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Abstract

Template-based object detectors such as the deformable

parts model of Felzenszwalb et al. [11] achieve state-of-

the-art performance for a variety of object categories, but

are still outperformed by simpler bag-of-words models for

highly flexible objects such as cats and dogs. In these cases

we propose to use the template-based model to detect a dis-

tinctive part for the class, followed by detecting the rest of

the object via segmentation on image specific information

learnt from that part. This approach is motivated by two ob-

servations: (i) many object classes contain distinctive parts

that can be detected very reliably by template-based detec-

tors, whilst the entire object cannot; (ii) many classes (e.g.

animals) have fairly homogeneous coloring and texture that

can be used to segment the object once a sample is provided

in an image.

We show quantitatively that our method substantially

outperforms whole-body template-based detectors for these

highly deformable object categories, and indeed achieves

accuracy comparable to the state-of-the-art on the PASCAL

VOC competition, which includes other models such as bag-

of-words.

1. Introduction

The vast majority of current methods for object cate-

gory detection use some form of sliding window classi-

fier. In particular, template-based models such as the De-

formable Parts Model (DefPM) by [11] currently achieve

state-of-the-art performance for the majority of the ob-

ject classes in international benchmarks such as the PAS-

CAL VOC 2010 [8]. The success of these methods em-

phasizes the importance of geometry in the description of

most visual categories. Yet, for highly flexible and de-

formable objects such as cats and dogs (figure 1), DefPMs

and other template-based models are still outperformed by a

large margin by simpler bag-of-words models, which have

a much weaker notion of geometry [8]. Not surprisingly,

several authors [13, 40] advocates the study of these object

Figure 1. The deformable and truncated cat. Cats exhibit (al-

most) unconstrained variations in shape and layout. The cat ex-

amples shown here are detected by our Distinctive Part Model, but

missed by the template based method of [11].

categories as prototypical cases for which geometric mod-

eling is challenging.

The question we address here is whether it is possible to

extend template-based models such as DefPM to be com-

petitive for these highly flexible categories as well. The key

insight is that for many objects color and texture are fairly

uniform across the entire body, or vary in a manner that

can be learnt; and also that many objects have a distinctive

part that can be detected well with the current generation

of template-based detectors, even though their overall ap-

pearance is highly variable. The idea is then to detect first

a distinctive part of the category, and second, to segment

the category instance primarily using image specific fea-

tures learnt from that part. We call this a Distinctive Part

Model (DisPM, section 2).

For example, for a cat the head is a distinctive part and

can be detected well by a template detector such as DefPM.

The detected head then provides the cat’s fur color and tex-

ture, and, in turn, these color/texture distributions can be

used to segment out the cat’s body. These assumptions are

satisfied for instance by numerous animal classes, such as

sheep, cows, zebras, horses, elephants. A similar approach

can be applied to naked humans (e.g. using face detection to

learn an image specific skin color [14]), but clothing renders

the model less applicable in this case.

The question is: how well does this DisPM work as

a detector? As will be seen (by results on the PASCAL

VOC 2010 detection competition [8] in section 3) the per-



formance surpasses existing template models trained on the

whole body by far. DisPM is in fact able to detect cats and

dogs in quite variable poses, and under considerable partial

occlusions and truncations (figure 1).

Related work. Our approach extends template-based de-

tectors such as DefPM, which, by allowing only for limited

geometric variability, usually do not work well for highly

deformable objects. Similarly, articulated models, such as

the pictorial structures [10] typically used for human lay-

out detection, are not appropriate for objects such as cats

and dogs as they do not capture the deformation and limb

occlusions that they exhibit.

Our method is also directly related to [24] and [40], that

have designed and evaluated cat head detectors; section 3

shows DefPM to be a much better detector at this task.

Fleuret and Geman [13] have used cats as an example ap-

plication of their object model based on stationary features.

Their coarse-to-fine search strategy uses the cat head as a

privileged part, as we do. Unfortunately this algorithm was

not evaluated on public benchmarks, making a direct com-

parison difficult.

Previous work has combined object category detection

and segmentation in various ways [16, 19, 22, 33, 34, 36].

However, often the goal of these methods has been segmen-

tation of the entire image, rather than object category de-

tection, whilst others [2, 3, 20, 21, 27, 28, 37] have gener-

ally targeted typical views of vehicles and animals (e.g. side

views of horses) that are suited to template based detectors.

Their aim has not been to handle the variety in appearance

and deformation that it is our goal for the new DisPM detec-

tor. In fact, a significant difference is that DisPM restricts

the use of the template detector to extract just an object part

and then leverages on segmentation to extend it to the whole

deformable object.

Finally, our work is generally related to sliding-window

object detectors. Within the window there may be be a

single feature type represented, such as HOG [6] or HOG

parts [11], or a bag of visual words [23], or a grid or pyramid

of visual words [12, 26], or a combination of such features

and kernels [18, 38]. In the recent PASCAL VOC 2010 ob-

ject detection competition [8] all the top methods were of

this kind. There are a number of methods for object de-

tection that start from bottom up segmentation, rather than

sliding/jumping windows [1, 15, 17, 25, 29], but they are

yet to be competitive with the window based detectors.

2. The distinctive part model

The DisPM extends template-based models to the detec-

tion of highly deformable object categories. Consider the

case of cats, which we will use as our running (actually sit-

ting) example for describing the new model: extreme artic-

ulations, atypical viewpoints, and partial occlusions induce

(g) Object (h) Distinctive Part (i) Trimap

Figure 2. Annotations. (a) The PASCAL VOC annotations are

tight bounding boxes around the object instances. (b) Additional

annotations for the distinctive object part, in this case cat/dog

heads. (c) Pixel-level segmentation of the object also provided

by PASCAL VOC.

variations of the appearance of a cat that cannot be captured

by a template-based model. This is true even for models

such as the DefPM detector that account explicitly for de-

formations of the template.

The DisPM works around this problem by detecting first

a stable and distinctive object part, such as the cat head, for

which a template-based detector is appropriate. It then uses

the detected part to initialize and constrain the segmentation

of the rest of the object. DisPM is therefore composed of

three elements, illustrated in figure 3: (i) a template-based

detector of the distinctive object part, (ii) a model of the ob-

ject body appearance (color or texture), and (iii) a segmen-

tation algorithm. The segmentation is used here to assist the

detection process.

The next three sections describe in detail the three com-

ponents of the model. For the template-based detector (i) we

use the DefPM model based on the implementation publicly

available from the author’s website (section 2.1). For the

local appearance model (ii) we model colors by histograms

in RGB space, along with an object boundary detector to

aid segmentation (section 2.2). For the segmentation algo-

rithm (iii) we use the standard graph cut model of Boykov et

al. [5] (section 2.3). Since the appearance model is learned

from the object region itself (starting from the distinctive

part), graph cut and estimation of the appearance model are

alternated to refine the segmentation result (GrabCut [35]).

Training data. We learned and evaluated our model on

the PASCAL VOC 2010 detection competition data [8]

(note that VOC encourages evaluating detectors specialized

on particular object categories as well as general purpose



(a) Original Image (b) Head detection (c) Fg. posteriors (d) Berkeley edges (e) Fg. segmentation (f) Output bnd. box

Figure 3. Overview of the model. A distinctive part, the head in this case, is detected using the DefPM model [11]. (b) The detected

part ROI (red rectangle) is used to define a search region for the object (yellow rectangle), and also seeds the foreground color distribution

(green rectangular region). The background color distribution is learnt from the red area. (c) the foreground posterior, computed using

the seed and background data (red is high, blue is low probability). These posteriors form the unary term of the energy function used in

segmentation. The pairwise terms use the Berkeley edge detector response (d). A graph cuts binary optimization gives the foreground

segmentation (e). The detection result is a tight bounding box around the foreground segment (f).

detectors). The VOC data is a large collection of images

with annotations for twenty object classes, including cats

and dogs. In particular, the VOC 2010 data contains about

10,000 training and validation images and 10,000 test im-

ages. The VOC publishes bounding box annotations and

trimaps (figure 2) for the training and validation subsets,

while the evaluation on the test data is carried independently

by the VOC itself.

Recently Bourdev and Malik [4] advocated the use of

manual annotations for training distinctive object parts

(poselets). Here we use a similar approach. Specifically, the

VOC training and validation data are annotated with bound-

ing boxes by following the same procedure used for the con-

struction of the VOC annotations [9]: for example, a head

bounding box is defined as a tight fitting box, containing the

face and ears (e.g. in figure 2). These annotations are then

used to learn the distinctive part model.

2.1. Part model

The distinctive object part is detected by means of the

DefPM. As will be shown in section 3, this model is ex-

cellent for structures that are relatively stable, such as, for

example, the face of a cat, but is relatively poor for highly

deformable objects, such as the cat body. The detected part

is used to determine an image-specific color model for the

cat, and also to predict a (maximal) bounding box for the

entire cat.

The DefPM detector is a mixture of templates, each of

which is a collection of parts connected by springs. Parts

are described by linear filters on top of low level features

such as HOG [6] and the model is learned by means of a

latent SVM. See section 3 for further details and figure 3(b)

for example detections.

2.2. Whole object model

The object appearance model captures the material of the

object (color) and the object discontinuities (edges). For

the object color, there are two source of information that

can be used. First, some colors cannot belong to any of

the object instances (e.g. there are no green, blue, or purple

cats), which is used to construct a color prior for the cate-

gory. This is learned from the trimap object segmentations

(Fig. 2) by computing color histograms of the foreground

(cat) and background (non-cat) regions. Second, the color

of the specific object instance being detected, and of the

background scene in which it is found, can be estimated

from the distinctive part. For cats and dogs, the head pro-

vides a cue on the color of the fur, and image pixels far

enough from the head are used to estimate the color of the

background.

Category color prior. Colors are modeled by means of

histograms. We use a relatively high dimensional histogram

h ∈ R
32×32×32 but smooth it by a small Gaussian ker-

nel (of isotropic standard deviation σ = 0.025) in order

to reduce the variance of the estimator. The global fore-

ground/background color histograms h0
fg,h

0
bg are obtained

from all the foreground/background regions in the training

set.

Instance-specific color. The distinctive part of the object

is used to obtain an instance-specific foreground hfg and

background hbg color models. The foreground color is es-

timated by sampling the pixels contained in the foreground

seed. The seed is a rectangular sub-region of the distinc-

tive part that is contained in the foreground region with

very high probability in the training data. For instance,

the foreground seed of cats roughly corresponds to the fore-



head. The location of this region inside the distinctive part

is learnt from the training data. The background color is

estimated from the pixels that are outside a maximal bound-

ing box, i.e. a bounding box that contains almost surely the

entire object. The maximal bounding box is obtained by

aligning and scaling a template box to the rectangle of the

distinctive part detection. The dimensions of the template

itself are learned by requiring it to be the smallest box that

contains 99% of the object pixels for all training images. To

handle the case where no part of the image is inside the

maximal bounding box, a thin strip of pixels around the

image (20 pixels wide) is always included to estimate the

background color. Examples of the seed and of the bound-

ing box are shown in figure 3(b) (these regions will be used

in section 2.3 to further constrain the segmentation geomet-

rically).

Foreground and background posteriors. Let x be an

image and y be a partition of the image into foreground (ob-

ject) and background components. In particular, let xi ∈ R
3

denote the color of the i-th pixel (in RGB space) and let yi
be equal to +1 if the pixel belongs to the object and to −1
otherwise. Given the color histogram hfg,hbg,h

0
fg,h

0
bg, we

can define three likelihoods:

p(x|y = +1, fg) = hfg(x), p(x|y = −1, bg) = hbg(x),

p(x|y = +1, fg0) = h0
fg(x), p(x|y = −1, bg0) = h0

bg(x),

fg and bg are foreground background pixels from the given

image, and fg0 and bg0 are foreground and background pix-

els from the set of training images. By assuming P [y =
+1] = P [y = −1] = 1/2, these are combined into two

posteriors

p1(y|x) =
p(x|y = +1, fg)

p(x|y = +1, fg) + p(x|y = −1, bg)
, (1)

p2(y|x) =
p(x|y = +1, fg0)

p(x|y = +1, fg0) + p(x|y = −1, bg0)
. (2)

The first one discriminates between the color of the object

instance and the color of its surrounding (as estimated from

the seed and the maximal bounding box), and the second

one between that of the object and of generic clutter. The

latter helps eliminating impossible colors (e.g. green cats)

that may not be sampled outside the maximal object bound-

ing box. These two are combined into a unique posterior

by additive combination (p(y|x) ∝ c1p1(y|x) + c2p2(y|x)
where the weights ci are learnt from validation data (and

have the values c1 = 1/10, c2 = 9/10). Example fore-

ground posteriors, p(y = 1|x), are shown in figure 3(c).

Modeling edges. In addition to color, the model also uses

an edge detector in order to further improve the quality of

the final object segmentation. The edge map will be used

to encourage the segmentation boundaries to match discon-

tinuities of image edges. In this work we leverage on the

powerful Berkeley PB edge detector [30]. Compared to

other detectors such as Canny, PB is designed to suppress

intensity discontinuities which correspond to texture rather

than actual object boundaries. See figure 3(d).

2.3. Segmentation model

Once the distinctive object part has been detected, it must

be extended to a segmentation of the entire object (see fig-

ure 3(e)). As we expect the object to be highly deformable

but to have a distinctive material, this can be achieved by a

well designed segmentation algorithm.

For segmentation we use a graph cut [5] based energy

minimization formulation. The cost function is given by

E(x,y) = −
∑

i

log p(yi|xi) +
∑

(i,j)∈E

S(yi, yj |x) (3)

The edge system E determines the pixel neighborhoods

and here is the standard eight-way connectivity scheme.

The pairwise potential S(yi, yj |x) favors neighbor pixels to

have the same label unless a PB edge separates them:

S(yi, yj |x) = γ exp(−ej(x)/β) (4)

where ej(x) is the PB edge intensity at pixel j and β =
〈ej(x)〉 is the average edge intensity in the image. Note

that the edge is measured only at pixel j, as defined by the

edge system E (here j is the pixel more on the right/south).

The parameter γ is learnt on the validation data.

The distinctive part detection is used to fix the values of

some labels y (clamping) as follows: (i) the foreground seed

region must be labeled as foreground, and (ii) the region

outside the maximal bounding box must be background.

These two regions were defined above in section 2.2.

The segmentation is defined as the minimizer

argminy E(x,y) of the energy using graph cut. In

fact, since the color of foreground and background can

be estimated more accurately as a better segmentation of

the object becomes available, GraphCut is alternated to

re-estimate the color model, in the manner of GrabCut [35].

In section 3 we show that initializing from the posteriors of

section 2.2, yields a substantial improvement in detection

performance over simply initializing from the clamped

regions.

Cleaning-up and detection. Given the segmentation re-

sult from GrabCut, this is cleaned-up by preserving only

the connected foreground component that intersects with

the distinctive part and discarding the others. The final ob-

ject bounding box is estimated as the smallest box that fully

contains the segmented foreground region (see figure 3(f)).



Figure 4. Distinctive part detector. First row: The DefPM

model [11] for the cat head, used as distinctive part, and exam-

ple detections. Second row: the same for dog.

The detector score is obtained from a combination of the

DefPM score and size of the distinctive part detection.

3. Results

Following the PASCAL VOC best practices [8], the var-

ious components of the model are evaluated in detail on the

PASCAL VOC 2010 train/validation sets and overall results

for the complete model are given on the test set to allow for

a direct comparison with other published methods. Since

we use head annotations to train the distinctive part model,

we evalute our results against the VOC detection competi-

tion 4, which allows additional annotations.

The performance of a detector is evaluated in term of

the Average Precision (AP) of the ranked list of detections,

where a detection is considered to be correct if its overlap

ratio with a ground truth bounding box is at least 0.5 and if

it is not a duplicate (see [9] for details).

Learning the distinctive part. The distinctive part anno-

tations are used to train a DefPM model for the part (fig-

ure 4) with one aspect, eight high resolution parts, and a low

resolution one (root filter). The low level image features are

HOG [6, 11] (capturing shape) and LBP [31] (capturing tex-

ture). The DefPM detector supports multiple components,

but in our experiments we use a single one as we found em-

pirically that this worked better in our case. Figure 4 shows

examples of the detected cat/dog heads with variations in

pose, appearance, and size.

Precision-recall curves for the DefPM detector for the

cat heads in the VOC 2010 validation data are given in fig-

ure 5(b). With the standard PASCAL VOC overlap ratio

of 0.5, the detector AP is 45% with HOG features only,

and this improves to 49% when the LBP features are added.

Since the DisPM uses the distinctive part as a seed to obtain

a segmentation for the whole object, a less strict (than 0.5)

overlap ratio often suffices for this purpose (as will be seen

below). Thus it is interesting to note that for a (looser) over-

lap ratio of 0.2, the AP of the head detector is 61% with a

recall of 80%. The recall-precision curve for this overlap ra-

tio is also shown in figure 5(b). The DefPM performs much

better than alternative cat head detectors available in the lit-

erature. Specifically, when trained and tested on the VOC

2007 cat heads, DefPM achieves an AP of 54.6%, while

the detector of Zhang et al. [40] obtains 34.4% with the

same data. The detector of Laptev [24] obtains 18.7% on

the VOC 2007 test data (when trained on the VOC 2006

training data).

Whole object detectors: baselines. The first baseline is

the standard DefPM model trained to detect the whole ob-

ject. For cats, training on the VOC training data and test-

ing on the validation data gives an AP of just 29% (fig-

ure 5(a)). Based on the PASCAL VOC 2010 results, the

performance of the newest DefPM version (which is not yet

available to the public) is, on the VOC 2010 test data, about

the same (31.8%). This level of performance is relatively

poor compared to other classes (e.g. the performance of the

DefPM detector on the VOC vehicles is around 50% AP).

The model does not seem capable of capturing the variabil-

ity of the cat bodies. To verify this, consider as a second

baseline a simple head-to-cat regressor. This regressor is

obtained by computing the average ratios between the size

of the cat head and the margins between the cat head bound-

ing box and the bounding box of the whole cat. These ratios

are then used to predict a bounding box for the cat given a

novel head detection. This simple head-to-cat regressor has

31.1% AP, which already exceeds the performance of the

DefPM detector trained on the whole cat.

Whole object detectors: upper-bounds. Given the de-

tections for the distinctive part, it is easy to compute an up-

per bound for the performance of the DisPM by mapping

each part detection to its corresponding ground-truth object

bounding box, if there is one (we say that the part corre-

sponds to the object if more than 50% of the area of its

bounding box is included in the object bounding box). In

this way, one obtains a cat detector with AP of 67% (fig-

ure 5(c)). While this is an ideal result, it is worth noting

that the performance is more than twice that of the standard

DefPM detector.

Postprocessing. All the top methods in the PASCAL

Challenge [8] rerank detections based on global image cues

and other statistics. In our case, the final scoring for a can-

didate detection is obtained by combining, by means of a

linear SVM, the following seven features. The first fea-

ture is the DefPM score for the distinctive part; the sec-

ond and third features are the output of image-level bag-of-

word classifiers [39], trained to detect cats and dogs respec-

tively (the inclusion of both animals helps disambiguating

between them, similarly to [11]); the fourth and fifth fea-

tures are also two global cat and dog scores, obtained as
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Figure 5. Performance of the model components for cat detection on the VOC2010 Validation data. (a) Baseline cat ROI detection

results – the DefPM model (trained on the whole object) and regression on the head detections. (b) Head ROI detection results using

the DefPM model (trained only on heads) with and without LBP. (c) Components of the DisPM model: gc-basic (GrabCut initialized

from the clamped regions, without Berkeley edges nor reranking), dpm-ber-rr (as previous case, but GrabCut with the posterior from

Sect. 2.2), dpm-rr (with Berkeley edges), dpm (with reranking). Finally, ub shows the upper bound on the detection AP.

the maximum response of the DefPM detectors within each

image. The last two features are the size of the detection

relative to the image size and its aspect ratio, which capture

weak pose information. Postprocessing improves the results

by 2-3% AP points, a similar gain was noted by [11].

Results on cats and dogs. Having defined and measured

upper and lower bounds (from the baselines), we now turn

to the performance of the DisPM itself. This is shown in

figure 5(c), where the contribution of the various compo-

nents of the model are detailed for the VOC 2010 validation

data: (i) the most basic (damaged) form of the model is to

segment using GrabCut but with the foreground and back-

ground regions defined only by the clamped areas, and with-

out using the Berkeley edge detector (instead the pair wise

term (4) measures neighboring image intensity differences

directly as in [5]). This is shown as gc-basic and has an

AP of only 37%. Adding in the posterior computation from

section 2.2 to initialize the GrabCut (dpm-ber-rr) in-

creases the AP to 41%. A further increase is obtained by us-

ing Berkeley edges instead of image differences in (4), and

the performance reaches 46% (dpm-rr). Finally, the full

DisPM including the reranking step (dpm) achieves 48%,

which surpasses the baselines (DefPM and regressor) by

about 20% AP. A similar analysis holds for dogs, for which

the final AP of the DisPM detector is 36%, which also about

20% better than both the baselines (the upper bound being

51%). While the performance of the DisPM exceeds both

the baselines by a wide margin, there is still a significant

gap to the upper bound. We describe the reasons for this

gap below, and in section 4 discuss how the gap can be re-

duced. Examples detections are shown in figures 7 and 8

for cats and dogs respectively.

Finally, on the VOC 2010 test data the performance of

the cat and dog detectors are respectively 45.3% and 36.8%,

both of which improve significantly on the latest DefPM

results (31.8% and 21.5%) and are very close to the state of

(a) (b) (c) (d)

Figure 6. Failure cases of the DisPM detector. Top row: pre-

dicted detection bounding box superimposed on the image. Bot-

tom row: the foreground segmentation. Failure modes (details in

section 3): (a) multiple cats, (b) head and body of different color,

(c) background and cat of the same color, (d) disconnected cat re-

gion (see paw on the left).

the art (47.7% and 37.2%) [8].

Failure modes. Figure 6 gives examples of the algorithm

failing. The principal reason for failure is that the fore-

ground head seed is not able to predict the body color ade-

quately. This is because the body has varying brightness due

to shadows or highlights, or because the fur has two differ-

ent colors but the head and body have different proportions

of these. Other less common failures are due to multiple

cats, background bleeding, or foreground occlusion where

the cat is divided into several unconnected components.

4. Conclusion and discussion

Given the current performance of the DisPM detector,

the truth about cats and dogs is that starting from a distinc-

tive part it is possible to detect far more and varied instances

than can be obtained with a whole body template detector.

Indeed, the DisPM detector is comparable to the state of the

art. This is remarkable – a simple model using only two fea-

ture types (HOG and LBP for the distinctive part) and image

specific color, matches the performance of algorithms using

multiple features, including pyramids and kernels (e.g. the

PASCAL VOC 2010 winner for this class).

However, to improve the DisPM performance further



Figure 7. Cat detections. A sample of the detections and seg-

mentations produced by the DisPM detector (VOC 2010 valida-

tion data). It can be seen that cats are successfully detected despite

having different fur colors, and appearing in a variety of postures

etc.

will require using more hints, cues and constraints in the

segmentation model. For example: (i) Class based edge

classification – learning which of the edges are due to the

cat silhouette edges, and which arise from other sources

Figure 8. Dog detections. A sample of the detections produced by

the DisPM detector (VOC 2010 validation data).

(e.g. an occlusion boundary of a chair). Others have learnt

edges for classes quite successfully [7, 32]. (ii) Class spe-

cific color restrictions – For example that cat coloring is

uni or bi modal, e.g. only grey or black and white. (iii)

Class specific shape restrictions – that parts of the boundary

should be smooth and curved.

Although we have primarily investigated the DisPM de-

tector for a subset of the animals of the PASCAL VOC chal-

lenge, there is no doubt that the distinctive part approach is

applicable to many other animal classes.
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