher-level tasks.

But for experiments designed to work only in the lab with
an off-board measuring device, e.g. [1], quadrotors all rely at
the heart on strapdown MEMS inertial sensors (gyroscopes
and accelerometers). These inertial sensors may be used
alone (as far as horizontal stabilization is concerned) [2], or
supplemented by other sensors which provide usually some
position-related information. Representative designs are: ul-
trasonic rangers [3]; (simple) GPS module when outdoors
and infrared rangers when indoors [4]; carrier phase differ-
ential GPS [5]; laser rangefinder [6]; vision system [7], [8],
[9]; laser rangefinder and vision system [10]. Unfortunately
those extra sensors have inherent drawbacks (low bandwidth,
possible temporary unavailability, etc.), hence inertial sensors
remain essential for basic stabilization.

Nearly all the papers in the literature rely on the same
physical model: only aerodynamic forces and moments pro-
portional to the square of the propellers angular velocities
are explicitly taken into account. Other aerodynamics effects
are omitted and considered as small unmodeled disturbances
to be rejected by the control law. The alleged reason is that
these effects are proportional to the square of the quadrotor
linear velocity, hence very small near hovering. Few authors
explicitly consider other aerodynamic effects: [11] consid-
ers aerodynamic stability derivatives, but draw no clear-
cut conclusion about their importance; [12], [13] consider
without physical motivation aerodynamic effects linear w.r.t.
the quadrotor linear and angular velocities, but propose
negligible numerical values; [5] judges them negligible at
low velocities, and focus on nonlinear aspects at moderate
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Fig. 1. Our home-built quadrotor: the “Quadricopter”.

velocities; [14] physically motivates the presence of effects
nearly linear w.r.t the quadrotor linear and angular velocities,
but provides no experimental data and is concerned only with
the open-loop system.

On the other hand the vector ~a of accelerometer measure-
ments can be used in two different ways (gyros are used in
both cases; see II-C for more details about inertial sensors):

1) directly in the equation ~̇V = ~g+~a if extra sensors pro-
viding position or velocity information are available,
thanks to a sensor fusion algorithm which estimates
the velocity and the pitch and roll angles

2) through the approximation ~a ≈ −~g. Accordingly, the
pitch and roll angles are estimated by a sensor fusion
algorithm. Commercial “attitude sensors” such as the
3DM-GX1 or the MTi2 run exactly on this principle.

In both cases the sensor fusion algorithm can be an Extended
Kalman Filter (EKF), a complementary filter, linear or non-
linear, or a nonlinear observer; see e.g. [15], [16] for an
account of the two cases. Recall that MEMS inertial sensors
are not accurate enough for “true” Schuler-based inertial
navigation, see e.g. [17, chap. 5] for details.

Now, a puzzling issue arises: the “usual” physical model
implies the longitudinal and lateral (in body axes) ac-
celerometers should always measure zero, which clearly
contradicts 2); as for 1), even if no particular form of the
accelerometers measurements is assumed, one way wonder
about the interest of using measurements known to be zero
(and besides corrupted by noise and biases). Nevertheless
many successful quadrotor flights have been reported, with
control laws relying on 1) or 2) or even both, and there is
no question that using accelerometers is beneficial.

This paper proposes a “revisited” model containing extra
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aerodynamic terms proportional to the propeller angular
velocity times the quadrotor linear or angular velocity. In
particular the so-called rotor drag, though rather small,
appears at first order and is essential to correctly account
for the accelerometer measurements.

The paper runs as follows: the model is derived in II; its
main features are experimentally validated in III; finally its
implications on control schemes are discussed in IV.

II. REVISITED QUADROTOR MODEL

In this section we derive the linearized longitudinal sub-
system (18)–(21) used in the rest of the paper. The reader not
interested in the physical details can directly proceed to II-C.

A. Model of a single propeller near hovering

We first consider a single propeller rotating with angular
velocity εiωi around its axis ~kb; ωi is positive, with εi = 1
(resp. −1) for counterclockwise (resp. clockwise) rotation.
The geometric center Ai of the propeller moves with a
given velocity ~VAi while the rotor plane (by definition
perpendicular to ~kb) undergoes angular velocity ~Ω; the total
angular velocity of the propeller is thus ~Ω+εiωi~kb. Following
e.g. [18, in particular chap. 5], the aerodynamic efforts on
the propeller resolve into the force ~Fi and moment ~Mi at Ai,

~Fi = −aω2
i
~kb − ωi

(
λ1
~V ⊥Ai
− λ2

~Ω× ~kb
)

+ εiωi

(
λ3
~VAi × ~kb − λ4

~Ω⊥
)

(1)

~Mi = −bεiω2
i
~kb − ωi

(
µ1
~V ⊥Ai

+ µ2
~Ω× ~kb

)
− εiωi

(
µ3
~VAi
× ~kb + µ4

~Ω⊥
)
, (2)

where a, b, the λi’s and µi’s are positive constants; the
projection of a vector ~U on the rotor plane is

~U⊥ := ~kb ×
(
~U × ~kb

)
= ~U −

(
~U · ~kb

)
~kb.

The above relations rely on classical blade element theory,
with two extra simplifications, and (approximately) apply to
any propeller, rigid or not:
• higher-order terms in linear and angular velocities have

been neglected. This is valid near hovering, i.e. for small
~VAi

and ~Ω. Here ~VAi
“small” means small with respect

to the propeller tip speed (about 40m/s in our case),
so that 5m/s can be considered small

• linear and angular accelerations have been neglected.
Their contribution is small since the mass of the pro-
peller is in our case very small with respect to the total
mass of the quadrotor.

The velocities in the previous equations are of course
velocities with respect to the air stream, not with respect
to the ground. They coincide when there is no wind, which
we assume in the sequel.

The term ωiλ1
~V ⊥Ai

in (1) is often called H-force or rotor
drag in the helicopter literature. Also notice the simplified
expressions (1)-(2), though directly based on textbook aero-
dynamics, do not seem to appear in the literature under this
compact form very handy for control purposes.

Fig. 2. Sketch of the complete quadrotor.

B. Model of the complete quadrotor

The quadrotor consists of a rigid frame with four pro-
pellers (directly) driven by electric motors, see fig. 2. The
structure is symmetrically arranged, with one pair of facing
propellers rotating clockwise and the other pair counterclock-
wise. The four propellers have the same axis ~kb; ~ıb :=

~A3A1

‖ ~A3A1‖ , ~b :=
~A4A2

‖ ~A4A2‖ and ~kb then form a direct coordinate

frame. Let A be the geometric center of the Ai’s and l :=
1
2

~‖A3A1‖ = 1
2

~‖A2A4‖; clearly,
∑4
i=1

~AAi = 0.
The whole system B, with mass m and center of mass C,

thus involves five rigid bodies: the frame/stators assem-
bly B0 and the four propeller/motor assemblies Bi; clearly,
~CA = h~kb for some (signed) length h. Resolved in the

(~ıb,~b,~kb) frame, the velocity of C reads ~VC = u~ıb + v~b +
w~kb and the angular velocity of B0 reads ~Ω = p~ıb+q~b+r~kb.

We assume the only efforts acting on B are the weight
and the aerodynamic efforts created by the propellers as
described in the previous section. In particular we neglect the
drag created by the frame, which is quadratic with respect
to the velocity, hence small at low velocities. Newton’s laws
for the whole system then read

m~̇VC = m~g +

4∑
i=1

~Fi (3)

~̇σBC =

4∑
i=1

~CAi × ~Fi + ~Mi, (4)

where ~σBC =
∫
B
~CM × ~̇CMdµ(M) is the kinetic momentum

of B. For each Bi, we can further write

~̇σBi

Ai
· ~kb = ~Mi · ~kb + εiΓi, (5)

where ~σBi

Ai
=
∫
Bi

~AiM × ~̇AiMdµ(M) is the kinetic momen-
tum of Bi, and Γi is the (positive) torque created by the
motor. For simplicity we have considered Ai as the center
of mass of Bi (in fact the two points are slightly apart). We
also consider the Γi’s as the control inputs (it is nevertheless
easy to include the behavior of the electric motors both for
modeling and control).
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In hovering ~VC and ~Ω, hence ~VAi
are zero; from (1)–(4)

this implies a(ω2
1 +ω2

2 +ω2
3 +ω2

4) = mg and ω2
1−ω2

2 +ω2
3−

ω2
4 = ω2

1−ω2
3 = ω2

2−ω2
4 = 0, hence ωi = ω̄ :=

√
mg
4a . As a

consequence
∑4
i=1εiωi,

∑4
i=1ωi

~AAi and
∑4
i=1εiωi

~AAi also
vanish in hovering. Neglecting in the right-handsides of (3)–
(5) second-order terms made up from ~Ω, ~VC ,

∑4
i=1εiωi,∑4

i=1ωi
~AAi and

∑4
i=1εiωi

~AAi, which is consistent with the
first extra simplification in section II-A, (3)–(5) read

m~̇VC = m~g − a
(
ω2

1 + ω2
2 + ω2

3 + ω2
4

)
~kb

− λ1(ω1 + ω2 + ω3 + ω4)~V ⊥C (6)

~̇σBC = −al(ω2
2 − ω2

4)~ıb + al(ω2
1 − ω2

3)~b

− ε1b
(
ω2

1 − ω2
2 + ω2

3 − ω2
4

)
~kb

− (ω1 + ω2 + ω3 + ω4)
(
µ′1~VC × ~kb + µ′′2~Ω

⊥
)

− (ω1 + ω2 + ω3 + ω4)λ1l
2r~kb (7)

~̇σBi

Ai
· ~kb = εi(Γi − bω2

i ), i = 1, 2, 3, 4. (8)

Indeed,

λ3
~VAi
× ~kb − λ4

~Ω⊥

= λ3

(
~VC + ~̇CA+ ~̇AAi

)
× ~kb − λ4

~Ω⊥

= λ3

(
~VC + h~Ω× ~kb + ~Ω× ~AAi

)
× ~kb − λ4

~Ω⊥

= λ3
~VC × ~kb + λ′4~Ω

⊥ + rλ3
~AAi

λ1
~V ⊥Ai
− λ2

~Ω× ~kb
= λ1

(
~V ⊥C +

(
h~Ω× ~kb

)⊥
+
(
~Ω× ~AAi

)⊥)− λ2
~Ω× ~kb

= λ1
~V ⊥C − λ′2~Ω× ~kb − rλ1

~AAi × ~kb,

where we used the fact that ~AAi is colinear to either~ıb or ~b,
and set λ′2 =: λ2 − hλ1 and λ′4 := λ4 + hλ3. Therefore,

4∑
i=1

~Fi = −a

(
4∑
i=1

ω2
i

)
~kb −

(
4∑
i=1

ωi

)(
λ1
~V ⊥C − λ′2~Ω× ~kb

)
+

(
4∑
i=1

εiωi

)(
λ3
~VC × ~kb − λ′4~Ω⊥

)
+ rλ1

(
4∑
i=1

ωi ~AAi

)
× ~kb + rλ3

(
4∑
i=1

εiωi ~AAi

)

≈ −a

(
4∑
i=1

ω2
i

)
~kb −

(
4∑
i=1

ωi

)(
λ1
~V ⊥C − λ′2~Ω× ~kb

)
,

neglecting velocity second order terms in the last line. A
further simplification, valid for a rather rigid propeller, is to
consider that λ′2 is zero. Indeed h is by design small, and
for a rather rigid propeller so is λ2. This yields

4∑
i=1

~Fi ≈ −a

(
4∑
i=1

ω2
i

)
~kb − λ1

(
4∑
i=1

ωi

)
~V ⊥C .

Similar computations yield

4∑
i=1

~CA× ~Fi + ~AAi × ~Fi + ~Mi

≈ −a

(
4∑
i=1

ω2
i
~AAi

)
× ~kb − b

(
4∑
i=1

εiω
2
i

)
~kb

− rλ1l
2

(
4∑
i=1

ωi

)
~kb −

(
4∑
i=1

ωi

)(
µ′1~VC × ~kb + µ′′2~Ω

⊥
)
,

where µ′1 := µ1−hλ1, µ′2 := µ2−hµ1 and µ′′2 := µ′2−hλ2.
We then evaluate the left-handsides of (6)–(8). Since the

approach is fairly standard we just give the final result,
~̇VC ·~ıb
~̇VC · ~b
~̇VC · ~kb

 =

u̇+ qw − rv
v̇ + ru− pw
ẇ + pv − qu

 (9)

 ~̇σBC ·~ıb~̇σBC · ~b
~̇σBC · ~kb

 =

Iṗ+ (J − I)qr + Jrq
∑4
i=1εiωi

Iq̇ − (J − I)pr − Jrp
∑4
i=1εiωi

Jṙ + Jr
∑4
i=1εiω̇i

 (10)

~̇σBi

Ai
· ~kb = Jr(ṙ + εiω̇i), i = 1, 2, 3, 4, (11)

where I, J, Ir, Jr are strictly positive constants. Notice we
replaced in the computation of the inertia tensors the actual
propellers by disks with the same masses and radii, and
took advantage of the various symmetries; this “averaging”
approximation is justified by the fact that the propeller
angles vary much faster than all the other kinematic variables
(besides this approximation is already heavily used in the
blade element theory used to derive (1)-(2)).

To describe the orientation of the quadrotor we use the
classical φ, θ, ψ Euler angles (quaternions could of course be
used). The direction cosine matrix Rφ,θ,ψ to go from Earth
coordinates to aircraft coordinates is then CθCψ CθSψ −Sθ

SφSθCψ − CφSψ SφSθSψ + CφCψ SφCθ
CφSθCψ + SφSψ CφSθSψ − SφSψ CφCθ

 ,

so that ~g = g(−~ıb sin θ + ~b sinφ cos θ + ~kb cosφ cos θ).
Finally the angles and angular velocities are linked by

φ̇ = p+ (q sinφ+ r cosφ) tan θ (12)

θ̇ = q cosφ− r sinφ (13)

ψ̇ =
q sinφ+ r cosφ

cos θ
. (14)

Equations (6)–(14) form the complete 13-dimensional
quadrotor model.

C. Model of the inertial sensors

The quadrotor is equipped with strapdown triaxial gyro-
scope and accelerometer. Without restriction, we assume the
sensing axes coincide with~ıb,~b,~kb. The gyroscope measures
the angular velocity ~Ω, projected on its sensing axes, i.e.
(gx, gy, gz) := (p, q, r); the accelerometer measures the
specific acceleration ~a := ~̇VP − ~g of the point P where it is
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located, projected on its sensing axe; see e.g. [17, chap. 4] for
details on inertial sensors. Hence by (3) if the accelerometer
is located at the center of mass C, which is the case for most
quadrotors, it measures ~a = ~̇VC−~g = 1

m

∑4
i=1

~Fi; by (6) the
accelerometer thus measures

ax := ~a ·~ıb ≈ −λ1

m
(ω1 + ω2 + ω3 + ω4)u (15)

ay := ~a · ~b ≈ −λ1

m
(ω1 + ω2 + ω3 + ω4)v (16)

az := ~a · ~kb ≈ − a

m

(
ω2

1 + ω2
2 + ω2

3 + ω2
4

)
. (17)

D. Linearized model

To highlight the salient features of the revisited model (6)–
(14), it is enough to consider its first-order approximation.
Suitably putting together variables, this linearized model
splits into four independent subsystems:
• longitudinal subsystem (input Γ1 − Γ3)

mu̇ ≈ −mgθ − 4λ1ω̄u

θ̇ ≈ q
Iq̇ ≈ 4µ′1ω̄u− 4µ′′2 ω̄q + 2alω̄(ω1 − ω3)

Jr(ω̇1 − ω̇3) ≈ Γ1 − Γ3 − 2bω̄(ω1 − ω3).

From II-C, ax ≈ − 4λ1ω̄
m u and gy = q are measured

• lateral subsystem (input Γ4−Γ2, states v, φ, p, ω4−ω2)
• vertical subsystem (input

∑4
i=1Γi, states w,

∑4
i=1ωi)

• heading subsystem (input
∑4
i=1εiΓi, states

ψ, r,
∑4
i=1εiωi).

We will concentrate on the longitudinal system, hence
need not detail the other subsystems. Notice the longitudinal
and lateral subsystems are the same up to a sign-reversing
coordinate change. Setting ωq := ω1−ω3, Γq := Γ1−Γ3

Jr
and

(f1, f2, f3, f4, f5) :=
(4λ1ω̄

m
,

4µ′1ω̄

I
,

4µ′′2 ω̄

I
,

2alω̄

I
,

2bω̄

Jr

)
,

the longitudinal subsystem reads

u̇ = −f1u− gθ (18)

θ̇ = q (19)
q̇ = f2u− f3q + f4ωq (20)
ω̇q = Γq − f5ωq, (21)

with measurements ax = −f1u and gy = q.

E. Departure from literature

Most authors consider a propeller model with only the ~kb
terms in (1)-(2), i.e. with all λi’s and µi’s equal to zero.
They thus end up with the quadrotor model

m~̇VC = m~g − a
(
ω2

1 + ω2
2 + ω2

3 + ω2
4

)
~kb (22)

~̇σC = −bε1

(
ω2

1 − ω2
2 + ω2

3 − ω2
4

)
~kb

+ al(ω2
1 − ω2

3)~b − al(ω2
2 − ω2

4)~ıb. (23)

There is obviously a problem with such a model: indeed
~a = ~̇VC − ~g is colinear with ~kb, hence ax = ay = 0, which
is certainly not thought to be true! This paradox is usually

not acknowledged, and the approximation ~a ≈ −~g is used
instead, i.e.

(ax, ay, az) ≈ (g sin θ,−g sinφ cos θ,−g cosφ cos θ). (24)

The alleged motivation is that ~̇VC is small near hovering,
at least in the mean. This is indeed true if the aircraft is
stabilized by some extraneous means, but a very questionable
assumption to use in a closed-loop perspective. Nevertheless,
many successful flights with controllers relying on this
approximation have been reported. We suggest in IV-C an
explanation reconciling all those facts in the light of the
revisited quadrotor model.

The longitudinal subsystem usually considered is then

u̇ = −gθ (25)

θ̇ = q (26)
q̇ = f4ωq (27)
ω̇q = Γq − f5ωq, (28)

with measurements ax = gθ and gy = q, to be compared
with (18)–(21) with measurements ax = −f1u and gy = q.

III. EXPERIMENTAL VALIDATION

A. Experimental setup

To validate the model, we recorded flight data with our
home-built “Quadricopter”, see fig. 1. Due to limitations of
our experimental setup, we could collect data to validate only
the force model (18), but not the moment model (20); this
is nevertheless the most important part of the model since it
accounts for the accelerometer measurements. The quadrotor
was fitted with a MIDG2 “GPS-aided Inertial Navigation
System”3 and a radio data link towards the ground station.
The MIDG2 consists of a triaxial accelerometer, a triaxial
gyroscope, a triaxial magnetometer, a GPS engine and an
on-board computer. The raw measurements are fused by
an EKF on the onboard computer to provide estimates of
the orientation and of the velocity vector in Earth axes.
The MIDG2 is an “independent” device with no knowledge
of the specific system it is fitted on; it heavily relies on
the GPS engine for good dynamic estimates, without using
assumption (24). All the data can be issued at a pace up
to 20ms. Due to the low throughput of the radio data link,
only the accelerometer raw measurements axm, aym and
the MIDG2-computed quantities φm, θm, ψm and Vx, Vy, Vz
were transmitted to the ground station, at the reduced pace
of 40ms.

We flew the quadrotor in repeated back and forth transla-
tions at a (nearly) constant altitude and recorded one minute
of flight data. Since a GPS module is used the test was
conducted outdoors, on a very calm day to respect the no-
wind assumption.

B. Validation of the force model

Due to an imperfect mechanical design of our quadrotor,
the MIDG2 case is not exactly aligned with the quadrotor

3www.microboticsinc.com
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frame, but tilted by the unknown (small) angles φ0, θ0, ψ0.
The angle and acceleration data must be rotated accordingly
to be expressed in the quadrotor axes (the velocity data need
not correction, since expressed in Earth axes), that is

(φ, θ, ψ) = (φm − φ0, θm − θ0, ψm − ψ0)axay
az

 = RTφ0,θ0,ψ0

axmaym
azm

 .

Dropping higher-order terms, this yields

ax ≈ axm − ψ0aym + θ0azm ≈ axm − θ0g

ay ≈ ψ0axm + aym − φ0azm ≈ aym + φ0g.

The velocity vector in body axes is obtained byuv
w

 = Rφ,θ,ψ

VxVy
Vz

 ,

and is considered as the “true” reference velocity to validate
our modeling assumptions.

We also want to compute the velocities uθ and vφ pre-
dicted by the integration of the linearized force model (18)

u̇θ = −f1uθ − gθ
v̇φ = −f1vφ + gφ,

with initial conditions uθ(0) := u(0) and vφ(0) := v(0).
The task was then to adjust f1, φ0, θ0, ψ0 to get a good fit

between −axf1 , u and uθ on the one hand; and between −ayf1 ,
v and vφ on the other hand. Since the accelerometer data
are quite noisy and need some filtering, the same filter (5th-
order Bessel filter with 2Hz cutoff frequency) was applied to
all the data to preserve the transfer functions among them.

With (f1, φ0, θ0, ψ0) := (0.25s−1, 1.2◦,−2.4◦, 2◦) the
agreement is good between the “true” (i.e. MIDG2-given)
velocity u, the “accelerometer-based” velocity −axf1 , and
the velocity uθ “predicted” by the model from the “true”
(i.e. MIDG2-given) pitch angle, see fig. 3, which reasonably
validates our force model. The agreement between v,−ayf1
and vφ, not shown for lack of space is equally good.

To test the traditional approximation (24) we also plotted
(ax, gθ), see fig. 4. Though the trend is roughly correct, the
fit is much worse; the result is similar for (ay,−gφ).
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IV. IMPLICATIONS ON CONTROL SCHEMES

We now investigate the relevance of the revisited model
in the presence of a feedback controller, with (section IV-A)
and without (sections IV-B and IV-C) velocity measurements.
We use the numerical values

(f1, f2, f3, f4, f5) = (0.25, 0.76,−9.8, 0.34, 12.74);

f1 was determined from flight tests, and f4, f5 from static
tests on the motor-propeller subsystems. The aerodynamic
coefficients f2, f3 were analytically derived; their values are
plausible but nevertheless questionable.

A. Two-time-scale “full-state” feedback

We first assume the whole state is known, or which turns
out to be equivalent, that u and q are measured without noise
so that they can be used in ideal Proportional-Derivative (PD)
controllers. It is customary to design a two-time-scale control
law, with a fast inner loop to control q, ωq and a slow outer
loop to control u, θ.

The fast inner loop is the ideal PD controller

Γq = −kp
ε2
q − kd

ε
q̇ +

kp
ε2
qr,

where qr is the desired pitch rate; kp, kd are the PD gains
and ε > 0 is a “small” parameter. Applying this feedback
to (18)-(21) yields

u̇ = −f1u− gθ
θ̇ = q

εq̇ = f4ω̃q +O(ε)

ε ˙̃ωq = −kpq − f4kdω̃q + kpqr +O(ε),

where ω̃q := εωq . From standard arguments of singular per-
turbations theory [19], the convergence of the fast variables
is up to order ε ruled by the well-known coefficient f4 and
the PD gains; and the behavior of the slow variables u, θ is
up to order ε ruled by the slow approximation

u̇ = −f1u− gθ (29)

θ̇ = qr. (30)

Hence the role of the aerodynamic coefficients f2, f3 is
marginal if the inner loop is fast enough.
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The slow outer loop is the ideal PD controller

qr = k1u+ k2u̇− k1ur,

where ur is the desired velocity, and k1, k2 the PD gains.
Applying this feedback to (29)-(30) yields

u̇ = −f1u− gθ
θ̇ = (k1 − f1k2)u− gk2θ − k1ur,

with characteristic polynomial s2 + (f1 + gk2)s + gk1.
A reasonable closed-loop settling time is about 1s, which
requires gk1 = 62 and f1 + gk2 = 6

√
2. This means

f1 = 0.25 is negligible w.r.t to the effect of the controller.
We thus see that the revisited moment model (20) does not

rely matter if the gyroscope measurements are good enough
for a fast loop, which is usually the case in practice; never-
theless taking into account f2 and especially f3 may help to
design a better inner loop. As for the force model (18), it does
not really matter either, provided a velocity measurement
is available, wich agrees with [5]. The importance of f1

is nevertheless paramount to account for the accelerometer
measurements, as will be seen in the following sections.

B. Usual interpretation of accelerometer feedback

Once the inner loop closed, the usual slow model is

u̇ = −gθ
θ̇ = qr,

with measurement ax = gθ. Since the velocity u is clearly
not observable, the role of the outer loop is simply to control
the measured angle θ. In theory the simple proportional
feedback qr = k(θr − ax

g ) does the trick, but in practice
the accelerometer measurements are too noisy to be directly
used (not only because of the intrinsic sensor noise, but
also because of mechanical vibrations). Instead an “angle
estimator” is often used, based on the model θ̇ = q with
measurements ax = gθ and gy = q. A more elaborate
estimator, e.g. an EKF or a nonlinear observer, can also
be used, see the references in the introduction; it is then
based on the nonlinear kinematic equations (12)–(14), and
relies on the approximation (24). Whatever the filter, the
first-order approximation is essentially the linear observer
˙̂
θ = gy + l(axg − θ̂); it can also be seen as a complementary
filter since its transfer function is θ̂ = s

s+lθq+ l
s+lθax , where

θq := q
s is the pitch angle obtained from gyro integration and

θax := ax
g the pitch angle given by the accelero.

The outer loop thus is the controller-observer

qr = k(θr − θ̂) (31)
˙̂
θ = q + l

(ax
g
− θ̂
)
. (32)

Applied to the usual model and defining the observation error
eθ := θ̂ − θ, it yields the closed-loop system

u̇ = −gθ
θ̇ = k(θr − θ − eθ)
ėθ = −leθ.

For θr constant, the last two equations have the unique steady
state (θ, eθ) = (θr, 0). The characteristic polynomial is

∆0 := (s+ k)(s+ l),

and the closed-loop transfer functions are

θ =
k

s+ k
θr (33)

u =
−gk

s(s+ k)
θr. (34)

Provided k, l > 0 we have as desired (θ, eθ) → (θr, 0),
while u grows linearly unbounded. A good tuning of (31)-
(32) requires for robustness that the controller and observer
act in distinct time scales (Loop Transfer Recovery), i.e.
k � l or l� k. We consider in the sequel a “slow” observer,
which is representative of commercial “angle sensors” such
as the 3DM-GX, and a “fast” controller; for a settling time
of about 1s, we choose e.g. k := 1

0.3 and l := 1
12 .

We tested this control scheme experimentally, with a rather
satisfying result: the angle θ reaches the desired θr, though
the dynamics is somewhat more sluggish than expected.
The usual analysis could thus be considered as reasonably
justified. Nevertheless it does not account for the following
experimental observations already visible to the naked eye:
• when pushed away from hovering, the quadrotor returns

to hovering (of course at a different position)
• when flying at a constant velocity u, the angle θ is not

zero but approximately proportional to u
• in response to a constant θr, u does not grow unbounded

but reaches a value approximately proportional to θr.
Though these experimental facts are well-known to people
in the field, they do not seem to be reported in the literature.
The discrepancy is usually attributed to the neglected second-
order aerodynamical drag and the inevitably unperfect exper-
imental conditions. Another more subtle discrepancy is that
the observer gain l must be smaller than predicted by the
theory to avoid a badly damped transient (e.g. l = 1/3 does
not work well in practice).

As will be seen in the following section, these experimen-
tal facts can be explained by the revisited model.

C. Revisited interpretation of accelerometer feedback

We now apply the controller-observer (31)-(32) to the
revisited longitudinal model. The closed-loop system is now

u̇ = −f1u− gθ
θ̇ = k(θr − θ − eθ)

ėθ = −l
(f1

g
u+ θ + eθ

)
,

with eθ := θ̂ − θ. For θr constant, the only steady state is
(u, θ, eθ) = (− g

f1
θr, θr, 0); the characteristic polynomial is

∆ = s3 + (k + l + f1)s2 + f1(k + l)s+ f1kl.

If k � l, ∆ ' (s + k)(s2 + f1s + f1l), so that the closed-
loop system is stable as soon as k, l > 0. Hence θ → θr as
desired, and eθ → 0 as expected from the observer; u now
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Fig. 5. Comparison between control schemes (simulation).

tends to the finite value − g
f1
θr, which is more consistent

with experimental tests. If moreover l� f1,

∆ ≈ (s+ f1)(s+ k)(s+ l) = (s+ f1)∆0.

As a consequence, the closed-loop transfer functions are

θ =
k(s+ f1)(s+ l)

∆
θr ≈ k

s+ k
θr

u =
−gk(s+ l)

∆
θr ≈ −gk

(s+ f1)(s+ k)
θr,

to be compared with (33)-(34): the angle dynamics is nearly
the same as the one given by the usual interpretation, while
the velocity dynamics is dominated by the rotor drag time
constant 1

f1
. Defining the reference velocity ur := − g

f1
θr,

we see the usual control scheme, designed as an angle
controller, is in fact a velocity controller!

The behavior experienced in practice is qualitatively and
quantitatively well predicted by the revisited model, see fig. 5
(“usual design”) the time response to a −1.5◦ step in θr (i.e.
a 1m/s step in ur).

From this analysis, we see the importance of the coefficient
f1 is paramount: the usual scheme works reasonably well
only because f1 is positive and not too small.

D. A better control law

The performance of the usual control scheme is limited by
the rotor drag time constant 1

f1
. Better performance can be

achieved by considering a controller-observer based on the
revisited model,

qr = −k1û− k2θ̂ +
(
k1 −

f1k2

g

)
ur

˙̂u = −f1û− gθ̂ + l1(ax + f1û)

˙̂
θ = gy + l2(ax + f1û),

where ur is the velocity reference; k1, k2 are the controller
gains, l1, l2 the observer gains. Fig. 5 shows simulation
results for the same scenario as before (1m/s reference step
in velocity). Two different tunings were used: in the first case
(“new design #1”) the controller is tuned for a settling time
of about 12s and the observer for about 48s, so that the angle
and velocity have initial transients similar to the tuning used
previously for the usual design (and with a similar control

effort); in the second case (“new design #2”) the controller
is made four times faster.

Both design were successfully implemented, resulting in a
quadrotor much easier to fly than with the usual scheme. In
practice it was difficult to accelerate much further the time
responses, probably mainly because of accelerometer noise.
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