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The ‘truncated SVD as a method for regularization

Per Christian Hansen*

Abstract

‘I’hc truncated singular value decomposition  (SW) is considered as a method for rcgulariza-
tion of ill-posed linear lcast squares  pro&ins. In particular, the .truncatcd  SVl> solution is com-
pared wi th  the usua l  rcguiarizcd  so.lution. Ncccssary  conditions arc d&cd in which the two
m&hods  will yield  similar results. This investigation suggests  the truncated SW as n filvorablc  al-.
tcrnativc to st;lndard-form  rcgularization  in cast of ill-conditioned matrices with a well-dctcrmincd
rank.

Key words: truncated singular value decomposition,  rcgularization in standard form, perturbation
theory-for truncated SW, numerical  rank.

1. lntrochdion

‘l’his p.11~ deals  with methods  for solving the unconstrained linear lcast squares  prohlcm

niin II b i A XII , A E Rmxn , ‘m 2 n . (1)

Hcrc,  and throughout the pppcr, 11 l II = II * 112. When the matrix A is ill-conditioned, the pro&m
(I) is ill-posed in the swsc  that a small perturbation  of b may Icad to i1 large perturbation  of the
solution. ‘1%~ WTIC  is true  fo r perturbations  Of A. A well-known and highly rcgardctl mcthc~tl  fi)r
dealing with such ill-posed prohlcms is the method of rcgularization  by ‘l’ikhonov  [ 181 and  Phillips
[I 71. In particular. w~ultrt-im/iorr  irr s/~rrrtlcrrd Jbm corresponds  to defining a  rc g thri;? c J  solution

xA, as ;I function 01’  LIIC rcgularizltion pirramctcr  A, by

x A E argmin (II6 - A x11* + A2 ~~x~~*] . (2)

It is easy  to show that xx is the Icast  squar& solution to lhc  ljroblcms

(3)

whcrc l,, dcnotcs  the itlcntity matrix of order II, and xA is unique since the augmcntcd matrix in
(3) hils  ii111  rank.

Anothc’r  well-known method liar dcilling  with ill-conditioned matrices in prol~lcm  (1) is the
ItWIcc~ld sit~~:fhr w/UP clc~corrr/,c~.~i/iorr  (‘I’SVI)), Cl: 1 l~lllSOll 1121  alld Villa11  1211.  'I'llC USC  Of tlIC
‘I’SVI) hils certain similarities with t .11~  user  of rcguIi~ri;Ii~tion in stilndilrd from, and it is gcncrally
known that the two methods often pro&c very similar results  [22]. ‘l’hc purpose  of this I)iIpCr is to
invc stig iilc  the  c onne c tion  bc twc c n tlic  t w o  nicllids  a nd  dcfinc nc c c ssa ry c oiidi~ions  i n  w h i c h  the

two  methods will yield sim ila r rcsults.

* On ICWC  frown C’op~h:~gcr~  Llnivcrsily  Obwvnlo~~,  Bslcr  Vddgndc J. IIK-I  WI C(yWnhiIgcn K, Dcnnurk.

This work was in p;ul suppot~ctl  by Niltiond  Scicncc  I$undntion  Grant Numbcr  IX’K II412314  ~IKI by a l%~l-

bright Supplcmcnl;uy  Gent.
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‘1’1~~ author is aware that it is often ncccssaty  to s:.tbstitutc  I] I, x I] for I] x I! in (2). and that this
may have  a considcrablc cffcct on the solution [25].  tlowcvcr,  it is strcsscd that analysis of the
standard-form problem  (2) will shed light on some  general relations between ‘I’SVD and rcgulariza-
tion, and that a problem  not in standard ti,rm can bc transformal  into a problem  in standard lbrm
as shown by !lldcn  [6].

-.

‘1’1~~ organization of the paper is as ti~llows. In Section 2 the ‘I’SVD and stanoard-form  rcgu-

larization  arc stated  in terms  of the SVl> of the matrix A, and in Section 3 a new yjcrturbation
theory for the ‘I’SV!) is given. On basis of this, it is n;ttural  to divide ill-conditioned matrices into
two classes  of matrices with well-Jctcrmincd and ill-dctcrmincd numerical  rank, rcspcctivcly, as dis-
cussed  in  Section  4 .  Section 5  treats  the cast of  matrices wi th  well-dctcrmincd rank,  and i t  is
vcrilicd  that ‘I’SV!) and rcgularization  can, product similar solutions. Finally, the cast of matrices
with ill-dctcrmincd rank is trcatcd in S&on 6 whcrc it is shown that the similarity of the two solu-
tions now dcpcnds  on the projection  of the right-hand side 6 onto the left singular vectors  of A.

‘l’he paper is similar in spirit to the papers  of ‘Vat-ah [22] and Wcdin [23,24], and cxtcnsions
of the results  of Wcdin arc given.

2. Truncated--SVD  and standard-form regularization

Throughout the paper, the singular value dccc.mposition (SV!)) of the matrix /i in (I) will
bc cxtcnsivcly used. ‘1’0 summarize  the SVD brictly,  let A bc dccomposcd  into the three matrices
U, EC, and Y:

.

A = u 2 VT (4)

whcrc t.hc left and right singular matrices U f R “1X 111  and V E R “” arc orthogonal, and whcrc the
matrix C, E R’nXN has diagonal form:

I: = diag(at,  ~9, . . . . a,#) .

‘I’hc diagonal clcmcnts (ui) of 2 arc the singular va !uc s  of A, and they arc ordcrcd such that:

UI 2 u2 2 . . . 2 ur > U,+) = . . . = U” = 0 (6)

whcrc r = rank (A). In particular, 11 A 11 = ul. For a rigorous treatment of the SVD, xx e.g. [LO].

It is strcsscd  that the SVD is mainly used  hcrc as a powcrtil  analysis tool. The 1’SVD and the rcgu-
larized solutions as dcfincd  below can be computed  with much less computational effort my means
of other  methods [4,6].

‘l’hc basic idea of ‘I’SV!) as WC!! as standard-f’oml rcguliui;lation  is to impost  the additional
rcquircmcnt  on the solution lllat  its mm Ix Slllilll,  thus ho!X!liilly &~lTlpillji  lllc coiitrihutioiis from

. the errors 01’  the right-hand  side. In ttrc  ciw o!“l’SVI),  this is ilC!liCVCd  by iicglcction of Ihc com-
!~onc~its  01’  the solution corresponding to the smallest  singular v;~lucs.  since  thcsc  coirtributions  lo
the solution arc IIWSI likely  to hc lxgc. ‘!‘Iw s,  t llc  ‘I’SVI)  of A is tlclincd irs the ritnk-k  matrix

4
G (y & y7’ = i 1’

UjUi  Vi * & ,1 diag(q,  . . . . ok, 0, . . . . 0) E PXn
i= l

whcrc Ek C~ U;I!S 2: with the smallest  11 -k singular values  rcplnccd by zcrocs,  and k <, r. ui and
vi arc C!IC columns of the matrices U it lId  V, rcspcctivcly.  Whcu the number  k is chosen  properly,
then  the c o n d i t i o n  number  q/q o f  the ‘J’SVII AA w i l l  bc s111a11. ‘l’hc ‘I’SVII solution to (I),

d&cd by:

Xk G Ai+ 6 , (8)

is thcrcforc  not very  scnsitivc  to cirots in 6 and A. ‘I’hc matrix ~1,’ is the pscudoinvcrsc  of Ak:



-3~‘  .

l&+ = V 2; UT , E$ = diag(ull,  . . . . uF’, 0, . . . . 0) E R’iX” , i9)

and A,+ is actually a {2,3,4)-invcrsc,  or outer invcrsc, of A, CC.  [2]. The TSVD solution can LISU-

ally bc computed  from a Q-R factorization of A as dcscribcd in [4].

Consider  now rcgularization in standard for-F. As can bc seen  from Eq. (2), the additional
rcquircmcnt  on the IIOI-~ -I of the solution cntcrs  directly  into the definition  of the rcgularizcd  solu-
tion xx. For thcorctical iilvcstigations, this solution can also be cxprcsscd  in terms  of the SVD of
A. ‘1’0 do this, it is convcnicnt  to write X~ as

XA = A,‘6 (1 LO)

whcrc the matrix A/ E Rnxm is a “regulniizcd  inverse”, dcfincd  by:

n,l E (ATA +  A2 I,)- ’  AT . (11)

(A/ is only a (3,4)-invcrsc  of A [2] and thcrcfore  not really an invcrsc.) This matrix turns out to
be closely  rclatcd to the matrix Ak+ above. To see this, introduce  the matrix

&&+ s diag  u1
I

on

1 CR .mx n

crf + ⌧2� l *** a; + A2

(12)

When (4) is inserted  into (11), it is seen that A,’ can bc written  in terms of the SVD of A as

/Ix’= =+V& UT . (13)

This establishes  the nice similarities  bctwccn Eqs. (8, (9) and (IO), (13). rcspcctivcly. ‘l’hc matrix
Al should  not  bc computed  in  tiny of  the forms (11) or. (I 3 ) ;  instead,  xx can  bc computed
cflicicntly directly  from (3) as dcscribcd  in [6].

‘I’hc most important observation from Eqs. (9) and (13) is that rcgularization, like the TSVn,
tends  to filter out the contributions to the solution corresponding  to the smallest singular v~~lucs
[22]. ‘1’0 claboratc  on this, the i’th diagonal clcmcnt  of Xl as well ;IS xl can bc writtcrr as the i’th
diagonal clcmcnt of Xi’ times a j&.rfic/or  fi. For tlic ‘I’SVI~, this filter fktor has the Form

I 1 f or  Ui 2 dk

f i  = 0 for Ui < Uk
(14)

corresponding  ‘to a sharp  filter that simply cut s of f  the last II - k components. For rcgul~ui~.ation,
the filter lilctor  takes  the  form

2

f i  =
Qi

0; + x2 ’
i = 1, 2, . . . . n 05)

corresponding  to a smooth filter that damps the components  corresponding  to ui < h. When k is
chosen  such that @k = X, the sharp filter of the ‘I’SVD can in fact bc seen  as an approximation to

I the smooth filter of the rcgularization method,  cf. Fig. 1. This can bc taken as a hint that xk and

xA may bc similar, and in Sections  5 and 6 this will bc invcstigatcd fur&r.

I

Figure  1. I

--- Filter  factor for rcgularization t
lOg(Ui/hl

in standard form. /
I
I Ui = h

+

- - - Filter  corresponding  to trun- I/ .I ’

catcd SW with q-= A.
I

/ i
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3. Perkrbation theory for the TSVD

To investigate the circumstances in which the TSVD is applicable as a rcgularization
method,  it is ncccssaty to have a perturbation theory for the TSVD. Such a perturbation analysis is
carried out in this section.  The results  hcrc arc $rongly  connected with those of Wcdin [23,24].

2 =A+E=G$fT , b” =b+e (16)

and let & denote the perturbed  TSVD solution

07)

with & and /ik’ defined  as in (7) and (9). Also, define the following three useful quantities:

Kk = IId 11 11 &+I1  = ul/(Jk (18a)

qk s Ilf?ll ll/fk+lI  =  IIEll/uk =  Kk j$-/ (18b)

*k = IIA - A,li IIA,�ll = uk+ljuk l (1W

KA is gcncraliy  known as the condilion number of /ik, qk is equal to K& times the rclativc  error
lcvcl ]I /:‘]]/1] /I I], an uk is tlx size of tile reZafive  gay in the singular value spectrum betweend
singdar  VdUcs  ok  and ok + 1.

Theorem 3.1. .4ssunte thal II 6 II < ok. Then:

ll&+ll

Thcorcm 3;l can also bc found in c.g. [24, Lemma 3.11,  but is included hcrc for complete-
ncss.  It states  that ]I 2;’ I] incrcascs  monotonically when the norm I] I? ]] approaches  ok. Hcncc, for
the ‘I’SVD to bc useful, ]] /3 I] must bc small compared  to the k’th singular value of LI, othcrwisc &’
may differ considerably from A$. This point is claboratcd  in the following thcorcm:

‘I’heorcm 3.2. Assurrte  ~lraf ]] I:’ ]] < uk -ok + 1. Then fhe reialive ermr of II AA+ II is bounded by:

. As a specicrl case, j&r k = r = rank (A ) and 11 R II< a,:

Iln+ - /i’ll . Kr IIEll

11 A + 11 13iq91 l

(20)

(21)

- ProoJ ‘l’hc proof lUows from [23, Eq. (4.6)] and Thcorcm 3.1 above:

- qk)(l - Gk+,/(Jk)
1

= 11 n,+ Ilqk
3 - q& - h+hk < 3 Vk II 4-+ II

- (1 -?jk)(i - iik+&k)  - il - qk)(l - qk - ok) ’
(22)

Jnscrtion of (Mb)  in (22) then yields (20). (21) follows from the fact that if I] /!‘I] < ur, then
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rank(i) = rank(A) and &+l = 0. 0

Eq. (21) is a well-known result and states  that for i + to bc close to A+, both the condition
number Kk 3nd  the quantity vk must bc small. Eq. (20) is an cxtcnsion of this result to the TSVD,
and it is seen  that for the pcrturbcd  pscudoinvcrse of the TSVD, &+, to bc close to A,+ it is alSo
ncccssary  to rcquirc  that the rclativc  gap ok bc small. In other words, if the SW is to be succcss-

Mly truncated  at k, then thcrc must be a well-dctclmincd  gap bctwccn the singular values ok and
uk+l. This is also the csscnce  of the following CXtCnSion  Of [23, Eq. (3.1)].

Theorem 3.3. Assume thul 11 E II < ok -  ok +I and let 8 k denole  the subspace angle

ek = @(&“&),s(&)

where S is any of rhe four fundamenlal subyaces  N, N-, R, and R-. Then:

(23)

sin& 5 Ilfili = qk.

ok - Gk+l 1-Gk+hk

<
‘?k Kk II EII

l-qk-% = l--~k-tdkj-i-(- ’
As CI special case, for k = r = rank(A) and II Eli< ul:

--.

Sin& s qr =  lli?II IIA+Il  =  K, H .

(24)

05)

Finally, consider the perhaps most important result:  the relative perturbation of the TSVD
solution (8). The following theorem is an extension of [24, Theorem 5.11.

Thcorcm 3.4. Assume rhar II E II <. ok f @ k+l, and, let rk = b -  A xk denole the residual
corresponding lo the TSVD  .wluGon xk. Then:

. ?Ik 11 rk II

+  I- qk- tdk ) I 1*.+
qk

1 - ?jk - ok l (26)

As a special case, for k = r = rank (A) and II E II < ur:

1,x, - :r I’ f
Il&II

(27)

In borh equalions  the ‘denominalor II b II can be replaced by II A xk II and II A II II xk II, lhus lightening
rhe bounds.

Proof: This proof follows a diffcrcnt lint than that of (241.  The  error of the TSVD solution is:

&-xk =  &+i-xk =  &+(b+t?)-Xk =  ;i,+(Ax,+r,+t?)-Xk

= &+<(i -I:‘ )xk +rk -be)-xk = &+<Axk-Exk +rk +e)-xk

= &+(- f?Txk + e + t&)-(/n - &+;ik)Xk
.

Taking norms on both sides yields

IIzk -d 5 Il/i:II[ll~il  IIxkll  i Ilell + Ibkll] f I& - ;i,‘Ak)xkII . (28)

The_  contribution to’ Ikzk - xk II from ‘the vector - E xk + e + rk c0mt.s  from_ its componCnt in

R(Ak), the nngc of nk, and in the wol?st  cast both /:’ & and e belong to R (lb). ‘I’hc contribu:
tion from rk is, howcvcr,  bounded by II rk II sin Ok, whcrc @k = 8 ( I<( A,), R(Ak)), cE Fig. 2(a).
Concerning  the second-tcnn  in (28). the matrix I,, -, /ik+ & is the pr(jcction  matrix fbr orthogonal

projection  -onto  N(Ak ), the - n u l l  SPXC o f  A&, a n d  from_ F i g .  2 ( b )  i t  f o l l o w s  t h a t

II& - &+Ak)xk 11 = Ibk 11 sinqk,  whcrc  vk =  tp (.I-(&).&(A&. uppcr b o u n d s  fbr b o t h
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angles  t& and vk arc given in Theorem 3.3, and an upper bound for iI&+ II is given in ‘l’hcorcm
3.1. This gives I$. (26) and (27). 0

Figure 2. The contributions to (28) from (a) rk and (b) &.

Again, F,q. (27) is a well-known result. The new main ‘result  (26) supplements Thcorcms
3.2-3.3 above and states again that the pcrturbcd TSVD solution xk can only bc guaranteed to be
close to the true solution when there is a well-dctcrmincd gap between singular values  ok and

@k+l* --.

4. Matrices with well-determined and ill-determined numerical ran’k

.
Although the concept bf matrix rank is not necessary for the use  of TSVD as a mctho~  for

rcgularization,  it is appropriate  to discuss this concept  hcrc since  it is so strongly conncctcd with the
above perturbation  theory. This leads  tti a natural division of ill-conditioned matrices into two
classes: those  with well-dctcrtnincd numerical  rank and those  with ill-dctcrmincd numerical  \*ank.

. Such a characterization  was also discuss+ by Golub, Klcma & Stewart  [9).

It is well-known that, due to approximations, rounding crrbrs,  and other sources  of errors,  it
is very  unlikely that true zero singular values  occur in practical r!umcrical applications. It is thcrc-
fort common ‘to ncglcct the singular v~lucs  smaller  thirn ;I certain threshold, which obviously
corresponds  to the USC of t,hc ‘I’SVD. ‘I’hc choice of a suiti~blc  Wcshold  takes  its basis in the fol-
lowing classical perturbation  bound for the singular vahcs  [LO, p. 2861:

.

I (ti -  iji 1 < 11 I: 11 , i’ = 1, 2, . . . . n . (29)
This implies that singular vr~liics Gi of ;i larger than II /sll arc giiarantccd to rcprcscnt nonzcro
singular values  ui of A. Howcvcr,  one  cannot distinguish the singular vahcs  Gi  below  II / !' I1 Krom
exact zcrocs.  As a conscqucncc, when

& > 11~1’  2 Gk+l

for SOITIC  k, one  can  only gu:lrantcc that the ralik of A is i\t Icilst  k.

(30)

This leads to the definition  of the ttrtttreripi  rmk rt of A, with rcspcct  to the error lcvcl
.T > 0, as the number  of singular values  strictly grcatcr than T:

Ql 2 l l l �2 CT,*  > 7 2 q+1 . (30

Equivalent n‘amcs  for ‘numerical  rank’ arc ‘clRctivc  rank’ [8] and ‘pscudorank’ [12]. The so dcfincd
‘I’SVD Art (7) consists only of lhosc  contributions uj Ui v/ lo A with ;i significant ~lil~lliltldC as

mcasurcd by the error lcvcl T, while the unccrtnin  contributions (corresponding  to i > r,) arc dis-
carted.
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The above .dcfinition  of the numerical rank is indcpcndcnt of the particular distribution of
the singular values  of A. ‘I’hc numerical r a n k  r7 i s ,  however,  o n l y  useful when t, i s  well-
dctcrmined  with respect  to 7; i.e., t, must be insensitive to small variations in T. As seen from Fig.
3, this is only the cast when thcrc is a well-defined gap between the singular values  ur, and CT,~+~.

Exactly the same  conclusion can be drawn from ‘I’hcorcms 3.2-3.4 of the perturbation  theory in the
abovcscction, with k = t,. Dcpcnding  on the behavior of the singular value spectrum, it is thcre-
fore natural to charactcrizc  an ill-conditioned matrix as cithcr a matrix with a well-determined
numerical rank or an ill-deremined numerical rank One should look for an numerical  rank only if
it actually can be expected
detcrmincd  numerical  rank.

to be thcrc, as is the case for ill-conditioned matrices with a well-

Figure 3. Singular value spectra  corresponding to an ill-conditioned matrix
with X well-determined and l ill-dctcrmincd numerical rank.

It should be noted that the scaling of A has a considcrablc  cffcct on its singular value spec
trum. Inhcrcnt in the above discussion is thcrcforc that the matrix A has been  properly scaled.
Good scaling stratcgics  seem to bc to scale sp that, as far as possible,  the unccrtaintics  in all the clc-.
mcnts of A arc of the, same order  of magnitude,  or so that ail columns of ,4 have  approximately
the same  norm I] l I].

Any distribution of singular values  in bctwccn the two cxtrcmcs of Fig. 3 may of course  be
expcctcd in practical applications. Howcvcr, thcrc arc certain  cntcgorics of problems that clearly
lead to ill-conditioned matrices with cithcr well-dctcrmincd or ill-dctcrmincd numerical  rank.
Matrices  with well-dctcnnincd numerical  rank arc most likely to occur when the algebraic least
squares  problem (1) is obtained  from some  underlying  problem  for which the concept  of rank
makes  scnsc. Examples  of such problems  arc:

observation of signal components  in noisy data [19],

solution of some Frcdholm integral  equations of the first kind [7,1I],

dctcrmination  of (A ,/I)-invariant  and controllability subspaccs  [15,20].

Matrices  with ill-dctcrmincd numerical  rank, on the other  hand, arc obtained  from underlying  ill-
posed  problems  whcrc the concept of rank l&as no intuitive intcrprctation. Examples  of such prob-
lcms  arc:

digital image restoration [I],

solution of integral  equations in solid state physics [S],

invcrsc  Radon and Inplacc  transformation [14,16,21].
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5. TSVD and matrices with well-determined numerical rank

When the matrix A in problem (1) has a well-dctcrmincd numerical rank as discussed in
Section 4, it seems natural to apply the TSVD as a method  for rcgularization. The question then
arises: under  which circumstances is the ‘I’SVD qlution  xk close  to the rcguiarized  solution xi?
This obviously dcpcnds  on the choice of the rcgularization parameter A, and the filter factors (14)
and (15) in Section 2 suggest that A should bc chosen somcwhcrc bctwccn the singular values  ok
and CT& +1, where k is the numerical rank. The choice of the regularization parametei  A is not a
trivial problem as can bc seen from the following theorem.

Theorem 5.1. Let X be chosen such that  x E [q+l , a&]. Then:

(32)

where ok is the relative  gap (I&).

Proof: From Eq. (13) is follows that

Both of t&e quantities  arc monotonically decreasing functions of A, and they intersect at

h = (ok uj,+l)H. THUS, the minimum and maximum values of II Ai II arc attained at A = u& and
X = u&+1, rcspcctively:

h = u& => llA[ll = %uA’1  = %llA&Yl
-;x = u&+1 => IIAiII  = ‘AuA’;‘l = h&k = %IIft$ll@;l . 0

Theorem 5.1 states that if tik is small, i.e. if then: is a large gap in the singular value spec-
trumofR atk,thcn A: may differ corisidcrably frdm Ai’ if A is chosen ciosc to ok+l. On the
other hand, if A is chosen close to dk, theii Ai and R &+’ i-night bc similar. The closCnC!Xs of thcsc
two matrices is invcstigatcd in the following theorem.

Thcorcm 5.2. Assume that  x f [ak +I, a&]. Then:

and rhe minimum is obtained when

h = (aju&+ly’  .

. Under the same assumplion:

and this minimum is obrained  for

x = bk u&+1)’ *

Proof: ‘The proof follows directly from the hppcndix and the following relations:

(33)

(33a)

(34)

MO

II4 - A,+ 11 = 11 z,+ - &?I1 = mfx 1 [& - t&Ii 1 for p = 0 ,

IlA(Ai - A,‘)11 = 11 X<?A+ - &?I1 = max 1 [& - <k], 1 for p = 1 . q
i
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The csscncc of Theorem 5.2 is that the diffcrcncc between the matrices A i and /i&+ is small
when h is chosen according to (33a) and when ok is small, in which cast the minimum (33) is
approximately  equal  to a&‘. The difference between the solutions xx and x& is thcrcfore  also small
for this value of A. Similarly, it is seen  that- the diffcrcnce  bctwccn the residuals corresponding  to
the two solution:

(b-Axk)-(b-AxA)=  A(A; -Ai+)b , (35)

is small when A is chosen according to (34a) and when a& is small, in which c;1sc the minimum
(34) is approximately’  equal to u&. There is a trade-off bctwcen  (33) and (34); but since (34) is a
factor wt smaller  than (33) is seems  appropriate  to choose  h according to (33a).

To illustrate the impact of the above theorem  it is convcnicnt  to compare the two methods
graphically as in Fig. 4. The solid curve, which is associated with the regulari/.ation  method, is
given by

(.lh - AxAII,IlxAll) , h 2 0 (36)

where bR is the projection  of the right-hand side on the range of A. Similarly, the points marked
X are associated  with the TSVD and reprcscnt the point set

(llh -A X&II,IIXkll) 9 k = O,l,..., n . (37)

The behavior  of (36) and (37) is described in the following thcorcm.

Theorem 5.3. In (36). If X~ II is a decreasing funclion of I I bR -  A xx I I, and in (37), I I x& 11 ti a
decreasing finclion  of II bR - A xk II on a finire  sel. The curve .coincides  wilh the poinl  sel at lhe
endpoints (k =0,X=0) and (k=n,X= 00) where lhey  both lvuch rhe cixes The remCling
poinls of (37) lie above rhe solid curve (36).

Proof The fact that ]I xA ]I and j]x& I] arc dccrcasing functions follows. from Eqs. (3) and (10) and
the following expressions:

I I
2.

IIbR - A xAI( = i$l ,?:A; (u/b)2 , Ibit - ff XkII = 2 t”Tb12

I=&+*1

in which ui is. the i’th column of the matrix U in (4). Eldtn [6] has shown that xA can also bc
charactcrizcd  by

minllb  -  A xl] subject t o  I]x]] s 7

whcrc 7 is a free paramctcr,  and that normally the solution occurs when j]x ]I = 7. Hcncc,
Ilx 112 11 xA 11 for any x that satisfies  I] bR -  A x II = II b& -  A X~ II. *q

Fig. 4 is drawn for the cast when A has a well-dctcrmincd numerical.  rank, and the ‘comer’
of the solid curve is characteristic for such matrices. It is intuitivciy cicar that in order to yield a
Iair trade-off bctwccn minimiznion  of the residual  norm and the solution norm (2). h should bc
clw sc~ ~  such that xA is rcprcscntcd by a point near the ‘corner’  of the c~ ~ r vc.  ‘I’hc figure shows that
this is actually the cast when X is chosen  according to (33a) as well as (34a). ‘l’hc ligurc also show s

that the ‘WI) solution xk is in frrct close  to xA for this choice of A.

The conclusion to bc drawn from this discussion is that if the matrix A is ill-conditioned
‘and  has a well-dctcrmincd numerical  rank, and if X is chosen near the intuitive optimum value,
then  the TSVD solution x& is guarantL%d  to bc similar to the rcguiarizcd solution xA. This suggests
that for this class of matrices, from a thcorctical  as well as a computational point of view,  a suitable
solution to (1) is the ‘I’SVlI solution x& which, in most casts,  can bc computed  cfficicntiy from a
Q-R factorization of the matrix A [4].
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I Ii Qi I I

10*

10'

1

-

Ix = f’8y

. .

1 9 1 5.00 *lo+ 1 1.23 *lo-’ I

3

x1 = <X+‘Xs)”  t 1.78*10-’
I4x2 = a1 xs ?: 3 . 1 6 1 0 ”

lbK-A-d
~~

Id-J

. .

1o-4 l& 10-2 1 0 ”

Figure 4. Comparison of the TSVD and regularization  methods for an ill-conditioned matrix
with well-dctcrmined numerical  rank. The numerical  rank is obviously equal to k = 7.
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6. TSVD and matrices with ill-determined numerical rank

In spite of the conclusion from the previous section, the TSVD has also been reported [22]
to yield results  similar to those of rcgularization  when the matrix A has an ill-dctcrmincd numerical
rank. For such matrices, Theorem 5.2 is not useful since it turns out that the similarity of xx and
xk now depends strongly on the right-hand side 6. Marc prcciscly, it depends  on the projection  of
b on the left singular vectors  of A, as can be seen  from the following theorem.

Thcorcm 6.1. Let /Ii = u?b, i = 1, . . . . n, where (ut) are the columns of the lefr singtilar  mu&ix U
in the S VD of A. Assume thal the (Pi ) decay as:

Pi = Uip , p = 0, 1, 2, 3, 4 (38)

and assume that h is chosen such thar h E [O k+l , ak].  Then the d&Kerence between xx and xk as
measured by

d = mj”  bh - xkh , x E bk+l,ok] (39)

is a function of ok and Kk as shown in Table ! below. W hen wk G 1, which corresponds lo an A
wirh ill-detemtined numerical rank, rhe relative nreasurc d 11 b Ik 1 is a finction of Kk only as shown
in Table 1.

I I.1P Bi. d .

-1 Kk
Ul

2

I I I1 Ui
ok

.1+ tdk

-1L
Ql

2

I I I2 uf
ldjr2

-<d+Jk
tap2

Ok l+wt - 1 +.q

I I I3 uf -1 101 -
4

I I I .4 0; I -1 1
Ql -

4

Table 1. The similarity of xA and xk as a tinction the decay  of (rBt}.

- I%$ See the Appendix.

Although ‘l’hcorcm 6.1 covers  only a very special  cast  of right-hand side% b it gives  a clear
indication of the importance  of the decay  of the (/Ii ). For the cast of Frcd.l~olm  intcgnl  equations
of the first kind. the w&known  Picard condition (cf. c.g. [22j) states  that Tar a solution to exist,  the
corresponding j&-cocUicicnts  must decay  Qstcr than the singular values  (pi) of the kcrncl such
that C (pi /pi)2 < 00 . ‘I’hcorcm 6.1 is a kind of ‘discrctc Picard condition’ for the ‘I‘SVD and states
that the faster  decay  of the (Pr), the closer xk gets to xA.

‘I’hc cast p = 0 is unrealistic for most practical right-hand sides  b and is included hcrc only
for complctcncszz  ‘lhc cast p = 1 is slightly unrealistic: but it somctimcs occurs in practical appli-
cations. I3oth  WCS do, howcvcr, apply to the perturbation  c of b in many practical applications
when the right-hand side b cons&s  of mcasurcd quantities  contaminntcd with mcasurcmcnt errors.



- 12 -

If, on the other  hand, the cocficients {u:e} of the perturbation e decay like the Pi-co&icicnts  for
y 2 2, then Theorem 6.1 leads  to a small perturbation bound on the TSVD solution. This result
agrees with the perturbation  bound’given in terms of the ‘effcctivc condition number’ as defined  in

PI.

-

4

7

I.

.,

,

1 . .

1,.

111

1

II IIX

k=9

--.--.

1

6 1.00 010’~ 1

3 1.00 l lo-3

t’8 1.00 40”

9 1.00 40”

IlbH4XlI

i-6 l& lo--*

Figure 5. Comparison of the TSVD and rcgularization methods for an ill-conditioned matrix
with ill-dctcrmincd numerical rank. Thcrc is no intuitive way of choosing X or k.
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It’is interesting to notice the different behavior of d and d 11 b 11;’ for p < 2 and for p >2.
The reason for this behavior  is that for p < 2 the maximum element of xx - xk is associated with
uk, while for p >2 it is associated with ~1. It is also interesting to note that d 11 b Ikl actually
dccreascs  with increasing Q, thus suggesting  that k be chosen as large as possible to maximize Q..
The perturbation theory of Section 3 dots, however, still apply and thcrc is thercforc  a trade-off on
K& bctwecn minimization of d 11 b I k l and minimiz&on  of the condition number KA.

The gcncral situation is illustrated in Fig. 5, showing the typical behavior of (36) and (37)
when A has an ill-dctcrmined numerical  rank for the cast p = 1 above. Here, thcrc is obviously
no intuitive way of choosing a suitable regularization parameter A. Neither does the singular value
spectrum of A suggest a suitable value of k. xk will be close  to xA for any k provided  that the
‘digretc  Picard  condition’ is satisfied

The conclusion to be drawn in this section is that if A is ill-conditioned and has an ill-:
dctcrmincd numerical  rank then the TSVD solution xk will bc close to the regularized  solution xx
if the pi-coeficients  of the right-hand side b decay sufficiently  fast, Hence, use of the TSVD as a
rcgularization method might give good results. In general, one  can not guarantee a small perturba-
tion bound on the solution xk for any value of k: but if the perturbation  e of the right-hand side
also satisfies the ‘discrctc Picard  condition’ then the perturbation  bound on xk is small.

7. Conclusion

From a thcorctical  as well as a practical point of view, the truncated  singular value decom-
position (TSVD) is a suitable method  for regularization of the ill-posed problem (I) when the
cocficicnt  matrix. A is ill-conditioned with a well-dctcrmincd numerical  rank. If the parameter k
of the TSVD Ak (7) is chosen  equal to the numerical  rafik rr (31) of A, then the TSVD solution is
little scnsitivc  to errors in the matrix A and right-hand side 6, and the TSVD solution is close  to
the rcgularizcd  solution with the rcgularization paramctcr  chosen near its intuitive optimum value.
When A has an ill-dctcrmincd numerical  rank, the ‘I’SVD and rcgularization methods may also
product similar results,  provided  that the &-cocllicicnts  (!8) of b dmay suficicntly  fast., and if the.
corresponding coclficicnts  of the pcrturbatitin  c of b also decay  MIicicntly fast then the TSVD
solution is litllc scnsitGc’t0  thcsc errors.
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Appendix: Proofs of Theorems 5.2 and 6.1

In this appendix,  the quantity d as dcfincd  in Eq. (39) is invcstigatcd for the special  case
when pi = gi’ as in Eq. (38). Write x1 = V & and xk = c/ &, whcrc V is the right singular
matrix in the SVD (4) of A. ‘L‘hc.  clcmcnts of & and & arc then:

<tip-l , i = 1, . . . . k

and Kkli = I (Al)
0 , i = k +l,...,n
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giving
I

_ uip-l X2 , i = l,..., k
a? + x2

Kx - &If = <
2

uiP-l ui

a;+ x2 ’ i‘= k +I,..., n

andsinceIlxll=I/VII)=IlfllitfoIIowsthatI

d = “;h 11x), -  xk IL = 4”  11)~ -  tk IL = m/n ( yx 1 [&A -  &Ii 1

Up A2 uk’-’ ii2 uk’+tl. ,,p+l

a? + A2 ’ “’ ’ ai + x2 ’ ui+1+ A2 “.’ ’ a; + x2

w

Consider first the situation when h = ok. In this case, it is straightforward (but quite
cumbersome) to show that:

UpA

uj + A2

= ‘AukP-l , *p = 0, L2

d = f&p)= ’
Uf -’ X2 uf -‘uj . (A4)

uf+h2 = uf+c$ ’ p = 3,4
c

Similarly, when X = uk+l one can show that:
.

‘(rkp+$l
Z H UkP+il 9 P = 0, 1, 2

d+1+ A2
d = g&p) = ’

Up A* . UIP” Al
. (AS)

at + x2 = a?+&+1  9 P = 394
.

Hence, for p = 0,1,2 the maximum element of & - & is element no. k or k +l, while for
p = 3,4 the maximum clcmcnt is no. 1.

For p = 0, 1,2 Chc fknction f is an increasing  tinction of A, and g is a dccrcasing function
of A. Hcncc. d can bc written a:

d = mjn ~fh-d,dX,p~~ (A61

and the minimum occurs when f (A ,p) = g(h ,p); i.e., when clcmcnts no. k and k + 1 arc equal.
This lcads to the equation

ok’-’ ii2 u kp&’

ai +x2 = u~+1+X2
(A7)

which h,as the solution /
,

x2 4! -‘ht&$(~k  - 1) + . 1 + [‘htd~(tdk -
d

01 ]2

P 0=

P 1.= W

p=2

Insertion  of the solution for p = 1 into f (A, 1) gives ok /(l + wk) as given in l’ablc 1. For ok < 1
and p = 0,2 the above cxprcssionssimplifi to
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and insertion of this into f (X ,p) and g(k ,p) gives the upper and lower bounds in the third
column of Table 1. For p = 3,4, d can be written as:

d = mjnf(h.p) WO)

and since f is an increasing fimction  of h, the minimum of (AlO) is obtained for x = uk+l. This
leads to the remaining results in the third column of Table 1. The rightmost column of Table 1
follows from the simple fact that II b II, = al for all p.
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