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Abstract. The tumor microenvironment has been largely 
studied as a dynamic system orchestrated by inflammatory cells, 
including cancer cells, stroma as well as the extracellular matrix. 
It is useful to describe and predict the phenotypic characteristics 
of cancer. Furthermore, a better understanding of its interplay 
with the various aspects of the tumor cells may be utilized for the 
discovery of novel molecular targets. Liver cancer is considered 
a model of the relation occurring between the tumor micro-
environment and tumor development. The chronic inflammatory 
status of the liver, sustained by the infection of hepatitis viruses, 
as well as the production of cytokines and growth factors within 
the parenchyma, lead to an intricate microenvironment. The 
identification of novel molecular therapeutic targets may improve 
the outcome of patients with liver cancer as it remains the third 
leading cause of cancer death worldwide. In the present study, 
the tumor microenvironment in hepatocellular carcinoma (HCC) 
was explored by a review of the literature. Studies on hepatitis 
virus infections and the consequent chronic inflammatory status 
were examined. In this context, immune-mediated and/or virus-
related molecular mechanisms have been hypothesized as being 
responsible for liver cancer development. The interlink among 
HCC microenvironment components, comprising cellular 
elements, cytokines, growth factors and several proteins is also 
described together with the role of matrix metalloproteinases 
in HCC development. Finally, the rationale for targeting tumor-
stromal interface is summarized in the context of new therapeutic 
opportunities.
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1. Introduction

The tumor microenvironment is a changing concept that defines 
the behaviour of cancer not by the genetics of the tumor cells 
alone, but by the surrounding milieu that the tumor cells need 
for survival, growth, proliferation, and metastasis (1). It is a 
dynamic system, largely orchestrated by inflammatory cells, 
that includes cancer cells, stromal tissue (immune cells, fibro-
blasts, myofibroblasts, cytokines, and vascular tissue), as well as 
the surrounding extracellular matrix (2). 

Although signs of ‘smouldering’ inflammation are present in 
tumors for which a firm causal relationship to inflammation has 
not been established (breast tumors for example), it is estimated 
that underlying infections (sustained by Helicobacter pylori and 
hepatitis viruses) and the resulting chronic inflammatory state, 
which can promote carcinogenesis, are linked to 15-20% of all 
deaths from cancer worldwide (3,4). Indeed, inflammatory cells 
and mediators are present in the microenvironment of most, if 
not all, tumors, irrespective of the trigger for development (5). In 
addition population-based studies have shown that individuals 
who are prone to chronic inflammatory disorders have an 
increased risk of cancer development (6) and, accordingly, treat-
ment with non-steroidal anti-inflammatory agents decreases the 
incidence and the mortality of several tumor types (7,8).

Liver cancer is a paradigm of the relation occurring 
between tumor microenvironment and tumor development. 
The chronic inflammatory status of the liver, sustained by 
the infection of hepatitis viruses, as well as the production of 
cytokines and growth factors within the parenchyma, lead to 
an intricate microenvironment. 

The tumor microenvironment in 
hepatocellular carcinoma (Review)

GIULIA COSTANZA LEONARDI1,  SAVERIO CANDIDO1,  MELCHIORRE CERVELLO3,  DARIA NICOLOSI2,  
FABIO RAITI1,  SALVATORE TRAVALI1,  DEMETRIOS A. SPANDIDOS4  and  MASSIMO LIBRA1

1Laboratory of Translational Oncology and Functional Genomics, Section of Pathology and Oncology, 
2Section of Microbiology, Department of Bio-medical Sciences, University of Catania, Catania; 

3Institute of Biomedicine and Molecular Immunology ‘Alberto Monroy’, National Research Council, Palermo, Italy; 
4Department of Virology, Medical School, University of Crete, Heraklion, Greece

Received February 21, 2012;  Accepted March 19, 2012

DOI: 10.3892/ijo.2012.1408

Correspondence to: Dr Massimo Libra, Department of Bio- 
medical Sciences, Pathology and Oncology Section, Laboratory of 
Translational Oncology and Functional Genomics, University of 
Catania, Via Androne 83, I-95124 Catania, Italy
E-mail: mlibra@unict.it

Key words: tumor microenvironment, hepatocellular carcinoma, 
liver, hepatitis, virus infections, cytokines, matrix metalloproteinases



LEONARDI et al:  TUMOR MICROENVIRONMENT IN HCC1734

Liver cancer is the fifth most prevalent form of cancer 
and the third leading cause of cancer-related deaths, imme-
diately following lung and colon cancer throughout the world. 
Hepatocellular carcinoma (HCC) is the most common form of 
adult liver cancer, representing over 90% of all cases of primary 
liver cancer (9).

The majority of HCC patients have an underlying chronic 
inflammatory liver disease and liver cirrhosis is the main 
risk factor for the development of HCC (10,11). Chronic liver 
injury is associated with dysregulated growth of hepatocytes 
and results in the formation of regenerative nodules, dysplastic 
nodules, and HCC.

In recent years, a significant amount of attention has been 
drawn to the concept of the tumor microenvironment in an effort 
to better describe and predict the phenotypic characteristics of 
cancer (1,2,12). Moreover, a better understanding of the unique 
interplay between the various aspects of the tumor cells and the 
microenvironment may be useful for the discovery of novel 
molecular therapeutic targets (13,14).

2. Viruses, inflammation and HCC 

The chronic infection sustained by hepatitis viruses (hepatitis B 
virus, HBV, and hepatitis C virus, HCV) is a major risk factor 
for HCC development (15) and several clinical studies observed 
that more than 85% of HCCs worldwide retain markers for 
HBV and/or HCV (16-21). This causal association between viral 
infection and tumor development has been well established and 
supported in animal and epidemiological studies (22).

Much of the liver injury, characteristic of acute HBV, is 
caused by recruitment of inflammatory cells, consequent secre-
tion of cytokines and the ultimate lysis of infected cells (23,24). 
The HBV infection spread is controlled by NK cells that can 
directly lyse infected cells and can also down-regulate HBV 
replication by producing IFN-γ and TNF-α (25). Moreover, 
IFN-γ activates macrophages and increases TNF-α-mediated 
liver damage (26). The cytotoxic T cells (CD8+) are involved 
in the recognition of viral peptides derived from phagocytized 
and proteolytically cleaved HBV proteins, in the activation and 
differentiation of B cells, and secrete IFN-γ and TNF-α, which 
inhibit the replication and gene expression of HBV. Results from 
transgenic mouse studies showed that chronic HBV-specific 
T cell-mediated liver disease was sufficient to induce HCC in 
HBV in vivo models (27).

The immunopathology of HCV infection is largely repre-
sented by an unspecific immune response against the virus 
sustained by a cytokine context that recruits non-specific 
lymphocytes (28,29), furthermore no HCV-neutralizing anti-
body has been detected (30). In the absence of viral clearance, 
this pathway boosts itself, leading to necro-inflammatory and 
fibrotic liver disease. 

Furthermore, hepatic viruses are able to systematically 
evade the immune system and persist in the host through their 
ability to mutate under immune pressure (31,32) and therefore 
produce variation within T cell epitopes that may down-regulate 
T cell functions leading to an inhibition of the immune response 
against the original epitope (33-35).

Overall, in this context an immune-mediate mechanism 
may be responsible of liver cancer development (Fig. 1). The 
chronic cell damage and regeneration processes, mediated by 

viral hepatitis-induced immune responses, may lead to liver 
cancer by promoting cell proliferation and death (24,29,36). 
The necrosis of hepatocytes, as a result of chronic inflam-
mation and consequent regeneration, enhances mutagenesis 
in host cells, which can accumulate and culminate in HCC 
(23,24,28). The risk of developing HCC increases the longer 
the viral infection-induced inflammatory process lasts (22,37). 
A general well-defined consequence of chronic inflammation 
is the release of free radicals, such as reactive oxygen species 
and NO reactive species (38). The exposure of liver tissue to 
oxyradical injury may lead to post-translational modification at 
critical residues of p53 protein (39) and accumulation of DNA 
adducts in HBV-transgenic mouse have been associated with 
HCC progression (40). 

Virus-related molecular mechanisms can also be identified 
in liver cancer development (Fig. 1). HBV and HCV are involved 
in the genesis of HCC through the alterations of DNA repair 
system and centrosome duplication mechanisms, and through the 
viral-encoded oncoproteins that have transforming capability by 
disruption of gene expression and signaling pathways (41-44). In 
addition, several proteins encoded by HCV and HBV are able to 
directly alter cytokine expression and finally directly modulate 
the tumor microenvironment and the immune response in the 
liver, contributing to HCC development. A meaningful example 
is HCV p21core, a viral structural protein that has been shown to 
play several roles: a) to decrease the production of IFN-γ and 
IL-2; b) to suppress HCV-specific CTL responses (45); c) to bind 
the TNF receptor I (TNFRI) and the TNF-related lymphotoxin 
receptor modulating the signal of these cytokines (46); d) to 
activate the IL-2 promoter through the NFAT pathway and 
suppress the immunity by inhibiting IL-12 and NO production 
from macrophages (47); e) to down-regulate MHC class II genes 
in B cells and prevent B cell apoptosis (48). The HCV envelope 
protein, E2, inhibits NK cell function by binding CD81 on NK 
cells (49). In addition, the non-structural HCV phosphoprotein, 
NS5A, through its ability to inhibit IFN-α induced protein 
kinase, is implicated in mediating HCV resistance to IFN-α (50). 
Among HBV encoded protein, HBx can activate two transcri-
ption factors, NF-κB and NFAT, implicated in the expression of 
important cytokines, such as IL-6, IL-8, TNF-α, and modulates 
the function of the inflammatory mediators including IL-8, 
ICAM-1 and MHC factor (51).

In the context of hepatitis virus infections, both immune-
mediate and molecular mechanisms of HCC development may 
also be associated with the development of extrahepatic lympho-
proliferative disorders such as type II mixed cryoglobulinemia 
syndrome and B cell non-Hodgkin's lymphoma (52-62). 

3. Components of the HCC microenvironment

Components of the HCC microenvironment comprises cellular 
elements, cytokines, growth factors and several proteins. Their 
linkage is described in Fig. 2. 

Cancer-associated fibroblasts (CAFs). CAFs are a central 
elements of tumor microenvironment. They are the most promi-
nent cell type within the tumor stroma of many cancers and play 
a critical role in tumor-stromal interactions (63-65). CAFs are 
involved in HCC growth and invasion, as they are able to produce 
epidermal growth factor (EGF), fibroblast growth factor (FGF), 
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Figure 2. Hepatocellular carcinoma (HCC) microenvironment components and their linkage. Refer to the text for abbreviations. 

Figure 1. Representative scheme of the immune-mediate and viruses-related molecular mechanisms responsible of liver cancer development. HBV, hepatitis B virus; 
HCV, hepatitis C virus; HCC, hepatocellular carcinoma.
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hepatocyte growth factor (HGF), cytokines (IL-6), chemo-
kines (stroma-derived SDF-1/CXCL12) and metalloproteases 
(MMP-3 and MMP-9) (65-67). CAFs secrete also interleukin-8, 
COX-2 and secreted protein acidic rich in cysteine (SPARC) 
to recruit and stimulate macrophage production, which can 
increase the activation of CAFs through secretion of TNF-α 
and PDGF (68,69). Experiments on invading co-cultures of 
cancer cells and CAFs revealed that the leading cells to tumor 
progression are always CAFs and that cancer cells would move 
into the ECM behind the CAF (70). Thus, HCC cell growth and 
metastatic spread are dependent upon the presence of CAFs and 
HCC cells reciprocally stimulate their proliferation (71).

Hepatic stellate cells (HSCs). HSCs, or Ito cells, are perisinu-
soidal cells whose activation is responsible for collagen synthesis 
in the liver (72). In response to a repeated liver injury, HSCs are 
activated and thus they trans-differentiate into myofibroblast-
like cells. This phenotypical transformation is recognized as 
a central event in the development of hepatic fibrosis (73) in 
which activated HSCs are responsible for the production of 
cytokines, chemokines, growth factors and an extensive ECM 
(74,75). HSC/myofibroblasts also infiltrate the stroma of liver 
tumors and localize around tumor sinusoids, fibrous septa and 
capsules (11,76). Specifically, the conditioned media collected 
from HSCs induces proliferation and migration of HCC cells in 
culture, moreover through the activation of NF-κB and extra-
cellular-regulated kinase (ERK) pathways, HCSs promote 
HCC growth and reduce the extent of central necrosis (11). Xia 
et al showed how HCC cells are able to promote HSC activation 
in rat cell culture (77). Accordingly, co-culture of HSCs with 
HCC cells stimulated HSC proliferation, migration and expres-
sion of proangiogenic genes such as VEGF-A and MMP-2 (78). 
Hepatitis B virus X protein, and HCV non-structural proteins, 
MMP-9, PDGF, TGF-β1, JNK, insulin-like growth factor 
binding protein 5, cathepsins B and D, are potent inducers of Ito 
cell activation, proliferation and therefore enhance liver fibrosis 
and carcinogenesis (79-87).

Tumor-infiltrating leukocytes. A leukocyte infiltrate, varying in 
size, composition and distribution, is present in most tumors. 
Its components include TAMs and related cell types, mast cells 
and T cells. Evidence, based on adoptive-transfer studies, cell-
depletion studies, clinical correlations and gene-manipulation 
studies, showed that each of these bone-marrow derived compo-
nents can be involved in carcinogenesis and/or tumor invasion 
and metastasis (88-90).

Tumor-associated macrophages (TAMs) form the basis 
for the model that leukocyte infiltrates are involved in tumor 
progression. They are located in tumor stroma and can 
undertake a wide spectrum of polarized activation states. 
Interleukin-4, interleukin-10, transforming growth factor-β 
(TGF-β) found within the tumor microenvironment promotes 
TAM polarization towards M2 activated cells (91,92). M2-like 
TAM expresses a distinctive set of cytokines, such as IL-10 
and TGF-β (93,94) and chemokines including CCL17, CCL22 
and CCL24 favouring regulatory T cell (Treg) recruitment and 
development of an ineffective Th2 polarized immune response 
(93,95). Moreover, M2 macrophages support tissue repair and 
remodelling, as well as angiogenesis through the production of 
VEGF or EGF (93). It has also been found that, Kupffer cells, 

that are liver-specific TAMs, are able to impair T cell CD8+ 
dependent immune response through the interaction between 
programmed death 1 (PD1) on T cell CD8+ and programmed 
death ligand-1 (PD-L1) produced by Kupffer-TAMs causing 
the deficiency of TCD8+ cytotoxic function in HCC (96). 
Accordingly blocking the interaction between PD-L1 and PD1 
restores CD8+ activity (97). Moreover, Kupffer cells, as well 
as stellate cells, when stimulated by inflammatory cytokines 
(IL-1, TNF-α, PDGF), produce excessive osteopontin that plays 
a pivotal role in various cell signaling pathways that promote 
inflammation, tumor progression and metastasis (98,99). 

Lymphocytes can be consistently observed in a variety of 
human cancers, and in some cases these infiltrating lymphocytes 
correlate with a favourable prognosis (100). However, not all 
T cells are anti-tumor effector immune cells. A subpopulation 
of T cells CD4+CD25+Foxp3+, called Tregs (regulatory T cell), 
plays a pivotal role in promoting tumor growth and progress by 
inhibiting the immune response against cancer (101). Regarding 
HCC, it has been demonstrated that Tregs were more predomi-
nant than T CD8+ in HCC tissues in comparison with nearby 
benign tissues and that Tregs prejudice T CD8+ proliferation, 
activation, degranulation and production of granzymes and 
perforin (102). Moreover, low intratumoral T CD8+ and high 
regulatory T cells are associated with a worse prognosis in HCC 
(102,103). In a recent study by Shen et al it was demonstrated 
that Treg level and function is related with TNM stages in HCC 
patients and that SDF-1 may be responsible for the increased 
recruitment of Tregs to HCC tumor sites (104). 

Th17 cells are CD4+ lymphocytes producing IL-17. 
Recently, they both have been found with increased frequen-
cies within certain tumors (105). However, the relationship 
between Th17 cells and tumor immunopathology has been 
controversial (106,107). In HCC, Th17 cells have been found 
in increased numbers within tumors and correlate with poor 
survival and increased postoperative recurrence, indicating 
that Th17 cells and IL-17 may promote tumor progression in 
HCC (108).

Endothelial cells. Endothelial cells play an essential role in blood 
vessel formation and its migration contributes to the creation of 
the tumor neovasculature. Endothelial cells in HCC tissues and 
normal tissues have molecular and functional differences. They 
express a variety of angiogenic receptors, including vascular 
endothelial growth factor receptors (VEGFR), epidermal 
growth factor homology domains-2 (Tie-2), epidermal growth 
factor receptor (EGFR), platelet-derived growth factor receptor 
(PDGFR) and C-X-C chemokine receptors (CXCRs). Several 
signaling pathways connected with survival, proliferation, 
mobilization and invasion of endothelial cells are regulated by 
the interaction between ligands and their corresponding recep-
tors (109-112). Moreover, tumor-associated endothelial cells 
have a high expression of TGF-β1 and CD105. TGF-β1 plays a 
function of chemo-attractant for CD105 expressing endothelial 
cells and promotes tumor angiogenesis (113). Of note, it has been 
shown that CD105+ endothelial cells from HCC, had features of 
increased angiogenesis activity with higher resistance to chemo-
therapeutic agents and to angiogenesis inhibitors (114).

Hepatoma cells. Hepatoma cells are not just passive observers 
of the tumor microenvironment because it has been suggested 
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that they directly alter the surrounding milieu. Hepatoma cells 
are able to produce VEGF, PDGF, TGF-β, or monocyte colony 
stimulating factor (MCSF) leading to the recruitment and the 
activation of CAFs, TAMs, and endothelial cells (113,115,116). 
Hepatoma cells can also inhibit differentiation and maturation 
of DCs by down-regulation of protein kinase C β II expression 
and an increase in regulatory T cell production (117,118). Another 
study shows that expression of glypican-3 on the hepatoma cell 
membrane is involved in macrophage recruitment (119).

Extracellular matrix. ECM includes the interstitial matrix and 
the basement membrane and is composed of many different 
glycoproteins, proteoglycans and hyaluronan (HA). The main 
roles of proteoglycans are to maintain the structural framework 
of the tissue and to store growth factors within the ECM. Heparan 
sulfate, chondroitin sulfate, and keratan sulfate are the major 
types of proteoglycans in the ECM. Of these, heparan sulfate 
proteoglycans (HSPGs) are known to play an important role in 
the pathogenesis of HCC as key growth factors such as FGF, 
HGF, PDGF, and VEGF are either stored in HSPGs or utilize 
HSPGs as co-receptors for binding to their tyrosine kinase 
receptors (80,120,121). Several previous studies have shown that 
the heparin-degrading endosulfatases, sulfatase 1 (SULF1) and 
sulfatase 2 (SULF2), play important roles in modulating these 
heparin-binding growth signaling pathways (122,123). Although 
SULF1 and SULF2 are structurally very similar, they play an 
opposite role in FGF signaling and its downstream AKT/mitogen-
activated protein kinase pathway. Particularly, desulfation of 
co-receptor type HSPGs, SULF1-dependent, inhibits binding 
of the growth factor to its receptor, abrogating growth factor 
signaling and producing a tumor suppressing effect. Desulfation 
of HSPGs, SULF2-dependent, releases growth factors from the 
storage subtype of HSPGs and increases binding of growth factors 
to their receptors, leading to the activation of growth signaling 
(122,124,125). A heparan sulfate mimetic, PI-88, synthesized 
for targeting heparanases in cancer, has been shown to inhibit 
SULFs activity and its safety and efficacy, as an adjuvant therapy 
for hepatocellular carcinoma after curative resection, was shown 
recently in a phase II clinical trial (126,127). Several cell surface 
adhesion receptors and various ECM components (such as fibro-
nectin, laminin, collagens, and elastin) are involved in extensive 
and complicated interactions through chemotaxis. Collagens are 
the most abundant protein in the ECM and provide a structural 
support for cells. As mentioned above, myofibroblasts/activated 
HSCs are the main source of collagen production in the HCC 
stroma (128,129). Collagens also promote cell migration and 
proliferation in HCC. Let-7g, a known tumor suppressor miRNA, 
down-regulates COL1A2 and inhibits HCC cell migration and 
growth (130). Laminin is an important ECM protein involved 
in various biological activities, including assembly of the base-
ment membrane, cell attachment, cell migration, cell growth and 
differentiation, and angiogenesis (131). Of the different subtypes 
of laminins, laminin-5 is expressed in HCC nodules, and its 
expression is associated with the metastatic phenotype of HCC 
(132). Moreover, Laminin-5 (Ln-5), together with TGF-β1, was 
reported to promote epithelial to mesenchymal transition (133). 
Integrins are surface receptor proteins that mediate cell-matrix 
and cell-cell adhesion (134). The overexpression of β1 integrin 
inhibits HCC cell proliferation by preventing Skp-2 dependent 
degradation of p27 via PI3K pathways (135). On the other hand, 

the overexpression of α3β1 and α6β4 integrin is associated with 
increased migration and invasion of HCC cells in an Ln-5 depen-
dent condition (136-139).

Cytokines. The liver hosts many cell types that are susceptible to 
the actions of cytokines. Hepatocytes bear a variety of cytokine 
receptors such as IL-1, TNF-α, and IL-6. Non-parenchymal cells, 
such as the resident liver macrophages (Kupffer cells), not only 
synthesize many cytokines, but the cytokine environment can 
also affect the actions of these immune cells. Liver sinusoidal 
endothelial cells are also targets and producers of various cyto-
kines. Mounting evidence indicates the involvement of cytokines 
in hepatocarcinogenesis. 

IL-6 is produced by Kupffer cells at high levels in response 
to hepatocyte death and thus it contributes to compensatory 
hepatocyte proliferation (140). Several studies investigated 
the interaction between IL-6 and HBV. It has been shown that 
HBx can induce IL-6 release in HBV infected patients (141). In 
addition, HBx induced an increase in IL-6 transactivation (142). 
Indeed, HBx may play a role in hepatic inflammation and disease 
by up-regulating IL-6, leading to cirhossis and HCC (143). Serum 
IL-6 is increased in cirrhosis and high serum IL-6 is associated 
with increased risk for HCC and a poor prognosis in patients 
with HCC (144-146). It is a key cytokine, encouraging cancer cell 
proliferation while also inhibiting their apoptosis through activa-
tion of signal transducer and activator of transcription 3 (Stat3) 
(147). IL-6 signaling can also influence T cell subset differentia-
tion, particularly in the presence of other cytokines such as TGF-β 
(148). Estrogen suppresses IL-6 production in Kupffer cells, 
partly explaining the gender discrepancy in HCC development 
(149). Moreover, it has been recently shown that IL-6 is a link 
between obesity and HCC as increased expression of IL-6 and 
TNF in obese mice leads to the activation of the IL-6 signaling 
pathway via the downstream STAT3 and ERK pathways, thus 
promoting tumorigenesis in the liver (150). Some studies have 
correlated changes in cytokine expression with HCC metastasis 
and/or recurrence. In a rat model, IL-6 has been implicated in 
HCC metastasis, as highly metastatic HCC (metastatic to the 
abdominal cavity) has been shown to release more IL-6 in serum 
(151). Exogenous addition of IL-6 did not affect primary tumor 
formation but did affect the metastatic potential of tumor cells 
when compared with tumor cells expressing endogenous IL-6 
(151). Furthermore, Coskun et al showed that in breast cancer 
patients, higher serum levels of IL-6 could be used to distinguish 
primary or metastatic liver tumors from benign HCC lesions 
(152). Studies focusing on the association between IL-6 poly-
morphisms and HCC risk are still controversial, further studies 
are warrented to clarify these differing findings (153-155).

TNF-α is produced by Kupffer cells and other immune 
cells in response to tissue injury. It modulates NF-κB and Akt 
pathways and is involved in several tumor models (37,156,157). 
It is associated with an increase in cell cycle progression and 
oxidative stress through the formation of 8-oxo-deoxyguanosine, 
an established marker of DNA damage associated with chronic 
hepatitis in human livers (158). Cytokine stimulation of TNF-α, 
IL-1β, or IL-18 has also been shown to induce expression of 
TRAIL in HCC cell lines (HepG2, Hep3B, Huh7). The expres-
sion of TRAIL on the HCC cell surface might contribute to tumor 
cell immune evasion by inducing apoptosis of activated human 
lymphocytes (159). Studies on TNF-α expression are still contro-
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versial, 2 reported high levels in HCC patients, especially those 
with recurrence (160,161). In addition, the levels of the TNF-αRs, 
TNF-αRI and TNF-αRII, were higher in HCC patients when 
compared with healthy individuals (162). However, in other 
studies, TNF-α levels were lower in HCC tumor tissue versus the 
tissue surrounding the tumor and in HCC patients versus healthy 
individuals (163,164). In a study by Kakumu et al TNF-αRs 
correlated with disease progression and IFN-α treatment did 
not affect their level (162). Regardin TNF-α polymorphism, the 
TNF-α (-308) SNP (single nucleotide polymorphisms) in the 
promoter region of the gene, which includes TNF-α1 (-308G) and 
TNF-α2 (-308A) alleles, is associated with cancer susceptibility 
and induced expression of TNF-α (153,165-167). 

IL-1 is a pro-inflammatory cytokine that promotes MyD88 
adaptor protein-dependent compensatory proliferation of hepa-
tocytes (168). IL-1 also promotes HSC proliferation, activation, 
and transdifferentiation into the myofibroblastic phenotype in 
addition to activating HSCs to produce and activate MMPs, 
particularly MMP-9 (169). As mentioned, IL-1β has also been 
shown to induce expression of TRAIL in HCC cell lines (HepG2, 
Hep3B, Huh7) (159). In HCC patients, proinflammatory IL-1β 
was shown to be elevated compared with healthy individuals 
(160). However, in the analysis performed by Bortolami et al 
IL-1β mRNA was lower in tumors versus the tissue micro-
environment (163). Polymorphism analyses of proinflammatory 
IL-1β related to hepatotropic viruses infection (HCV and HBV) 
have been reported, suggesting that IL-1β polymorphism may 
be a genetic marker for the development of hepatitis-related 
HCC (170-172).

IL-10 expression is, among the many anti-inflammatory 
cytokines, the most studied with regard to HCC. Several groups 
have shown that IL-10 is highly expressed in HCC tumors and 
individuals with HCC versus non-tumorous-surrounding tissue 
controls or healthy cohorts (162,164,173-175). These studies 
suggest that increases in IL-10 and perhaps other Th2 cytokines 
correlate with progression. The clinical significance of post-
operative IL-10 levels in patients with HCC resection was tested 
by Chau et al (176). They demonstrated how IL-10 levels were 
significantly higher in HCC than in healthy individuals and how 
patients with high IL-10 had a worse disease-free survival. A 
multivariate analysis implied that IL-10 might be a predictor of 
the postresection outcome of HCC patients (176). The associa-
tion between IL-10 and the risk for developing HCC is still not 
clear (153,166,177-179). In a HCC mouse model, high angiogenic 
activity was associated with attenuated lymphocyte extravasation 
and correlated with the expression of anti-inflammatory IL-10 
(109). Budhu et al analysed the tumor microenvironment in HCC 
metastasis from patients with HBV-positive metastatic HCC and 
found that a dominant, Th2-like cytokine profile (IL-4, IL-8, 
IL-10, and IL-5) and a decrease in Th1-like cytokines (IL-1α, 
IL-1β, IL-2, IL-12p35, IL-12p40, IL-15, TNF-α, and IFN-γ) was 
associated with the metastatic phenotype (180).

IL-12 plays a tumor suppressor role as it induces the produc-
tion of interferon-γ from NK cells or naïve T cells, promotes 
helper T cell differentiation, enhances cell-mediated immune 
responses, and activates cytotoxic lymphocytes (181). This 
effect is supposed to be mediated by the activation of tumor 
specific cytotoxic T lymphocytes and NK cells, and inhibition of 
angiogenesis (181). High level of IL-12 has been found in HCC 
patients (173). In a mouse model, intra-tumoral injection of IL-12 

gene therapy induced lymphocyte infiltration into the tumor and 
inhibited tumor growth and angiogenesis (96,182). However, the 
clinical use of IL-12 is limited due to the severe systemic toxicity 
resulting from high interferon-γ levels in large doses and the 
minimal efficacy of low doses (183,184).

IL-17 is produced by Th17 cells. Previous studies have shown 
that IL-17 is related to tumor progression via effects on immune 
cells, vascular endothelial cells and stromal cells (108,185). 
In a recent study by Gu et al it has been suggested that the 
IL-17-mediated tumor-promoting role involved a direct effect 
on tumor cells through IL-6 induction by activating the AKT 
pathway; IL-6 in turn activated JAK2/STAT3 and up-regulated 
pro-invasive factors (IL-8, MMP-2, and VEGF both in vitro and 
in vivo) (186).

Growth-factors. TGF-β exerts an indispensible and complex role 
in carcinogenesis and progression of tumors and particularly 
in liver fibrogenesis and hepatocarcinogenesis (187-189). It is 
up-regulated in HCC tissues and peri-neoplastic stroma (189). In 
HCC pathogenesis TGF-β has a dual role. In the premalignant 
state it plays as a tumor suppressor through anti-proliferative 
effects and activation of apoptosis signals. The inhibition of cell 
proliferation is mediated by the mobilization of cyclin-dependent 
kinase inhibitors and suppression of c-Myc while the proapop-
totic mechanisms of TGF-β1 are mediated by down-regulation 
of anti-apoptotic proteins (187,190). The tumor suppressor effect 
of TGF-β acts also through the suppression of tumor stroma 
mitogens and tumorigenic inflammation (187). In addition, 
a study by Murata et al reported that TGF-β suppressed viral 
RNA replication and protein expression from the HCV replicon 
and was also associated with a Smad-dependent cellular growth 
arrest (191). However, TGF-β may function to enhance tumori-
genicity and plays as an oncogenic growth factor via several 
different mechanisms (187). Matsuzaki et al and Murata et al 
showed, respectively, that HBx and HCV could shift hepatocytic 
TGF-β signaling from the tumor-suppressive pSmad3C pathway 
to the oncogenic pSmad3L pathway through the activation of 
c-Jun N-terminal kinase (JNK) (192,193). Sohn et al proposed 
that promoter methylation of tristetrapolin (TTP), a negative 
post-transcriptional regulator of C-Myc, shifts TGF-β1 signaling 
in HCC tumorigenesis (194). Moreover, TGF-β1 increases migra-
tion, vascular invasion (via α3 integrin expression), angiogenesis 
(via VEGF production) and metastasis (via connective tissue 
growth factor) (71,195-199). TGF-β is also involved in the EMT 
through the down-regulation of E-cadherin and the up-regulation 
of Snail and the PDGF signaling pathway (133,200,201). In a 
recent study, Wang et al reported that exposure of hepatocytes 
to TGF-β1 increases miR-181b expression, which promotes cell 
growth, survival, migration and invasion of HCC cells (202). 
Similarly, TGF-β induces miR-23a, 27a, and 24, which promotes 
growth and survival of HCC cells (203). Okumoto et al studied 
the relationship of plasma TGF-β to anti-tumor immunity and 
prognosis. HCC patients with high TGF-β concentration had a 
shorter survival period than those with concentrations below that 
of healthy individuals. Therefore, the concentration of TGF-β 
was shown to be a predictor of outcome of patients with unre-
sectable HCC (204). Single nucleotide polymorphism studies 
show that TGF-β SNPs may be associated with reduced risk of 
developing viral hepatitis-mediated HCC but further studies are 
needed to clarify this association (153,179,205-207). 
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Other growth factors play important roles in HCC patho-
genesis. FGFs are involved in angiogenesis, tissue regeneration 
and wound healing (208,209). It has been found that aber-
rant expression of FGFs promotes HCC and endothelial cell 
proliferation through the activation of downstream Erk and 
AKT pathways (124) and facilitates invasion and metastasis 
of HCC (210,211). HGF is expressed in hepatic stellate cells 
or myofibroblasts and is thought to be a mediator of tumor-
stromal interactions through which myofibroblasts increase 
the prolifer ation and invasion of HCC cells (121). The HGF 
ligand exerts its effect by binding the high-affinity tyrosine 
kinase receptor c-MET, which is predominantly expressed 
on the surface of epithelial and endothelial cells. c-MET 
overexpression, is observed in 20-48% of HCC samples 
(212-214). Deregulation of c-MET is associated with various 
molecular-genetic factors, and overexpression has been linked 
with decreased 5-year survival in patients with HCC (215). 
Moreover, a c-MET-regulated expression signature defines a 
subset of HCC in humans; these patients have a poor prognosis 
and an aggressive phenotype (216). PDGF plays an important 
role in the trans-differentiation of HSC into myofibroblast-like 
cells, thus stimulating fibro genesis in the liver and increasing 
cell proliferation. It has been showed by Campbell et al that 
overexpression of PDGFC in the liver of the transgenic mouse 
results in HSC activation, proliferation, tissue fibrosis and 
subsequent development of hepatocellular carcinoma through 
the activation of the ERK-1/-2 and PKB/Akt signaling path-
ways (80). PDGF is also involved in neoangiogenesis, as it is 
believed to stabilize new blood vessels (217). Angiogenesis is 
a critical step in HCC progression and the VEGF is a major 
growth factor that stimulates angiogenesis in normal and tumor 
tissues (218). Overexpression of VEGF may be induced by the 
hypoxic tumor environment (mediated by hypoxia-inducible 
factor 2-a), activation of EGFR and cyclo-oxygenase-2 
signaling (219,220). The inflammatory condition via NF-κB 
signaling pathway boosts VEGF expression that acts not only 
on the proliferation of endothelial cells in the vasculature but 
also on the proliferation of cancer cells expressing VEGF-A 
receptor through downstream Akt/mTOR signaling (221,222). 
Increased VEGF and VEGF receptors (VEGFRs; which 
include VEGFR-1, -2 and -3) expression has been observed in 
HCC cell lines and tissues, as well as in the serum of patients 
with HCC (223-226). The hepatitis Bx antigen has also been 
associated with the up-regulation of VEGFR-3 (227). VEGF 
clearly has an important regulatory role in HCC. High levels 
of VEGF expression have been linked with HCC tumor 
grade, poor outcome after resection, disease recurrence, 
poor disease-free and overall survival, vascular invasion, and 
portal vein emboli (228-232).

Matrix metalloproteinases (MMPs). MMPs lead to tissue 
remodeling, inflammation, tumor cell growth, migration, 
invasion and metastasis in many cancers. They are major 
modulators of the tumor microenvironment, playing key roles 
in tumorigenesis (99,233-235). Different stromal and cancer 
cells produce various types of MMPs whose main subtypes 
are collagenases (MMP-1, -8, -13), gelatinases (MMP-2, -9), 
matrylisins (MMP-7, -26), membrane type MMPs (MMP-14, 
-15, -16, -17, -24, -25) and stromelysins (MMP-3, -10, -11) 
(236). As MMPs are released in inactivated forms they should 

be first triggered to exert their effect. Twist 1, focal adhesion 
kinase (FAK), claudin-1, HBV X protein, plasmin, furin, or 
other MMPs are well recognised activator of MMPs func-
tion (237-240). The role of MMPs in the microenvironment is 
not only limited to its proteolytic activity on the surrounding 
stroma, but it is also involved in modulating cancer signaling 
pathways (99,234,241). For example, Mitsiades et al reported 
that Fas ligand is cleaved by MMP-7 and is then unable to 
induce apoptosis connecting MMPs to the inhibition of apop-
tosis signals in tumor cells (242). It has been also demonstrated 
that MMPs are involved in the modulation of the inflam-
matory response by regulating inflammatory cytokines and 
chemokines, which promote cancer progression (233,243,244). 
MMP-2, -9, and -14 are involved in VEGF bioavailability and 
angiogenesis in HCC (245,246) and also activate the TGF-β 
that is a key modulator of epithelial-mesenchymal transition in  
HCC (241). Moreover, TGF-β1 reciprocally activates MMPs 
via miR-181b, that is up-regulated by TGF-β1 and up-regulates 
MMP-2 and -9 promoting migration and invasion of HCC cells 
(202). High expression of MMP-9 is associated with activation 
of the PI3K/PTEN/AKT/mTOR pathways (247,248), invasion 
and metastasis by cleaving the osteopontin precursor into an 
active form (249) and capsular infiltration (250). Recent evidence 
suggests that MMP-9, linked with lipocalin-2 or neutrophil-
associated lipocalin (NGAL), may enhance its role in cancer 
development (251-254). Accordingly, our preliminary studies 
indicate that both mRNA transcript and protein levels of NGAL 
were higher in HCC than in normal liver tissue; furthermore 
a correlation between NGAL and MMP-9 in HCC has been 
shown (Pezzino FM, et al, 15th World Congress on Advances 
in Oncology and 13th International Symposium on Molecular 
Medicine, abs. 349, S67, 2010 and Candido S, et al, 15th World 
Congress on Advances in Oncology and 13th International 
Symposium on Molecular Medicine, abs. 343, S65, 2011).

Tissue inhibitors of metalloproteinases (TIMPs) are natural 
inhibitors of MMPs and play complex roles in preventing the 
excessive degradation of ECM and in regulating cell prolifer-
ation, apoptosis, angiogenesis and MMPs activation. The 
enzymatic activities of MMP and TIMP are tightly balanced. It 
has been shown that high expression of TIMP-1 suppresses the 
proliferative and invasive potential of HCC cell lines (255,256) 
and that TIMP-3 is a negative regulator of MMPs able to 
inhibit tumor progression, invasion, and metastasis in HCC 
(257,258). Gene expression profiles showed that MMP-14, -1 
and TIMP-1 are gene signatures linked to poor prognosis in 
HCC (259,260).

Physical environment. Hypoxia enhances proliferation, angio-
genesis, metastasis, chemo-, and radio-resistance of HCC. 
Increasing evidence suggests that hypoxia exerts profound effects 
on the development and evolution of the tumor microenviron-
ment by regulating differentiation of both tumor and stromal 
cells. Hypoxia induced factor-1 (HIF-1) is a major transcription 
factor induced and activated during hypoxia environment (261). 
Hypoxia can also induce β-catenin overexpression and intra-
cellular accumulation in four different HCC cell lines through 
down-regulation of the endogenous degradation machinery 
(262). Activation of the HIF-1α-regulated glycolysis was closely 
related to HCC metastasis via ENO1, a glycolysis-related gene 
(263). 
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4. Signaling pathways in HCC

Several abnormal molecular signaling pathways are implicated 
in HCC development and sheding light on these mechanisms will 
improve the understanding of molecular hepatocarcinogenesis. 
In this respect, the most important elements are growth factors 
signaling pathways (VEGF, PDGF, EGF, HGF), the mitogen-
activated protein kinase (MAPK), phosphatidylinositol-3 kinase 
(PI3K)/AKT/mammalian target of rapamycin and WNT/β-
catenin pathways (264). These signaling cascades are of interest 
from a therapeutic perspective, because targeting them may help 
to reverse, delay or prevent hepatocarcinogenesis.

The ERK/MAPK pathway (also known as the RAF/MEK/
ERK pathway) is a ubiquitous signal transduction pathway that 
regulates crucial cellular processes, including proliferation, 
differentiation, angiogenesis and survival (265). Importantly, the 
overexpression or activation of components of this pathway is 
believed to contribute to tumorigenesis, tumor progression and 
disease metastasis in a variety of solid tumors (266). The ERK/
MAPK pathway lies downstream of various growth factors 
described in HCC and it has been shown that it is constitutively 
activated in this type of tumor (267-274). Constitutive activation 
of the PI3K/AKT/mTOR signaling pathway has been firmly 
established as a major determinant of tumor cell growth and 
survival in a multitude of solid tumors (248). In HCC PI3K/AKT/
mTOR signaling pathway is overboosted by different mechanisms 
suggesting that it may play a critical role in the pathogenesis of 
HCC (275-278). Alterations of the WNT/β-catenin pathway are 
an early carcinogenic event in the development of HCC (279). 
The accumulation of β-catenin stimulates the expression of genes 
involved in cell proliferation (for example, MYC, MYB, CJUN 
and CYCD1), angiogenesis, anti-apoptosis and the formation of 
extracellular matrix (229). Giles et al showed that β-catenin is 
frequently mutated in HCC and this leads to the accumulation 
and stabilization of this glycoprotein (280). Additionally, these 
mutations seem to be particularly common in HCCs associated 
with chronic HCV infection (280). Hoshida et al performed a 
gene expression profile analysis of 603 HCC patients in an effort 
to define molecular drivers of the disease. Three subclasses of 
HCC were characterized, two of which showed either increased 
WNT pathway activity or increased MYC/AKT pathway activity. 
The mechanism through which WNT pathway activation may 
occur was determined to be mediated by TGF-β (281).

5. New therapeutic opportunities

The basic rationale for targeting tumor-stromal interface is 
to suppress the effect of surrounding tissues or cell types that 
stimulate hepatocarcinogenesis, tumor progression, invasion, 
and metastasis while minimizing systemic toxicity by delivering 
drug effects specifically to tumors and their microenvironment. 
Current drugs mostly target the tumor-stromal interaction by 
inhibiting receptors and their downstream signaling pathways, 
thereby abolishing the cancer-promoting signaling provided by 
the tumor stroma rather than directly targeting specific compo-
nents. 

The TGF-β receptor inhibitor (LY2109761) is a clarifying 
example of this therapeutical approach. It acts through inhibition 
of CAFs proliferation and consequently suppresses synthesis and 
release of connective tissue growth factor, reduces tumor cell 

growth, intravasation, and metastatic dissemination of HCC cells 
(199). Phase I clinical trials targeting TGF-β signaling for the 
treatment of HCC have not yet been performed. The recombinant 
monoclonal antibodies, bevacizumab, cetuximab, ramucirumab, 
whose efficacy in HCC is under evaluation in clinical trials, 
represent important goals in terms of target therapies. However, 
the class of kinase inhibitors is showing to have great potential, 
as sorafenib, an oral multi-kinase inhibitor, is the most successful 
medication of this kind. It inhibits VEGFR-2/-3 and PDGFR as 
well as Raf kinase, disrupting tumor-stromal interactions and 
resulting in decreased cell proliferation and angiogenesis. The 
efficacy and safety of sorafenib have been demonstrated in 
phase III clinical trials, and it is currently the standard of care 
for patients with advanced stage HCC (282). Similarly, brivanib, 
which targets VEGFR-2 and FGFR, sunitinib, which targets 
PDGFR, VEGFR, C-KIT and FLT-3, erlotinib, which targets 
EGFR, linifanib, which targets VEGFR and PDGFR, which 
targets VEGFR-2, and PI-88, which targets heparanase as well 
as sulfatases, are now in phase III clinical trials for the treatment 
of HCC. 

The generation of tumor-associated fibronectin isoforms 
allows the development of specific ligands to be used for 
selective delivery of therapeutic agents (283). Additionally, 
Liu et al and WeiXing et al showed that targeting HIF-1 might 
be used as an effective gene therapy for HCC (284,285).

6. Conclusions

Liver cancer is an intersting model to investigate the 
relationship between tumor microenvironment and tumor 
development. Improving the knowledge on this relationship 
may be crucial for the design of novel molecular targets. 
In this critical review of the literature, immune-mediate 
and/or viruses-related molecular mechanisms have been 
hypothesized as responsible for liver cancer development. 
The elucidation of these mechanisms regulating the interlink 
among HCC microenvironment components, comprising 
cellular elements, cytokines, growth factors and several 
proteins along with matrix metalloproteinases, is expected to 
contribute strongly to identifying the altered signaling path-
ways which are suitable targets for therapy. Growth factor and/
or matrix metalloproteinase inhibitors and immunomodulator 
drugs may represent a future prospective for the treatment of 
HCC. Accordingly, targeting tumor-stromal interface should 
also be considered in the therapeutic strategy. 
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