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immune-related signature predict the
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Abstract

Background: Genome-wide expression profiles have been shown to predict the response to chemotherapy. The

purpose of this study was to develop a novel predictive signature for chemotherapy in patients with osteosarcoma.

Methods: We analysed the relevance of immune cell infiltration and gene expression profiles of the tumor samples of

good responders with those of poor responders from the TARGET and GEO databases. Immune cell infiltration was

evaluated using a single-sample gene set enrichment analysis (ssGSEA) and the CIBERSORT algorithm between good

and poor chemotherapy responders. Differentially expressed genes were identified based on the chemotherapy

response. LASSO regression and binary logistic regression analyses were applied to select the differentially expressed

immune-related genes (IRGs) and developed a predictive signature in the training cohort. A receiver operating

characteristic (ROC) curve analysis was employed to assess and validate the predictive accuracy of the predictive

signature in the validation cohort.

Results: The analysis of immune infiltration showed a positive relationship between high-level immune infiltration and

good responders, and T follicular helper cells and CD8 T cells were significantly more abundant in good responders

with osteosarcoma. Two hundred eighteen differentially expressed genes were detected between good and poor

responders, and a five IRGs panel comprising TNFRSF9, CD70, EGFR, PDGFD and S100A6 was determined to show

predictive power for the chemotherapy response. A chemotherapy-associated predictive signature was developed

based on these five IRGs. The accuracy of the predictive signature was 0.832 for the training cohort and 0.720 for the

validation cohort according to ROC analysis.

Conclusions: The novel predictive signature constructed with five IRGs can be effectively utilized to predict

chemotherapy responsiveness and help improve the efficacy of chemotherapy in patients with osteosarcoma.

Keywords: Osteosarcoma, Immune-related gene, Tumor immune microenvironment, Predictive signature,

Chemotherapy
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Background
Primary bone cancer is a rare malignant tumor that origi-

nates in the bones and accounts for far less than 1% of all

cancers [1, 2]. Osteosarcoma is the most frequent malig-

nancy of primary bone cancer and commonly occurs in

children and teenagers [3]. Currently, comprehensive

treatment strategies for osteosarcoma include surgery,

chemotherapy, radiotherapy and targeted therapy [4].

Most often, chemotherapy is the most frequently used

strategy for patients with osteosarcoma before surgery.

Neoadjuvant chemotherapy shrinks the tumor and makes

surgery easier in patients with osteosarcoma [5]. Before

the introduction of chemotherapy, approximately 90% of

patients with osteosarcoma developed distant metastases,

which is the leading cause of death for patients with osteo-

sarcoma [6]. The advent of chemotherapy has dramatically

improved the 5-year overall survival (OS) rate from less

than 20 to 60% in patients with osteosarcoma [7]. How-

ever, therapy resistance and chemoinsensitivity remain

major challenges for osteosarcoma treatment. Despite nu-

merous clinical trials attempting to improve the outcomes

of poor responders by modifying chemotherapy regimens

and intensifying postoperative therapy, their prognosis re-

mains poor [8–10].

The response to chemotherapy significantly influences

the incidence of local recurrence and prognosis of osteo-

sarcoma [11]. Patients with osteosarcoma who have a

good response to chemotherapy represent a subset of

patients with osteosarcomas exhibiting innate sensitivity

to treatment, resulting in a superior response and good

prognosis. Patients who display a poor response to

chemotherapy have a much higher risk of recurrence

and poor outcomes even after complete resection of the

primary tumor [12]. Tumor necrosis induced by chemo-

therapy remains the only reliable method to assess the

effects of chemotherapy [13]. However, the tumor necro-

sis rate is only able to be detected in surgically resected

specimens, and histological response monitoring during

the course of chemotherapy treatment is impossible.

Thus, developing a predictive signature that discrimi-

nates patients who will respond to chemotherapy before

treatment may help to improve the efficacy of chemo-

therapy in patients with osteosarcoma.

Recently, with the development of deep sequencing

techniques and gene microarrays, bioinformatic analyses

of genome-wide expression profiles have been broadly

performed to distinguish patients who will or will not re-

spond to chemotherapy [14–16]. Currently, multigene

signatures for the prediction of the chemotherapy re-

sponse have been widely employed using gene expres-

sion analysis with gene microarrays or deep sequencing

techniques [17]. Here, we strived to develop a predictive

model based on gene expression profiles for predicting

the response to chemotherapy in patients with

osteosarcoma. The tumor immune microenvironment

(TIME) plays a critical role in regulating tumor progres-

sion and the response to chemotherapy [18]. An increas-

ing number of studies have reported that a higher level

of intratumor immune cell infiltration is associated with

a better response to chemotherapy [19–21]. Therefore,

we reasoned that a predictive signature based on IRGs

would likely be more strongly predictive of chemother-

apy responsiveness in patients with osteosarcoma.

In this study, we attempt to construct a signature with

the capability to predict the chemotherapy response and

prevent patients who are not sensitive to chemotherapy

from receiving ineffective treatment. In this study, we

systematically surveyed tumor-infiltrating immune pro-

files between good responders and poor responders

employing CIBERSORT and ssGSEA using data from

the TARGET and GEO databases. We explored the pre-

dictive value of IRGs for the chemotherapy response. Fi-

nally, we established a novel immune gene-based

signature that may be clinically useful for predicting re-

sponsiveness to chemotherapy in patients with osteosar-

coma. Furthermore, we aimed to obtain a deeper

understanding of the underlying mechanism of chemo-

sensitivity and chemoresistance that could lead to the

development of personalized medicine for patients with

osteosarcoma.

Methods
Data acquisition and preprocessing

The Therapeutically Applicable Research to Generate Ef-

fective Treatments (TARGET) program applies a com-

prehensive genomic approach to determine molecular

changes that drive paediatric cancers. The goal of TARG

ET data is to facilitate the discovery of therapeutic tar-

gets for paediatric cancers and facilitate the rapid trans-

lation of those findings into clinical applications. Gene

Expression Omnibus (GEO) is a public database reposi-

tory of high-throughput gene expression data and other

functional genomics datasets.

The patients who fulfilled the following inclusion cri-

teria were selected from the TARGET and GEO data-

bases: 1) gene expression was detected using a

microarray or high-throughput sequencing, and 2) the

histological response to chemotherapy was recorded.

One hundred thirty-seven patients who fulfilled the

abovementioned criteria were selected from four data-

sets (TARGET, GSE14827, GSE87437 and GSE39055).

The TARGET cohort was used as the training dataset to

construct the signature for the prediction of chemother-

apy response. The GSE14827 and GSE87437 cohorts

served as validation datasets. The GSE14827 and

GSE87437 cohorts were annotated according to the

Affymetrix Human Genome U133 Plus 2.0 Array plat-

forms. The “sva” R package containing the “Combat”
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function was applied to remove batch effects. Clinical in-

formation of patients with osteosarcoma was obtained

from the TARGET and GSE39055 cohorts.

Histological evaluation of the chemotherapy response

The chemotherapy response was assessed by comparing

tumor necrosis in the biopsy specimens or surgically

resected specimens. Tumor necrosis was graded as fol-

lows: grade IV (100% necrosis), grade III (90–99% necro-

sis), grade II (50–89% necrosis), and grade I (0–49%

necrosis). In this study, patients with a tumor necrosis

rate less than 90% were defined as poor responders, and

patients showing a tumor necrosis rate of 90% or greater

were defined as good responders.

Evaluation of tumor-infiltrating immune cells and the

immune infiltration level

The CIBERSORT algorithm was used to quantify the

proportions of immune cells in a mixed cell population

in both the training and validation cohorts [22]. The

normalized gene expression data were analysed to calcu-

late the abundance ratio matrix of 22 immune cell types

in each sample, including macrophages (M1 macro-

phages, M2 macrophages, and M0 macrophages), T cell

types (T follicular helper (Tfh) cells, resting memory

CD4 T cells, activated memory CD4 T cells, γδ T cells,

CD8 T cells, Tregs, and naïve CD4 T cells), resting nat-

ural killer cells, activated NK cells, resting mast cells, ac-

tivated mast cells, memory B cells, resting dendritic

cells, activated DCs, naïve B cells, monocytes, plasma

cells, neutrophils and eosinophils [23]. The CIBERSORT

results of samples with p < 0.05 indicated that the in-

ferred fractions of immune cell populations were accur-

ate and were eligible for further analysis. The

CIBERSORT output estimates were normalized, and im-

mune cell type fractions were summed to one. Spear-

man’s correlation analysis was performed to identify the

relationship of each immune cell type.

Single-sample gene set enrichment analysis (ssGSEA)

was applied to quantify the enrichment levels of the 29

immune signatures in each osteosarcoma sample [24].

Next, the ESTIMATE algorithm was used to calculate

the immune cell infiltration level (immune score) for

each osteosarcoma sample with the “ESTIMATE” R

package [25]. In addition, patients with osteosarcoma

were divided into high and low immune infiltration sub-

types based on the median value of immune scores.

Identification of differentially expressed genes and

functional enrichment analyses

The differentially expressed genes between good re-

sponders and poor responders were screened using the

“limma” R package. A p value < 0.05 and | log FC| ⩾ 0.5

were set as the cut-off criteria.

Functional enrichment analyses were performed to in-

vestigate the possible molecular mechanisms of differen-

tially expressed genes using the “clusterProfiler” package.

Terms identified in GO and KEGG analyses with a false

discovery rate (FDR) < 0.05 were considered statistically

significant and were visualized using the “digest” and

“GOplot” packages.

Construction of an immune-related signature for the

prediction of the chemotherapy response

The comprehensive list of IRGs was downloaded from

the Immunology Database and Analysis Portal (Imm-

Port) database (https://immport.niaid.nih.gov), which

shares immunology data and provides a list of IRGs for

cancer researchers.

Least absolute shrinkage and selection operator

(LASSO) logistic regression analysis was used to identify

and select the optimal genes in the training cohort with

the “glmnet” R package. The parameter λ selection in

the LASSO model was tuned using ten-fold cross-

validation. Next, a binary logistic regression analysis was

carried out to discover the genes with predictive value

for the chemotherapy response, and the selected genes

with a nonzero coefficient were combined into a gene

signature. Each gene in the signature has a regression

coefficient (β) for predicting chemotherapy response that

was calculated as follows: index = (expression of gene

1)*β1 + (expression of gene 2)*β2 + (expression of gene

3)*β3...… + (expression of gene n)*βn, where n indicates

the number of the gene.

Principal component analysis (PCA) was used to

examine the distribution of samples. The PCA plot was

drawn across the first two principal components. A re-

ceiver operating characteristic (ROC) curve was gener-

ated to obtain the area under the curve (AUC) accuracy

and sensitivity in the training and validation cohorts

using the “pROC” R package and to evaluate the dis-

criminative power of the signature.

Gene set enrichment analysis

We applied a gene set enrichment analysis (GSEA) be-

tween the good response and poor response groups sep-

arated by the immune-related predictive signature using

clusterProfiler and the enrichplot R package. Two func-

tions (gseGO and gseKEGG) were applied to identify the

enriched terms in Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases,

and p < 0.05 and FDR < 0.25 were considered statistically

significant in the GSEA.

Statistical analysis

In this study, all statistical analyses were conducted

using R software (version 3.6.5). Continuous variables

were compared using Student’s t-tests. Survival analyses
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were conducted using the Kaplan–Meier method with

the log-rank test by the “survival” R package. All statis-

tical analyses were two-sided, and statistical significance

was defined at p values < 0.05. For the hierarchical clus-

tering analysis, Pearson’s correlation coefficients and the

averaging method were used, and the results were shown

in heat-maps.

Results
Characteristics of the cohorts

First, 137 patients from the TARGET, GSE14827 [26],

GSE87437 [27] and GSE39055 [28] databases were se-

lected. The training cohort consisted of 52 patients from

TARGET, including 21 good responders and 31 poor re-

sponders. The validation cohort was composed of the

combination of 27 patients from GSE14827 and 21 pa-

tients from GSE87437, including 21 good responders

and 27 poor responders. The GSE39055 dataset con-

sisted of 37 patients, including 14 good responders and

23 poor responders. Detailed information is available for

the TARGET and GSE39055 cohorts, including OS data.

No significant differences in the clinical characteristics

were observed between the training and validation co-

horts stratified into good responders or poor responders

(Table 1).

According to the Kaplan-Meier survival analysis, the

OS of the good responder group was better than that of

the poor responder group in both the TARGET and

GSE39055 cohorts (Fig. 1a and c). The 5-year OS rate

was 73.1% for good responders and 38.1% for poor

responders in the TARGET cohort. Furthermore, we ob-

served a positive relationship between the chemotherapy

response and recurrence-free survival rate (RFS) in both

the TARGET and GSE39055 cohorts (Fig. 1b and d).

Univariate and multivariate Cox proportional hazards re-

gression analyses were performed on the TARGET and

GSE39055 cohorts to further analyse the correlations be-

tween OS, chemotherapy response, age, and sex. The

chemotherapy response served as an independent prog-

nostic factor in the TARGET (Table S1) and GSE39055

(Table S2) cohorts in both univariate and multivariate

analyses. These results indicated that the response to

chemotherapy is a significant prognostic factor for pa-

tients with osteosarcoma.

Immune cell infiltration was associated with the

chemotherapy response in patients with osteosarcoma

Several studies have revealed the close association be-

tween the chemotherapy response and the tumor im-

mune microenvironment [19–21]. A ssGSEA was used

to assess the immune infiltration level between good re-

sponders and poor responders and to explore the poten-

tial correlation between the chemotherapy response and

immune infiltration in patients with osteosarcoma. Pa-

tients in the TARGET cohort were divided into high and

low immune cell infiltration subtypes based on the im-

mune score. Our results clearly showed that most good

responders belonged to the high-level immune infiltra-

tion subtype (Fig. 2a), and good responders had a higher

immune score than poor responders (Fig. 2b). In

Table 1 Clinicopathological characteristics of patients with osteosarcoma

Training cohort Validation cohort
GSE14827(n = 27) and
GSE87437(n = 21)

TARGET(n = 52) GSE39055(n = 37)

Response Good (n = 21) Poor (n = 31) Good (n = 21) Poor (n = 27) Good (n = 14) Poor (n = 23)

Age (years)

Median 15 14 15 15 11 12

Range 9 to 32 9 to 39 5 to 38 8 to 24 4 to 23 4 to 71

Gender

Female 8 13 9 7 6 12

Male 13 18 12 20 8 11

Recurrence

Yes 6 19 – – 4 14

No 15 12 – – 10 9

Survival (months)

Median 52.7 35.4 65.15 29

Range 18 to 131 9 to 194 14 to 200.9 2.7 to 196.1

Status

Alive 17 14 – – 14 14

Dead 4 17 – – 0 9
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addition, Kaplan-Meier curves revealed that the high-

level immune cell infiltration subtype was significantly

associated with an improved prognosis for patients with

osteosarcoma (Fig. 2c). We then performed the same

analyses on the validation cohort and GSE39055 cohort.

Similar results were observed in both cohorts, and good

responders were significantly related to high-level im-

mune infiltration (Fig. S1a, b).

We utilized the CIBERSORT algorithm to calculate

the percentages of 22 immune cell types between good

responders and poor responders in the TARGET cohort

and to further determine the relationship between im-

mune cells and the chemotherapy response. Our results

showed that M0 macrophages and M2 macrophages

accounted for a large proportion of osteosarcoma im-

mune cell subsets. T follicular helper (Tfh) cells and

CD8 T cells were significantly more abundant in good

responders (Fig. 2d). Among these 22 immune cell types,

CD8 T cells exhibited the strongest positive correlation

with activated NK cells (Pearson’s correlation coeffi-

cient = 0.58) but showed a negative correlation with M2

macrophages (Pearson’s correlation coefficient = − 0.35)

(Fig. 2e). Similar results were observed in the GSE39055

and GSE14827 cohorts, as the percentages of CD8 T

cells and Tfh cells were increased in the good responder

group (Fig. S2a, b). Taken together, the results presented

above supported a positive association between immune

cell infiltration and the chemotherapy response.

Identification of differentially expressed genes between

good responders and poor responders

Next, we analysed the differentially expressed genes be-

tween good responders and poor responders in the

TARGET cohort. Compared to poor responders, 218 dif-

ferentially expressed genes, including 150 upregulated

genes and 68 downregulated genes, were identified in

the good responder group (|log FC| ⩾ 0.5, p < 0.05)

(Fig. 3a). We analysed the potential functions of 218 dif-

ferentially expressed genes with KEGG and GO enrich-

ment to evaluate the potential functions of the

differentially expressed genes. The results of the KEGG

pathway analysis revealed that these differentially

expressed genes were significantly enriched in immune

process or pathway terms, including the TGF-beta sig-

nalling pathway and cytokine−cytokine receptor inter-

action pathway. In addition, several canonical pathways,

including the Hippo signalling pathway, PI3K/AKT path-

way and Wnt/β-catenin pathway have been reported to

Fig. 1 Kaplan–Meier curves for OS and RFS in patients with osteosarcoma. a, b Kaplan–Meier survival curves depicting OS and RFS in patients

with good response and poor response in the TARGET cohort. c, d Kaplan–Meier survival curves depicting OS and RFS in patients with good

response and poor response in the GSE39055 cohort

He et al. BMC Cancer          (2021) 21:581 Page 5 of 13



play a crucial role in the tumor response to chemother-

apy in some cancers, including osteosarcoma [29–31]

(Fig. 3b). The GO analysis indicated that these genes

correlated with protein binding, DNA-binding transcrip-

tion factor activity and cell division (Fig. 3c).

ImmPort is a web portal for acquiring IRG lists

from NIAID-funded immunology studies, including

basic research and clinical trials [32]. Among the set

of 218 differentially expressed genes, 24 differentially

expressed IRGs were extracted (Fig. 3d). The violin

plot showed the upregulation of the expression of

most differentially expressed IRGs in good responders

(Fig. 3e). These 24 genes intersected and were consid-

ered to show predictive power for the chemotherapy

response.

Development of an immune-related signature for

predicting the chemotherapy response

We then performed least absolute shrinkage and se-

lection operator (LASSO) logistic regression analysis

to develop an IRG signature that would predict the

chemotherapy response in patients with osteosarcoma.

A binary logistic regression analysis was conducted

on 24 differentially expressed IRGs in the training co-

hort to retrieve the crucial genes that would predict

the chemotherapy response. Finally, five IRGs were

selected as optimal genes with nonzero regression co-

efficients (λ) and incorporated into this signature

(Fig. 4a). Based on the five genes and their coeffi-

cients, the chemotherapy-associated signature was de-

veloped in the training cohort. The signature score

Fig. 2 The relationship between immune cell infiltration and the chemotherapy response. a Unsupervised clustering analysis of patients with

osteosarcoma who achieved good and poor responses from the TARGET cohort using ssGSEA. b Comparison of the immune scores between

good responders and poor responders in the TARGET cohort. c Kaplan-Meier curves for OS showing that the high immune cell infiltration

subtype had a favourable outcome compared with the low immune cell infiltration subtype. d Violin plot of good responders and poor

responders in the TARGET cohort. e Correlation matrix of 22 immune cell type proportions in the TARGET cohort. * p < 0.05
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was calculated using the following formula:

CD70*0.0081122515 + TNFRSF9*0.0362462862 +

EGFR*0.0561105067 + PDGFD*-0.0081593371 +

S100A6*0.000226639702.

Principal component analysis (PCA) showed that the

predictive signature drew a clear distinction between

good responders and poor responders based on the five

immune-related genes in both the training cohort (Fig.

4b) and validation cohort (Fig. 4c). A ROC curve analysis

was utilized to evaluate and validate the effect of the

predictive signature on the chemotherapy response. The

accuracy was 0.807 for the training cohort and 0.689 for

the validation cohort. The areas under the curves

(AUCs) for the training cohort and validation cohort

were 0.832 and 0.720, respectively (Fig. 4d and e). Other

signature indexes are shown in Table S3. However, this

signature for the prediction of the chemotherapy re-

sponse did not reach the level of statistical significance

Fig. 3 Differentially expressed genes and functional enrichment analyses. a Heatmap of 218 differentially expressed genes between good responders

and poor responders. b The top 10 significant pathways identified in the KEGG enrichment analysis of 218 differentially expressed genes between

good responders and poor responders. c The top 10 terms identified in the GO enrichment analysis of 218 differentially expressed genes. d Venn

diagram of the 218 differentially expressed genes and 1811 IRGs from the ImmPort database. e Violin plot showing that most of the differentially

expressed IRGs were upregulated in good responders. * p < 0.05, ** p < 0.01, and *** p < 0.001
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in the GSE39055 cohort, likely due to the smaller sample

size in this analysis.

Kaplan-Meier curves were generated for the training

cohort to evaluate the OS and RFS of good responders

and poor responders discriminated by the predictive sig-

nature. In the predicted good responder group, patients

had longer OS and RFS times than patients in the pre-

dicted poor responder group (Fig. 5a and b). We further

analysed the correlations of OS and RFS with predictive

signature, age and gender by performing univariate and

multivariate Cox analyses. Our results indicated that the

predictive signature for the chemotherapy response

served as an independent prognostic factor for predict-

ing OS and RFS in the training cohort. (Fig. 5c and d).

Gene set enrichment analysis

We performed a GSEA to investigate the biological pro-

cesses and signalling pathways between good responders

and poor responders in the TARGET cohort based on

this predictive signature. The KEGG analysis revealed

several immune-related pathways that were significantly

enriched in the good responder group, such as cytokine-

cytokine receptor interaction, natural killer cell mediated

cytotoxicity, T cell receptor signalling pathway and che-

mokine signalling pathway (Fig. 6a). In the GO analysis,

the top 10 GO terms, including leukocyte differentiation,

regulation of cytoskeletal organization, T cell activation

and negative regulation of immune system process, were

increased in the good responder group (Fig. 6b). These

results confirmed a positive association between immune

cell infiltration and the chemotherapy response in pa-

tients with osteosarcoma.

Discussion
Chemotherapy is an important treatment option that

can improve the prognosis of patients with osteosar-

coma. High-dose methotrexate, doxorubicin, and cis-

platin are the backbones of chemotherapy regimens [33].

However, a significant proportion of patients still do not

respond to chemotherapy and experience serious side ef-

fects [34]. Therefore, the ability to accurately predict the

response to chemotherapy is crucial for the development

of appropriate treatments for osteosarcoma. To date, the

use of genome-wide expression data to predict the re-

sponse to chemotherapy in patients with osteosarcoma

is still in its infancy. In this study, we developed and vali-

dated a five immune-related gene signature for the pre-

diction of the chemotherapy response in patients with

osteosarcoma. The identified immune-related predictive

signature, including CD70, TNFRSF9, EGFR, PDGFD

and S100A6, will facilitate the development of personal-

ized therapy for osteosarcoma and provide new insights

into the role of the tumor immune microenvironment in

regulating patients’ responses to chemotherapy.

Fig. 4 Construction and validation of the immune-related predictive signature. a The LASSO method was used to select optimal IRGs for the

predictive signature. b, c PCA of the predictive signature in the training cohort and validation cohort. d, e ROC curve analysis of the predictive

signature in the training cohort and validation cohort
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Fig. 5 Kaplan-Meier curves for the OS and RFS of good responders and poor responders discriminated by the predictive signature. a, b Kaplan-

Meier curves for OS and RFS between good responders and poor responders discriminating by predictive signature in the training cohort. c, d

Forrest plots of the univariate and multivariate analyses showed that the predictive signature for the chemotherapy response predicted OS and

RFS in the TARGET cohort independent of clinical factors

Fig. 6 Functional assessment of the immune-related predictive signature using GSEA. a The KEGG analysis showed that cytokine-cytokine receptor

interaction, natural killer cell-mediated cytotoxicity, T cell receptor signalling pathway and chemokine signalling pathway were increased in the good

responder group. b The GO analysis showed that leukocyte differentiation, regulation of cytoskeletal organization, T cell activation and negative

regulation of immune system processes were increased in the good responder group
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The tumor immune microenvironment is a complex

network consisting of immune cells, cytokines and fibro-

blasts that plays important roles in both cancer treat-

ment and prognosis [35, 36]. In recent years,

accumulating evidence has documented the critical role

of the immune microenvironment in the determination

of the therapeutic response to chemotherapy. Research

suggests that tumor-infiltrating immune cells are related

to the chemotherapy response in various tumors [20, 37,

38]. For example, Denkert et al. reported that immune

cell infiltration was relevant to the response to neoadju-

vant chemotherapy and the prognosis after adjuvant

chemotherapy in patients with breast cancer [37]. In the

present study, we revealed that high-level immune cell

infiltration was strongly correlated with a good response

to chemotherapy, and CD8 T cells, T follicular helper

(Tfh) cells and regulatory T cells were increased in the

good responder group. Previous studies have suggested

that Tfh cells induce antitumor immunity by activating

the effector functions of CD8 T cells [39], and CD8 T

cells are the key cell type responsible for the elimination

of tumor cells during cancer immunosurveillance [40].

Therefore, the finding that higher levels of CD8 T cells

and Tfh cells were strongly associated with a good re-

sponse was not surprising. Furthermore, chemotherapy

has the ability to evoke immunogenic cell death [41, 42],

which may partially explain the positive role of CD8 T

cells and Tfh cells in the good responder group [43]. In

addition, these results suggested that the combination of

chemotherapy with immunotherapy may be beneficial

for patients with osteosarcoma exhibiting poor response

to chemotherapy. Our results revealed that tumor-

infiltrating lymphocytes play a crucial role in the tumor

response to chemotherapy. Cytotoxic drugs have the po-

tential to increase immunogenicity by triggering im-

munogenic cell death, which provides therapeutic

opportunities for combinations with immunotherapy.

Doxorubicin and cyclophosphamide have the powerful

capacity to activate immunogenic cell death and are thus

attractive for use in combination with immunotherapy

[44]. In addition, Wang et al. reported that the combin-

ation of an anti-PD-L1 antibody and doxorubicin en-

hances the antitumor response of the immune system by

inhibiting doxorubicin-induced PD-L1 overexpression in

osteosarcoma [45].

Recently, gene signatures based on genome-wide ex-

pression profiles using genome-wide microarrays or high-

throughput sequencing have attracted increasing attention

and displayed great potential in predicting chemotherapy

responsiveness in various tumors, including breast cancer

[46], lung adenocarcinoma [47] and colorectal cancer [17].

With the goal of developing an immune-related gene sig-

nature that will identify patients who might benefit from

chemotherapy, we analysed gene expression in the TARG

ET database, where 218 differentially expressed genes

were identified between good responders and poor re-

sponders. The KEGG analysis indicated that these genes

were involved in the TGF-beta signalling pathway and

cytokine-cytokine receptor interaction pathway. These re-

sults supported the hypothesis that the immune cell infil-

tration of tumors was associated with the chemotherapy

response in patients with osteosarcoma. In addition, the

top 10 KEGG categories, including the Hippo signalling

and TGF-beta signalling pathways, were also involved in

the resistance of various cancer cells to different chemo-

therapeutic drugs [48, 49].

We deployed a specialized immunological database

that may provide insights into the important role of

IRGs in the response to chemotherapy to screen poten-

tial biomarkers and further explore the role of immune

function in chemotherapy. Among these 218 differen-

tially expressed genes, 24 genes overlapped with IRGs

from the immunological database. A LASSO regression

analysis was applied to retrieve the proportion of inter-

secting genes and optimize feature selection, which has

been broadly used for characteristics of cancer therapy

and diagnosis [50], and to facilitate the construction of a

practical predictive signature. Finally, a five-gene panel

comprising TNFRSF9, CD70, EGFR, PDGFD and

S100A6 was included in the predictive signature. Among

these five IRGs, TNFRSF9, also known as CD137 or 4-

1BB, is an inducible costimulatory receptor known to be

expressed on the surface of activated T cells and natural

killer (NK) cells. Preclinical results from various tumor

models suggested that targeting 4-1BB with agonist anti-

bodies leads to tumor clearance and durable antitumor

immunity [51]. In our study, TNFRSF9 was expressed at

higher levels in good responders, which may partially ex-

plain why these patients are sensitive to chemotherapy.

PDGFD is a proangiogenic factor that regulates many

cellular processes, including cell proliferation, migration,

invasion and angiogenesis [52]. Several studies have re-

ported that PDGFD overexpression is an independent

predictor of chemotherapy resistance in ovarian cancer

[53] and colorectal carcinoma [54], consistent with our

results. In contrast to our expectations, CD70 and

S100A6, which were expressed at high levels in good re-

sponders in our study, were identified as chemoresis-

tance genes in several studies [55, 56]. In those studies,

increased CD70 and S100A6 expression was associated

with resistance to chemotherapy and poor survival.

Therefore, variability in the response to chemotherapy

strongly depends on the genetic and epigenetic profiles

of the tumor in these respects.

Subsequently, a chemotherapy predictive signature

that consisted of five IRGs was successfully validated as

a prediction model in independent GEO datasets. Man

et al. and Ochi et al. reported similar results from
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studies developing a multigene predictive model to clas-

sify the chemotherapy response in a few patients with

osteosarcoma [57, 58]. Cao et al. and Xiao et al. con-

structed a multigene prognostic risk model for osteosar-

coma. However, no overlapping genes were identified

between these gene sets and the 5 IRGs presented in our

study. These results indicated a wide range of heterogen-

eity related to the prognosis and predictive capacity of

osteosarcoma. In addition, our study focused on immune

cell infiltration and immune-related genes and used dif-

ferent training strategies and algorithms; thus, a com-

parison of the predictor gene lists among these studies

was difficult. We would like to highlight that our study

revealed a positive correlation between chemosensitivity

and immune cell infiltration in good responders. Im-

munotherapy has become an established pillar of cancer

treatment. The introduction of IRGs may potentially

identify new molecular targets for cancer immunother-

apy. Therefore, a worthwhile approach would be to

evaluate the predictive capacity of immune-related

markers as a basis for the identification of new molecu-

lar targets for cancer immunotherapy in patients with

osteosarcoma.

However, our study had several limitations. First, our

study did not include a sufficiently large sample size to

comprehensively explore the relationship between IRGs

and the chemotherapy response of patients with osteo-

sarcoma. Second, our study was limited by the retro-

spective nature of the included datasets. Although the

five IRG signature has been validated in independent

datasets, the prediction of the response to chemotherapy

in patients with osteosarcoma has been a more complex

issue. Factors such as tumor heterogeneity, the sample

size and use of different chemotherapeutic agents that

may affect the chemotherapy response of patients with

osteosarcoma impede the ability to develop and

standardize predictive gene signatures. In this study, the

PCA results suggested that the predictive signature

seemed to have better predictability for distinguishing

patients with a poor response in the training cohort.

One explanation for the discrimination is that the sam-

ple size is relatively small. To some extent, the discrim-

inatory power depends on the size of the sample. An

insufficient sample size has a low probability of detecting

a statistically significant difference between treatment

groups. Another reason is that tumor heterogeneity may

affect the immune-related signature to discriminate be-

tween patients with different chemotherapy responses.

Therefore, the predictive signature requires further val-

idation in a prospective study with a large sample size.

Conclusions
We analysed the relevance of immune cell infiltration

and gene expression profiles of good responders

compared with those of poor responders. We developed

a five immune-related gene signature with predictive

ability in patients receiving chemotherapy for osteosar-

coma, which could be effectively used to predict chemo-

therapy responsiveness and help improve the efficacy of

chemotherapy. Immunotherapy is the next significant

breakthrough in cancer treatment. The encouraging re-

sults of the present study may provide insights for ex-

ploring the molecular mechanisms of chemoresistance

and provide a reliable basis for the development of com-

bined immunotherapy approaches for chemotherapy re-

sistance in patients with osteosarcoma.
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