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ABSTRACT

Hierarchical Cold Dark Matter (CDM) models predict that Milky Way sized halos contain several
hundred dense low-mass dark matter satellites (the substructure), an order of magnitude more than the
number of observed satellites in the Local Group. If the CDM paradigm is correct, this prediction implies
that the Milky Way and Andromeda are filled with numerous dark halos. To understand why these halos
failed to form stars and become galaxies, we need to understand their history. We analyze the dynamical
evolution of the substructure halos in a high-resolution cosmological simulation of Milky Way sized halos
in the ΛCDM cosmology. We find that about 10% of the substructure halos with the present masses
. 108−109 M⊙ (circular velocities Vm . 30 km/s) had considerably larger masses and circular velocities
when they formed at redshifts z & 2. After the initial period of mass accretion in isolation, these objects
experience dramatic mass loss due to tidal stripping. Our analysis shows that strong tidal interaction
is often caused by actively merging massive neighboring halos, even before the satellites are accreted by
their host halo. These results can explain how the smallest dwarf spheroidal galaxies of the Local Group
were able to build up a sizable stellar mass in their seemingly shallow potential wells. We propose a
new model in which all of the luminous dwarf spheroidals in the Local Group are descendants of the
relatively massive (& 109 M⊙) high-redshift systems, in which the gas could cool efficiently by atomic
line emission and which were not significantly affected by the extragalactic ultraviolet radiation. We
present a simple galaxy formation model based on the trajectories extracted from the simulation, which
accounts for the bursts of star formation after strong tidal shocks and the inefficiency of gas cooling in
halos with virial temperatures Tvir . 104 K. Our model reproduces the abundance, spatial distribution,
and morphological segregation of the observed Galactic satellites. The results are insensitive to the
redshift of reionization.

Subject headings: cosmology: theory–galaxies: formation–galaxies: dwarf–galaxies: halos– halos:
evolution– methods: numerical

1. introduction

Semi-analytic models of galaxy formation (Kauffmann
et al. 1993; Bullock et al. 2000; Somerville 2002; Benson
et al. 2002) and numerical simulations (Klypin et al. 1999b;
Moore et al. 1999a) have convincingly showed that the ex-
pected number of dark matter clumps around the galactic
Milky Way (MW) sized halos exceeds the observed num-
ber of satellites by an order of magnitude. The discrep-
ancy may indicate that the amplitude of the small-scale
primordial density fluctuations is considerably lower than
expected in the Cold Dark Matter (CDM) scenarios (e.g.,
Kamionkowski & Liddle 2000; Zentner & Bullock 2003)
or that dark matter is self-interacting (Spergel & Stein-
hardt 2000). An alternative “astrophysical” interpreta-
tion is that the mismatch indicates that galaxy formation
in dwarf halos is inefficient.

Several plausible physical processes may suppress gas
accretion and star formation in dwarf dark matter (DM)
halos. The cosmological UV background, which reion-
ized the Universe at z > 6, heats the intergalactic gas
and establishes a characteristic time-dependent minimum
mass for halos that can accrete gas (e.g., Efstathiou 1992;
Thoul & Weinberg 1996; Quinn et al. 1996; Navarro &
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logical Physics, The University of Chicago, Chicago, IL 60637;
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2 Space Telescope Science Institute, 3700 San Martin Drive, Balti-
more, MD 21218; ognedin@stsci.edu
3 Astronomy Department, New Mexico State University, MSC 4500,
P.O.Box 30001, Las Cruces, NM, 880003-8001; aklypin@nmsu.edu

Steinmetz 1997; Gnedin & Hui 1998; Kitayama & Ikeuchi
2000; Gnedin 2000; Dijkstra et al. 2003). The gas in the
low-mass halos may be photoevaporated after reionization
(Barkana & Loeb 1999; Shaviv & Dekel 2003; Shapiro
et al. 2003). In particular, Shaviv & Dekel (2003) re-
cently argued that halos with circular velocities of up to
∼ 30 km s−1 can be photo-evaporated by the UV back-
ground. At the same time, the ionizing radiation may
quickly dissociate molecular hydrogen, the only efficient
coolant for low-metallicity gas in such halos, and prevent
star formation before the gas is completely removed (e.g.,
Haiman et al. 1997).

The combined effect of these processes is likely to leave
all DM halos with masses . few × 109 M⊙ dark. This is
consistent with current observational constraints which in-
dicate that halos with M < 1010 M⊙ are virtually devoid
of galaxies (van den Bosch et al. 2003). It is thus remark-
able that the dynamical masses of some of the Local Group
dwarfs are only ∼ 107 M⊙ (Mateo 1998). How could such
galaxies form stars despite the suppressing processes listed
above?

One possibility is that they manage to accrete a certain
amount of gas before the Universe is reionized (Bullock
et al. 2000) with the implicit assumption that this gas
can be subsequently converted to stars. However, it is
likely that gas cooling and star formation in such small
systems is inefficient. For example, cosmological simula-
tions with self-consistent treatment of H2 chemistry and
radiative transfer indicate that star formation is strongly
suppressed in halos with masses M . 5×108 M⊙ at all red-
shifts, even before reionization (Chiu et al. 2001). In addi-
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tion, the galaxies may not be able to form sufficiently early
to accrete the gas in the first place, if the power spectrum
normalization is low or the Universe was reionized early, as
indicated by the first-year WMAP results (Spergel et al.
2003; Kogut et al. 2003). An alternative proposal was re-
cently suggested by Stoehr et al. (2002, 2003) and corrab-
orated by Hayashi et al. (2003), who argued that the host
halos of the low-luminosity dwarf spheroidal galaxies may
be considerably more massive than previously thought. In
this case, the large halo mass could allow an object to
resist the suppressing effects of UV background.

In this paper we study the dynamical evolution of dwarf
satellite halos around the Milky Way-sized hosts in self-
consistent cosmological simulations. We show that the
evolution of such objects is complex and often involves
dramatic tidal stripping, interactions with other satellites,
mass loss, and changes of internal structure. Most im-
portantly, we find that some of the satellites that have
small masses and circular velocities at the present, once
were considerably more massive and could have plausibly
formed stars in the past. We argue that the evolution of
these objects may explain how the smallest dwarfs in the
Local Group managed to form their stellar populations.

The paper is organized as follows. In § 2 we describe
the details of the numerical simulation used in our anal-
ysis. In § 3 and § 4 we discuss the algorithm used to
identify halos and the method used to construct their evo-
lutionary tracks. In § 5 we present the main results on the
dynamical evolution, abundance, and radial distribution
of the dwarf dark matter halos. In § 6 we present a model
for star formation in these systems and compare results
to the observed abundance and spatial distribution of the
Local Group dwarfs. We discuss the implications of our
results and compare our model to the previous studies in
§§ 7 and 8. Finally, in § 9 we summarize our findings and
conclusions.

2. simulation

We used the Adaptive Refinement Tree N -body code
(ART, Kravtsov et al. 1997; Kravtsov 1999) to follow the
evolution of three Milky Way-sized halos in the concor-
dance ΛCDM cosmology: (Ωm, ΩΛ, h, σ8) = (0.3, 0.7, 0.7, 0.9).
The simulation starts with a uniform 2563 grid covering
the entire computational box. This grid defines the low-
est (zeroth) level of resolution. Higher force resolution is
achieved in the regions corresponding to collapsing struc-
tures by recursive refining of all such regions using an
adaptive refinement algorithm. Each cell can be refined
or de-refined individually. The cells are refined if the par-
ticle mass contained within them exceeds a certain speci-
fied value. The grid is thus refined to follow the collapsing
objects in a quasi-lagrangian fashion.

The galactic halos were simulated in the comoving box of
25h−1 Mpc; they were selected to reside in a well-defined
filament at z = 0. Two halos are neighbors, located at
425h−1 kpc (i.e., ≈ 610 kpc ∼ 2Rvir) from each other.
The configuration of this pair thus resembles that of the
Local Group. The third halo is isolated and is located
∼ 2 Mpc away from the pair.

Multiple mass resolution technique was used to set up
initial conditions. Namely, a lagrangian region correspond-
ing to a sphere of radius equal to two virial radii around

Table 1. Properties of the host halos

Halo Mvir Rvir Vm Environment
(h−1M⊙) (h−1 kpc) (km s−1)

G1 1.66 × 1012 298 213 isolated
G2 1.24 × 1012 278 199 pair
G3 1.19 × 1012 281 183 pair

Note – Rvir is the virial radius corresponding to the aver-
age density of 180 times the mean density of the universe in
h
−1 kpc; Mvir = M(< Rvir) in h

−1M⊙ (both radius and mass
are given for z = 0); Vm is the maximum circular velocity.

each halo was re-sampled with the highest resolution par-
ticles of mass mp = 1.2 × 106h−1M⊙, corresponding to
10243 particles in the box, at the initial redshift of the
simulation (zi = 50). The high mass resolution region
was surrounded by layers of particles of increasing mass
with a total of 5 particle species. Only regions containing
highest resolution particles were adaptively refined and the
threshold for refinement was set to correspond to the mass
of the four highest resolution particles. The maximum of
ten refinement levels was reached in the simulations cor-
responding to the peak formal spatial resolution of 150
comoving parsec. Each host halo is resolved with ∼ 106

particles within its virial radius at z = 0.
From this point, we will refer to the isolated halo as G1

and the halos in pair as G2 and G3. These halos are called
B1, C1, and D1, respectively, in Klypin et al. (2001) and we
refer the reader to this paper for further details. The main
properties of these three host halos, the virial mass, radius,
and maximum circular velocity, are given in Table 1. We
choose to define the virial radius (and the corresponding
virial mass) as the radius encompassing the density of 180
times the mean density of the universe. For the commonly
used overdensity of 340, the virial radii and masses for G1,
G2, and G3 are R340 = 231, 212, and 213h−1 kpc and
M340 = 1.45 × 1012, 1.13 × 1012, and 1.14 × 1012h−1 M⊙,
respectively. The masses are in the range of possible MW
halo masses (Klypin et al. 2002).

Figure 1 shows the mass aggregation history of the three
host halos. They have similar masses at the present but
rather different evolutionary histories. In all cases, there is
a period of very rapid mass assembly at z & 2−3 followed
by a relatively quiescent accretion at z . 1.5, the behav-
ior typical of hierarchically forming halos (Wechsler et al.
2002). Host G1 undergoes a spectacular multiple major
merger at z ≈ 2, which results in a dramatic mass increase
on a dynamical time scale. Halos G2 and G3 increase their
mass in a series of somewhat less spectacular major merg-
ers which could be seen as mass jumps at 5 < z < 1. All
three systems accrete little mass and experience no major
mergers at z . 1 (or lookback time of ≈ 8 Gyr) and thus
could host a disk galaxy. Note, however, that halos G1

and G3 experience minor mergers during this period.

3. halo identification

In this study we use a variant of the Bound Density
Maxima (BDM, Klypin et al. 1999a) halo finding algo-
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Fig. 1.— Mass aggregation histories for the three MW-size host
halos analyzed in this study.

rithm to identify halos both within (subhalos) and outside
the host halos. Throughout this paper we will use the
terms subhalo, substructure, and satellite interchangeably
to indicate the distinct gravitationally self-bound halos lo-
cated within the virial radius of a larger halo, which we
call the host. The division is illustrated in Figure 2.

The BDM algorithm first finds positions of local maxima
in the density field smoothed on a certain scale. Starting
with the highest overdensity particle, we surround each
potential density maximum by a sphere of radius rfind =
10h−1 kpc and exclude all particles within this sphere from
further search. The search radius is defined by the size of
smallest systems we aim to identify. We verified that the
results do not change if this radius is decreased by a factor
of up to four. After all potential halo centers are iden-
tified, we analyze the density distribution and velocities
of surrounding particles to test whether the center corre-
sponds to a gravitationally bound clump. Specifically, we
construct the density, circular velocity, and velocity dis-
persion profiles around each center and iteratively remove
unbound particles (see Klypin et al. 1999a, for details).
We then construct final profiles using only bound parti-
cles and use them to calculate such halo properties as the
maximum circular velocity Vm, mass M , etc.

The virial radius is meaningless for the subhalos within a
larger host as their outer layers are tidally stripped and the
extent of the halo is truncated. The definition of the outer
boundary of a subhalo and its mass are thus somewhat am-
biguous. We adopt the truncation radius, rt, at which the
logarithmic slope of the density profile constructed from
the bound particles becomes larger than −0.5 as we do
not expect the density profile of the CDM halos to be
flatter than this slope. Empirically, this definition roughly
corresponds to the radius at which the density of the grav-
itationally bound particles is equal to the background host
halo density, albeit with a large scatter. For some halos

Fig. 2.— Distribution of dark matter particles (points) and dark
matter halos (circles) identified by our halo finding algorithm cen-
tered on the isolated galactic halo at z = 0. The radius of the
largest circle indicates the actual virial radius, Rvir, of the host halo
(Rvir = 298h−1 kpc); the radii of the other halos are the minimum
between truncation radius rt and Rvir. The particles are colored
on a gray-scale logarithmic stretch according to their local density.
The stretch is chosen to highlight the cores of the halos for clarity.

rt is larger than their virial radius. In this case, we set
rt = Rvir. Throughout this paper, we will denote the min-
imum of the virial mass and mass within rt, simply as
M . For each halo we also construct the circular velocity
profile Vc(r) =

√

GM(< r)/r and compute the maximum
circular velocity profile Vm.

Figure 2 shows the particle distribution in the halo G1

at z = 0 along with the halos (circles) identified by the
halo finder. The particles are color-coded on a gray scale
according to the logarithm of their density to enhance vis-
ibility of substructure clumps. The radius of the largest
circle indicates the actual virial radius, Rvir, of the host
halo (Rvir = 298h−1 kpc); the radii of the other halos are
the minimum of the truncation radius rt and Rvir. The
figure demonstrates that the algorithm is efficient in iden-
tifying the substructure down to small masses.

4. constructing trajectories

The halo finder described above was run at the 96 saved
epochs between z = 10 and z = 0 with a typical spacing of
∼ 1−2×108 yr between outputs. For each epoch, the halo
finder produced a halo catalog with positions, velocities,
radii rh = min(rt, rvir), masses m(< rh), maximum of the
circular velocity profile Vm and the radius at which the
maximum occurs rmax. In addition, for each halo we save
indices of all gravitationally-bound DM particles located
within rh.

This information is used to identify the progenitors of
halos at successive epochs. Specifically, for a current epoch
zi, starting at z = 0, we search progenitors for each halo
at several previous epochs zi−j as follows. First, we select
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a given fraction, fbound, of the most bound particles of the
halos at the epochs of consideration. We then compare
the fraction of these particles that is common between all
pairs of halos at successive epochs and assume that the
halo with the highest common fraction is the progenitor.
The trajectories used in this study were constructed using
fbound = 0.25. As the halo catalogs may miss some halos,
especially near the completeness limit of the simulation,
if the progenitor is not found at the previous epoch we
need to search at the earlier epoch, etc. In particular, if
a halo is located within the search radius rsearch of some
larger system it will not be identified by the halo finder. In
constructing the trajectories we search for progenitors of a
halo at zi at epochs up to zi−4. In the dominant majority
of cases the progenitors are found at the previous epoch
zi−1. We experimented with other algorithms for progen-
itor identification and found the adopted prescription to
be the most reliable and efficient.

5. results

5.1. Tidal stripping and dynamical evolution of satellite
halos

Figure 3 shows three examples of the evolution of satel-
lite halos. In the middle row of panels we plot the tidal
force experienced by each object. The force was calculated
both directly from the gravitational potential field com-
puted in the simulation and analytically from the neigh-
bor halo catalogs, as described in Appendix A. The Figure
shows the trace of the tidal tensor, Ftid =

∑

α Fαα, which
is a good measure of the overall tidal field.

In all cases the tidal force experienced by the satellite
coincides approximately with the time when the object is
closest to the host, as expected. The Figure shows, for
example, that at later epochs the tidal force calculated
directly using the potential from the simulation can be
well approximated by the analytical force from the host
halo (see eq. A4). However, at earlier epochs (e.g., the
highest peak in the left column) the force from the host
underestimates the total tidal force. Thus, the overall tidal
stripping is produced not only by the host halo but also by
the massive neighbor halos, even before the host is formed
(Gnedin 2003b).

The tidal heating by multiple halos is similar to “galaxy
harassment” in clusters of galaxies (Moore et al. 1996,
1999b), except that it may occur when the halo is still
isolated. As Figure 3 shows, the true force computed from
the potential can be recovered if the analytical contribu-
tions of all neighboring halos are included. Their contri-
bution is particularly important during major mergers of
the host, when the centers of two or more massive halos
are located in the close vicinity of each other and the satel-
lite halos. Our analytic estimate describes the strong tidal
peaks remarkably well, but becomes inaccurate for low (a
few Gyr−2) values of Ftid.

The amount of energy imparted to the halo depends on
the square of the tidal force (eq. A6). Thus, by far the
strongest tidal heating experienced by an object is during
the highest tidal peaks. For the object in the left column
of Figure 3, for example, most of the stripping and dis-
ruption is due to the tidal peak at t ∼ 4 Gyr (z ∼ 1.5).
At this epoch, the host halo is not yet fully assembled and
is undergoing a major merger with three other massive

halos. It is at this epoch, however, that the satellite ex-
periences the most dramatic tidal mass loss. Subsequent
tidal peaks result only in a relatively mild stripping. The
object in the middle panel also suffers a dramatic mass loss
at t ∼ 4 − 5 Gyr. In this case, however, the efficient tidal
stripping continues due to the later pericentric passages
and associated peaks in the tidal force. Finally, the third
satellite shown in the figure experiences only a relatively
mild tidal stripping. This satellite orbits in the outer re-
gions of the host and never reaches the central ≈ 60 kpc.

Note that the pericenter of the third satellite is larger at
the late epochs compared to the pericenter at t ≈ 4 Gyr.
This is contrary to a näıve expectation that the pericenter
should stay constant or decrease with time if dynamical
friction is efficient. The real situation is clearly more com-
plicated. The satellite can lose as well as gain the orbital
energy. The latter can occur via a three-body interaction.
Indeed, in examining individual trajectories we found cases
where a satellite gains orbital energy via the “slingshot”
acceleration — a classic three-body interaction.

Figure 3 demonstrates that some satellites with small
maximum circular velocity and mass at z = 0 were sub-
stantially more massive during the early stages of their
evolution. The mass of the object in the middle column
is ≈ 1010 M⊙ and its circular velocity is > 40 km s−1 at
t = 4 Gyr. At the present epoch, they are only 2×108 M⊙

and 18 km s−1, respectively. In the extreme cases we find
changes of mass and Vmax by a factor of 200 and 8, respec-
tively (see Fig. 6).

At the same time, the object in the right column of Fig-
ure 3 has a considerably larger pericenter and experiences
weaker tidal force by more than an order of magnitude.
Consequently, its mass and circular velocity change little
during the evolution. What is the relative frequency of
such cases compared to the cases of dramatic mass loss?
We address this question in the next section.

5.2. Internal structure evolution

Strong tidal forces experienced by orbiting halos lead to
a substantial mass loss, preferentially at the outer radii.
The changes in the inner regions are more subtle and occur
at a slower rate but can nevertheless be significant (e.g.,
Klypin et al. 1999a; Hayashi et al. 2003; Stoehr et al. 2003;
Kazantzidis et al. 2003). Figure 4 shows the maximum
values of M and Vmax reached by a satellite during its
evolution vs. their present values. Most of the surviving
satellites experience only mild evolution, less than a factor
of two in Vm. Yet, there is a fair number of cases in which
the evolution is significant. The average changes in M or
Vm do not seem to depend on the halo mass.

Figure 5 shows the ratio of the mass at z = 0 to the
maximum mass achieved by each satellite during its evo-
lution vs. the ratio of the maximum circular velocities at
these two epochs. The figure shows a strong correlation
between the two ratios:

M0

Mmax
=

(

V 0
m

V max
m

)β

, β ≈ 3 − 4, (1)

where V 0
m and M0 are the values at the present and V max

m
is the maximum circular velocity at the epoch when the
halo reached the maximum mass, Mmax. This correlation
shows that the internal structure of satellites re-adjusts
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Fig. 3.— Three examples of the evolution of satellites of a MW-size host (different columns). Top panels: the proper distance between the
satellite and the center of the host halo as a function of time. Middle panels: the tidal force experienced by the object, calculated directly
from gravitational potential, is shown by the solid line. Dotted line shows the equivalent tidal force from the host halo with the host density
profile approximated by an NFW model. Dashed line shows the contributions of all neighboring halos, including the host, with the density
profiles of halos approximated by an NFW model with rmax and Vm as measured in the simulation. See Appendix A for details on the tidal
force calculation. Bottom panels: maximum circular velocity Vm (solid lines) and bound mass m(< rt) (dashed lines) as a function of time.
The three objects show different types of evolution: dramatic early stripping with a relatively quiescent evolution afterward (left), continuous
dramatic tidal stripping (middle), weak stripping and quiescent evolution (right).
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Fig. 4.— Top panel: the maximum circular velocity along the
trajectory, V max

m , vs. the present-day value V 0
m. Bottom panel:

maximum mass along the trajectory vs. the present-day mass of a
halo. The satellite halos shown are located within the virial radius
of their respective host halo. The figure shows that many halos
experience a dramatic decrease in their mass and circular velocity.
The solid circles show the halos that host luminous galaxies in our
model (see § 6).

as they lose mass due to tidal stripping. Note that the
decrease of Vm indicates the decrease in density within the
inner radius of ≈ 2.16rs, where rs is the NFW scale radius.
The adjustment is such that the virial correlation

M ∝ V α
m , α ≈ 3 − 4, (2)

is approximately maintained at all times.
This can be seen in Figure 6, which shows the tracks

of individual satellites in the M − Vm plane. The satel-
lites shown were selected from all three galactic hosts. We
selected objects with large changes in mass to maximize
the dynamic range. The figure shows that both during the
periods of mass growth while evolving in isolation and the

Fig. 5.— The ratio of the z = 0 mass to the maximum mass
achieved by each satellite during its evolution vs. the ratio of the
maximum circular velocities at these two epochs. The dots represent
the ratios for individual halos. Solid circles show the average for the
equally space logarithmic mass bins and solid line shows the power
law weighted least square fit to these points. Open circles and the
dashed line show the same for the binning in Vmax. The histograms
in the top and right panels show the fraction of the halos with a
given mass and circular velocity ratio in logarithmic bins of size 0.2
and 0.05 for the mass and velocity ratios, respectively.

periods of mass decrease due to tidal stripping, halos ap-
proximately move up and down the power-law dependence
of eq. (2). For instance, the track shown by in the top left
panel starts at M ≈ 3 × 108h−1 M⊙ and Vm ≈ 30 km s−1

at z = 10 and by the redshift z = 2 reaches the mass of
2 × 1010h−1 M⊙. In the ten billion years between z = 2
and z = 0, the halo loses 99.5% of the mass and its Vm de-
creases by a factor of eight. Yet, during the entire course
of evolution the halo moves roughly along the M ∝ V 3.3

m
line.

This result is in agreement with Hayashi et al. (2003),
who found a correlation similar to that of eq. (1) using con-
trolled N -body experiments to study the tidal stripping
and internal structure of the NFW halos (see their Fig.
12). They note that the density at all radii changes in re-
sponse to tidal shocking. The density decrease is greatest
at large radii, so that the overall profile steepens while the
normalization drops. The adjustment of the density profile
leads to the decrease of both Vm and rmax. We also find
that rmax of satellites in our simulations decrease system-
atically as they lose mass. A similar evolution of Vmax as a
function of mass loss is found in very high-resolution con-
trolled simulations of Kazantzidis et al. (2003), which fol-
lowed tidal stripping of an NFW satellite resolved with 107

particles (Stelios Kazantzidis, private communication).
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Fig. 6.— Trajectories (solid lines) of halos on the mass — max-
imum circular velocity plane for four alos found within the virial
radius of all three galactic hosts at z = 0. We selected objects
with large changes in mass to maximize the dynamic range and il-
lustrate the effect. The solid circles mark the end (z = 0 epoch)
of each trajectory. The figure shows that both during the periods
of mass growth while evolving in isolation and the periods of mass
decrease due to tidal stripping, halos approximately move up and
down the virial dependence M ∝ V α

m with α ∼ 3−5; the dotted line
corresponds to α = 3.3.

5.3. Evolution of halos in the M − Vm plane

In the previous section we showed that individual halos
maintain M ∝ V α

m relation during their evolution. This
explains why the same correlation between the mass and
Vm holds for both subhalos and isolated halos (Avila-Reese
et al. 1999; Bullock et al. 2001). We also find that the
mass–circular velocity relations for the subhalos at z = 0
and for their progenitors at the epoch when the maximum
mass was reached have similar amplitudes and slopes (≈
3.3).

In this section we will consider the mechanism behind
such behavior in more detail. We can interpret the ob-
served evolution of mass and Vm for a given subhalo by
dividing it in the following two stages: (1) mass growth
while evolving in isolation, and (2) mass decrease due to
tidal stripping after the halo is accreted by its host. The
transition between the two stages typically occurs at z ∼ 2
for the mass range of subhalos and hosts considered here.

We fit the slope α for the trajectories in the M − Vm

plane for all satellites separately in the two regimes. We fit
only tracks of halos with Vm > 15 km s−1 at z = 0 and with
at least 10 redshift outputs. In calculating the average
slope, α0, and the dispersion of the sample, σα, we weigh α
of each halo by the error of the fit. The isolated halos have
the average slope α0 = 4.7, with the dispersion σα = 1.2.

The truncated halos have α0 = 2.9 and σα = 1.2. Thus the
slopes in the two regimes seem to be somewhat different.

These different slopes can be linked to the different av-
erage densities of the dwarf halos in the two regimes. In
the mass-growth stage, when the average density of the
Universe is ρ̄(z) = ρ0(1 + z)3, the mass and velocity are
given by the virial scaling relation Mvir ∝ V 3

vir(1 + z)−3/2.
Also, Bullock et al. (2001) showed that, as long as the
NFW model is an adequate description of the halo pro-
file, Vm and Vvir are related through the concentration

parameter approximately as Vm/Vvir ∝ c
1/4
vir . The me-

dian concentration itself varies with the mass and red-
shift as cvir ∝ (1 + z)−1M−0.13

vir . Since all the variables
scale as some power of (1 + z), it is natural to approxi-
mate the evolution of the mass and maximum velocity as
Mvir ∝ (1 + z)−q and Vm ∝ (1 + z)−p, with the above re-
lations leading to 29

32q = 3p + 3
4 . The slope α0 = q/p = 4.7

is achieved for q = 2.8 and p = 0.6, although the scatter
in the value of α implies a corresponding scatter in the
exponents q and p.

Note that the slope of the Mvir − Vm relation is steeper
than the virial α ≈ 3 because the virial parameters of
isolated halos depend on the mean density of the Universe
and that density is changing with redshift. The same zero-
point of the relation can be maintained only if both Mvir

and Vm are changing with time in a certain way, specified
above.

During the second stage of evolution, the subhalo expe-
riences tidal forces from the host and other halos, and its
mass and extent are tidally truncated. The average density
ρt within the truncation radius Rt is approximately con-
stant along the orbit and is proportional to the background
density of the host halo at the pericenter of subhalo’s orbit.
The truncation radius scales with the truncated mass, Mt,

as Rt ∝ (Mt/ρt)
1/3, so that Mt ∝ V 3

t ρ
−1/2
t . The velocity

Vt ∝ (Mt/Rt)
1/2 is a good estimate for the peak velocity

when the subhalo is severely truncated. If the background
density is constant along the satellite trajectory, we ob-
tain the following relation: Mt ∝ V 3

m, in agreement with
the average fit in this regime. Figure 6 shows that in this
regime the power-law relation between Mt and Vm has a
significant dispersion, which is due to the variation of ρt

along the trajectory. Nevertheless, as long as the distance
of closest approach to the host halo remains the same, the
average relation is well maintained.

Thus, we expect the mass-velocity relation to be con-
strained by the two limiting slopes 3 and 5. The actual
mass accretion and mass loss history may vary from halo to
halo but the same M −Vm relation is maintained through-
out the evolution, with a transition from the initial slope
α = 4.7 for the isolated halos to the later slope α = 3 for
the tidally truncated halos.

5.4. Abundance and radial distribution of galactic
satellites

Figure 7 shows the cumulative velocity functions (CVFs),
the number of satellites with maximum circular velocity4

4 Note that uncertainty in the velocity anisotropy affects the conver-
sion of the line-of-sight rms velocity of dSph galaxies to Vm. In the
plot we assume an isotropic velocity distribution. Our re-analysis of
numerical simulations of Gnedin (2003a) shows that tidal truncation
and heating of galaxies leads to the preferential removal of radial
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Fig. 7.— The cumulative velocity function of the dark matter
satellites in the three galactic halos (solid lines compared to the
average cumulative velocity function of dwarf galaxies around the
Milky Way and Andromeda galaxies (stars). For the objects in
simulations Vcirc is the maximum circular velocity, while for the Lo-
cal Group galaxies it is either the circular velocity measured from
rotation curve or from the line-of-sight velocity dispersion assum-
ing isotropic velocities. Both observed and simulated objects are
selected within the radius of 200h−1 kpc from the center of their
host. The dashed lines show the velocity function for the luminous
satellites in our model described in § 6. The minimum stellar mass
of the luminous satellites for the three hosts ranges from ≈ 105 M⊙

to ≈ 106 M⊙, comparable to the observed range.

larger than a given value, for the objects located within
200h−1 kpc of their host halo. The figure compares the
CVFs for the DM satellites and observed satellites of the
MW and Andromeda 5 and highlights the “missing satel-
lite problem” (Kauffmann et al. 1993; Klypin et al. 1999b;
Moore et al. 1999a): a large difference in the number of
dwarf-size DM satellites in simulations and the observed
number of dwarfs in the Local Group.

Figure 8 shows the normalized cumulative radial distri-
bution of the DM satellites compared to the radial distri-
bution of satellites around the Milky Way within the same
radius. The Local Group data is from the compilation of
Grebel et al. (2003). The figure clearly shows that the spa-
tial distribution of dwarf galaxies around the Milky Way
is more compact than the distribution of the DM popu-

orbits and the development of the tangentially-biased dispersion in
the outer parts. A similar result has been found by Kazantzidis et al.
(2004) and Moore et al. (2003). The solution of the Jeans equation
for Vm is sensitive to the exact value of the anisotropy parameter
(Zentner & Bullock 2003; Kazantzidis et al. 2003).
5 We use the circular velocities compiled by Klypin et al. (1999b)
with updated values of circular velocity for the Large and Small
Magellanic Clouds of Vm = 50 km s−1 and 60 km s−1, respectively
(van der Marel et al. 2002)

Fig. 8.— The fraction of satellites within a certain distance from
the center of their host galaxy. The solid lines show distributions of
the ΛCDM satellites in the three galactic halos, while the connected
stars show the distribution of dwarf galaxies around the Milky Way.
The figure shows that radial distribution of observed satellites is
more compact than that of the overall population of dark matter
satellites. The dashed lines show distributions for the luminous
satellites in our model (§ 6). The population of luminous satellites
is the same in this and previous figures.

lation. The median distance of observed satellites within
200h−1 kpc is 60h−1 kpc and 85h−1 kpc for the MW and
M31, respectively. For the DM satellites the correspond-
ing median distances are 116h−1 kpc, 121h−1 kpc, and
120h−1 kpc. Although the median for M31 satellites is
smaller than that of the DM satellites, their radial distri-
butions are formally consistent. However, the comparison
with the M31 satellites is difficult at present because typ-
ical distance errors are ∼ 20 − 50 kpc (and & 70 kpc for
some galaxies), comparable to the distance to the host.

For the MW satellites the typical distance errors are an
order of magnitude smaller and the comparison is consid-
erably more meaningful. The Kolmogorov-Smirnov (KS)
test gives probability of (6−8)×10−4 that the MW satel-
lites are drawn from the same radial distribution as the
DM satellites. This has also been pointed out recently by
Taylor et al. (2003), who compared the spatial distribution
of the MW satellites to results of their semi-analytic model
of galaxy formation. Thus, in addition to the vastly dif-
ferent abundances of the observed and predicted satellites,
there is a discrepancy in the radial distribution. Models
that aim to reproduce the abundance of the LG satellites
should therefore be able to reproduce the radial distribu-
tion as well.

6. a model of star formation in dwarf halos
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6.1. Description of the Model

In order to gain insight into which halos might become
luminous and which might not, we implement the follow-
ing simple model of star formation. We use the standard
assumption that the gas within the halos with the virial
temperature Tvir > 104 K dissipates its energy via radia-
tive cooling and forms a disk. We then apply the empirical
Schmidt law to calculate the star formation rate in radial
shells within the disk. The novel features of our model
include: (i) use of mass accretion and stripping history
of the dwarf halos extracted from simulation, (ii) effects
of photoionizing extragalactic background using the filter-
ing mass, (iii) effects of inefficient dissipation of the gas
at Tvir . 104 K, and (iv) bursts of star formation due
to strong tidal shocks. The details of the model are as
follows.

(i) Using the mass assembly history (MAH) of a given
satellite halo directly from the simulation, instead of a
semi-analytic approach, we are able to trace the major
merger events as well as the quiescent accretion of ma-
terial. The halo mass increases in both regimes, but the
star formation rates are very different. The use of simula-
tion MAHs allows us to determine the accretion epoch of
a satellite and follow its mass loss due to tidal stripping.

(ii) At each time output we calculate the accreted mass
since the last time step, ∆M . We increase the total gas
mass, Mg, in the satellite by the amount of cold gas in
a single halo with the mass ∆M at that epoch: ∆Mg =
fg(M, z)∆M . The fraction fg takes into account the pho-
toevaporation of baryons by extragalactic UV flux, using
the filtering scale parametrization of Gnedin (2000) and
taking the redshift of reionization to be zr = 7. See Ap-
pendix B and equation (B3) for details. After the satellite
enters the host halo, the accretion of new gas is halted and
the disk scale length is fixed, although stars may continue
to form from the remaining reservoir of cold gas.

We distribute the gas on a spherically symmetric grid
of 50 radial shells, according to the surface density of an
exponential disk: Σg(r) = Σ0 exp (−r/rd). We use the ob-
served Schmidt law of star formation to estimate the star
formation rate: Σ̇∗ = 2.5×10−4 (Σg/M⊙ pc−2)1.4 M⊙ kpc−2.
Only the shells above the threshold Σg > Σth ≡ 5 M⊙ pc−2

form stars (Kennicutt 1998).
(iii) The scale length of the disk is determined by its

angular momentum. For a rotationally-supported disk it
is approximately rd = 2−1/2λ rvir. The value of the an-
gular momentum parameter is drawn randomly from the
probability distribution

p(λ)dλ =
1√

2πσλ

e
−

(ln λ/λ̄)2

2σ2
λ

dλ

λ
, (3)

with λ̄ = 0.045, σλ = 0.56, according to the latest mea-
surement by Vitvitska et al. (2002). This is a key assump-
tion of the semi-analytic models of galaxy formation.

However, small halos at high redshift could only cool by
atomic hydrogen to about 104 K. If their virial tempera-
ture is only slightly above that equilibrium temperature,
the gas would not be able to dissipate enough to reach
a rotationally-supported state. Instead, its distribution
would be more extended, which can have important impli-
cation for the star formation with a density threshold Σth.
This effect is particularly important for dwarf halos.

We model the effect of inefficient dissipation by adopt-
ing the expansion factor that depends on the ratio of the
virial temperature to the equilibrium temperature of 104

K. The gas would reach a Boltzmann distribution with
the density M/r3 ∝ exp (−Φ/kT ), where Φ is the poten-
tial energy. Using the maximum circular velocity instead
of the temperature and ignoring the slow variation of the
potential, we can express the scale length of the gas as
rd ∝ exp

[

c(V4/Vm)2
]

, where c is a normalization factor

and V4 = 16.7 km s−1 is the virial velocity correspond-
ing to Tvir = 104 K. We find that c = 10 is a best fit to
the abundance and radial distribution of the Local Group
galaxies (see §6.2). This scaling also provides a good de-
scription of the extent of the gas within halos in cosmolog-
ical galaxy formation simulation described in Kravtsov &
Gnedin (2003). Thus, we set the size of the gaseous disk
at each time step to be

rd = 2−1/2λ rvir × e10(V4/Vm)2 . (4)

Of course, rd is not allowed to exceed the tidal radius of
the halo, rt. The gas in large halos with Vm ≫ V4 can cool
efficiently and reach rotational support, but for small halos
with Vm & V4 the extended distribution reduces the central
concentration of the gas and hinders star formation.

(iv) Strong tidal forces, such as in the interacting or
merging galaxies, may lead to a burst of star formation
throughout the dwarf galaxy. The association of star-
bursts with strong peaks of the tidal force is motivated
by theoretical models (Mayer et al. 2001a) and, to a cer-
tain extent, by observations (Zaritsky & Harris 2003). The
latter suggest that the tidally-triggered star formation in
the SMC can be accurately modeled as an instantaneous
burst of star formation. Zaritsky & Harris (2003) find the
best fit to their data when the star formation rate (SFR)
varies as r−4.6 with the distance to the Galaxy. The tidal
interaction parameter, Itid (see eq. [A7]), that reflects the
integrated effect of a single tidal shock, is the most natural
candidate for the parametrization of the tidally-triggered
SFR. Ignoring the adiabatic correction, it varies with the
distance to the perturber approximately as Itid ∝ r−4 (but
see the discussion in § 6.2).

We allow for the starburst mode of star formation, when
the tidal interaction parameter exceeds a threshold value.
After experimenting with different thresholds, we find that
Itid,th = 4×103 Gyr−2 provides the best simultaneous fit to
the velocity function and spatial distribution of the satel-
lites. In all radial shells, a fraction f∗ = Itid/4 × 104 Gyr−2

(with a maximum of f∗ = 0.5) of the available gas is con-
verted into stars instantaneously. The normalization of f∗
is somewhat arbitrary and can be adjusted to fit the stel-
lar masses of the satellites. Since the starburst changes
drastically the distribution of gas in the galaxy, new in-
falling gas may have a very different angular momentum.
Therefore, after each starburst we recalculate the value of
λ according to eq. (3).

The external tidal force determines the truncation ra-
dius Rt of the satellite, outside which all stars and gas are
lost. In a static gravitational field, the radius of the Roche
lobe is set by the condition that the average density of mat-
ter in the satellite equals twice the local ambient density
(for the isothermal sphere potential). In a dynamic sit-
uation of the satellite on an eccentric orbit experiencing
tidal shocks, the truncation depends on the time-varying
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tidal force. However, using N -body simulations of the dy-
namical evolution of galaxies in clusters, Gnedin (2003a)
showed that the truncation radius can be accurately de-
scribed by the same condition, ρav(Rt) = 2 ρtid, where the
effective tidal density ρtid is related to the trace of the
tidal tensor via

ρtid = 1.8 × 10−5

(

Ftid

Gyr−2

)

M⊙ pc−3. (5)

The truncation occurs near the maximum of the tidal force
along the orbit, usually at the perigalactic distance.

The knowledge of the external tidal force also allows us
to estimate the tidal heating of stars in the satellite. After
each tidal shock, typically once per orbit, the velocity dis-
persion of stars in each radial shell increases by the amount
(Gnedin 2003b)

∆σ2(r) = 0.32

(

Itid

Gyr−2

)(

r

kpc

)2

km2 s−2. (6)

The mass-weighted dispersion σ may serve as an indicator
of the morphological type of the satellite. In §6.2, we adopt
the ratio of the rotation velocity to the velocity dispersion,
vrot/σ, as a possible criterion. In practice, we compute
vrot as the circular velocity of the NFW halo at the radius
enclosing all bound stars.

6.2. Results

We show the predictions of our model for the cumula-
tive velocity function and radial distribution of luminous
satellites by dashed lines in Figures 7 and 8. The model
reproduces fairly well both observational statistics. The
abundance of luminous satellites and the shape of the ve-
locity function are in reasonable agreement with observa-
tions. The stellar masses of the satellites are in the range
105 . M∗ . 1010 M⊙, similar to the observed range of stel-
lar masses of the LG galaxies (e.g., Dekel & Woo 2003).
As can be seen in Figure 4, all of the luminous systems in
our model, including those that have masses and circular
velocities of the smallest dwarfs, were relatively massive
(M & 109 M⊙ and Vm & 30 km s−1) at some point in
their evolution.

In comparison to the observed velocity functions it is
worth noting that the conversion between the line-of-sight
stellar velocity dispersions and maximum circular velocity
is somewhat uncertain (Stoehr et al. 2002; Zentner & Bul-
lock 2003; Kazantzidis et al. 2003). Thus, at this point
it is not worth trying to reproduce the observed function
exactly.

The median distances of luminous satellites to their re-
spective hosts are 59h−1 kpc, 91h−1 kpc, and 73h−1 kpc
for halos G1, G2, and G3, respectively. This is close to the
median values for the MW and M31 and lower than the
median distance of the overall DM satellites (≈ 120h−1

kpc, see § 5.4). The KS probability that the radial dis-
tribution of these luminous satellites is drawn from the
same distribution as that of the MW are 97%, 1%, and
75% for the three hosts, respectively. Although there are
apparent fluctuations due to the differences in the evolu-
tionary histories of the three hosts, the luminous satellites
in our model have a clear tendency to be more centrally
concentrated than the overall DM satellite population.

On the other hand, tidally-triggered bursts of star for-
mation are not limited to the central parts of the host halo.

Fig. 9.— Morphological segregation of galaxies in the Local Group
(lower panel) and in our model (upper panel). We divided the ob-
served galaxies in two broad classes: Irr – all dwarf irregular galax-
ies, and Sph – all spheroidal systems, including dSph, dSph/dIrr,
and dEs. The model result include all subhalos that formed stars
and the division into irregular and spheroidal systems was done us-
ing the amount of heating experienced by each object, as explained
in § 6.2. The model reproduces the observed morphological segre-
gation: most spheroidal systems are located within 300h−1 kpc of
the host, while irregular systems are found at a wide range of radii.

In the isolated halo G1, where the sample of satellites is
not contaminated by the close proximity to another host,
the tidal heating parameter Itid scales with the present
distance as Itid ∝ ra, a = −3.7 ± 0.2, for r < 1 h−1 Mpc,
where the quoted error is the standard deviation of the
whole sample, not the error of the mean. This is con-
sistent with the expected slope a = −4 (c.f. eq. [A6],
ignoring the adiabatic correction). However, if we limit
the sample to the halos of interest, i.e. only those capable
of forming stars (with the maximum Vm > V4 = 16.7 km
s−1, the virial velocity corresponding to Tvir = 104 K),
then the slope is significantly shallower: a = −1.8 ± 0.2.
Furthermore, if we consider only the largest tidal param-
eters that might lead to starbursts (Itid > 103 Gyr−2),
then the distribution is almost independent of distance:
a = −0.3 ± 0.1. Thus, the current location of the satellite
in the host galaxy gives very little indication whether it
had tidal starbursts in the past.

We find a large variety of star formation histories for
the luminous satellites. Most systems have a single ini-
tial burst lasting up to 2 Gyrs. For some this is the only
starforming activity, while other have a constant SFR at
1 M⊙ yr−1 up to z = 0.7 or bursty star formation continu-
ing until z = 0.2. There are also objects that have only a
single tidally-triggered burst at z ∼ 1. The tendency is for
more massive satellites to have more extended star forma-
tion. The median mass-weighted epoch of star formation
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in halos with Vm < 30 km s−1 is between tmed = 1−4 Gyr
cosmic time (corresponding redshifts z = 5 − 1.7), while
the more massive halos have tmed up to 7 Gyr (z = 0.7).

Our simple model also predicts central stellar densities
in a reasonable agreement with observations: roughly con-
stant Σ∗ ∼ 5 − 50 M⊙ pc−2 for M∗ < 109 M⊙ and rising
with the stellar mass as Σ∗ ∼ M∗/(107 M⊙) M⊙ pc−2 for
systems with M∗ > 109 M⊙. The satellites located within
100 kpc of their host galaxy have typically higher central
densities (& 50 M⊙ pc−2) than the more distant satellites.

The results listed above are valid for all dwarf satellite
galaxies regardless of their evolutionary history. In addi-
tion, as discussed in the previous section, our model tracks
the tidal heating of stars formed in each halo. We can
therefore attempt a crude morphological classification of
galaxies based on the amount of heating they experienced.
This is motivated by the observations that dSph galaxies
have low values of the ratio of rotation velocity to the ran-
dom velocity dispersion, vrot/σ . 1. The galaxies of tran-
sition type dIrr/dSph have vrot/σ . 2 (see, e.g., Grebel
et al. 2003, and references therein). Theoretical models
of Mayer et al. (2001b,a) also indicate that the tidally-
heated dSph-like remnants of low-surface brightness spiral
galaxies have small vrot/σ.

We use the circular velocity at the radius enclosing all
of the stellar mass, vout

c , as a proxy for vrot. The rota-
tion velocity will, in general, be smaller than the circular
velocity because some of the kinetic energy is in the form
of the random motions. Also, we account only for direct
tidal heating and do not take into account tidally-induced
heating via bar and bending instabilities. The exact value
of vrot/σ for our galaxies is thus somewhat uncertain as
our σ may be regarded as lower limit. We experimented
with several values for the classification threshold in the
range 1 < vout

c /σ < 3, but the main trends are not sen-
sitive to the specific choice in this interval. We chose the
value of vout

c /σ = 3 for the classification shown in Figure 9.
For the observed galaxies, we combined dwarf spheroidal,
transition type, and dwarf elliptical galaxies in one broad
class of spheroidal systems, using Table 1 of Grebel et al.
(2003). The figure shows that our model is consistent with
the observed trend of morphological segregation. Most
spheroidal systems are located within 300h−1 kpc of the
host, while irregular systems are found at a wide range of
radii. The two model spheroidal systems at ∼ 1h−1 Mpc
have been part of a small group of galaxies and were tidally
heated within this group before it was accreted by the host.

7. discussion

In the previous sections we presented the results of the
dynamical evolution of galactic satellites in self-consistent
cosmological simulations. One of the main findings is
that the internal structure of the satellites responds to
the changes of mass in a remarkably regular way. Namely,
both during the periods of mass growth and tidal mass
loss, the maximum circular velocity of a halo changes as
Vm ∝ M1/α. The slope α is ∼ 4 − 5 when the mass grows
and α ≈ 3 when the mass decreases due to tidal stripping.
The latter result was also obtained by Hayashi et al. (2003)
in their non-cosmological simulations of satellite evolution.

The overall evolution of subhalo population is such that
their M − Vm relation is similar to that of isolated halos

(with α ≈ 3.3). The fact that isolated halos and subhalos
have similar mass-circular velocity relations may hint at
why the fundamental plane of galaxies in clusters and the
field are similar (Dressler et al. 1987; Djorgovski & Davis
1987; Mobasher et al. 1999; Bernardi et al. 2003) and why
the scatter in the Tully-Fisher relation is so small (Kan-
nappan et al. 2002).

The fact that the circular velocity decreases with de-
creasing mass means that the systems experiencing dra-
matic mass loss will experience a significant change in
circular velocity. We find that about 10% of the subha-
los with masses < 108 − 109 M⊙ or Vm < 30 km s−1 at
z = 0 have considerably larger masses and circular veloc-
ities at earlier epochs. This may explain how such appar-
ently small objects like Ursa Minor and Draco could have
formed stars, given that the gas accretion is expected to
be strongly suppressed by the UV background (e.g., Thoul
& Weinberg 1996; Gnedin 2000). In our model, these sys-
tems were once sufficiently massive (Vm & 30 km s−1) to
accrete gas and form stars but the accretion was halted
when they started to experience tidal mass loss.

After the accretion of new gas stops, these systems may
continue to form stars in bursts as they are tidally stirred
(e.g., Mayer et al. 2001b). Interestingly, we find that
the strongest tidal interaction may occur even before halo
is accreted by the host. Some satellites experience the
strongest tidal force from multiple halos at early epochs
in major mergers during the assembly of their host (see
Fig. 3). Such mergers are frequent at early epochs, and we
find that in general all satellites forming stars experience
multiple bursts in the first 2 − 3 Gyrs of their evolution.
We present a simple model for star formation in dwarf ha-
los and apply it to the evolutionary tracks extracted from
the simulations. As shown in Figure 7, the model is suc-
cessful in reproducing the abundance of luminous satellites
around M31 and the Milky Way.

The spatial distribution of dwarfs around the Milky Way
offers another independent challenge to any model of satel-
lite evolution. Figure 8 shows that our model reproduces
the observed distribution reasonably well. The distribu-
tion of luminous satellites is more compact than the overall
population of subhalos because stars form only in objects
that were sufficiently massive at high redshifts. Due to the
strong mass- and redshift-dependence of spatial bias, such
objects are considerably more clustered around the host
than smaller halos that form at a wide range of redshifts.
Correspondingly, we find that luminous objects were ac-
creted by the host systematically earlier (by ∆z ∼ 0.5−1)
than smaller mass dark subhalos.

One of the remarkable features of our model is that the
results are not sensitive to the details of reionization his-
tory of the Universe. For example, all of the presented
results are nearly intact if we change the assumed redshift
of reionization from the fiducial value of zr = 7 to zr = 15
(see § B). The physical reason behind this insensitivity
to reionization is the inefficiency of gas cooling and star
formation in small mass (Tvir . 104 K) systems. This
is because gas in such systems cannot cool via hydrogen
line emission and must rely on the inefficient H2 cooling.
Such redshift-independent suppression of gas cooling is ob-
served in cosmological simulations of Chiu et al. (2001) and
Kravtsov & Gnedin (2003). The important implication is
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that properties of the population of galactic satellites are
determined by the physics of galaxy formation rather than
by the UV background and reionization.

Our results can qualitatively explain the morphologi-
cal segregation of the Local Group galaxies (e.g., Grebel
2000). As shown in Figure 9, a simple division of model
galaxies into irregular and spheroidal based on the amount
of tidal heating they experienced during their evolution
reproduces the main observed trend. Most spheroidal sys-
tems are located within 300h−1 kpc, while irregular galax-
ies are found almost uniformly at all distances. Therefore,
our results support the scenario that spheroidal systems
form via strong tidal heating (Mayer et al. 2001b,a). Note,
however, that tidal heating is not restricted to the host.
It can occur early on, before the host is assembled, within
merging subgroups.

Interestingly, this explains a puzzling presence of the
Cetus and Tucana dSph galaxies at the outskirts of the
Local Group some 700 kpc and 1000 kpc from the nearest
massive spiral (MW or M31). We also find ∼ 1−2 galaxies
with significant heating (the ratio of the rotational veloc-
ity to the velocity dispersion of vrot/σ < 1) at distances
∼ 1000 kpc from their hosts. The tidal heating of these
systems occurred in small groups that are being accreted
by the host at the current epoch (see also Gnedin 2003b,
for a similar effect in clusters of galaxies). As the tidal
force unbinds satellites from such accreting groups, iso-
lated dSph galaxies may be found at large distances from
the primary host.

Also, early tidal interaction, experienced for example by
the system shown in the left column of Fig. 3, and sub-
sequent interaction with other subhalos may lead to the
increase of orbital energy and apocenter distance. This
scenario would also explain presence of dSphs at large dis-
tances from the primary. The main point in both scenar-
ios is that primary is not the only source of tides and the
present-day environment is not necessarily indicative of a
dwarf galaxy’s past.

One of the most interesting candidates for the “miss-
ing” dark halos is the population of compact high-velocity
clouds (CHVCs) of neutral hydrogen (HI, e.g., Blitz et al.
1999; Braun & Burton 1999). This idea has recently been
boosted by the detection of concentration of CHVCs near
M31 (Thilker et al. 2003). It is thus interesting to con-
sider the amount of gas associated with the subhalos that
remain dark in our model. The cumulative gas mass func-
tion associated with dark halos is remarkably consistent
for all three host halos: N(> Mg) ≈ 20(Mg/107 M⊙)−0.7

for 106 < Mg . 108 M⊙ within 200h−1 kpc. Most of
the gas mass is thus in most massive subhalos. The total
mass of gas associated with such halos within 200h−1 kpc
is M tot

g ≈ 2 × 109 M⊙, the number similar for all three
hosts. If we assume that on the average about 10% of gas
is neutral (Maloney & Putman 2003; Thilker et al. 2003),
the total mass in neutral hydrogen is MHI ≈ 2 × 108 M⊙.

The predicted number of dark clouds with Mg > 106 M⊙

is ∼ 50− 100. A fraction of the observed CHVCs can thus
be associated with the small-mass DM halos. Within cen-
tral 50 kpc, however, the number of halos with such gas
masses is only ∼ 2 − 5. We cannot therefore explain 25
CHVCs observed by Thilker et al. (2003) within this radius
around M31. It is possible that simulations underpredict

the number of small-mass halos due to overmerging. To
check this will require higher-resolution simulations. On
the other hand, we did not take into account processes
such as ram pressure stripping, which would further re-
duce the number of halos with gas. Another possibility is
that most of the observed M31 CHVCs are gas clouds in
tidal streams, such as the Magellanic Stream, and are not
associated with distinct dark matter halos (Putman et al.
2003).

8. comparison with previous work

Possible astrophysical solutions 6 to the “missing satel-
lite problem” have been considered in the last several years.
Here we discuss the main differences of our model and the
models proposed in previous studies.

Bullock et al. (2000), Somerville (2002), and Benson
et al. (2002) discussed the formation and evolution of dwarf
galactic satellites using semi-analytic models of different
degrees of sophistication. The conclusion reached by all
these studies is that the extragalactic UV background can
greatly suppress the gas accretion and star formation in
the majority of low-mass (Vm . 30 km s−1) halos. A small
fraction of the dwarf halos that harbors stellar systems
was assumed to have formed (i.e., assembled significant
fraction of their mass) before reionization, when the level
of UV radiation was low. This is because in all of these
studies the maximum circular velocity of subhalos was as-
sumed to be constant as the mass is tidally stripped. There
was thus a simple one-to-one mapping between the circu-
lar velocity observed at z = 0 and at the time of accretion.
Our results show that this assumption is incorrect (see also
Hayashi et al. 2003; Kazantzidis et al. 2003). Another key
difference is that tidal mass loss in our model can occur
before a halo is accreted by the host, as a result of inter-
actions with other halos. These effects are not accounted
for in any of the semi-analytic models.

The implicit assumption in the above models is that the
small systems would be able to retain the accreted gas and
form stars after reionization. This assumption was justi-
fied at the time, as the first calculations of photoevapora-
tion of gas indicated that halos with Vm & 10 km s−1 might
retain their gas (Barkana & Loeb 1999). More recent cal-
culations, however, show that the gas could be gradually
removed from halos of up to Vmax ≈ 30 km s−1 (Shaviv &
Dekel 2003). In light of this result, the previous models
would not be able to explain the formation and properties
of luminous dwarfs, as the star formation in small halos
would be suppressed after reionization. It would thus be
difficult to explain the more extended star formation his-
tories derived for many dSph galaxies in the Local Group
(Grebel 2000).

In our model, the small-mass dwarfs are identified with
the halos that were relatively massive at high redshift and
could retain the gas and form stars after reionization. The
star formation histories of dwarfs are thus more extended,
in better accord with observations. As noted in the previ-
ous section, our model is also insensitive to the epoch of
reionization and can accommodate early reionization sug-
6 The solutions that invoke astrophysics of galaxy formation within
the standard CDM framework rather than modifications of the prop-
erties of dark matter particles and/or the shape of the initial power
spectrum.
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gested by results of the WMAP satellite (Spergel et al.
2003).

Our model and all of the models discussed above are
qualitatively different from the proposal of Stoehr et al.
(2002, 2003). These authors argued that the maximum cir-
cular velocity of the Local Group dwarfs may be systemat-
ically underestimated because it is derived from the stellar
velocity dispersion within radii considerably smaller than
rmax, the radius at which the maximum halo velocity, Vm

is reached (see, however, Kazantzidis et al. 2003). Stoehr
et al. (2002, see also Hayashi et al. (2003)) suggested that
the luminous dwarfs may be harbored by the most massive
satellites of the DM halos. This has an important physical
implication: if the dwarfs indeed occupy twelve or so most
massive halos, then there exists a certain mass scale below
which galaxy formation is completely suppressed. If, on
the other hand, the dwarf galaxies occupy satellites with
a variety of masses (∼ 107 − 1010 M⊙), one has to explain
why some fraction of small halos managed to light up the
stars, while most others did not.

If the idea of Stoehr et al. (2002) is correct, our re-
sults indicate that circular velocities of dwarf spheroidal
halos should have been even larger (by a factor of two or
more) than the values inferred from the current observa-
tions. This could make halos of some galaxies uncomfort-
ably massive. For example, Stoehr et al. (2002) derive
the maximum circular velocity for the Draco in the range
∼ 35− 55 km s−1. This implies the pre-accretion values of
Vmax & 70 km s−1 and the pre-accretion mass comparable
to those of M32, NGC 205, and M33. The fact that lumi-
nosity of Draco is almost four orders of magnitude lower
than luminosities of these galaxies would present a major
puzzle.

In addition, the radial distribution of the most massive
satellites should be consistent with the observed radial dis-
tribution of the MW satellites. We find that in our sim-
ulations the radial distribution of subhalos with largest
Vm is between that of the luminous satellites and all DM
satellites shown in Figure 8. In a study of a larger sam-
ple of cluster halos, De Lucia et al. (2003) find that the
radial distribution of the most massive halos is even more
extended than that of the smaller mass objects. A similar
point was made recently by Taylor et al. (2003), who used
semi-analytic models for subhalo population to show that
the radial distribution of the most massive halos is more
extended than that of the MW satellites at & 3σ level. A
caveat to this argument is that the sample of Milky Way
satellites may be incomplete at large distances and more
faint dwarf galaxies will be discovered in the future (Will-
man et al. 2004).

9. conclusions

We presented a study of the dynamical evolution of
galactic satellites using self-consistent high-resolution cos-
mological simulations of three MW-sized halos. Our main
results and conclusions are as follows.

• We find that ≈ 10% of the substructure halos that
have masses of < 108−109 M⊙ at the present epoch,
had considerably higher masses and circular veloc-
ities when they formed at z > 2. After the initial
period of mass accretion, while these objects evolve

in isolation, they suffer dramatic mass loss due to
tidal stripping by actively merging massive neigh-
boring halos. Strong tidal interactions can occur
even before the dwarfs are accreted by their pri-
mary host halos.

• The decrease in mass due to tidal stripping is ac-
companied by the decrease in the maximum circu-
lar velocity, such that the objects evolve along a
M − V α

m relation with α ≈ 3 − 4.

• These results indicate that some of the systems that
have small masses and circular velocities at z = 0
could have had masses comparable to those of the
SMC and LMC in the past. This can explain how
the smallest dwarf spheroidal galaxies observed in
the Local Group were able to build up sizable stellar
masses in such shallow potential wells.

• We present a simple galaxy formation model based
on the evolutionary tracks extracted from the sim-
ulations. The novel features of the model are the
starburst mode of star formation after the strong
peaks of the tidal force and accounting for the inef-
ficient dissipation of gas in halos with Tvir . 104 K.
The model can successfully reproduce the circular
velocity function, radial distribution, morphological
segregation of the observed Milky Way satellites,
and the basic properties of galactic dwarfs such as
stellar masses and densities.
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APPENDIX

calculation of the tidal force

In our analysis we use the external tidal force experi-
enced by each satellite halo to estimate the strength of
tidal interaction. We calculate the force both directly from
the gravitational potential computed in the simulation and
using an analytical approximation for the neighbor halos.

To compute the tidal force numerically from the local
potential Φ, we estimate its second spatial derivative at
the center-of-mass of the satellite:

Fα ≡ −
(

d2Φ

dRαdRβ

)

0

rβ ≡ Fαβ rβ , (A1)

where r is the radius-vector in the satellite reference frame
and R is the radius-vector in the perturber reference frame.
The potential Φ is calculated on the original refinement
grid using the ART gravity solver. In the calculation of
the potential, we subtract the self contribution of the halo
and consider only the external tidal potential.

In a study of galaxy interactions in clusters of galaxies,
Gnedin (2003b) used the Savitzky-Golay smoothing filter
to interpolate the potential on a plane and calculate its
derivatives from a smooth polynomial function. We em-
ploy a similar scheme but with the adaptive 4-th order
interpolating polynomials in each of the three orthogonal
planes around the satellite center of mass:

P4(x, y) =

4
∑

k,l=0

cklx
kyl (A2)

and the same for the xz and yz planes. The 4-th order
expansion ensures a smooth second derivative of the po-
tential. In each of the planes we extract a n × n subgrid
centered on the original grid point, nearest to the satellite
center. In order to obtain a uniform accuracy of the tidal
force for satellites of different sizes, we choose the size of
the subgrid cells to be closest to 1/4 of the satellite’s tidal
radius. The coefficients ckl are calculated by minimizing
χ2 deviation

χ2 =

n
∑

i,j=1

[P4(xi, yj) − Φ(xi, yj)]
2

(A3)

using the CERN Program Library routine MINUIT7. We
have experimented with n = 16, 32, and 64 and found that
n = 64 provides the most accurate derivatives, as tested
on the analytical NFW models. The tidal tensor compo-
nents Fαβ are then calculated by analytical differentiation
of equation (A2).
7 http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/
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We compare the real tidal force due to the overall mass
distribution in the simulation with the contributions of all
neighboring halos, including the host halo. We model the
halos with an NFW density profile and take their mass
Mvir and virial radius rvir directly from the halo cata-
logs generated by the halo finder (see § 3). We determine
the scale radius of the NFW model for the satellite ha-
los from the position of the maximum circular velocity,
rs = rmax/2.16. For the host halo, we use the parametriza-
tion cnfw ≡ rvir/rs = 16 a3/2, which is a best fit to the
density profile of the analyzed host halos. The analytical
tidal force in the reference frame of the satellite is then
readily calculated using eq. (5) of Gnedin et al. (1999):

F(r) =
GM(R)

R3
[(3 − µ́)(n · r) − r] (A4)

where r is the radius-vector within the satellite, R is the
distance to the perturber, n ≡ R/R, µ́ ≡ d lnM/d lnR,
and M(R) is the enclosed mass of the NFW model:

M(R) = Mvir
ln (1 + R/rs) − 1 + (1 + R/rs)

−1

ln (1 + cnfw) − 1 + (1 + cnfw)−1
. (A5)

Figure 3 shows that the approximate tidal force calculated
in this manner is quite accurate, especially near the max-
imum of the tidal force.

Although the tidal force along the satellite trajectory
varies rapidly with time, most of the tidal heating of stars
and dark matter particles occurs near the strong peaks of
the tidal force. Each of these tidal peaks can be considered
as an independent tidal shock (Gnedin & Ostriker 1999;
Gnedin 2003b). The amount of tidal heating, such as the
increase of the velocity dispersion, is proportional to the
integral over the peak of tidal force:

Itid(tn) ≡
∑

α,β

(
∫

Fαβ dt

)2

n

(

1 +
τ2
n

t2dyn

)−3/2

, (A6)

where the sum extends over all components of the tidal
tensor, α, β = {x, y, z}. The last factor is the correction
for the conservation of adiabatic invariants of stellar or-
bits during the tidal shock (c.f., Gnedin & Ostriker 1999).
Here τn is the effective duration of peak n at time tn,
and tdyn is the dynamical time of the satellite. We take
tdyn = 2πr1/2/vrot, where r1/2 is the half-mass radius of
the stellar disk and vrot is the circular velocity of the appro-
priate NFW model at r1/2. The cumulative tidal heating
parameter is the sum over all tidal peaks:

Itid =
∑

n

Itid(tn). (A7)

This parameter determines the increase of the velocity dis-
persion of stars (eq. [6]) in our model of dwarf galaxy
formation (§6).

filtering mass scale

We estimate the suppression of gas accretion due to
the extragalactic UV background using the filtering mass
scale, derived by Gnedin (2000). He defined MF as the
mass of the halo which would lose half of the baryons,
compared to the universal baryon fraction. This filtering
mass relates to the Jeans mass of the intergalactic gas in-
tegrated over the cosmic history (eq. [6] in Gnedin 2000):

MF(a) = MJ0 f(a)3/2, (B1)

f(a) =
3

a

∫ a

0

xT4(x)

[

1 −
(x

a

)1/2
]

dx

Fig. B10.— Top panel: filtering virial circular velocity (Vc) and
virial temperature (axes are chosen such that the two solid lines co-
incide), and maximum circular velocity (Vm, dashed line). Bottom
panel: filtering mass. Data points with error-bars show the sim-
ulation results of Gnedin (2000). Solid lines are for the standard
epoch of reionization: zr = 7, zo = 8. For comparison, the dotted
line in the bottom panel shows the case of earlier reionization with
zr = 10, zo = 11.

where MJ0 = 2.5 × 1011h−1Ω
−1/2
0 µ−3/2 M⊙, µ ≈ 0.59 is

the mean molecular weight of the fully ionized gas, and
the integration extends over the expansion factor, a. The
temperature of the cosmic gas T4 is expressed in units of
104 K for convenience.

Here we propose an analytical fit to the results of Gnedin
(2000), assuming a simple dependence of the temperature
on the expansion factor: T4(a) = (a/ao)

α for a ≤ ao,
T4(a) = 1 for ao ≤ a ≤ ar, and T4(a) = (a/ar)

−1 for
a ≥ ar.

These three distinct stages can be clearly seen on Fig.
1 of Gnedin (2000). They correspond, to the 1) epoch
before the first HII regions form, z > zo, 2) the epoch of
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the overlap of multiple HII regions, zr < z < zo, and 3)
the epoch of complete reionization, z < zr. In the first
stage, before redshift zo ≡ 1/ao − 1 ≈ 8, the temperature
is rising as the newly-formed stars ionize their neighboring
regions. The parameter α controls the rate of growth of
the extragalactic UV flux; we find α = 6 to be the best fit.
During the overlap stage, between redshifts zo and zr ≡
1/ar − 1 ≈ 7, the temperature is kept constant at roughly
104 K as the cosmic HII regions overlap. After the universe
is fully ionized, at redshifts below zr, the temperature falls
adiabatically with the cosmic expansion.

With these analytical expressions for T4(a), we integrate
equation (B1) analytically:

f(a) =
3a

(2 + α)(5 + 2α)

(

a

ao

)α

, a ≤ ao (B2)

f(a) =
3

a

{

a2
o

[

1

2 + α
− 2(a/ao)

−1/2

5 + 2α

]

+
a2

10
− a2

o

10

[

5 − 4 (a/ao)
−1/2

]

}

, ao ≤ a ≤ ar

f(a) =
3

a

{

a2
o

[

1

2 + α
− 2(a/ao)

−1/2

5 + 2α

]

+
a2

r

10

[

5 − 4 (a/ar)
−1/2

]

− a2
o

10

[

5 − 4 (a/ao)
−1/2

]

+
aar

3
− a2

r

3

[

3 − 2(a/ar)
−1/2

]

}

, a ≥ ar.

The virial circular velocity of the halo is
V 3

c = GMH(z)(∆vir/2)1/2, where H(z) = H(0)[Ω0(1 +
z)3 + ΩΛ]1/2 is the Hubble constant, and ∆vir is the virial
overdensity with respect to the critical density, parametrized
by Bryan & Norman (1998) as ∆vir(z) = 18π2 + 82x −
39x2, x ≡ Ω(z) − 1. The virial temperature is Tvir =
36(Vc/km s−1)2 K.

Our analytical fit is convenient for accurate modeling of
the photoheating effect in semi-analytical models of galaxy
formation. Its versatile form, with two parameters zo and
zr, allows a simple recalculation of the filtering mass for
a different redshift of reionization than was assumed in
the simulation of Gnedin (2000). It can also be easily
adapted to describe two epochs of reionization, or the early
extended reionization suggested by WMAP (Spergel et al.
2003). For illustration, we show on the lower panel of
Figure B10 the filtering mass as a function of redshift for
two choices of the reionization redshift. The top panel
shows the filtering circular velocity and the corresponding
values of the maximum velocity Vm and virial temperature
Tvir.

Gnedin (2000) provided the following expression for the
amount of cold gas left in the halo of mass M :

fg(M, z) =
fb

[1 + 0.26MF(z)/M ]3
, (B3)

where fb ≈ 0.14 is the universal baryon fraction. In § 6
we use this fraction of cold gas to model the star forma-
tion history of the satellite galaxies. To account for the
inefficiency of atomic gas cooling at T < 104 K, we apply
equation (B3) substituting for MF the maximum of MF(z)
or M4, the halo mass corresponding to Tvir = 104 K.


