HALINA BIELAK and SEBASTIAN KIELISZEK

The Turán number of the graph $3 P_{4}$

Abstract

Let $\operatorname{ex}(n, G)$ denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P_{i} denote a path consisting of i vertices and let $m P_{i}$ denote m disjoint copies of P_{i}. In this paper we count $\operatorname{ex}\left(n, 3 P_{4}\right)$.

1. Introduction. Let $G=(V(G), E(G))$ be a graph with the vertex set $V(G)$ and the edge set $E(G)$. The Turán number of the graph G, denoted by ex (n, G), is the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P_{i} denote a path consisting of i vertices and let $m P_{i}$ denote m disjoint copies of P_{i}. By C_{q} we denote a cycle of order q. For two vertex disjoint graphs G and F by $G \cup F$ we denote the vertex disjoint union of G and F, and by $G+F$ we denote the join of the graphs. By \bar{G} we denote the complement of the graph G. For a vertex $x \in V(G)$ we define $N_{G}(x)=\{y \in V(G) \mid\{x, y\} \in E(G)\}$. Let F be a subgraph of G. Let $\operatorname{deg}_{F}(x)=N_{G}(x) \cap V(F)$. Moreover, for $A \subseteq V(G)$ let $\left.G\right|_{A}$ denote the subgraph of G induced by A. The basic notions not defined in this paper can be found in [5]. First we present the following important lemma which is used to prove our main results.

Lemma 1 (Erdős, Gallai [2]). Suppose that $|V(G)|=n$. If the following inequality

$$
\frac{(n-1)(l-1)}{2}+1 \leq|E(G)|
$$

Key words and phrases. Forests, trees, Turán number.
is satisfied for some $l \in \mathbf{N}$, then there exists a cycle C_{q} in G for some $q \geq l$.
We will use the following famous theorem.
Theorem 1 (Faudree and Schelp [3]). If G is a graph with $|V(G)|=k n+$ $r(0 \leq k, 0 \leq r<n)$ and G contains no P_{n+1}, then $|E(G)| \leq k n(n-$ 1) $/ 2+r(r-1) / 2$ with the equality if and only if $G=k K_{n} \cup K_{r}$ or $G=$ $t K_{n} \cup\left(K_{(n-1) / 2}+\bar{K}_{(n+1) / 2+(k-t-1) n+r}\right)$ for some $0 \leq t<k$, where n is odd, and $k>0, r=(n \pm 1) / 2$.

Gorgol [4] studied the Turán number for disjoint copies of graphs. She counted $e x\left(n, 2 P_{3}\right)$ and $e x\left(n, 3 P_{3}\right)$.
Theorem 2 (Gorgol [4]).

$$
\begin{gathered}
e x\left(n, 2 P_{3}\right)=\left\lfloor\frac{n-1}{2}\right\rfloor+n-1, \text { for } n \geq 9 \\
e x\left(n, 3 P_{3}\right)=\left\lfloor\frac{n-1}{2}\right\rfloor+2 n-4, \text { for } n \geq 14
\end{gathered}
$$

Moreover, she proved more general results concerning the properties of some extremal Turán graphs for disjoint copies of a given graph. Bushaw and Kettle [1] extended some of Gorgol's results as follows.

Theorem 3 (Bushaw and Kettle [1]).

$$
\begin{aligned}
& e x\left(n, k P_{3}\right)=\left\lfloor\frac{n-k+1}{2}\right\rfloor+(n-k+1)(k-1)+\binom{k-1}{2}, \text { for } n \geq 7 k \\
& e x\left(n, k P_{t}\right)=\left(n-k\left\lfloor\frac{t}{2}\right\rfloor+1\right)\left(k\left\lfloor\frac{t}{2}\right\rfloor-1\right)+\binom{k\left\lfloor\frac{t}{2}\right\rfloor-1}{2}+\epsilon
\end{aligned}
$$

for $n \geq 2 t\left(1+k\left(\left\lceil\frac{t}{2}\right\rceil+1\right)\binom{t}{\left\lfloor\frac{t}{2}\right\rfloor}\right)$, where $\epsilon=1$ for odd t and $\epsilon=0$ for even t.

In particular, Bushaw and Kettle [1] counted $\operatorname{ex}\left(n, 3 P_{4}\right)$ for the case $n \geq$ 440. We present $e x\left(n, 3 P_{4}\right)$ for all positive integers n.
2. Results. First we prove the following result.

Theorem 4. Let $n \geq 15$. Then

$$
\begin{equation*}
e x\left(n, 3 P_{4}\right)=5 n-15 \tag{1}
\end{equation*}
$$

Proof. First note that the graph $K_{5}+\bar{K}_{n-5}$ does not contain $3 P_{4}$ as a subgraph. Therefore, $e x\left(n, 3 P_{4}\right) \geq 5 n-15$ and we would like to prove the opposite inequality. Suppose that there exists a graph G with $|V(G)|=n \geq$ 15 and $|E(G)|=5 n-14$ without $3 P_{4}$ as a subgraph. Applying Lemma 1 to the graph G, we obtain

$$
\frac{(n-1)(l-1)}{2}+1 \leq 5 n-14
$$

$$
l \leq 11-\frac{20}{n-1}
$$

By $n \geq 15$,

$$
\frac{20}{n-1}<2
$$

and we conclude that $l \leq 9$. It means that the graph G contains a cycle $C_{q}, q \geq 9$. Let $0,1,2, \ldots, q-1$ be the consecutive vertices in C_{q}. We should consider the following cases:

Case 1. Let $q \geq 12$. We have C_{12} in G, so $3 P_{4}$ is a subgraph of G, a contradiction.

Case 2. Let $q=11$.

Figure 1. A graph G with the cycle C_{11}.
Let $F=G-V\left(C_{11}\right)$. Note that C_{11} cannot be connected by an edge with F (see Figure 1 for an illustration). The minimum number of edges in F is equal to $5 n-14-55=5 n-69$. By Theorem 1 we know that

$$
e x\left(k, P_{4}\right)=3\left\lfloor\frac{k}{3}\right\rfloor+\binom{r}{2}, k \equiv r(\bmod 3)
$$

where r is the rest from dividing k by 3 . We set $k=n-11$. If

$$
3\left\lfloor\frac{n-11}{3}\right\rfloor+\binom{r}{2}<5 n-69
$$

then it means that P_{4} is a subgraph of F. We check this.
(a) $r=0$

$$
\begin{gathered}
5 n-3 \frac{n-11}{3}>69 \\
n>14
\end{gathered}
$$

(b) $r=1$

$$
\begin{gathered}
5 n-3 \frac{n-12}{3}>69 \\
n>14
\end{gathered}
$$

(c) $r=2$

$$
\begin{gathered}
5 n-3 \frac{n-13}{3}>1+69 \\
n>14
\end{gathered}
$$

So we get P_{4} in F, a contradiction.
Case 3. Let $q=10$.

Figure 2. A graph G with the cycle C_{10}.
Let $F=G-V\left(C_{10}\right)$. Note that $|V(F)|=n-10$. The set of edges containing a vertex of F we can divide into:

- edges connecting C_{10} and F, i.e. the edges $\{x, f\}$ with $x \in V\left(C_{10}\right), f \in$ $V(F)$,
- edges connecting both vertices inside F, i.e. the edges $\left\{f_{i}, f_{j}\right\}$ with f_{i}, $f_{j} \in V(F), i \neq j$.
Notice that if the edge $\left\{0, f_{1}\right\}$ exists for some $f_{1} \in V(F)$, then there cannot exist edges $\left\{1, f_{1}\right\}$ and $\left\{9, f_{1}\right\}$, in the opposite case we obtain a longer cycle, i.e. C_{11}. So at most 5 vertices of C_{10} can be adjacent to the vertex $f_{1} \in V(F)$ (see Figure 2 for an illustration). Moreover, $\{j, f\} \notin E(G)$ for $f \in V(F)-\left\{f_{1}\right\}$ and $j \neq 2 l+1, l=0,1,2,3,4, j \in V\left(C_{10}\right)$, in the opposite case we get $3 P_{4}$ in G. Let

$$
V(F)=V_{0} \cup V_{1} \cup V_{2} \cup V_{3} \cup V_{4} \cup V_{5}
$$

be the partition of $V(F)$ such that each vertex from V_{i} has exactly i neighbors in C_{10}. Note that vertices from sets $V_{i}, i>0$ cannot be connected between them and $\operatorname{deg}_{F}(u)=0$ for each $u \in \bigcup_{i=1}^{5} V_{i}$. Vertices from the set V_{0} can be connected only between them. So if $\left|V_{0}\right|=k$, then $\left|E\left(\left.G\right|_{V_{0}}\right)\right| \leq e x\left(k, P_{4}\right)$. First we show that $\left|E\left(\left.G\right|_{V_{0}}\right)\right| \leq\left|V_{0}\right|$. If $r \equiv 0$ $(\bmod 3)$, then

$$
e x\left(k, P_{4}\right)=3 \frac{k}{3}=k=\left|V_{0}\right| .
$$

If $r \equiv 1(\bmod 3)$, then

$$
e x\left(k, P_{4}\right)=3 \frac{k-1}{3}=k-1 \leq\left|V_{0}\right|
$$

If $r \equiv 2(\bmod 3)$, then

$$
e x\left(k, P_{4}\right)=3 \frac{k-2}{3}+1=k-1 \leq\left|V_{0}\right|
$$

We consider three subcases:
Case 3.1. Let $V_{5} \neq \emptyset$. Then

$$
\begin{aligned}
|E(G)| & \leq\binom{ 10}{2}-\binom{5}{2}+\sum_{i=1}^{5} i \cdot\left|V_{i}\right|+\left|E\left(V_{0}\right)\right| \leq 35+\sum_{i=1}^{5} i \cdot\left|V_{i}\right|+\left|V_{0}\right| \\
& \leq 35+5 \sum_{i=1}^{5}\left|V_{i}\right|+5\left|V_{0}\right|=35+5(n-10)=5 n-15
\end{aligned}
$$

Recall that $|E(G)|=5 n-14$. So we must add one more edge and we obtain $3 P_{4}$ in G, a contradiction.

Case 3.2. Let $V_{5}=\emptyset$ and $V_{4} \neq \emptyset$. Then

$$
\begin{aligned}
|E(G)| & \leq\binom{ 10}{2}-5+\sum_{i=1}^{4} i \cdot\left|V_{i}\right|+\left|V_{0}\right| \leq 45-5+4 \cdot \sum_{i=1}^{4}\left|V_{i}\right|+\left|V_{0}\right| \\
& \leq 4 n<5 n-14
\end{aligned}
$$

for $n \geq 15$. So again we must add one more edge which means that we get a $3 P_{4}$ in G, a contradiction.

Case 3.3. Let $V_{5}=\emptyset$ and $V_{4}=\emptyset$. Then

$$
|E(G)| \leq\binom{ 10}{2}+3 \sum_{i=1}^{3}\left|V_{i}\right|+\left|V_{0}\right| \leq 45+3(n-10)=3 n+15<5 n-14
$$

for $n \geq 15$. We obtain a contradiction.
Case 4. Let $q=9$. Let $F=G-V\left(C_{9}\right)$. If there does not exist any edge between C_{9} and F, then $|E(F)| \geq 5 n-50$. So if $e x\left(n-9, P_{4}\right)<5 n-50$, then there exists a path P_{4} in the graph F.
(a) $r=0$

$$
\begin{gathered}
3 \frac{n-9}{3}<5 n-50 \\
n>10
\end{gathered}
$$

(b) $r=1$

$$
\begin{gathered}
3 \frac{n-10}{3}<5 n-50 \\
n>10
\end{gathered}
$$

(c) $r=2$

$$
3 \frac{n-11}{3}+1<5 n-50
$$

$$
n>10 .
$$

In this case we obtain a contradiction.

Figure 3. A graph G with the cycle C_{9}.
Suppose that there exists an edge $\left\{0, f_{1}\right\}$ for some $f_{1} \in V(F)$. Note that the vertex f_{1} can be adjacent to another vertex $f_{1,1}$ from F and we do not obtain $3 P_{4}$ (see Figure 3 for an illustration). Now we cannot create other edges from $F-\left\{f_{1}, f_{1,1}\right\}$ to C_{9}, in the opposite case we obtain $3 P_{4}$. Note that

$$
\begin{aligned}
|E(G)| & \leq\binom{ 9}{2}+7+\left|N_{F}\left(f_{1}\right)\right|+\operatorname{ex}\left(n-10-\left|N_{F}\left(f_{1}\right)\right|, P_{4}\right) \\
& \leq 43+\left|N_{F}\left(f_{1}\right)\right|+\left(n-10-\left|N_{F}\left(f_{1}\right)\right|\right)=n+33<5 n-14
\end{aligned}
$$

for $n \geq 12$.
So we have $3 P_{4}$ in graph G, a contradiction. The proof is completed.
Remark 1. Note that if $n \in\{1, \ldots, 11\}$, then $\operatorname{ex}\left(n, 3 P_{4}\right)=\binom{n}{2}$. It is clear because the total number of vertices does not exceed 12 and K_{n} does not contain $3 P_{4}$. Moreover, $\binom{n}{2} \geq 5 n-15$ for $n \in\{1, \ldots, 11\}$.

Remark 2. For $n=12$ we have $e x\left(n, 3 P_{4}\right) \geq\binom{ 11}{2}=55$. It is clear because $K_{11} \cup K_{1}$ does not contain $3 P_{4}$. Let $|E(G)|=56$. Applying Lemma 1, we obtain that

$$
\begin{gathered}
\frac{11(l-1)}{2}+1 \leq 56 \\
l \leq 11
\end{gathered}
$$

So there exists a cycle $C_{q}, q \geq 11$. It is clear that if $q=12$, there exists $3 P_{4}$.

Figure 4. A graph with and C_{11} for $\operatorname{ex}\left(12,3 P_{4}\right)$.
If $q=11$, then we have $\operatorname{deg}_{C_{11}}(f)=0$ for $f \in V(F)$ and $\left|E\left(\left.G\right|_{C_{11}}\right)\right| \leq$ $\binom{11}{2}=55$ (see Figure 4 for an illustration). We get a contradiction.

For $n=13$ we have $\operatorname{ex}\left(n, 3 P_{4}\right) \geq\binom{ 11}{2}+\binom{2}{2}=56$. It follows from the fact that $K_{11} \cup K_{2}$ does not contain $3 P_{4}$. Let $|E(G)|=57$. Applying Lemma 1, we obtain that

$$
\begin{gathered}
\frac{12(l-1)}{2}+1 \leq 57 \\
l \leq 10
\end{gathered}
$$

If $q \geq 12$, then there exists $3 P_{4}$. If $q=11$, then we have a cycle C_{11} and a path P_{2}. But these two graphs cannot have edges between them and the total number of edges is equal to 56 . So we must add one more edge and we obtain $3 P_{4}$, a contradiction. If $q=10$, then we have at most 45 edges in $\left.G\right|_{V\left(C_{10}\right)}$ and we need at least 12 more edges. We have 3 vertices outside C_{10}, say f_{1}, f_{2}, f_{3}. If $\left\{f_{1}, f_{2}\right\} \in E(G)$, then $N\left(f_{i}\right) \cap V\left(C_{10}\right)=\emptyset$ for $i=1,2$, in the opposite case we get $3 P_{4}$. Thus $\operatorname{deg}_{C_{10}}\left(f_{i}\right) \geq 4$ for some $i=1,2,3$. Note that $\operatorname{deg}_{C_{10}}\left(f_{i}\right) \leq 5, i=1,2,3$, in the opposite case we get C_{11}. If f_{1} has 4 edges with C_{10}, then we must delete at least $\binom{4}{2}=6$ edges from K_{10}. So we need 14 more edges. So $\operatorname{deg}_{C_{10}}\left(f_{i}\right)>5$ and we have a contradiction.

Figure 5. Graphs with C_{10} for $e x\left(13,3 P_{4}\right)$.
Figure 5 presents a subgraph of G with the cycle C_{10}. Dotted lines denote edges in \bar{G}, in the opposite case we get a longer cycle in G.

For $n=14$ we have $\operatorname{ex}\left(n, 3 P_{4}\right) \geq\binom{ 11}{2}+\binom{3}{2}=58$. It follows from the fact that $K_{11} \cup K_{3}$ does not contain $3 P_{4}$. Let $|E(G)|=59$. Applying Lemma 1, we have

$$
\begin{gathered}
\frac{13(l-1)}{2}+1 \leq 59 \\
l \leq 9
\end{gathered}
$$

If $q \geq 12$, then we have $3 P_{4}$ in G. If $q=11$, then we have 55 edges in K_{11} and 3 edges in K_{3} and K_{11} and K_{3} must be disjoint. But we have 58 edges so we must add one more edge and we obtain $3 P_{4}$, a contradiction. Let $q=10$. We have 45 edges in K_{10} and we need 14 more edges. We have 4 vertices outside C_{10}. So $\operatorname{deg}_{C_{10}}\left(f_{i}\right)>3$ for some $i=1,2,3,4$. Moreover, $\operatorname{deg}_{C_{10}}\left(f_{i}\right) \leq 5$ for $i=1,2,3,4$, in the opposite case we get a cycle C_{11}. If f_{1} creates 5 edges with the vertices of C_{10}, then we must delete 10 edges from K_{10}. So we need 19 more edges. But we have only 3 vertices in $V(F)-\left\{f_{1}\right\}$, so $\operatorname{deg}_{C_{10}}\left(f_{i}\right)>5$ for some $i=2,3,4$ and we have a contradiction. Similarly, if $\operatorname{deg}_{C_{10}}\left(f_{1}\right)=4$ and $\operatorname{deg}_{C_{10}}\left(f_{i}\right) \leq 4$ for $i=2,3,4$, then we must delete at least 6 edges from K_{10}. So we need 20 more edges. We have three vertices in $V(F)-\left\{f_{1}\right\}$. Hence $\operatorname{deg}_{C_{10}}\left(f_{i}\right)>5$ for some $i=2,3,4$ and we have a contradiction.

Figure 6. A graph with and C_{9} for $e x\left(14,3 P_{4}\right)$.
Let $q=9$. We have 36 edges in K_{9}. So we need at least 23 edges outside $\left.G\right|_{C_{9}}$. We have 5 vertices outside the cycle C_{9}, i.e. in the graph F (see Figure 6 for an illustration). Recall that $e x\left(5, P_{4}\right)=4$. So we have at least 19 edges between $V\left(C_{9}\right)$ and $V(F)$. Thus there exists a vertex $f_{i} \in V(F)$, such that $\operatorname{deg}_{C_{9}}\left(f_{i}\right) \geq 4$. Note that $\operatorname{deg}_{C_{9}}\left(f_{i}\right) \leq 4$ for any $f_{i} \in V(F)$, in the opposite case we get a cycle C_{10}. Let f_{1} be the vertex adjacent to four vertices of C_{9}. Then $\left.G\right|_{C_{9}}$ is not isomorphic to K_{9}, in the opposite case we get a longer cycle. We must delete from K_{9} at least $\binom{4}{2}=6$ edges (see dotted lines in Figure 6). So now we need at least 21 edges between $V\left(C_{9}\right)$
and $V(F)$. But we have only 5 vertices in F. So there exists f_{i} for which $\operatorname{deg}_{C_{9}}\left(f_{i}\right)>4$ and we have a contradiction.

Summarizing, we collect results from above remarks in Theorem 5.
Theorem 5. Let n be a natural number and $n \leq 14$. Then

$$
\begin{aligned}
& e x\left(n, 3 P_{4}\right)=\binom{n}{2} \text { for } n \leq 11 \\
& e x\left(n, 3 P_{4}\right)=\binom{11}{2}=55 \text { for } n=12 \\
& e x\left(n, 3 P_{4}\right)=\binom{11}{2}+\binom{2}{2}=56 \text { for } n=13 \\
& e x\left(n, 3 P_{4}\right)=\binom{11}{2}+\binom{3}{2}=58 \text { for } n=14
\end{aligned}
$$

Theorems 4 and 5 present the Turán number $\operatorname{ex}\left(n, 3 P_{4}\right)$ for all positive integers n.

References

[1] Bushaw, N., Kettle, N., Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011), 837-853.
[2] Erdős, P., Gallai, T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356.
[3] Faudree, R. J., Schelp, R. H., Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150-160.
[4] Gorgol, I., Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011), 661-667.
[5] Harary, F., Graph Theory, Addison-Wesley, Mass.-Menlo Park, Calif.-London, 1969.

```
Halina Bielak
Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: hbiel@hektor.umcs.lublin.pl
Sebastian Kieliszek
Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: sebastian.lukasz.kieliszek@gmail.com
```

Received June 4, 2013

