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The Turán number of the graph 3P4

Abstract. Let ex(n,G) denote the maximum number of edges in a graph
on n vertices which does not contain G as a subgraph. Let Pi denote a path
consisting of i vertices and let mPi denote m disjoint copies of Pi. In this
paper we count ex(n, 3P4).

1. Introduction. Let G = (V (G), E(G)) be a graph with the vertex set
V (G) and the edge set E(G). The Turán number of the graph G, denoted
by ex(n,G), is the maximum number of edges in a graph on n vertices
which does not contain G as a subgraph. Let Pi denote a path consisting
of i vertices and let mPi denote m disjoint copies of Pi. By Cq we denote
a cycle of order q. For two vertex disjoint graphs G and F by G ∪ F we
denote the vertex disjoint union of G and F , and by G + F we denote the
join of the graphs. By G we denote the complement of the graph G. For a
vertex x ∈ V (G) we define NG(x) = {y ∈ V (G)|{x, y} ∈ E(G)}. Let F be a
subgraph of G. Let degF (x) = NG(x) ∩ V (F ). Moreover, for A ⊆ V (G) let
G|A denote the subgraph of G induced by A. The basic notions not defined
in this paper can be found in [5]. First we present the following important
lemma which is used to prove our main results.

Lemma 1 (Erdős, Gallai [2]). Suppose that |V (G)| = n. If the following
inequality

(n− 1)(l − 1)

2
+ 1 ≤ |E(G)|
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is satisfied for some l ∈ N, then there exists a cycle Cq in G for some q ≥ l.

We will use the following famous theorem.

Theorem 1 (Faudree and Schelp [3]). If G is a graph with |V (G)| = kn+
r (0 ≤ k, 0 ≤ r < n) and G contains no Pn+1, then |E(G)| ≤ kn(n −
1)/2 + r(r − 1)/2 with the equality if and only if G = kKn ∪ Kr or G =
tKn∪ (K(n−1)/2+K(n+1)/2+(k−t−1)n+r) for some 0 ≤ t < k, where n is odd,
and k > 0, r = (n± 1)/2.

Gorgol [4] studied the Turán number for disjoint copies of graphs. She
counted ex(n, 2P3) and ex(n, 3P3).

Theorem 2 (Gorgol [4]).

ex(n, 2P3) =

⌊
n− 1

2

⌋
+ n− 1, for n ≥ 9.

ex(n, 3P3) =

⌊
n− 1

2

⌋
+ 2n− 4, for n ≥ 14.

Moreover, she proved more general results concerning the properties of
some extremal Turán graphs for disjoint copies of a given graph. Bushaw
and Kettle [1] extended some of Gorgol’s results as follows.

Theorem 3 (Bushaw and Kettle [1]).

ex(n, kP3) =

⌊
n− k + 1

2

⌋
+ (n− k + 1)(k − 1) +

(
k − 1

2

)
, for n ≥ 7k.

ex(n, kPt) =

(
n− k

⌊
t

2

⌋
+ 1

)(
k

⌊
t

2

⌋
− 1

)
+

(
k
⌊
t
2

⌋− 1

2

)
+ ε,

for n ≥ 2t
(
1 + k

(⌈
t
2

⌉
+ 1

) (
t
� t
2
�
))
, where ε = 1 for odd t and ε = 0 for

even t.

In particular, Bushaw and Kettle [1] counted ex(n, 3P4) for the case n ≥
440. We present ex(n, 3P4) for all positive integers n.

2. Results. First we prove the following result.

Theorem 4. Let n ≥ 15. Then

(1) ex(n, 3P4) = 5n− 15.

Proof. First note that the graph K5 + Kn−5 does not contain 3P4 as a
subgraph. Therefore, ex(n, 3P4) ≥ 5n − 15 and we would like to prove the
opposite inequality. Suppose that there exists a graph G with |V (G)| = n ≥
15 and |E(G)| = 5n − 14 without 3P4 as a subgraph. Applying Lemma 1
to the graph G, we obtain

(n− 1)(l − 1)

2
+ 1 ≤ 5n− 14,
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l ≤ 11− 20

n− 1
.

By n ≥ 15,
20

n− 1
< 2

and we conclude that l ≤ 9. It means that the graph G contains a cycle
Cq, q ≥ 9. Let 0, 1, 2, . . . , q−1 be the consecutive vertices in Cq. We should
consider the following cases:
Case 1. Let q ≥ 12. We have C12 in G, so 3P4 is a subgraph of G, a
contradiction.
Case 2. Let q = 11.

Figure 1. A graph G with the cycle C11.

Let F = G− V (C11). Note that C11 cannot be connected by an edge with
F (see Figure 1 for an illustration). The minimum number of edges in F is
equal to 5n− 14− 55 = 5n− 69. By Theorem 1 we know that

ex(k, P4) = 3

⌊
k

3

⌋
+

(
r

2

)
, k ≡ r (mod 3)

where r is the rest from dividing k by 3. We set k = n− 11. If

3

⌊
n− 11

3

⌋
+

(
r

2

)
< 5n− 69

then it means that P4 is a subgraph of F . We check this.
(a) r = 0

5n− 3
n− 11

3
> 69

n > 14.

(b) r = 1

5n− 3
n− 12

3
> 69

n > 14.
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(c) r = 2

5n− 3
n− 13

3
> 1 + 69

n > 14.

So we get P4 in F , a contradiction.
Case 3. Let q = 10.

Figure 2. A graph G with the cycle C10.

Let F = G − V (C10). Note that |V (F )| = n − 10. The set of edges
containing a vertex of F we can divide into:
• edges connecting C10 and F , i.e. the edges {x, f} with x ∈ V (C10), f ∈
V (F ),
• edges connecting both vertices inside F , i.e. the edges {fi, fj} with fi,
fj ∈ V (F ), i 	= j.
Notice that if the edge {0, f1} exists for some f1 ∈ V (F ), then there cannot
exist edges {1, f1} and {9, f1}, in the opposite case we obtain a longer
cycle, i.e. C11. So at most 5 vertices of C10 can be adjacent to the vertex
f1 ∈ V (F ) (see Figure 2 for an illustration). Moreover, {j, f} 	∈ E(G) for
f ∈ V (F )−{f1} and j 	= 2l+1, l = 0, 1, 2, 3, 4, j ∈ V (C10), in the opposite
case we get 3P4 in G. Let

V (F ) = V0 ∪ V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5

be the partition of V (F ) such that each vertex from Vi has exactly i neigh-
bors in C10. Note that vertices from sets Vi, i > 0 cannot be connected
between them and degF (u) = 0 for each u ∈ ⋃5

i=1 Vi. Vertices from
the set V0 can be connected only between them. So if |V0| = k, then
|E(G|V0)| ≤ ex(k, P4). First we show that |E(G|V0)| ≤ |V0|. If r ≡ 0
(mod 3), then

ex(k, P4) = 3
k

3
= k = |V0|.
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If r ≡ 1 (mod 3), then

ex(k, P4) = 3
k − 1

3
= k − 1 ≤ |V0|.

If r ≡ 2 (mod 3), then

ex(k, P4) = 3
k − 2

3
+ 1 = k − 1 ≤ |V0|.

We consider three subcases:
Case 3.1. Let V5 	= ∅. Then

|E(G)| ≤
(
10

2

)
−

(
5

2

)
+

5∑
i=1

i · |Vi|+ |E(V0)| ≤ 35 +

5∑
i=1

i · |Vi|+ |V0|

≤ 35 + 5

5∑
i=1

|Vi|+ 5|V0| = 35 + 5(n− 10) = 5n− 15.

Recall that |E(G)| = 5n−14. So we must add one more edge and we obtain
3P4 in G, a contradiction.
Case 3.2. Let V5 = ∅ and V4 	= ∅. Then

|E(G)| ≤
(
10

2

)
− 5 +

4∑
i=1

i · |Vi|+ |V0| ≤ 45− 5 + 4 ·
4∑

i=1

|Vi|+ |V0|

≤ 4n < 5n− 14

for n ≥ 15. So again we must add one more edge which means that we get
a 3P4 in G, a contradiction.
Case 3.3. Let V5 = ∅ and V4 = ∅. Then

|E(G)| ≤
(
10

2

)
+ 3

3∑
i=1

|Vi|+ |V0| ≤ 45 + 3(n− 10) = 3n+ 15 < 5n− 14

for n ≥ 15. We obtain a contradiction.
Case 4. Let q = 9. Let F = G−V (C9). If there does not exist any edge
between C9 and F , then |E(F )| ≥ 5n − 50. So if ex(n − 9, P4) < 5n − 50,
then there exists a path P4 in the graph F .
(a) r = 0

3
n− 9

3
< 5n− 50,

n > 10.

(b) r = 1

3
n− 10

3
< 5n− 50,

n > 10.

(c) r = 2

3
n− 11

3
+ 1 < 5n− 50,



26 H. Bielak and S. Kieliszek

n > 10.

In this case we obtain a contradiction.

Figure 3. A graph G with the cycle C9.

Suppose that there exists an edge {0, f1} for some f1 ∈ V (F ). Note that
the vertex f1 can be adjacent to another vertex f1,1 from F and we do not
obtain 3P4 (see Figure 3 for an illustration). Now we cannot create other
edges from F − {f1, f1,1} to C9, in the opposite case we obtain 3P4. Note
that

|E(G)| ≤
(
9

2

)
+ 7 + |NF (f1)|+ ex(n− 10− |NF (f1)|, P4)

≤ 43 + |NF (f1)|+ (n− 10− |NF (f1)|) = n+ 33 < 5n− 14

for n ≥ 12.
So we have 3P4 in graph G, a contradiction. The proof is completed. �

Remark 1. Note that if n ∈ {1, . . . , 11}, then ex(n, 3P4) =
(
n
2

)
. It is clear

because the total number of vertices does not exceed 12 and Kn does not
contain 3P4. Moreover,

(
n
2

) ≥ 5n− 15 for n ∈ {1, . . . , 11}.
Remark 2. For n = 12 we have ex(n, 3P4) ≥

(
11
2

)
= 55. It is clear because

K11 ∪K1 does not contain 3P4. Let |E(G)| = 56. Applying Lemma 1, we
obtain that

11(l − 1)

2
+ 1 ≤ 56,

l ≤ 11.

So there exists a cycle Cq, q ≥ 11. It is clear that if q = 12, there exists
3P4.
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Figure 4. A graph with and C11 for ex(12, 3P4).

If q = 11, then we have degC11
(f) = 0 for f ∈ V (F ) and |E(G|C11)| ≤(

11
2

)
= 55 (see Figure 4 for an illustration). We get a contradiction.
For n = 13 we have ex(n, 3P4) ≥

(
11
2

)
+
(
2
2

)
= 56. It follows from the fact

that K11 ∪K2 does not contain 3P4. Let |E(G)| = 57. Applying Lemma 1,
we obtain that

12(l − 1)

2
+ 1 ≤ 57,

l ≤ 10.

If q ≥ 12, then there exists 3P4. If q = 11, then we have a cycle C11 and
a path P2. But these two graphs cannot have edges between them and the
total number of edges is equal to 56. So we must add one more edge and
we obtain 3P4, a contradiction. If q = 10, then we have at most 45 edges
in G|V (C10) and we need at least 12 more edges. We have 3 vertices outside
C10, say f1, f2, f3. If {f1, f2} ∈ E(G), then N(fi) ∩ V (C10) = ∅ for i = 1, 2,
in the opposite case we get 3P4. Thus degC10

(fi) ≥ 4 for some i = 1, 2, 3.
Note that degC10

(fi) ≤ 5, i = 1, 2, 3, in the opposite case we get C11. If f1
has 4 edges with C10, then we must delete at least

(
4
2

)
= 6 edges from K10.

So we need 14 more edges. So degC10
(fi) > 5 and we have a contradiction.

Figure 5. Graphs with C10 for ex(13, 3P4).

Figure 5 presents a subgraph of G with the cycle C10. Dotted lines denote
edges in G, in the opposite case we get a longer cycle in G.
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For n = 14 we have ex(n, 3P4) ≥
(
11
2

)
+
(
3
2

)
= 58. It follows from the fact

that K11 ∪K3 does not contain 3P4. Let |E(G)| = 59. Applying Lemma 1,
we have

13(l − 1)

2
+ 1 ≤ 59,

l ≤ 9.

If q ≥ 12, then we have 3P4 in G. If q = 11, then we have 55 edges in
K11 and 3 edges in K3 and K11 and K3 must be disjoint. But we have 58
edges so we must add one more edge and we obtain 3P4, a contradiction.
Let q = 10. We have 45 edges in K10 and we need 14 more edges. We have
4 vertices outside C10. So degC10

(fi) > 3 for some i = 1, 2, 3, 4. Moreover,
degC10

(fi) ≤ 5 for i = 1, 2, 3, 4, in the opposite case we get a cycle C11. If f1
creates 5 edges with the vertices of C10, then we must delete 10 edges from
K10. So we need 19 more edges. But we have only 3 vertices in V (F )−{f1},
so degC10

(fi) > 5 for some i = 2, 3, 4 and we have a contradiction. Similarly,
if degC10

(f1) = 4 and degC10
(fi) ≤ 4 for i = 2, 3, 4, then we must delete at

least 6 edges from K10. So we need 20 more edges. We have three vertices
in V (F ) − {f1}. Hence degC10

(fi) > 5 for some i = 2, 3, 4 and we have a
contradiction.

Figure 6. A graph with and C9 for ex(14, 3P4).

Let q = 9. We have 36 edges in K9. So we need at least 23 edges outside
G|C9 . We have 5 vertices outside the cycle C9, i.e. in the graph F (see
Figure 6 for an illustration). Recall that ex(5, P4) = 4. So we have at least
19 edges between V (C9) and V (F ). Thus there exists a vertex fi ∈ V (F ),
such that degC9

(fi) ≥ 4. Note that degC9
(fi) ≤ 4 for any fi ∈ V (F ), in

the opposite case we get a cycle C10. Let f1 be the vertex adjacent to four
vertices of C9. Then G|C9 is not isomorphic to K9, in the opposite case
we get a longer cycle. We must delete from K9 at least

(
4
2

)
= 6 edges (see

dotted lines in Figure 6). So now we need at least 21 edges between V (C9)
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and V (F ). But we have only 5 vertices in F . So there exists fi for which
degC9

(fi) > 4 and we have a contradiction.
Summarizing, we collect results from above remarks in Theorem 5.

Theorem 5. Let n be a natural number and n ≤ 14. Then

ex(n, 3P4) =

(
n

2

)
for n ≤ 11,

ex(n, 3P4) =

(
11

2

)
= 55 for n = 12,

ex(n, 3P4) =

(
11

2

)
+

(
2

2

)
= 56 for n = 13,

ex(n, 3P4) =

(
11

2

)
+

(
3

2

)
= 58 for n = 14.

Theorems 4 and 5 present the Turán number ex(n, 3P4) for all positive
integers n.
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