
The Truncated Fourier Transform and Applications

Joris van der Hoeven
Département de Mathématiques (bât. 425)

Université Paris-Sud
91405 Orsay Cedex

France

joris@texmacs.org

ABSTRACT
In this paper, we present a truncated version of the clas-
sical Fast Fourier Transform. When applied to polynomial
multiplication, this algorithm has the nice property of elim-
inating the “jumps” in the complexity at powers of two.
When applied to the multiplication of multivariate polyno-
mials or truncated multivariate power series, we gain a log-
arithmic factor with respect to the best previously known
algorithms.

Categories and Subject Descriptors
F.2.1 [Theory of Computation]: Analysis of algorithms
and problem complexity—Numerical algorithms and prob-
lems

General Terms
Algorithms

Keywords
Fast Fourier Transform, jump phenomenon, truncated mul-
tiplication, FFT-multiplication, multivariate polynomials,
multivariate power series.

1. INTRODUCTION
Let R � 1/2 be an effective ring of constants (i.e. the

usual arithmetic operations +, − and × can be carried
out by algorithm). If R has a primitive n-th root of unity
with n = 2p, then the product of two polynomials P, Q ∈
R[X] with deg PQ < n can be computed in time O(n log n)
using the Fast Fourier Transform or FFT [4]. If R does
not admit a primitive n-th root of unity, then one needs an
additional overhead of O(log log n) in order to carry out the
multiplication, by artificially adding new root of unity [11,
3].

Besides the fact that the asymptotic complexity of the
FFT involves a large constant factor, another classical draw-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to distribute to lists, requires no prior specific
permission and/or a fee.
ISSAC ’04, July 4–7, 2004, Santander, Spain
Copyright 2004 ACM 1-58113-827-X/04/0007 ...$5.00.

back is that the complexity function admits important jumps
at each power of two. These jumps can be reduced by us-
ing (k2p)-th roots of unity for small k. They can also be
smoothened by decomposing (n+δ)×(n+δ)-multiplications
as n × n-, n × δ- and (n + δ) × δ-multiplications. However,
these tricks are not very elegant, cumbersome to implement,
and they do not allow to completely eliminate the jump
problem.

In section 3, we present a new kind of “Truncated Fourier
Transform” or TFT, which allows for the fast evaluation of a
polynomial P ∈ R[X] in any number n of well-chosen roots
of unity. This algorithm coincides with the usual FFT if n
is a power of two, but it behaves smoothly for intermediate
values. In section 4, we also show that the inverse operation
of interpolation can be carried out with the same complexity
(modulo a few additional shifts).

The TFT permits to speed up the multiplication of uni-
variate polynomials with a constant factor between 1 and 2.
In the case of multivariate polynomials, the repeated gain
of such a constant factor leads to the gain of a non-trivial
asymptotic factor. More precisely, assuming that R ad-
mits sufficiently 2p-th roots of unity, we will show in sec-
tion 5 that the product of two multivariate polynomials
P, Q ∈ R[z1, . . . , zd] can be computed in time O(s log s),
where s =

�
r+d−1

d

�
and r = deg PQ + 1. The best pre-

viously known algorithm [2], based on sparse polynomial
multiplication, has time complexity O(s log2 s).

In section 6 we finally give an algorithm for the multiplica-
tion of truncated multivariate power series. This algorithm,
which has time complexity O(s log2 s), again improves the
best previously known algorithm [8] by a factor of O(log s).
Moreover, both in the cases of multivariate polynomials and
power series, we expect the corresponding constant factor to
be better.

2. THE FAST FOURIER TRANSFORM
Let R be an effective ring of constants, n = 2p with p ∈ �

and ω ∈ R a primitive n-th root of unity (i.e. ωn/2 =
−1). The discrete Fast Fourier Transform (FFT) of an n-
tuple (a0, . . . , an−1) ∈ Rn (with respect to ω) is the n-tuple
(â0, . . . , ân−1) = FFTω(a) ∈ Rn with

âi =
n−1�
j=0

ajω
ij .

In other words, âi = A(ωi), where A ∈ R[X] denotes the
polynomial A = a0 + a1X + · · · + an−1X

n−1.

The F.F.T can be computed efficiently using binary split-
ting: writing

(a0, . . . , an−1) = (b0, c0, . . . , bn/2−1, cn/2−1),

we recursively compute the Fourier transforms of the se-
quences (b0, . . . , bn/2−1) and (c0, . . . , cn/2−1) by

FFTω2(b0, . . . , bn/2−1) = (b̂0, . . . , b̂n/2−1) ;

FFTω2(c0, . . . , cn/2−1) = (ĉ0, . . . , ĉn/2−1).

Then we have

FFTω(a0, . . . , an−1) = (b̂0 + ĉ0, . . . , b̂n/2−1 + ĉn/2−1ω
n/2−1

b̂0 − ĉ0, . . . , b̂n/2−1 − ĉn/2−1ω
n/2−1).

This algorithm requires np = n log2 n multiplications with
powers of ω and 2np additions (or subtractions).

In practice, it is most efficient to implement an in-place
variant of the above algorithm. We will denote by [i]p the
bitwise mirror of i at length p (for instance, [3]5 = 24 and
[11]5 = 26). At step 0, we start with the vector

x0 = (x0,0, . . . , x0,n−1) = (a0, . . . , an−1).

At step s ∈ {1, . . . , p}, we set�
xs,ims+j

xs,(i+1)ms+j

�
=

�
1 ω[i]sms

1 −ω[i]sms

��
xs−1,ims+j

xs−1,(i+1)ms+j

�
. (1)

for all i ∈ {0, 2, . . . , n/ms − 2} and j ∈ {0, . . . , ms − 1},
where ms = 2p−s. Using induction over s, it can easily be
seen that

xs,ims+j = (FFTωms (aj , ams+j , . . . , an−ms+j))[i]s ,

for all i ∈ {0, . . . , n/ms − 1} and j ∈ {0, . . . , ms − 1}. In
particular,

xp,i = â[i]p

âi = xp,[i]p

for all i ∈ {0, . . . , n− 1}. This algorithm of “repeated cross-
ings” is illustrated in figure 1.

A classical application of the FFT is the multiplication of
polynomials A = a0 + · · · + an−1X

n−1 and B = b0 + · · · +
bn−1X

n−1. Assuming that deg AB < n, we first evaluate A
and B in 1, ω, . . . , ωn−1 using the FFT:

(A(1), . . . , A(ωn−1)) = FFTω(a0, . . . , an−1)

(B(1), . . . , B(ωn−1)) = FFTω(b0, . . . , bn−1)

We next compute the evaluations

(A(1)B(1), . . . , A(ωn−1)B(ωn−1)))

of AB at 1, . . . , ωn−1. We finally have to recover AB from
these values using the inverse FFT. But the inverse FFT

with respect to ω is nothing else as 1/n times the direct FFT

with respect to ω−1. Indeed, for all (a0, . . . , an−1) ∈ Rn and
all i ∈ {0, . . . , n − 1}, we have

FFTω−1(FFTω(a))i =

n−1�
k=0

n−1�
j=0

aiω
(i−k)j = nai, (2)

since

n−1�
j=0

ω(i−k)j = 0

whenever i �= k. This yields a multiplication algorithm of
time complexity O(n log n) in R[X], when assuming that R
admits enough primitive 2p-th roots of unity. In the case
that R does not, then new roots of unity can be added
artificially [11, 3, 13] so as to yield an algorithm of time
complexity O(n log n log log n).

3. THE TRUNCATED FOURIER TRANSFORM
The algorithm from the previous section has the disadvan-

tage that n needs to be a power of two. If we want to mul-
tiply two polynomials A,B ∈ R[X] such that deg AB + 1 =
n + δ, then we need to carry out the FFT at precision 2n,
thereby losing a factor of 2. This factor can be reduced
using several tricks. For instance, one may decompose the
(n + δ) × (n + δ)-product into an n × n product, an n × δ-
product and an (n+δ)×δ-product. This is efficient for small
δ, but not very good if δ ≈ n/2. In the latter case, one may
also use an FFT at precision 3n/2, by using 3 × 3-matrices
at one step of the FFT computation. However, all these
tricks of the trade require a large amount of hacking and
one always continues to lose a non-trivial factor between 1
and 2.

The idea behind the Truncated Fourier Transform is to
provide an efficient algorithm for the evaluation of poly-
nomials in any number of distinct points. Moreover, the
inverse operation of interpolation can be carried out with
the same complexity (modulo a few additional shifts). This
technique will eliminate the “jumps” in the complexity of
FFT multiplication.

So let n = 2p, l � n (usually, l > n/2) and let ω be a
primitive n-th root of unity. Given an l-tuple (a0, . . . , al−1),
we will evaluate the corresponding polynomial A = a0 +
· · · + al−1X

l−1 in ω[0]p , ω[1]p , . . . , ω[l−1]p. We call

(A(ω[0]p), . . . , A(ω[l−1]p))

the Truncated Fourier Transform (TFT) of (a0, . . . , al−1).
Now consider the completion of the l-tuple (a0, . . . , al−1)
into an n-tuple (a0, . . . , al−1, 0, . . . , 0). When using the in-
place algorithm from the previous section in order to com-
pute (A(ω[0]p), . . . , A(ω[l−1]p)), we claim that many of the
computations of the xs,i can actually be skipped (see fig-
ure 2). Indeed, at stage s, it suffices to compute the vector
(xs,0, . . . , xs,(�(l−1)/ms�+1)ms−1). Besides xs,0, . . . , xs,l−1, we

therefore compute at most ms = 2p−s additional values. In
total, we therefore compute at most pl+2p−1 +2p−2 + · · ·+
1 < pl + n values xs,i. This proves the following result:

Theorem 1. Let n = 2p, l � n and let ω ∈ R be a prim-
itive n-th root of unity in R. Then the Truncated Fourier
Transform of an l-tuple (a0, . . . , al−1) w.r.t. ω can be com-
puted using at most lp + n additions (or subtractions) and
�(lp + n)/2� multiplications with powers of ω.

Remark 1. Assume that R admits a privileged primitive
n-th root of unity ωn for every n ∈ 2�, such that ω2

2n =
ωn for all n. Then the TFT (â0, . . . , âl−1) of an l-tuple
(a0, . . . , al−1) w.r.t. ωn with n � l does not depend on the
choice of n. We call (â0, . . . , âl−1) the TFT of (a0, . . . , al−1)
w.r.t. the privileged sequence (ω1, ω2, ω4, . . .) of roots of
unity.

Remark 2. Since the only operations we need for com-
puting the TFT are additions, subtractions and multipli-
cations by powers of ω, the algorithm naturally combines

Figure 1: Schematic representation of a Fast Fourier Transform for n = 16. The black dots correspond to the
xs,i, the upper row being (x0,0, . . . , x0,15) = (a0, . . . , a15) and the lower row (x4,0, . . . , x4,15) = (â0, â8, â4, â12, . . . , â15).

Figure 2: Schematic representation of a TFT for n = 16 and l = 11.

with Schönhage-Strassen’s algorithm when ω is a symboli-
cally added root of unity.

Remark 3. If f0 = · · · = fl′−1, then the Truncated
Fourier Transform of (f0, . . . , fl−1) can be computed using
O((l− l′)p+2n) ring operations using a similar algorithm as
above. More generally, this allows the rapid transformation
of “unions of segments”.

4. INVERTING THE TRUNCATED FOURIER
TRANSFORM

Unfortunately, the inverse TFT cannot be computed us-
ing a similar formula as (2). Indeed, starting with the xl,i,
we need to compute an increasing number of xs,i when s de-
creases. Therefore we will rather invert the algorithm which
computes the TFT, but with this difference that we will
sometimes need xs′,i′ with s′ < s in order to compute xs,i.
We will use the fact that whenever one value among

xs,ims+j , xs−1,ims+j

and one value among

xs,(i+1)ms+j , xs−1,(i+1)ms+j

are known in the cross relation (1), then we can deduce the
others from them using one multiplication by a power of ω
and two “shifted” additions or subtractions (i.e. the results
may have to be divided by 2).

More precisely, let us denote ks = �(l − 1)/ms�ms and
ls = ks + ms at each stage s. We use a recursive algorithm
which takes the values xp,ks , . . . , xp,l−1 and xs,l, . . . , xs,ls on
input, and which computes xs,ks , . . . , xs,l−1. If s = p, then
we have nothing to do. Otherwise, we distinguish two cases:

• If ls = ls+1, then we first compute xs,ks , . . . , xs,ks+1−1

from xp,ks , . . . , xp,ks+1−1 using repeated crossings. We

next deduce xs,i and xs+1,i+ms/2 from xs+1,i and
xs,i+ms/2 for all i ∈ {l−ms/2, . . . , ks+1−1}. Invoking
our algorithm recursively, we now obtain xs+1,ks+1 , . . .,
xs+1,l−1. We finally compute xs,i and xs,i+ms/2 from
xs+1,i and xs+1,i+ms/2 for i ∈ {ks, . . . , l − ms/2 − 1}.

• If ls > ls+1, then we first compute xs+1,i from xs,i

and xs,i+ms/2 for i ∈ {l, . . . , ls+1 − 1}. Invoking our
algorithm recursively, we next compute xs+1,ks+1 , . . .,
xs+1,l−1. For each i ∈ {ks, . . . , l−1}, we finally deduce
xs,i from xs+1,i and xs,i+ms/2 .

The two cases are illustrated in figures 3 resp. 4. Since
x0,l = · · · = x0,n−1 = 0, the application of our algorithm
for s = 0 computes the inverse TFT. We notice that the
values xs,i with i < l are computed in decreasing order (for
s) and the values xs,i with i � l in increasing order. In
other words, the algorithm may be designed in such a way
to remain in place. We have proved:

Theorem 2. Let n = 2p, l � n and let ω ∈ R be a prim-
itive n-th root of unity in R. Then the l-tuple (a0, . . . , al−1)
can be recovered from its Truncated Fourier Transform w.r.t.
ω using at most lp+n shifted additions (or subtractions) and
�(lp + n)/2� multiplications with powers of ω.

Remark 4. Besides O(n) shifted additions, subtractions
or multiplications by powers of ω, the algorithm essentially
computes inverse FFT-transforms of sizes 2q1 , . . . , 2qr with
n = 2q1 + · · · + 2qr . Using (2), it is therefore possible to
replace all but O(n) shifted additions and subtractions by
normal additions and subtractions.

Figure 3: Schematic representation of the recursive computation of the inverse TFT for n = 16, l = 11.
The different images show the progression of the known values xi,j (the black dots) during the different
computations at stage s = 0. Since l0 = l1 = 16, we fall into the first case of our algorithm and the recursive
invocation of the algorithm is done between the third and the fourth image.

Figure 4: Schematic representation of the recursive computation of the inverse TFT for n = 16, l = 11 at stage
s = 1. Since l1 = 16 and l2 = 12, we now fall into the second case of our algorithm and the recursive invocation
of the algorithm is done between the third and the fourth image.

5. MULTIPLYING MULTIVARIATE POLY-
NOMIALS

Let R be a ring with a privileged sequence (ω1, ω2, ω4, . . .)
of roots of unity (see remark 1). Given a non-zero multivari-
ate polynomial

f =
�

i1,...,id

fi1,...,idzi1
1 · · · zid

d ∈ R[z1, . . . , zd],

in d > 1 variables, we define the total degree of f by

deg f = max{i1 + · · · + id : fi1,...,id �= 0} ∈ �
We let deg 0 = −1. Now let f, g ∈ R[z1, . . . , zd] be such
that deg fg < r. In this section we present an algorithm to
compute fg, which has a good complexity in terms of the
number

s =

�
r + d − 1

d

�

of expected coefficients of fg. When computing fg using the
classical FFT with respect to each of the variables z1, . . . , zd,
we need a time O(d(2r)d log r)) which is much bigger than s,
in general. When using multiplication of sparse polynomials
[2], we need a time O(s log2 s) with a non-trivial constant
factor. Our algorithm is based on the TFT w.r.t. all vari-
ables and we will show that it has a complexity O(s log s).

Given f ∈ R[z1, . . . , zd] with deg f < r, the TFT of f
with respect to one variable zv at order r is defined by

TFTv;r(f) =
�
fi1,...,iv−1,·,iv+1,...,id (zv = ω

[iv]p
v)

�
i1+···+id<r

,

where n = 2p � r. We recall that the result does not depend
on the choice of n. The TFT with respect to all variables
z1, . . . , zd at order r is defined by

TFT;r(f) =
�
f(ω

[i1]p
n , . . . , ω

[id]p
n)

�
i1+···+id<r

,

where n = 2p
� r (see figure 5). We have

TFT;r(f) = TFTd;r(· · · TFT1;r(f) · · ·).

Given f, g ∈ R[z1, . . . , zd] with deg fg < r, we will use the
formula

fg = TFT−1
;r (TFT;r(f) TFT;r(g))

in order to compute the product fg.
In order to compute TFTv;r(f), say for v = 1, we compute

the TFT of (f0,i2 ,...,id , . . . , fl−1,i2,...,id
) with l = r−i2−· · ·−

ir for all i2, . . . , id with i2 + · · ·+ in < r−1 (if i2 + · · ·+ in =
r − 1, then the TFT of (f0,i2,...,id) is given by itself, so we
have nothing to do). One such computation takes a time
� Cl log l for some universal constant C, by using the TFT

w.r.t. ωn with minimal n = 2p
� l (so n may vary as

a function of i2, . . . , id, but not C). The computation of
TFT;r(f) therefore takes a time Td,r with

Td,r � Cd
r�

l=2

�
r − l + d − 2

d − 2

�
l log l.

Dividing by s, we obtain

Td,r

s
� Cd2(d − 1)

r�
l=2

(r+d−l−2)!
(r+d−1)!

(r−1)!
(r−l)!

l log l

� Cd3
r�

l=2

(r+d−l)!
(r+d−1)!

(r−1)!
(r−l)!

l log l
(r−l+d)(r−l+d−1)

(3)

If r � d, then the summand rapidly deceases when l > 2, so
that

Td,r

s
= O(d3 r

(r + d)3
) = O(r) = O(log s).

Consequently, Td,r = O(s log s) and even Td,r = O(s) for
fixed r. If r > d, then for d = εr and l = δr, Stirling’s
formula yields

log
(r + d − l)!

(r + d − 1)!

(r − 1)!

(r − l)!
= −εδr + · · · .

It follows that only the first O(r/d) = O(1/ε) terms in (3)

contribute to the asymptotic behaviour of
Td,r

s
, so that

Td,r = O(d3 1

ε

log(1/ε)

εr2
) = O(d log(r/d)) = O(log s).

Again, we find that Td,r = O(s log s). We have proved:

Theorem 3. Let R be a ring with a privileged sequence
(ω1, ω2, ω4, . . .) of roots of unity. Let f, g ∈ R[z1, . . . , zd]
be polynomials with deg f + deg g < r and let s =

�
r+d−1

r

�
.

Then the product fg can be computed using O(s log s) ring
operations in R.

6. MULTIPLYING MULTIVARIATE POWER
SERIES

Since power series have infinitely many terms, implement-
ing an operation on power series really corresponds to im-
plementing the operation for polynomial approximations at
all degrees. As usual, multiplication is a particularly impor-
tant operation. Given f, g ∈ R[z1, . . . , zd] with deg f < r
and deg g < r, we will show how to compute the truncated
product h =

	
i1,...,id<d(fg)i1,...,idzi1

1 · · · zid
d ∈ R[z1, . . . , zd]

of f and g.
The first idea [8] is to use homogeneous coordinates in-

stead of the usual ones:

f̃(z1, z2, . . . , zd) = f(z1, z1z2, . . . , z1zd)

g̃(z1, z2, . . . , zd) = g(z1, z1z2, . . . , z1zd).

This transformation takes no time since it corresponds to
some re-indexing. We next compute the TFTs f̂ and ĝ in
z2, . . . , zd at order r:

f̂ = TFTd;r(· · · TFT2;r(f̃) · · ·)

ĝ = TFTd;r(· · · TFT2;r(g̃) · · ·).

We next compute the s′ =
�

r+d−2
d−1

�
truncated products

ĥ·,i2,...,id (z1) of the obtained polynomials f̂·,i2,...,id(z1) and
ĝ·,i2,...,id(z1). After transforming the results of these multi-
plication back using

h̃ = TFT−1
2;r(· · · TFT−1

d;r(ĥ) · · ·),

we obtain the truncated product h of f and g by

h(z1, z2, . . . , zd) = h̃(z1, z2/z1, . . . , zd/z1).

The total computation time is bounded by O(rs′ log s′ +
rs′ log r). Using the fact that rs′ = O(s log s), we have
proved the following theorem:

Theorem 4. Let R be a ring with a privileged sequence
(ω1, ω2, ω4, . . .) of roots of unity. Let f, g ∈ R[z1, . . . , zd] be
polynomials of degrees < r and let s =

�
r+d−1

r

�
. Then the

truncated product of f and g at degree < r can be computed
using O(s log2 s) ring operations in R.

f0,5

f0,4 f1,4

f0,3 f1,3 f2,3

f0,2 f1,2 f2,2 f3,2

f0,1 f1,1 f2,1 f3,1 f4,1

f0,0 f1,0 f2,0 f3,0 f4,0 f5,0

→

f(1, ω3)

f(1, ω5) f(ω4, ω5)

f(1, ω6) f(ω4, ω6) f(ω2, ω6)

f(1, ω2) f(ω4, ω2) f(ω2, ω2) f(ω6, ω2)

f(1, ω4) f(ω4, ω4) f(ω2, ω4) f(ω6, ω4) f(ω5, ω4)

f(1, 1) f(ω4, 1) f(ω2, 1) f(ω6, 1) f(ω5, 1) f(ω3, 1)

Figure 5: Illustration of the TFT in two variables (ω = ω8).

Remark 5. In practice, if the coefficients fi1,...,id have
different growths in i1, . . . , id, then it may be useful to con-
sider truncations along more general degrees of the form

deg
�

f = max{α1i1 + · · · + αdid : fi1,...,id �= 0}.
The “slicing technique” from section 6.3.5 in [13] may then
be used in order to obtain complexity bounds of the same
type.

Remark 6. Using remark 3, the polynomial and trun-
cated multiplication algorithms can be used in combination
with the strategy of relaxed evaluation [12, 13, 15] for solv-
ing partial differential equations in multivariate power series
with an additional overhead of O(log r). A recent technique
[14] allows to reduce this overhead even further and it would
be interesting to study more precisely what happens in the
multivariate case.

7. FINAL NOTES
The author would like to thank the first referee for his

enthusiastic and helpful comments. This referee also imple-
mented the algorithms from sections 3 and 4 and he reports
a behaviour which is close to the expected one. In response
to some other comments and suggestions, we conclude with
the following remarks:

• The results of the paper may be generalized to char-
acteristic 2 and general rings R along similar lines as
in [3]. The crucial remark is that, if j3 = 1 and

� a1

b1

c1

�
 =

� 1 1 1

1 j j2

1 j2 j

�

� a0

b0

c0

�
 ,

then, for all ε ∈ {0, 1}3, we may compute (aε, bε, cε)
in terms of (a1−ε, b1−ε, c1−ε) by using only additions,
subtractions, multiplications by j and divisions by 3.

• Theorem 1 in [2] implies theorem 3 with O(s log s) re-
placed by O(s log2 s). The technique from [2] is actu-
ally more general: let f, g ∈ R[z1, . . . , zd] and assume
that we know

S = supp f supp g

= {(i1 + j1, . . . , id + jd) : fi1,...,id �= 0 ∧ gj1,...,jd}.
If f and g are not “extraordinarily sparse”, then fg
may be computed in time O((#S) log2(#S)). It would

be interesting to prove something similar in our con-
text, so as to examine to which extent we need the
density hypothesis. Using remark 3 in a recursive way,
we expect that there exists an algorithm of complexity
O(#S(log #S+#∂S)), for a suitable definition of ∂S .

• The terminology of privileged sequences may seem to
be an overkill. Indeed, in practice, we rather need a
sufficiently large root of unity in order to carry out
a given computation. Nevertheless, from a theoreti-
cal point of view, this paper suggests that it may be
interesting to study “fractal FFT-transforms”

f0 + f1z + f2z
2 + · · ·

→ (f(1), f(ω
[1]1
2), f(ω

[2]2
4), f(ω

[3]2
4), f(ω

[4]3
8), . . .)

of power series with convergence radius > 1 with re-
spect to a privileged sequence (ω1, ω2, ω4, . . .).

• Two referees pointed us to the on-line paper [1] which
also contains the idea of evaluating in l powers of ωn

in order to multiply polynomials f, g with deg fg =
l < n = 2p. However, while we are writing these lines,
this paper does not contain a precise algorithm for the
inverse transform (cf. section 3), nor any claims about
the complexity (cf. theorems 1 and 2).

8. REFERENCES
[1] Bernstein, D. Fast multiplication and its

applications. Available from
http://cr.yp.to/papers.html#multapps. See section
4, page 11.

[2] Canny, J., Kaltofen, E., and Lakshman, Y.

Solving systems of non-linear polynomial equations
faster. In Proc. ISSAC ’89 (Portland, Oregon,
A.C.M., New York, 1989), ACM Press, pp. 121–128.

[3] Cantor, D., and Kaltofen, E. On fast
multiplication of polynomials over arbitrary algebras.
Acta Informatica 28 (1991), 693–701.

[4] Cooley, J., and Tukey, J. An algorithm for the
machine calculation of complex Fourier series. Math.
Computat. 19 (1965), 297–301.

[5] Hanrot, G., Quercia, M., and Zimmermann, P.

Speeding up the division and square root of power
series. Research Report 3973, INRIA, July 2000.

Available from
http://www.inria.fr/RRRT/RR-3973.html.

[6] Hanrot, G., Quercia, M., and Zimmermann, P.

The middle product algorithm I. speeding up the
division and square root of power series. Accepted for
publication in AAECC, 2002.

[7] Hanrot, G., and Zimmermann, P. A long note on
Mulders’ short product. JSC 37, 3 (2004), 391–401.

[8] Lecerf, G., and Schost, E. Fast multivariate power
series multiplication in characteristic zero. SADIO
Electronic Journal on Informatics and Operations
Research 5, 1 (September 2003), 1–10.

[9] Mulders, T. On short multiplication and division.
AAECC 11, 1 (2000), 69–88.

[10] Pan, V. Y. Simple multivariate polynomial
multiplication. JSC 18, 3 (1994), 183–186.

[11] Schönhage, A., and Strassen, V. Schnelle
Multiplikation grosser Zahlen. Computing 7 7 (1971),
281–292.

[12] van der Hoeven, J. Lazy multiplication of formal
power series. In Proc. ISSAC ’97 (Maui, Hawaii, July
1997), W. W. Küchlin, Ed., pp. 17–20.

[13] van der Hoeven, J. Relax, but don’t be too lazy.
JSC 34 (2002), 479–542.

[14] van der Hoeven, J. New algorithms for relaxed
multiplication. Tech. Rep. 2003-44, Univ. d’Orsay,
2003.

[15] van der Hoeven, J. Relaxed multiplication using the
middle product. In Proc. ISSAC ’03 (Philadelphia,
USA, August 2003), M. Bronstein, Ed., pp. 143–147.

