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The generation of a magnetic field in an electrically conducting fluid generally involves
the complicated nonlinear interaction of flow turbulence, rotation and field. This dynamo
process is of great importance in geophysics, planetary science and astrophysics, since
magnetic fields are known to play a key role in the dynamics of these systems. This
paper gives an introduction to dynamo theory for the fluid dynamicist. It proceeds by
laying the groundwork, introducing the equations and techniques that are at the heart of
dynamo theory, before presenting some simple dynamo solutions. The problems currently
exercising dynamo theorists are then introduced, along with the attempts to make progress.
The paper concludes with the argument that progress in dynamo theory will be made in
the future by utilising and advancing some of the current breakthroughs in neutral fluid
turbulence such as those in transition, self-sustaining processes, turbulence/mean-flow
interaction, statistical and data-driven methods and maintenance and loss of balance.
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1. Introduction

1.1. Dynamo theory for the fluid dynamicist

It is really just a matter of perspective. To the fluid dynamicist, dynamo theory may
appear as a rather esoteric and niche branch of fluid mechanics – in dynamo theory
much attention has focused on seeking solutions to the induction equation rather than
those for the Navier–Stokes equations. Conversely, to a practitioner dynamo theory is a
field with myriad subtleties; in a severe interpretation the Navier–Stokes equations and
the whole of neutral fluid mechanics may be regarded as forming a useful invariant
subspace of the dynamo problem, with – it has to be said – non-trivial dynamics. In
this perspective, I shall attempt to present the important and interesting developments in
dynamo theory from the point of view of a fluid dynamicist, pointing out common themes.
I shall focus on explaining how recent developments in fluid mechanics can contribute to
future breakthroughs for magnetohydrodynamic dynamos.
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Figure 1. The geomagnetic record showing the history of magnetic field reversals (source Wikipedia). The
black/white bars relate to magnetic fields of opposite polarities.

This is not a review in the typical sense. Although I shall present the key results and
features of dynamo theory, I shall not be exhaustive by any means. This perspective is
focused on those areas of dynamo theory that I believe are both accessible and of interest
to fluid dynamicists, drawing analogies with other areas of fluids where necessary. It
is also concentrated on those areas that I believe offer the greatest scope for imminent
breakthroughs. These are not necessarily those areas of research that lead to the most
accurate modelling of any given astrophysical object; although it is undoubtedly the case
(as described in the next section) that the generation of magnetic fields in these objects
nearly always forms the motivation for dynamo investigations. Further details of dynamo
theory are contained in myriad reviews and monographs, for example those of Moffatt
(1978), Krause & Raedler (1980), Brandenburg & Subramanian (2005), Jones (2008) and
the recently published monograph of Moffatt & Dormy (2019) and review of Rincon
(2019).

We begin, however, by giving motivation for the study of dynamos – much of which
arises from observations of cosmical magnetic fields, including those of planets, stars,
galaxies and disks.

1.2. Motivation

1.2.1. The geomagnetic field

The Earth’s magnetic field is presently predominantly dipolar with a mean surface strength
of approximately 40 µT. Currently the dipole axis is offset by approximately 10◦ from
the rotation axis. Paleomagnetic records indicate that the magnetic field has persisted for
greater than three billion years and has always had a significant dipole component (see e.g.
Dormy, Valet & Courtillot 2000; Aubert, Tarduno & Johnson 2010). Figure 1 shows how
the record is punctuated by episodic reversals of the polarity of the dipole component;
whilst the magnetic field reverses (in a time of the order of 104 years) the field energy
decreases and the field becomes smaller scale and more multipolar. The figure clearly
shows the time scale between reversals of the field is exceptionally long, with some events
(superchrons) lasting over ten million years. The Earth’s magnetic field can currently be
measured at the surface to spherical harmonic degree 13, with higher harmonics being
screened by remnant magnetism of the crust. In addition to long term variation of the field,
it is also subject to ‘secular variation’, which is seen in current and historical observations
(Jackson, Jonkers & Walker 2000). Here, the spatial structure and strength of the field
varies with time scales ranging from years to centuries, with significant features including
the ‘westward drift’ of magnetic flux patches and changes in the length of day. These
changes arise because of the interaction of magnetic fields with flows in the electrically
conducting fluid outer core of the Earth.

1.2.2. Solar system planets

Most, if not all, solar system planets currently possess or have possessed
dynamo-generated magnetic fields. Even smaller satellites such as Ganymede and the
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Moon show signs of current or historic dynamo action. It seems as though magnetic field
generation is possible whether the planet is terrestrial, a gas giant, or an ice giant. It is
therefore expected, and there is some observational evidence to support the theory, that
many exoplanets should also be capable of dynamo action (Shkolnik et al. 2008).

As is the case for the Earth, dynamo action usually takes place in the interior of
planets but the magnetic fields are measured as a potential field having diffused through
poorly conducting regions. These potential fields are usually decomposed into spherical
harmonics with amplitudes given by the so-called Gauss coefficients (see e.g. Schubert &
Soderlund 2011). Briefly, the gas giants Jupiter and Saturn possess strong dipole dominated
magnetic fields. Jupiter’s field, confirmed by the Pioneer 10 flyby, has a largely axial dipole
and, with a mean surface strength of 550 µT, has the strongest field in the solar system.
Before the recent Juno mission the observations of the magnetic field had a poor resolution
(up to spherical harmonic degree three), although recent flybys by the Juno satellite are
beginning to establish that the magnetic field has much more structure at smaller scales
and a distinct hemispheric asymmetry (see e.g. Connerney 2018). It is worth mentioning
at this point that the Juno mission will probably give us the closest direct observation of
a naturally occurring dynamo generated magnetic field; it will be fascinating to follow the
progress of the mission. Saturn’s magnetic field, first revealed by Pioneer 11, has been
measured to spherical harmonic degree three and has a mean surface strength of 30 µT.
The axis of the dipole is remarkably aligned with the rotation axis (with an offset of less
than 1◦) meaning that the results are consistent with the field being axisymmetric. As we
shall see in § 2.4.3, it is not possible for such a field configuration to be generated by
dynamo action (Cowling 1933); this prompts the widely held belief that Saturn’s magnetic
field exists solely to have annoyed Cowling.

The terrestrial planets – possessing iron-alloy central cores, silicate mantles and rocky
crusts – also largely exhibit dynamo generated magnetic fields. Mercury’s magnetic field,
the weakest in the solar system at 0.3 µT is dipole dominated, with the dipole largely
aligned with the rotation axis; similarly the magnetic field of the Jovian satellite Ganymede
is an axially aligned dipole of about 1 µT. Meanwhile the Moon and Mars do not have
magnetic fields that are currently maintained by dynamo action, but there is evidence
of extinct dynamos in both cases (see Schubert & Soderlund (2011) and the references
therein). It is unclear in both cases when, or why, the dynamo switched off, although
theories for the cessation of such dynamos usually involve the cooling of the body leading
to the unsustainability of thermal convection or the inner core of the body growing to such
a size to make dynamo action inefficient. Venus has no measurable intrinsic magnetic
field. It may be that the absence of an inner core in Venus means that dynamo action is
not possible or that the core is not convective at all. Finally the ice giants Neptune and
Uranus have magnetic fields as discovered by the Voyager 2 flybys. These planets possess
fundamentally different multipolar magnetic fields, with mean surface field strengths of
30 µT, and with the dipole component exhibiting a significant tilt from the rotation axis.

1.2.3. The Sun and stars

Arguably the most remarkable example of natural dynamo action is the solar activity
cycle (Hathaway 2015; Brun & Browning 2017). Solar activity has been observed for
many centuries, with both ancient Chinese and Athenian observations of sunspots being
recorded. Sunspots have been systematically observed since the early seventeenth century,
when Galileo turned the newly invented telescope towards our nearest star. It is now
clear that solar magnetic activity exhibits an astonishingly systematic spatio-temporal
behaviour. Sunspots appear in flux belts confined between the equator and latitudes of
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Figure 2. The butterfly diagram of the solar cycle. This shows the positions of the spots for each rotation of
the Sun since 1874. Magnetic activity first appears at mid-latitudes, widens and then moves towards the equator
as each cycle progresses (image courtesy of D. Hathaway).

about ±30◦. They show cyclic activity with a period of approximately eleven years; as the
cycle progresses the latitude at which activity is found moves in a wave from mid-latitude
to the equator, before dying out – as shown in the solar butterfly diagram of figure 2. Note
that the activity in this diagram is basically symmetric about the equator; this sunspot
activity has been linked to magnetic fields through the Zeeman splitting of spectral lines.
The Sun has an azimuthally averaged field of a few hundred µT and the large-scale
radial magnetic field changes sign across the equator and changes parity every eleven
years, giving a 22-year magnetic cycle. The sunspot field reverses at sunspot minimum,
whilst the coronal field reverses out of phase at sunspot maximum. The sun also possesses
small-scale magnetic fields, which are only weakly coupled with the solar cycle.

The long-term dynamics of solar activity can be established from both direct and
indirect observations. Telescopic observations demonstrate the modulation of the basic
eleven year cycle and also reveal the presence of a period in the seventeenth century, known
as the Maunder Minimum, when sunspots were almost completely absent. Interestingly,
as the Sun emerged from this minimum, sunspots were to be found solely in the southern
hemisphere (Ribes & Nesme-Ribes 1993). Indirect observations of terrestrial isotopes (see
Usoskin 2017), whose production rate is anti-correlated with magnetic activity, show that
the solar cycle persisted through the Maunder Minimum (Beer, Tobias & Weiss 1998) and
that minima such as the Maunder Minimum are recurrent events, that appear in clusters –
so called ‘super-modulation’ (Weiss & Tobias 2016; Beer, Tobias & Weiss 2018).

Our understanding of the origin of the solar magnetic field owes much to observations
of magnetic field generation in other stars. Stellar observations can obviously be used
to calibrate dynamo theories, but will also give a clue as to past and future behaviour.
The results from such observations are varied and bewildering to the non-expert (and
sometimes to the expert). For our purposes it is sufficient to state the main results. For
solar-like main-sequence stars, broadly speaking magnetic activity increases with rotation
rate (Ω). There is a systematic increase in magnetic field strength with decreasing Rossby
number of the star (here defined as Ro = urms/2Ωℓ where urms is a typical velocity, ℓ is
a characteristic length scale given by mixing length theory), until activity levels off past a
threshold in Rossby number (typically Ro ≈ 0.1–0.3). Interestingly, this threshold appears
to be independent of the mass of the star. It is also the case that many of these stars exhibit
activity cycles similar to the solar cycle. The period of the cycle is also a function of
Rossby number, with the cycle period decreasing with Rossby number (i.e. faster rotators
have shorter period). Finally for these stars the morphology of the generated field also
appears to depend on rotation rate, with faster rotators being more dominated by their
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zonal fields (See et al. 2016). Other stars show a wide variety of behaviour, depending on
their mass, age and spectral type (for example whether they exhibit convection in a core
or in an envelope plays a major role). Young stars (e.g. fully convective T-Tauri stars) have
strong fields (average field strengths of around 0.2 T). Suffice to say that stellar magnetic
fields are ubiquitous and the properties of the generated field depend on the nature of the
turbulence and the rotation rate of the star. The interested reader is directed to the excellent
review by Brun & Browning (2017) for more details.

1.2.4. Galaxies and galaxy clusters

The properties of magnetic field in galaxies (including our own galaxy) have been
extensively measured, with a variety of observational techniques – see Brandenburg &
Subramanian (2005), Beck (2015) and the reviews referenced therein. Our own galaxy
has an estimated local field strength of about 5 × 10−10 T, which is a typical amplitude
for fields in galaxies. The magnetic field in galaxies usually has an ordered and a tangled
component; in spiral galaxies the large-scale order manifests itself over several kiloparsecs.
Usually the random component is strongest in the spiral arms, whilst the regular field
extends into the interarm regions.

Galaxy clusters are the largest bound systems in the universe and are found to have
magnetic fields; for these the total magnetic fields are estimated to be of the order of
10−11–10−9 T. For most astrophysical objects it is now widely accepted that dynamo action
is the only mechanism that can explain their magnetic properties and the persistence of the
field for many ohmic decay times. For the galactic dynamo there appears still to be some
debate (as the magnetic decay times for such vast objects are enormous), although there
are a number of very significant arguments pointing to the dynamo origin of such fields
(see e.g. Brandenburg & Subramanian 2005; Kulsrud & Zweibel 2008).

1.2.5. Accretion discs

Accretion discs are gaseous discs of material spinning around a central object (for example
young stars, white dwarfs, neutron stars and black holes). Although direct observations of
dynamo-generated magnetic fields in such objects is difficult (although see Donati et al.

2005), proxies such as emission or the magnetism of meteorites formed in the disc around
the young Sun give indirect evidence. Direct observations may place upper limits on the
strength of any generated magnetic fields. However, it is believed that magnetic fields play
an important role in the collimation of jets and the sustainment of accretion (as we shall
see later). The dynamo in such discs is very interesting theoretically – being essentially
nonlinear (Tobias, Cattaneo & Brummell 2011a) – with many of the characteristics of
the transition to dynamo action being similar to those for the transition to turbulence in
wall-bounded flows (see e.g. Waleffe 1997; Barkley 2016). We shall discuss in details these
essentially nonlinear dynamos in § 7.

2. Fundamentals

‘So many dynamos’
A well-known Palindrome

In this section we introduce the fundamentals of dynamo theory, identifying important
analogies for fluid dynamicists. More details can be found for example in the excellent
expositions and reviews referred to below.
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2.1. Equations and boundary conditions

2.1.1. The induction and momentum equation

Dynamo theory typically (minimally) involves the construction of solutions to the pair
of coupled partial differential equations for the evolution of the velocity field, u and
the magnetic field B in an electrically conducting fluid under the magnetohydrodynamic
(MHD) formalism. A complete derivation of the equations and a discussion of their
applicability in any given physical situation is beyond the scope of this perspective; the
interested reader is directed to Moffatt & Dormy (2019) and Jones (2008) for details of the
derivation. Briefly, under the MHD approximation, which combines the non-relativistic
Maxwell equations of electrodynamics with Ohm’s law for a moving conductor, these
take the form

∂u

∂t
+ u · ∇u = − 1

ρ
∇p + 1

ρ
j × B + ν∇2u + F

ρ
, (2.1)

∂B

∂t
= ∇ × (u × B) − ∇ × (η∇ × B), (2.2)

∇ · B = 0. (2.3)

Here, the standard fluid parameters are ρ, which is the density of the fluid, p which is the
pressure and ν is the kinematic viscosity of the fluid, whilst F represents all the body forces
(such as buoyancy or mechanical driving) acting to drive the fluid motion. The additional
force term in the Navier–Stokes equations is termed the Lorentz force F Lor = j × B and
arises owing to the interaction of the magnetic field with the current j flowing through the
conductor. The current is itself given by the pre-Maxwell version of Ampère’s law, i.e.

j = 1
μ

∇ × B, (2.4)

and hence

F Lor = 1
μρ

(∇ × B) × B. (2.5)

Here, and henceforth in this paper, μ is the permeability. The evolution equation for
the magnetic field given by (2.2) is termed the induction equation. Here, η = (μσ)−1

is the magnetic diffusivity which is a property of the conducting fluid, with electrical
conductivity σ . Magnetic diffusivity is large for poor conductors. In circumstances in
which the magnetic diffusivity is constant, (2.2) simplifies (utilising (2.3)) to

∂B

∂t
= ∇ × (u × B) + η∇2B. (2.6)

2.1.2. Magnetic boundary conditions

The induction and momentum equations are usually (although not always) solved in a
finite domain subject to the imposition of boundary conditions on the fluid velocity and
magnetic field. The boundary conditions for the fluid velocity are straightforward and
standard; usually one considers impenetrable boundaries with either stress-free or no-slip
conditions on the tangential component of the velocity.

The magnetic boundary conditions are more problematic and usually involve some
degree of simplification. Typically this involves considering the fluid in a domain V with an
exterior bounding surface S, external to which is either an insulator or a perfect conductor.
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If the region outside of the evolution of the dynamo fluid is perfectly conducting, surface
charges, ρS, and surface currents, jS, are allowed on the boundary. If we define [.] as
the jump across the surface S and n as an outward pointing normal to that surface, then
integrating the pre-Maxwell equations across the surface gives

[n · E] = ρS

ǫ
, [n · B] = 0, [n × B] = μjS, [n × E] = 0, (2.7a–d)

where ǫ is the permittivity. If there are no surface currents or charges (i.e. for non-perfectly
conducting boundaries) then B is continuous, provided μ is constant. If the region external
to the solution domain does not allow currents (i.e. if this region is an insulator) then this
continuity of B defines the problem. If the outside region allows currents then the normal
derivative of n · B is also continuous, although the normal derivatives of the tangential
components of B are not necessarily continuous (see the detailed discussion in Jones
2008).

However, if the outside of the domain is a static perfect conductor it is normal to assume
that there is no trapped magnetic field there and so (for no normal flow conditions)

n · B = 0, n × j = 0. (2.8a,b)

This gives

Bz = ∂Bx

∂z
= ∂By

∂z
= 0, (2.9)

at a Cartesian boundary z = const., and

Br = ∂(rBθ )

∂r
= ∂(rBφ)

∂r
= 0, (2.10)

at a spherical boundary, r = const.

2.2. What is a dynamo?

Simply put, a self-exciting hydromagnetic dynamo is a self-consistent solution of the
coupled Navier–Stokes and induction equation for which the magnetic energy,

M(t) =
∫

V

B2

2μ
dV, (2.11)

remains finite as t → ∞. Here V is the volume over which the dynamo equations are
solved, which could in principle be finite and bounded by a surface S or (in an idealisation)
taken to be all space. If the volume is finite it is traditional to take the region external to the
domain as being an insulator (jext. = 0) so that the magnetic field is maintained entirely
by the current distribution within the domain and so B = O(|x|−3) as |x| → ∞ (see e.g.
Moffatt 1978).

2.3. Energetics and conservation laws

As in hydrodynamics, much can be understood by deriving global conservation laws, valid
in the absence of driving and dissipation. For inviscid hydrodynamic flows in the absence
of body forces (such as gravity) and boundary forces the total kinetic energy and kinetic
helicity defined as

Ek = 1
2

∫

V

ρu · u dV, Hk =
∫

V

ρu · ω dV, (2.12a,b)

are conserved (Moreau 1961; Moffatt 1969).
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In the presence of a magnetic field these quantities are no longer conserved. Transfer of
energy may take place between kinetic and magnetic energies via the action of induction
and the Lorentz force respectively. The magnetic and kinetic energy equations take the
form, after a little vector calculus and ignoring surface terms,

d
dt

∫

V

B2

2μ
dV = −

∫

V

u · ( j × B) dV − ημ

∫

V

j2 dV, (2.13)

and for an incompressible flow

d
dt

∫

V

ρu2

2
dV = +

∫

V

u · ( j × B) dV −
∫

V

2νρS2 dV, (2.14)

where the dissipative terms have now been included, and Sij = 1
2 (∂ui/∂xj + ∂uj/∂xi) is the

rate of strain tensor for an incompressible fluid.
Adding (2.13) and (2.14) for an ideal (inviscid and perfectly conducting) fluid

immediately reveals that the total (kinetic plus magnetic) energy is conserved, with
magnetic energy only being created at the expense of kinetic energy. The u · ( j × B) term
is therefore responsible for this transfer of energy and arises from inductive effects in the
induction equation and the Lorentz force in the momentum equation.

In addition to the total energy there are two other quadratic invariants of the ideal system,
namely the magnetic helicity and the cross-helicity. The cross-helicity, given by

Hc =
∫

V

u · B dV, (2.15)

is clearly not sign definite; neither is cross-helicity dissipation. Cross-helicity may be
either amplified or damped locally and so less attention has focussed on the implications
of its conservation in the non-dissipative case (although see Biskamp 2003; Yokoi 2013).

However, the implications of the conservation of magnetic helicity and its role in the
saturation of nonlinear dynamos has received much attention and for that reason we devote
some time to it here.

2.3.1. Conservation of magnetic helicity

Because ∇ · B = 0, it is often useful to write B = ∇ × A. Here A is termed the vector
potential for the magnetic field. Clearly, A is only defined up to a choice of gauge, so that
transforming A → A + ∇ψ for any scalar ψ leaves the magnetic field unchanged. It is
also then convenient to ‘uncurl’ (2.2) to give

∂A

∂t
= (u × B) − η ∇ × B + ∇φ, (2.16)

where φ is related to the choice of gauge.
Various choices of gauge are possible; the Coulomb gauge has

∇ · A = 0; ∇2φ = −∇ · (u × B). (2.16a,b)

The winding gauge (suitable for calculations in Cartesian geometries) has

∇H · A = 0; ∇2
Hφ′ = −∇H · (u × B), (2.17a,b)

where ∇H = (∂x, ∂y, 0) and φ′ = φ − η(∂Az/∂z) (Prior & Yeates 2014). A numerically
convenient gauge involves setting

φ = ∂ψ

∂t
, (2.17)

as described in Brandenburg & Subramanian (2005)
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Now, magnetic helicity is defined as

H =
∫

V

A · B dV, (2.18)

and its evolution can be easily shown to be given by

dH

dt
= −2ημ

∫

V

j · B dV + Fs, (2.19)

where Fs represents the surface flux of magnetic helicity. Hence, for a perfectly conducting
fluids, with no loss or gain of magnetic helicity through the boundaries (i.e. Fs = 0),
magnetic helicity is conserved. This has implications for dynamo action, which requires
the generation or destruction of magnetic helicity, as we shall see. Magnetic helicity is
a measure of the topological complexity and linkage of field lines, and in the absence
of diffusive processes (by which the field can reconnect) this complexity is maintained.
Furthermore magnetic helicity appears to be a more robust invariant than say total energy
in the presence of small diffusion. The dissipative term for total energy, −ημ

∫

V
j2 dV ,

may remain finite as η → 0, because j2 gets large in this limit. However, the dissipation of
magnetic helicity, −2ημ

∫

V
j · B dV , appears to tend to zero as η → 0, so magnetic helicity

is well conserved. Of course the situation changes if magnetic helicity is allowed to enter
or leave the domain of interest; it may do so via either advective or diffusive processes, as
we shall see in § 6.5.2.

In hydrodynamic turbulence the presence of quadratic invariants has consequences
for the nature of the cascades. Briefly, the same reasoning applies to MHD. As argued
above, for small dissipation energy decays faster than magnetic helicity and cross-helicity
(Biskamp 2003). Therefore, in a turbulent state, energy cascades towards small scales
(analogous to the energy cascade in three-dimensional (3-D) hydrodynamics). However,
the magnetic helicity cascades toward large scales (analogous to the energy cascade in
2-D hydrodynamics). The inverse cascade of magnetic helicity may lead to the formation
of large-scale magnetic fields – this fact may prove to be important for the generation of
systematic fields by nonlinear dynamos.

2.4. The induction equation and kinematic dynamos: the basics

For fluid dynamicists an obvious useful analogy can be made between the induction (2.2)
and the incompressible vorticity equation given by

∂ω

∂t
= ∇ × (u × ω) + ν∇2ω. (2.20)

For experts on vorticity dynamics, this analogy can lead to significant insight into the
dynamics of the magnetic field. Magnetic flux tubes may in certain circumstances have a
similar dynamics to that of vortex tubes; this analogy becomes a formal correspondence
when the magnetic field and vorticity are weak. However, it is important not to push
the analogy too far. Equation (2.20) is a nonlinear evolution equation for the vorticity
(since the advecting velocity is itself related to the vorticity), whereas (2.6) is formally
linear in the magnetic field, with the system only becoming nonlinear when coupled to
the momentum equation via the Lorentz force. As a rule of thumb, if the magnetic field is
weak compared with the velocity it behaves analogously to the vorticity; if it is of a similar
strength it behaves more like the velocity.
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Important limits of the induction equation are the so-called diffusive and perfectly
conducting limits. If u = 0, (2.6) reduces to the vector diffusion equation,

∂B

∂t
= η∇2B, (2.21)

so that for no fluid motion the field must diffuse away (assuming there are no fields
at infinity). Hence motion is needed to maintain magnetic field. The time scale for
diffusion of field with a typical length scale ℓB is given by τD = ℓ2

B/η. To give some
idea of some typical diffusive time scales, we note that τd ∼ 2 seconds for ℓB = 1 m and
η = 0.04 m2 s−1, which may be appropriate for a liquid sodium experiment. Whereas
for a magnetic field on the scale of the Earth’s core and a relevant diffusivity gives
τd ∼ 104 years; the Sun has a diffusion time for the large-scale magnetic field of 109 years,
comparable with its age. For galaxies the diffusion time of magnetic field is significantly
longer than the age of the universe!

In the absence of diffusion (the so-called perfectly conducting limit where σ → ∞ and
η = 0), (2.6) becomes

∂B

∂t
= ∇ × (u × B). (2.22)

Sometimes this is called the frozen flux limit; the magnetic flux
∫

S
B · dS through the

surface S bounded by any closed curve C moving with the fluid, remains fixed (Alfvén’s
theorem). Hence we can think of magnetic field as being frozen into the fluid, in a similar
manner to vortex lines in an inviscid fluid, Alfvén’s theorem is the magnetic counterpart
of Kelvin’s circulation theorem.

2.4.1. Importance of the magnetic Reynolds number Rm

Clearly from the above discussion, magnetic field will decay away unless the advective
term in the induction equation is large enough to overcome diffusive effects. The
relative importance of the two terms ∇ × (u × B) and η∇2B can be established by
non-dimensionalising. We choose a typical length scale L which is the size of the object or
region under consideration and a typical fluid velocity U. On introducing scaled variables
t = (L/U)t̃, x = Lx̃, u = Uũ, and dropping tildes the induction equation becomes

∂B

∂t
= ∇ × (u × B) + Rm−1∇2B, (2.23)

where Rm = UL/η is the dimensionless magnetic Reynolds number.
In general, large Rm means induction dominates over diffusion, whilst small Rm means

diffusion wins out over induction, and as we shall see minimum values of Rm for dynamo
action (so-called dynamo bounds) can sometimes be found.

It is worth noting at this point, however, that Rm should only be used as a guide
to determine the relative importance of advection and diffusion. In defining Rm it has
explicitly been assumed that L is a typical length scale for both the magnetic field and
the velocity (i.e. that ℓB = ℓU = L). This makes sense if L is the size of the astrophysical
object (i.e. the largest length scale available). Of course this may not be the case, with the
potential for ℓB to be very different from ℓU . For example if ℓB ≫ ℓU then the relative
importance of advection and diffusion is given by RmT = Uℓ2

B/ηℓU ∼ ωℓ2
B/η, where ω is

a typical vorticity amplitude. This may be large even if ℓU and U are small. Such a basic
misunderstanding of the limitations of the information encoded in the magnetic Reynolds
number may lead to the incorrect dismissal of certain small-scale flows as the possible
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origin of large-scale fields. Large-scale fields, as they are weakly diffusive, require very
little induction for their maintenance.

2.4.2. A useful technique: axisymmetric field decomposition

It is clear from the form of the induction equation that a non-axisymmetric flow
immediately creates a non-axisymmetric field, however, the converse is not true. If both
the flow and field are axisymmetric then one can decompose the flow and field by setting
(in cylindrical polars (s, φ, z))

u = sΩφ̂ + uP = sΩφ̂ + ∇ ×
(

ψ

s

)

φ̂, (2.24)

B = Bφ̂ + BP = Bφ̂ + ∇ × (Aφ̂). (2.25)

Here, s = r sin θ (where r and θ relate to spherical polars (r, θ, φ)). This defines the
differential rotation Ω the streamfunction ψ , the zonal field B (sometimes termed toroidal
field in an axisymmetric setting) and the scalar potential A. The induction equation then
simplifies to

∂A

∂t
+ 1

s
(uP · ∇)(sA) = η

(

∇2 − 1

s2

)

A, (2.26)

∂B

∂t
+ s(uP · ∇)

(

B

s

)

= η

(

∇2 − 1
s2

)

B + sBP · ∇Ω. (2.27)

The form of these equations will be exploited in the next section to prove so-called
anti-dynamo theorems. Note that, although both the A and B equations have advective and
diffusive terms, the field stretching term, sBP · ∇Ω , only appears in (2.27) if gradients in
angular velocity are present. (2.26) shows that there is no corresponding source term in
the equation for A.

2.4.3. Anti-dynamo theorems

It is fair to say that the psychology of the dynamo practitioner has been strongly shaped
by the early results of dynamo theory – results that showed the complexity and difficulty
of achieving dynamo-generated fields. Key are the so-called anti-dynamo theorems that
show the impossibility of dynamo action for large classes of magnetic fields and velocity
fields with certain symmetries. We shall not reproduce all of the demonstrations and proofs
here, since they are readily available from many sources (for example Dormy & Soward
2007; Jones 2008; Moffatt & Dormy 2019), but the importance of these for the subsequent
direction of the development of the field cannot be overstated.

Cowling’s theorem: an axisymmetric field vanishing at infinity cannot be maintained by
dynamo action (Cowling 1933).

Proof . As noted above, a non-axisymmetric velocity field immediately generates
non-axisymmetric magnetic field and so it is necessary to consider only axisymmetric
flows and fields. The evolution of the field is therefore given by (2.26)–(2.27).
Multiplying (2.26) by s2A, using the divergence theorem, and integrating over all
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space gives

d
dt

∫

1
2

s2A2 dV = −η

∫

|∇(sA)|2 dV, (2.28)

assuming that surface terms vanish at infinity. This equation clearly shows that sA decays
to zero as t → ∞; note sA can not decay to a constant since this would imply A → ∞ as
s → 0. Once A has decayed there is no source term in the toroidal field equation (i.e. 2.27).
Similar arguments then ensure the subsequent decay of B/s and therefore the impossibility
of the creation of an axisymmetric magnetic field by dynamo action. It is important to note
that it is the absence of source terms in (2.26) that causes the problems for dynamo action.
Relaxation of the constraint of axisymmetry allows for the re-inclusion of such a source
term.

The effect of Cowling’s theorem ruling out such simple symmetric solutions made
the search for any dynamo solutions (which were necessarily three dimensional!) seem
a formidable task. Indeed, for a long time it was not clear that any such dynamo solutions
existed. The situation is encapsulated in the following story taken from Krause (1993)
(which attributes the source as Paul Roberts) ‘Walter Elsasser and Einstein were friends
in Germany before they both emigrated to the US in the 1930s. Several years after
Elsasser had settled there (in the late 1930s in fact), he became interested in the origin
of the geomagnetic field. Einstein paid him a visit, and (as people do) asked ‘What
are you working on these days?’. Elsasser told him, and Einstein invited him to explain
dynamo theory to him. Elsasser set-up the problem and then told Einstein about Cowling’s
theorem. Einstein’s response was, ‘If such simple solutions are impossible, self-excited
fluid dynamos cannot exist’. For once, the great man’s craving for simplicity seems to
have misled him’.

Other antidynamo theorems: there are many extensions of Cowling’s antidynamo theorem
to other geometries and to slightly different set-ups. For example, in Cartesian coordinates
(x, y, z), no magnetic field that vanishes at infinity and is independent of z can be generated
by dynamo action; the proof proceeds along similar lines to that given above (see e.g. Jones
2008). Note again that this is a restriction on the form of a dynamo-generated magnetic
field.

Anti-dynamo theorems placing constraints on the form of the fluid velocities that can
lead to dynamo action have been proven by Bullard & Gellman (1954), Backus (1958)
and in Cartesian coordinates by Zel’dovich (1957). These results essentially show that a
velocity field must have all three components in order to be capable of acting as a dynamo
(see the long discussion and derivation in Moffatt 1978).

In conclusion, both the field and the flow must be sufficiently complicated for dynamo
action to occur. A minimal requirement is that the field must be three-dimensional and the
flow must not be purely poloidal (i.e. cannot be planar). �

2.4.4. Bounds on dynamo action

Even for flows and fields that are not ruled out as dynamos on symmetry grounds, there are
bounds that constrain dynamo action in finite domains; a crude measure of the expected
efficiency of a dynamo is given by the magnetic Reynolds number Rm, which gives the
ratio of advection to diffusion at a particular scale in the flow (usually taken to be the
integral or system scale). The importance of Rm can be formalised in bounds derived by
Backus (1958) and Childress (1969), both of which use the evolution equation for the
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magnetic energy EM , given by (see (2.13))

μ
∂EM

∂t
= −η

∫

|∇ × B|2 dV +
∫

(∇ × B) · (u × B) dV. (2.29)

For field generation in a sphere of radius a, matching to a decaying potential dynamo
action requires

Rm = a2emax

η
≥ π2, (2.30)

where emax is the maximum of the rate of strain tensor (Backus 1958). Note here that Rm

is defined in terms of the maximum strain (and not a typical velocity amplitude), which
seems natural. A slightly different bound from (2.29) (Childress 1969) requires

Rm = aumax

η
≥ π. (2.31)

Other bounds on dynamo action are also possible. However, it can be shown that a steady
or periodic dynamo can exist in a bounded conductor with an arbitrarily small value of the
kinetic energy. Hence there is no lower bound on dynamo action when Rm is defined using
the root mean square (rather than maximum) velocity, without placing limitations on the
rate of strain (Proctor 2015).

Motivated by the desire to construct experimental dynamos in the laboratory, there is
currently an effort to optimise the efficiency of dynamo flows given certain constraints.
This involves taking the machinery developed for understanding the transition to
turbulence, such as adjoint optimisation methods and using them to maximise the
efficiency of dynamo velocities (Willis 2012).

2.5. Kinematic dynamos: some simple flows that work

The kinematic problem considers the induction equation in isolation, for a prescribed
velocity field u. It is then natural to consider flows that are either steady, periodic in time or
statistically steady. Because the induction equation is linear in the magnetic field, solutions
take the form of magnetic fields that grow or decay exponentially on average and the task
for the dynamo theorist is to determine which flows lead to growing solutions (i.e. which
can act as dynamos) and then perhaps examine the form of the solutions as a function of
Rm.

2.5.1. Kinematic dynamos

Having convinced ourselves that overly symmetric fields and flows are not good for
dynamo action and that sufficient stretching is required, it is time to discuss some flows
that do actually work as dynamos. These are not presented in chronological order, as we
shall start with the simpler case of flows in an infinite domain, before moving onto flows
in spheres and spherical shells.

The Ponomarenko flow (Ponomarenko 1973):
Here, we consider the simplest possible flow that leads to dynamo action. It takes the

form of a localised discontinuous ‘screw’ or vortex flow that in cylindrical coordinates
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(s, φ, z) is given by

u =
{

sΩφ̂ + Uẑ, s < a,

0, s > a,
(2.32)

where Ω and U are constants. Note that this flow is not planar, owing to the presence
of the throughflow Uẑ, and has kinetic helicity, H = u · ω = 2UΩ. We shall see the
importance of kinetic helicity for large-scale dynamos in § 5. Strong shear naturally occurs
at (the physically unrealistic) discontinuity at s = a. In principle there are two independent
parameters defining the flow U and Ω . These can be re-expressed in terms of an overall
amplitude of the flow given by Uamp = (U2 + a2Ω2)1/2 and the pitch angle χ = U/aΩ .

The trick for elegant solution for the kinematic dynamo modes in such a configuration
is to note first that the flow is steady and, together with the linearity of the induction
equation, this implies that magnetic field will either grow or decay exponentially in time,
with potentially a complex growth-rate λ = σ + iω. Secondly, the flow is independent of
z and φ and therefore monochromatic magnetic fields can be sought in those directions.
It is therefore advantageous to seek solutions of the form B = b(s) exp(λt + imφ + ikz),

where m and k are the azimuthal and vertical wavenumbers, which must be non-zero to
avoid the anti-dynamo theorems discussed earlier.

This model is extremely illuminating as it can be solved pseudo-analytically (see Jones
2008) for details; marginally stable solutions can be found by setting Re(λ) = 0 (for a
given Rm = aUamp/η, χ , ka and m). The Ponomarenko flow is indeed a dynamo! It can be
thought of as a prototype dynamo that is a model of vortical plume. Dynamo action sets
in at Rmcrit = 17.72, for kacrit = −0.3875, m = 1, a2ω/η = −0.41 and χ = 1.31, so the
optimal pitch is O(1). The magnetic field is strongest near s = a, where it is generated by
(the unphysical) shear. Although it is important to examine how dynamo action onsets, it is
also, as we shall see, of great interest to determine the behaviour at large Rm. Asymptotic
solutions of the Ponomarenko dynamo (in the form of Bessel functions) show that (Gilbert
1988) the fastest growing modes are given by

|m| = (6(1 + χ−2))−3/4
(

a2Ω

2η

)1/2

, σ = 6−3/2Ω(1 + χ−2)−1/2. (2.33a,b)

In the presence of viscosity, velocities with discontinuities are not realistic and so the
Ponomarenko dynamo has been extended to the continuous case where u = sΩ(s)φ̂ +
U(s)ẑ, where Ω(s) and U(s) are smooth functions (Gilbert 1988).

The Roberts flow (Roberts 1972a):
Perhaps the most illuminating, kinematic dynamo flow is the so-called G.O. Roberts

flow. This flow, like the Ponomarenko flow, is specially crafted to circumvent both the
Cartesian version of Cowling’s anti-dynamo theorem and the planar velocity anti-dynamo
theorem, whilst still remaining fairly tractable.

The G.O. Roberts flow is the special case of the well-studied ABC (Arnol’d, Beltrami
and Childress) flow in Cartesian coordinates (x, y, z) in an infinite domain given by

u = (C sin z + B cos y, A sin x + C cos z, B sin y + A cos x). (2.34)

For the Roberts flow A = B = 1, C = 0, so that u(x, y) = (cos y, sin x, sin y + cos x). This
flow is two-dimensional (in the sense that it only depends on two coordinates), but it has
all three components (thus not falling foul of the planar flow anti-dynamo theorem).
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Figure 3. (a) Contours of the streamfunction ψ for the G.O. Roberts flow. Positive (and zero) contours are
solid and negative contours are dashed. (b) Growth rate σ as a function of wavenumber, kz for various Rm

(after Roberts 1972a). (c,d) Scaled magnetic energy in the plane z = 0 for two different Rm = 16 and 512. As
Rm is increased the field is expelled into magnetic boundary layers of width O(Rm−1/2). Note only the domain
between 0 and 2π is shown. The magnetic energy is scaled between 0 and 1. Figure courtesy of A. Clarke.

Before discussing the dynamo properties of the Roberts flow, it is useful to describe
some of its basic hydrodynamic properties. The Roberts flow is integrable in the sense
that it can be written in terms of a single steady streamfunction ψ(x, y), so that

u =
(

∂ψ

∂y
, −∂ψ

∂x
, ψ

)

, (2.35)

where ψ = sin y + cos x. The flow takes the form of an array of helical cells with
throughflow, see figure 3(a). It has a typical horizontal spatial scale of 2π and an infinite
vertical scale. Moreover the winding sense of each helix in the array is the same. This
ensures that the normalised relative kinetic helicity, defined to be

Hrel =
∫ |u · ω|

|u · u|1/2|ω · ω|1/2 dV, (2.36)

is unity (a so-called maximally helical flow); the importance of helicity for the large-scale
dynamo properties of the flow will be discussed at some length in § 5.3.1.
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Roberts utilised the same considerations as Ponomarenko (although a year previous) to
search for magnetic field solutions to the induction equation of the form

B = b(x, y) exp(λt + ikzz), (2.37)

where b(x, y) is periodic in x and y (including the possibility that b(x, y) has a mean part).
The solution of the 2-D problem requires spectral methods yielding a matrix eigenvalue
problem for the growth rate σ = Re(λ) as a function of the wavenumber kz and Rm. For
each value of Rm there is an optimal value of kz that maximises the growth rate, as shown
in figure 3(b).

The form of the magnetic field for this flow is very illuminating. Figure 3(c,d) shows
the magnetic energy in the plane z = 0. For this steady flow the field is generated by the
flow between the stagnation points. As Rm is increased the field is expelled into magnetic
boundary layers of width O(Rm−1/2) enhancing diffusion (although the length of the
filamentary field structures is determined by the geometry of the flow). This is therefore
an example of a small-scale dynamo – the field generated is dominated by structure at a
scale smaller than a typical scale in the velocity; such a dynamo relies on the stretching
overcoming the dissipative effects of diffusion.

In a tour de force paper, Soward (1987) analysed the behaviour of the Roberts dynamo
at high Rm utilising asymptotic methods. He showed that the maximal growth rate for this
dynamo σ → 0 as Rm → ∞ (although very slowly – indeed

σ ∼ log log Rm

log Rm
, (2.38)

for large Rm). In the parlance of dynamo theory this makes the Roberts flow a slow
dynamo – we shall discuss slow, fast and quick dynamos later.

Finally for this section we stress again that the Roberts flow is a small-scale dynamo
that generates field via stretching. Although the flow is helical, this is not its defining
characteristic here. Indeed, Roberts also considered a flow with no net helicity, viz.
u = (sin 2y, sin 2x, sin(x + y)). Although this is a less efficient dynamo than the helical
Roberts flow, it is nonetheless a (slow) dynamo. As noted by H.K. Moffatt ‘Helicity is not
essential for dynamo action, but it helps’.

2.5.2. Kinematic dynamos in a spherical domain

The examples above are instructive (and similar types of flows will be utilised later to
illustrate other dynamo properties). A natural question to pose, however, is whether similar
types of flow can lead to dynamos in a bounded domain – the most natural examples of
which are spheres or spherical shells.

In spherical geometry one may decompose an incompressible velocity field in terms of
two scalar fields (Bullard & Gellman 1954), i.e.

u = ∇ × (T(r, θ, φ, t) r̂) + ∇ × ∇ × (S(r, θ, φ, t) r̂). (2.39)

Here, T and S are the toroidal and poloidal components. Alternatively we write

u =
∑

l,m

tm
l + sm

l , (2.40)

where tm
l and sm

l are given by

tm
l = ∇ × (tml (r, t)Ym

l (θ, φ) r̂), (2.41)

sm
l = ∇ × ∇ × (sm

l (r, t)Ym
l (θ, φ) r̂) (2.42)
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where −l ≤ m ≤ l, and Ym
l is the spherical harmonic.

The flow is defined by choosing the values of l and m and the corresponding radial
functional form for the scalar fields tml (r, t) and sm

l (r, t). In a landmark paper, Bullard and
Gellman, nearly twenty years before the flows discussed in the last section, chose u =
ǫt0

1 + s2
2 and set t01 = r2(1 − r), and s2

2 = r3(1 − r)2. Having made a similar expansion to
(2.39) for the magnetic field, they used spectral interaction rules to determine the growth
rate of the field. They reported dynamo action for this flow for high enough Rm, but
unfortunately the dynamo growth was spurious (as shown by subsequent higher resolution
calculations). We shall return to this unfortunate property of dynamo calculations in
§ 2.5.3. Although the reported dynamo action was incorrect, the work of Bullard and
Gellman revitalised the field after the depressing wilderness years of anti-dynamo
theorems, giving hope that self-excited dynamos were indeed possible. Generalisations
and extensions of the Bullard and Gellman type dynamos have been studied by Kumar &
Roberts (1975) and Dudley & James (1989).

If the non-axisymmetric components of such flows are small (O(ǫ)) then it is possible
to perform an asymptotic expansion with the axisymmetric components of flow and field
dominating over the non-axisymmetric parts. This is the nearly axisymmetric dynamo of
Braginskii (1975), which is an example of a self-consistent mean field model (see § 5).

2.5.3. A note of caution

The evolution equation for the magnetic field as described by the induction equation takes
the form of a competition between magnetic field stretching (advection) and diffusion.
Often these are both exponential processes; whether magnetic field grows or decays is then
determined by the small difference between the efficiency of these processes. It is therefore
of vital importance that both of these processes are accurately represented by the numerical
scheme utilised to solve the induction equation. Failure to do so will inevitably lead to the
incorrect determination of the dynamo properties of the flow. This was first demonstrated
by the spurious solutions to the Bullard-Gellman dynamo (Bullard & Gellman 1954).
Owing to computational limitations, the resolution chosen for the spectral scheme was
not sufficient to resolve the dissipative structures (current sheets) in the magnetic field.
Hence the dissipation was underestimated and dynamo action was claimed when no such
sustained magnetic field generation was possible. It is always this way round. Insufficient
resolution in a dynamo calculation will lead to the system appearing to be a dynamo
when in fact it is not. This is troubling to computational dynamo theorists, although not as
troubling to some as it should be.

It should be clear from the above discussion that any misrepresentation of the magnetic
diffusion in a dynamo calculation is to be avoided at all costs. This includes not only
misrepresentations that arise owing to lack of resolution, but also those that arise owing
to the numerical scheme. It is often the case in fluids calculations that sub-grid processes
are modelled (say by the inclusion of a hyperdiffusion, a numerical fix or by nominally
solving the diffusionless problem with a stable scheme and using numerical errors to take
the form of the dissipative processes (see e.g. Miesch 2015). In hydrodynamics, where
there may be many competing terms in the nonlinear evolution equation for the velocity
and dissipation may be small, such schemes may not be too damaging – but for dynamo
calculations extreme care must be taken in interpreting the results from such schemes.
Let me stress again that if one is examining the competition between two processes in the
linear induction equation, one of which is known to be incorrectly represented, there is a
strong chance that the results are incorrect.
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3. So what is the problem then?

The previous sections demonstrated that dynamo action is possible in simple steady flows
in the kinematic regime, i.e. for a prescribed velocity field, in both infinite and finite
domains. Despite the restrictions placed on dynamo fields and the velocities that generate
them, growing solutions for the magnetic field are possible.

The rest of this Perspective will focus on the current issues that are troubling dynamo
theorists. In this section we shall introduce each issue, indicating its importance for our
understanding, before describing in subsequent sections the past and current attempts at
a resolution of each issue and concluding in § 10 with possible future lines of research
(many of which are based on current techniques utilised in hydrodynamics).

3.1. Turbulence – high and low Pm

The flows considered above are defined at a single spatial scale and are steady. Of course
naturally occurring flows in geophysics and astrophysics are neither. In general, owing
to the vast length scale of such flows, the Reynolds numbers of the dynamo flows are
enormous and the flows are extremely turbulent – hence the title of this Perspective.
Moreover similar arguments may pertain to the magnetic Reynolds number Rm. The
ratio of these two non-dimensional numbers is given by the magnetic Prandtl number
Pm = ν/η, which is a property of the fluid/plasma. In geophysics and astrophysics Pm

is usually either very large or very small; in numerical experiments it is usually O(1).
The combination of turbulence, with its large range of spatial and temporal scales to be
resolved and the naturally occurring extreme values of Pm presents a formidable problem
to the theorist and the numericist.

When Pm is large (Rm ≫ Re) the magnetic field can be generated on scales much
smaller than the viscous dissipation scale. How dynamos (at least kinematically) behave in
this regime is the preserve of fast dynamo theory, which is discussed in § 4.1. The situation
is reversed (and more complicated) when Pm is small (Re ≫ Rm); in this case the magnetic
field dissipates in the inertial range of the turbulence; with substantial implications for the
dynamo – this case is discussed in §§ 4.2.1 and 4.2.3.

3.2. Organisation

The dynamos described so far tend to be small-scale dynamos in the sense that they
generate field kinematically on a scale smaller than the typical velocity scale (sometimes
on the diffusive scale, which gets very small as Rm increases). However, observed
geophysical and astrophysical magnetic fields display organisation on the scale of the
astrophysical object and are sometimes called large-scale dynamos. A natural question,
therefore, is ‘What is the origin of this organisation and how does the mechanism leading
to organised flows compete with that leading the production of small-scale fields?’ Can this
competition be understood within a kinematic framework, or are nonlinear effects from the
momentum equation required? Is it the case that the organisation arises as a consequence
of turbulent interactions or despite them? These questions are discussed in § 5, where the
concept of mean-field electrodynamics will be introduced and critiqued.

3.3. Saturation

From the point of view of a fluid dynamicist, the focus of dynamo theorists on the
induction equation is somewhat mysterious, although, to be fair, the difficulties in
finding dynamo solutions described above go some way to explaining this preoccupation.
However, in the present era of massive computations, it makes no sense to make the
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kinematic assumption and take the velocity as prescribed. What is required is to solve the
coupled Navier–Stokes and induction equations. Questions that can be addressed within
this framework include: How does a turbulent small-scale dynamo saturate? Do organised
fields saturate in a similar manner? Are there dynamos that operate through instabilities of
a magnetic field driving a flow – if so, can these lead to subcritical dynamo action? These
questions are addressed in § 6

3.4. The role of rotation – rapid or otherwise

As we shall see in § 5, the dynamo generation of organised magnetic field requires
a breaking of reflexional symmetry of the system (Moffatt 1978). In geophysical
and astrophysical systems this naturally occurs via the influence of rotation (often in
combination with stratification). Rotation is responsible for providing correlations that
lead to the generation of a net electromotive force, in much the same way as it can drive
large-scale flows via the introduction of correlations and non-trivial Reynolds stresses (see
e.g. Vallis 2006). For dynamos, rotation plays a key role in determining the solutions of
the induction equation. Moreover, once the field is generated it becomes dynamic in the
momentum equation. In the case of rapid rotation, such as is the case in Earth’s core
and in rapidly rotating stars, this is a particularly interesting and delicate issue. Magnetic
fields may break leading-order geostrophic balances (leading to so-called magnetostrophic
balance) or, even if the primary balance is still geostrophic, the fields may play a crucial
role in the prognostic equation for unbalanced motions, as discussed in § 8. Furthermore,
the presence of strong rotation can lead to dynamo-generated magnetic field acting as a
conduit to turbulence via nonlinear processes. The magnetic field can act so as to relax the
constraints engendered by strong rotation, leading to more efficient (convective) driving
of turbulence and strongly subcritical behaviour. All these issues are discussed in § 8.

4. Small-scale magnetic field generation

In this section we describe current research into small-scale dynamos. One problem that
appears to have been solved to the satisfaction of dynamo theorists is the fast dynamo
problem.

4.1. One-scale velocity fields and fast dynamo theory

Simply put, fast dynamo theory is concerned with the kinematic generation of magnetic
field (on any scale) at high Rm (such as pertains in virtually all astrophysical objects).
Consider a velocity field defined at a single scale ℓ0 with a characteristic velocity u0. Then,
defining Rm = u0ℓ0/η in the usual way, the fast dynamo problem is concerned with the
behaviour of the growth rate σ(Rm) of the dynamo at high Rm. There are two possibilities,
either σ → 0 as Rm → ∞ in which case the dynamo is described as ‘slow’. An alternative
is that σ → const. > 0 as Rm → ∞ – a so-called fast dynamo. The two possible options
for the growth-rate curve are illustrated in figure 4.

Moffatt & Proctor (1985) demonstrated that the eigenmodes associated with fast dynamo
action may exist, providing that they have a scale of variation O(Rm−1/2) as Rm → ∞,
nearly everywhere in the fluid domain. Much of our understanding of the behaviour of fast
dynamos arises from the field of dynamical systems and mixing; progress has been made
by examining the simpler problem where the flow is modelled as a discontinuous (in time)
map. Indeed there are strong parallels between the two problems. I will not go into details
here, but the interested reader should consult the excellent Childress & Gilbert (1995).
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Rm

Slow

Rmc

Fast
σ

Figure 4. Growth rate σ as a function of Rm for a slow dynamo (black curve) and a fast dynamo (red curve).

A central result arising from dynamical systems approaches to fast dynamo action is
that which bounds the asymptotic growth rate of the dynamo by the topological entropy
of the flow (Klapper & Young 1995); see also Finn & Ott (1988). This is important as it
immediately rules out the possibility of fast dynamo action for integrable flows, such as
the steady 2 1

2 -D flows discussed earlier. Chaotic particle paths are required for a flow to
be a fast dynamo. Chaos may be introduced in two obvious ways, either by making the
flow fully three-dimensional or by introducing time dependence to the 21

2 -D flows (whilst
for simplicity still keeping the flows at a single spatial scale). Moving to three dimensions
makes computations at high Rm extremely challenging, owing to the severe constraints
imposed by the requirement to resolve structures on the scale Rm−1/2 in three dimensions.
Nonetheless, progress has recently been made in investigating the dynamo properties of
the ABC flow given earlier as

uABC = (C sin z + B cos y, A sin x + C cos z, B sin y + A cos x). (4.1)

This flow is chaotic, as shown by the Poincaré sections of the particle paths in Dombre
et al. (1986) and the finite-time Lyapunov exponents shown in figure 5(a). Calculations
of the growth rate as a function of Rm have periodically been made, since the earliest
calculations (see e.g. Arnold & Korkina 1983; Galloway & Frisch 1984) extending to
higher Rm as computational power has increased. Figure 5(b) taken from Bouya & Dormy
(2015) shows that with current computing facilities Rm ∼ 105 is possible for this flow. The
figure shows that even at this value of Rm the dynamo is not in its asymptotic regime.

A much more promising way to investigate fast dynamo action is to introduce chaos via
time dependence in a 2 1

2 -D flow. This of course has the benefit of allowing computations
to proceed in two dimensions and so facilitate the investigation of the high Rm regime.
This approach was pioneered by Otani (1988, 1993) and Galloway & Proctor (1992), who
constructed similar flows. Here, I give details dynamo action in the Galloway–Proctor
circularly polarised (GPCP) flow, which takes the form

u = ∇ × (ψ(x, y, t)ẑ) + ψ(x, y, t)ẑ, (4.2)

where
ψ = sin( y + sin t) + cos(x + cos t). (4.3)

This is based on the Roberts flow, with the time dependence being introduced via a
rotation of the cellular pattern around a circle. This introduces a significant region of
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Figure 5. Finite-time Lyapunov exponents for the ABC = 1 flow (after Brummell, Cattaneo & Tobias 2001).
The ABC = 1 flow is unusual in having rather large integrable regions and small chaotic regions; Poincaré
sections for this flow can be found in Dombre et al. (1986). (b) Growth rate as a function of Rm for the ABC
dynamo (after Bouya & Dormy 2015).
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Figure 6. (a) Lyapunov exponents as a function of starting position in the plane z = 0 for the GPCP flow.
(b) Growth rate as a function of Rm for fixed kz = 0.57 for the GPCP flow. Courtesy of A. Clarke (after
Galloway & Proctor 1992).

chaos (although regions of integrability still remain) as shown in the finite-time Lyapunov
exponents of figure 6).

The magnetic field for the GPCP flow is again generated on the small diffusive
length scale ℓB ∼ Rm−1/2 as Rm → ∞. The growth rate (which is a function of vertical
wavenumber kz and Rm) has the form shown in figure 6(b) for fixed kz. Interestingly, for
large enough Rm the preferred wavenumber becomes independent of Rm, as does the
optimised growth rate. Notice also that this dynamo reaches its asymptotic growth rate
for moderate Rm and so is an example of a quick dynamo (Tobias & Cattaneo 2008a),
discussed below. Although it is impossible to prove numerically that these time-dependent
flows are fast dynamos, all the evidence certainly points in this direction. It is now widely
accepted that sufficiently chaotic flows at a single scale will act as fast dynamos. Of course
it is possible to introduce time dependence to 3-D single-scale cellular flows such as
the ABC flow, which has the tendency to increase the regions of chaos and hence their
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dynamo efficiency. Such dynamos have been investigated in both the linear and nonlinear
regimes (Brummell et al. 2001).

One aspect of fast dynamo theory that is not widely appreciated is that it is only
applicable for high Pm fluids, as noted by Tobias & Cattaneo (2008a). The paradigm
of holding the flow fixed and increasing Rm is equivalent to increasing the Pm of the
fluid. Clearly increasing Rm whilst holding Pm fixed requires an equivalent increase in Re,
which will lead to a change in the form of the flow for any realistic forcing mechanism. In
particular, increasing Re almost inevitably leads to turbulence with a wide range of spatial
and temporal scales.

4.2. Multi-scale velocity fields

In this section we examine kinematic dynamos where the underlying flow has a spectrum
of spatial scales. As discussed above, one can think of two cases; at high Pm the magnetic
field dissipates at scales much smaller than the smallest eddy and one can rely somewhat
on fast dynamo theory based on considering the smallest eddy alone (since the smallest
eddy is the one with the fastest turnover time). At low Pm the magnetic field dissipates
in the inertial range of the turbulence and life becomes more complicated. We shall start
by considering the simplified (some might say over-simplified) case of random velocity
fields.

4.2.1. Random dynamos - the Kraichnan–Kazantsev formulation

The discussion developed in this section summarises that of Tobias, Cattaneo & Boldyrev
(2012). Turbulent velocity fields have a coherent and random component, both of which
may contribute to the dynamo properties. The simplest model of (kinematic) dynamo
action driven by a purely random flow on a range of scales is the so-called Kazantsev
model (Kazantsev 1968). It is an example of a solvable model for the statistics of the
magnetic field based on those for a prescribed velocity, and as such may be viewed as an
early example of direct statistical simulation (see § 10).

The prescribed velocity takes the form of a Gaussian, δ-correlated (in time) velocity
field, with zero mean and a covariance given by 〈ui(x + r, t)uj(x, τ )〉 = κij(x, r)δ(t − τ).
Geophysical and astrophysical flows that lead to dynamo action do have means, are in
general anisotropic and inhomogeneous (and this should be a feature of any description
of dynamo action). However, analytic progress can be made for the dynamo problem by
assuming that the underlying flow is isotropic and homogeneous, in which case the velocity
correlation function has the form

κij(r) = κN(r)
(

δij − rirj

r2

)

+ κL(r)
rirj

r2 , (4.4)

where r = |r|. In addition, for incompressible velocity fields we have that κN = κL +
(rκ ′

L)/2, and so the velocity statistics can be characterised by the single scalar function
κL(r). Progress is made by defining a corresponding expression for the magnetic
covariance 〈Bi(x + r, t)Bj(x, t)〉 = Hij(x, r, t), where for similar reasons to above

Hij = HN(r, t)
(

δij − rirj

r2

)

+ HL(r, t)
rirj

r2 . (4.5)

Similarly, ∇ · B = 0 gives HN = HL + (rH′
L)/2, and so the correlator is completely

determined by HL(r, t). The evolution equation for HL, in terms of the input function
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κL(r), follows from deriving the equation for the magnetic correlator

∂tHL = κH′′
L +

(

4
r
κ + κ ′

)

H′
L +

(

κ ′′ + 4
r
κ ′

)

HL, (4.6)

where κ(r) = 2η + κL(0) − κL(r) is the ‘renormalised’ velocity correlation function.
Remarkably, changing variable via HL = ψ(r, t)r−2κ(r)−1/2 leads to a related equation
that formally coincides with the Schrödinger equation in imaginary time, i.e.

∂tψ = κ(r)ψ ′′ − V(r)ψ. (4.7)

Here, ψ describes the wave function of a quantum particle with variable mass, m(r) =
1/[2κ(r)], in a 1-D potential (r > 0) given by

V(r) = 2

r2 κ(r) − 1
2
κ ′′(r) − 2

r
κ ′(r) − (κ ′(r))2

4κ(r)
. (4.8)

Equation (4.7) has been investigated in detail for various choices of prescribed κ(r) (see
Ruzmaikin, Sokoloff & Zeldovich 1990; Chertkov et al. 1999; Arponen & Horvai 2007).
For a more thorough review see Tobias et al. (2012) and Rincon (2019), although the main
results are summarised below.

A homogeneous, isotropic turbulent flow with a wide range of scales, and a well-defined
inertial range can be characterised by the second-order structure function ∆2(r) =
〈|(u(x, t) − u(x + r, t)) · er|2〉, where er = r/r. The inertial and dissipative ranges are
then described by the scaling exponents of ∆2(r) with ∆2(r) ∼ r2α , where α is termed
the roughness exponent of the flow. In the dissipative sub-range we expect α = 1 as the
velocity is a smooth function of position, whilst for the inertial range the velocity is rough
and α < 1 – for Kolmogorov turbulence α = 1/3. If the slope of the energy spectrum in
the inertial range is given by Ek ∼ k−p then p is related to the roughness exponent by
p = 2α + 1.

We shall briefly describe dynamo action in the Pm ≫ 1 case, where the the velocity is
smooth on the dissipative scale of the field, and the Pm ≪ 1 case where the velocity is
rough there. For the smooth case, exponentially growing solutions of (4.6) can be found
with the magnetic energy spectrum EM peaked at the magnetic dissipation scale, just as
for the single-scale flows considered earlier. The spectrum for the magnetic energy in the
range 1/lη < k < 1/lν has EM ∼ k3/2, independent of the spectral index for the velocity
in the inertial range (Kulsrud & Anderson 1992). This regime for a smooth velocity is
also referred to as the Batchelor regime, as it corresponds to that of Batchelor (1959) for
passive-scalar advection.

The low Pm case is more complicated, and we shall not go into much detail here. Briefly,
when Pm ≪ 1, the magnetic field dissipates in the inertial range, where κ(r) ∼ r1+α (see
e.g. Tobias et al. 2012). Hence in the inertial range the Schrödinger (4.7) has an effective
potential with the following properties. At small scales the effective potential is regularised
by magnetic diffusion; growing dynamo solutions correspond to bound states for the wave
function ψ . These are guaranteed to exist when 0 < α < 1. Hence, dynamo action is
always possible even in the case of a rough velocity at low Pm (Boldyrev & Cattaneo
2004). However, it is important to note that the effective potential always remains ∝ 1/r2

in the inertial range; its depth decreases as α → 0. Hence, it is harder to drive dynamo
action the rougher the velocity – this has serious consequences for our ability to generate
magnetic fields in liquid metal experiments, as discussed in § 9.
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Equation (4.7) can be solved asymptotically and solutions demonstrate that the growth
time of the dynamo is of the order of the turnover time of the eddies at the diffusive scale
(ℓη). Moreover, it shows (Boldyrev & Cattaneo 2004) that there is a dramatic increase
in the effort (computational or experimental) as the velocity becomes rougher (1+α gets
smaller). Hence the effort required to drive a dynamo in a rough velocity also increases.

For these random flows we may now describe the behaviour of the critical magnetic
Reynolds number Rmc as one moves from large Pm to small Pm. At high Pm the effort
necessary to drive a dynamo is modest. As Pm decreases through unity the viscous
scale becomes smaller than the resistive scale and the dynamo begins to operate in
the inertial range. There is then an increase in the effort required to sustain dynamo
action. However, once the dynamo is in the inertial range, further decreases in Pm do
not make any difference to the effort required (as measured by Rmc). We also note here
that the Kazantsev model relates to the addition of multiplicative noise in the induction
equation. Mathematically this case was considered by, for example, Laval et al. (2006)
who were interested in the effects of turbulence on the dynamo threshold. They showed
that there are two regimes – an intermittent regime, with a power law distribution for B

and at higher Rm, a second threshold where the field saturates towards a stable non-zero
value.

This picture is largely consistent with numerical models of dynamo action in random
flows (Yousef, Brandenburg & Rdiger 2003; Schekochihin et al. 2004, 2005) as we shall
see in the next section.

The Kazantsev model as proposed is extremely restrictive, although it can easily be
extended to cases where the correlation time of the turbulence is finite (Vainshtein &
Kichatinov 1986; Kleeorin, Rogachevskii & Sokoloff 2002), provided the growth time
of the dynamo is long compared with this correlation time. Anisotropic versions of
the Kazantsev model have also been constructed by Schekochihin et al. (2004b). These
solvable models will also prove useful in understanding the generation of organised field
(as discussed in § 5.3.4).

4.2.2. Numerical solutions of random dynamos – the low Pm problem

Owing to the importance of understanding how dynamos onset in turbulent flows at low
Pm for experiments (see § 9), there has been much numerical effort in this direction.
These numerical calculations are fraught with difficulty as extremely large calculations
are required to capture the separation of spatial scales. Tobias et al. (2012) calculate that
the resolution of a numerical model required to answer the question of the behaviour
of the critical value of Rm for dynamo action at low Pm is beyond the reach of
current computational resources (requiring a calculation of size 10 0003 points). However,
numerical calculations are beginning to yield some indication of the role of low Pm.

In order to relate the Kazantsev models to numerical kinematic numerical simulations,
where the Navier–Stokes equations are solved (with no Lorentz force) to provide the input
to the induction equation, the Kazantsev models have been extended take into account
departures from Gaussianity in the flow, with similar conclusions being drawn as for
Gaussian flows. The results are summarised in figure 7, which shows Rmc as a function of
Re for a collection of such calculations (Schekochihin et al. 2007). At large and moderate
Pm these results are consistent with the predictions of the Kazantsev model described
above, as shown in figure 7. As noted above, calculations rapidly becomes prohibitive at
small Pm, and so this regime is not really accessible to direct numerical simulation (DNS),
unless large-eddy simulations (LES) are utilised (Ponty et al. 2007). However, care must
be taken here – in this regime the dynamo growth is controlled by the roughness exponent
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Figure 7. Onset of dynamo action at moderate Pm, from Schekochihin et al. (2007). (a) Growth rate of
magnetic energy as a function of Pm for five values of Rm. (b) Growth/decay rates in the parameter space
(Re, Rm). Also shown are the interpolated stability curves Rmc as a function of Re based on the Laplacian.
Hyperviscous runs are shown separately.

of the flow and so one would require an LES scheme with exceptional representation of
the roughness.

Turbulence is, however, significantly more complicated than random flows that are
δ-correlated in time, limiting the applicability of the Kazantsev model. For these flows
it should be the case that characteristics other than the spectral slope of the velocity (and
hence the roughness exponent) control the dynamo growth. We discuss this case in the
next section.

4.2.3. Flows with coherence

In this section we consider the case more relevant to geophysical and astrophysical flows,
where the flow has two components, a random component as described above and a
systematic component whose coherence time is long compared with its turnover time. Such
coherent structures, such as long-lived vortices, are ubiquitous in flows where rotation and
stratification are important. The structures also exist on a wide range of spatial scales and
so it is natural to ask what determines the kinematic dynamo growth rate in a multi-scale
flow with coherent structures.

The theory for such flows (which do not now have short correlation times) was
developed by Tobias & Cattaneo (2008a,b). This was achieved in two stages, the first step
involved demonstrating that for such flows, knowledge of the form of the spectrum is not
enough to determine the dynamo properties. They considered a flow with both long-lived
vortices and a random component with a well-defined spectrum. They took advantage of
the G.O. Roberts trick for dynamos with 2 1

2 -D velocities, by synthesising the flows from
solutions to the active scalar equations. They also generated a second (random) flow with
the same spectrum as the first by randomising the phases of the spectral components.
They found that the flow with coherent long-lived structures is a much more efficient
dynamo than the flow that is purely random. Here, by efficient we mean that at the same
Rm the dynamo growth rate is higher for the coherent flow. The sustained systematic
stretching from the long-lived coherent structures is pivotal in generating field efficiently.
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In particular, helical vortices are able to generate magnetic field structures – in this case the
field generated takes the form of a helix reminiscent of that generated by a Ponomarenko
dynamo.

It is now reasonable to assume that a multi-scale kinematic dynamo will be dominated
by the coherent parts of the flow – the long-lived structures (rather than the temporally
δ-correlated random components) will determine the dynamo growth rate and the form of
the field. So, if a dynamo consists of a superposition of such coherent eddies with a range
of spatial scales and turnover times (all shorter than their correlation time), what factors
determine the small-scale dynamo growth rate?

Progress can be made by assuming that each eddy acts as dynamo largely independently
of the eddies at very different scales. This assumption was validated in a model problem
by Cattaneo & Tobias (2005). A further step is to assume that each of the dynamo eddies
are ‘quick dynamos.’ As defined by Tobias & Cattaneo (2008a), a ‘quick dynamo’ is one
that reaches a neighbourhood of its maximal growth rate quickly as a function of Rm.
Here, ‘quickly’ is a somewhat imprecise term – although a rule of thumb would be for
the growth rate to come within 10 % of its maximum for Rm ∼ 10Rmc; by this definition
most dynamos are quick dynamos. If this is the case, then the dynamo is driven by the
coherent eddy which has the shortest turnover time τ and has Rm ≥ O(1). Both the local
Rm and τ are functions of the spatial scale and so the location in the spectrum of the
eddy responsible for dynamo action depends on the spectral slope as well as the magnetic
Reynolds number on the integral scale.

The difference between dynamos that are dominated by random components and those
that have long-lived coherent structures has recently been confirmed by Seshasayanan,
Dallas & Alexakis (2017a). They considered the onset of dynamo action in a randomly
forced flow subject to the effects of rotation. As the rotation is increased, the flow develops
more spatial and temporal coherence with the coherent vortices eventually winning out
over the random element of the flow. This has the effect of reducing the critical Rm at
which dynamo action occurs, even at low Pm – the coherence engendered by the rotation
turns a low Pm dynamo into a high Pm dynamo as predicted by Tobias & Cattaneo (2008a).

5. Organised magnetic field generation

It is often the case that astrophysical magnetic fields display some degree of organisation
(or order) either spatially (displaying order on spatial scales large compared with the
typical eddies in the turbulent flows) or temporally (displaying temporal coherence on
time scales much longer than typical time scales in the turbulence) or sometimes both (for
example the spatio-temporal behaviour of the solar cycle).

It is therefore natural to consider theories that describe the evolution of the ‘organised’
components of the magnetic field (and potentially the velocity field). This could be for
fields that are organised either spatially or temporally. In order to make progress it is
necessary to give some mathematical precision to the concept of an organised field. This
brings in the concept of averaging and forces the theorist to turn to statistical theories
that are designed to provide information about these average quantities. Such theories are
ubiquitous in fluid mechanics (for example Kraichnan 1965; Frisch 1995; Bühler 2014)
although, owing to the historical path of research in dynamo theory, the statistical theories
in the two disciplines have tended to develop along different tracks. I shall argue strongly
that future progress in dynamo theory can only be made by reconciling these approaches
and returning to the paradigms preferred by fluid dynamicists. Nonetheless much can be
learned from the dynamo approach, which I shall briefly review here.
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5.1. The nature of averaging

We shall be concerned with the derivation and solution of equations for the average
properties of our state variables (for example B and u). We shall primarily be interested in
decomposing state variables into mean (average) and fluctuating parts so that for example

B = B + b′. (5.1)

Here, the overbar represents a linear averaging process that (in general) obeys the Reynolds
averaging rules, i.e.

B1 + B2 = B1 + B2, (5.2)

and

B = B. (5.3)

Hence, averaging (5.1) gives

b′ = 0. (5.4)

In terms of products it is also convenient, although not necessary, if the averaging
procedure satisfies

Bb′ = 0, (5.5)

and

B1 B2 = B1 B2. (5.6)

There are many different forms of averaging that satisfy the above Reynolds averaging
rules, and some useful forms that do not. We briefly comment on a few here.

5.1.1. Spatial and temporal averaging

Perhaps the most utilised form of averaging assumes that the fluctuations are characterised
by a length scale ℓ0 (perhaps the scale of the energy containing eddies or fluctuating
magnetic field). This is assumed small compared with the larger scale L of the variation
in the averaged quantities. For a system-scale dynamo L will typically be O(R) where R

is the length scale of the domain. It is then possible to define an intermediate scale a that
satisfies ℓ0 ≪ a ≪ L. The spatial average can then be defined as (Moffatt 1978)

B ≡ 〈B〉a ≡ 3

4πa3

∫

V

B(x + ξ , t)d3ξ , (5.7)

where V is a sphere of radius a. A fairly drastic, although perhaps also very natural,
example of spatial averaging is to average over one spatial coordinate. For example the
butterfly diagram of figure 2 is constructed by averaging the surface sunspot data over
longitude and plotting the averaged field as a function of latitude and time. For this
type of averaging there is a natural separation of spatial scales, with the axisymmetric
component of field formally being separated in azimuthal wavenumber space from the
non-zero wavenumbers. This type of ‘zonal’ averaging is often utilised in planetary and
stellar physics where zonal symmetry of the underlying turbulent statistics is a natural
assumption (see e.g. Braginskii 1975). In local Cartesian numerical models, we shall see
that it is sometimes natural to average over horizontal coordinates.

A similar separation and averaging procedure is available if the quantity to be averaged
varies on two time scales. For example if the fluctuations have a characteristic short time
scale t0 (perhaps as defined by the correlation time) and the averaged quantities vary on a
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long time scale T then one can average over an intermediate time scale τ with t0 ≪ τ ≪ T

by defining

B ≡ 〈B〉τ ≡ 1
2τ

∫ τ

−τ

B(x, t + τ ′) dτ ′. (5.8)

5.1.2. Ensemble averaging

All of the averaging processes described above rely on some separation of scales (either
spatial or temporal) between the average quantities and the fluctuations (this occurs
naturally in the case of coordinate averaging). In most turbulent systems, this separation is
difficult to achieve, and there is energy at all scales. Whether this really is a difficulty for
the theory is open to debate (see e.g. Brandenburg & Subramanian 2005). A more natural
averaging procedure, from a statistical viewpoint, is to take an average over realisations
of the turbulence – a so-called ensemble average. If the flow is ergodic then this method
of averaging should (in combination with the underlying symmetries of the turbulence)
yield the same answers as temporal or spatial averaging in the relevant asymptotic limits
(Moffatt 1978).

5.1.3. Averaging by filtering and general quasilinear (GQL) averaging

A discussion of averaging procedures would not be complete without including filtering,
either spectral or Gaussian (Germano 1992). These filters are chosen to smooth small-scale
spatial features and are often representative of the action of observations at finite spatial
resolution. It is worth noting that such procedures typically do not satisfy the Reynolds
rules of averaging; for example Gaussian filtering does not satisfy (5.3) whilst spectral
filtering typically does not satisfy (5.6). However, Gaussian filtering can be used in
dynamo calculations (see e.g. Hollins et al. 2017) whilst spectral filtering can be made
to satisfy the Reynolds averaging rules by restricting the interactions to remove triad
decimation in pairs (Kraichnan 1985). This filtering forms the basis of the generalised
quasilinear approximation introduced by Marston, Chini & Tobias (2016).

5.2. Kinematic considerations – mean-field electrodynamics

‘Each success only buys an admission ticket to a more difficult problem’.
Henry Kissinger

Armed with a suitable averaging procedure, it is possible to make significant progress
in deriving equations for the evolution of averaged quantities. As before we shall proceed
by solving for the evolution of the magnetic field via the averaged induction equation for a
prescribed velocity field. This formulation, which is now known as kinematic mean-field
electrodynamics has the potential for deep insight; however, I shall argue that it is only via
deriving the averaged equations for the full coupled Navier–Stokes/induction system that
future progress will be made.

We proceed by splitting both the velocity and magnetic field into averaged and
fluctuating parts so that

u = U + u′, B = B + b′. (5.9a,b)

Now, taking the average of the induction equation (using the Reynolds averaging rules)
yields

∂B

∂t
= ∇ × (u × B) + η∇2B. (5.10)
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Here, the non-trivial induction term is given (again using the averaging rules) by

(u × B) = U × B + u′ × b′. (5.11)

So there are two contributions to average induction; the first comes from induction of the
average flow and average field (a so-called mean/mean interaction), whilst the second,

E = u′ × b′, (5.12)

arises from the average interaction of the fluctuating velocity and fluctuating magnetic
field. This term is commonly known as the turbulent electromotive force (EMF).

Determination of this contribution to the evolution equation for the mean magnetic field
forms a large part of the theoretical body of work in mean-field dynamo theory; in rather
the same way that modelling the Navier–Stokes Reynolds stress tensor is crucial for many
theories for mean-flow/turbulence interactions in hydrodynamic turbulence.

Of course, in principle for a given U and u′ (remember we are in the kinematic
approximation!), E can be calculated exactly by solving the equation for the fluctuating
magnetic field (which is derived by subtracting (5.10) from the full induction (2.2)) to give

∂b′

∂t
= ∇ × (U × b′) + ∇ × (u′ × B) + ∇ × G + η∇2b′, (5.13)

where
G = u′ × b′ − u′ × b′. (5.14)

Notice that the fluctuation (5.13) has four terms on the right hand side. The first two of
these involve the interaction of means with fluctuations whilst the fourth is a linear term
in the fluctuations. The third term given in (5.14) involves the interaction of fluctuations
with fluctuations (to yield fluctuations) and may prove to be problematic for theoretical
progress. For this reason this has been termed the pain in the neck (PIN) term. In the –
perhaps less expressive – hydrodynamic literature fluctuations are often identified with
eddies and the corresponding term in the fluctuating Navier–Stokes equation is often
termed the eddy/eddy → eddy nonlinearity.

5.3. Calculation of the EMF

At this point in the derivation, no approximations have been made and there is little
controversy. Indeed, one could solve (5.10) coupled with (5.13) – equivalent to solving
the full induction equation. One could argue about whether it makes sense to separate the
scales into averages and fluctuations, but if these are treated in the same manner then the
point is moot as to whether this is a debate worth having.

However, in order for the approach of mean-field electrodynamics to be useful, the
solution of the full problem is to be avoided (and indeed is impossible with current
computational resources). Progress can only be made by putting the averages and
the fluctuations on a different theoretical footing – and so treating them differently.
Solving for the averages is not computationally difficult, and so this can be performed
efficiently. However, in order to perform these calculations we need to be able to calculate
the turbulent EMF, which arises from the average effect of the fluctuation/fluctuation
interaction. In general it would be helpful to have a theory that relates the EMF to the
average quantities, either via a differential equation or a simple prescription.

There are two possible ways to proceed. The first is to derive an evolution equation
for the (generalised) EMF (which can be thought of as a low-order statistic of the flow).
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This approach has much in common with some techniques used in hydrodynamic
turbulence theory.

The second approach is to milk the formal linearity of the kinematic induction equation
for all it is worth, and see where it gets us. The answer is a surprising distance. As noted
by Moffatt (1978) ‘. . . there is now a satisfactory body of theory for the determination
of E . The reason for this (comparative) degree of success can be attributed to the linearity
in B of the induction equation. There is no counterpart of this linearity in the dynamics of
turbulence’. It is important though to appreciate the limitations of this approach.

5.3.1. Deductions from linearity

Clearly, calculation of the EMF is possible from evaluation of b′ (recalling that the velocity
field is prescribed in the kinematic regime), so the solution of (5.13) is desirable. However,
as noted previously, the solution of this equation together with that of the mean equation
is equivalent to solving the full problem. It is, therefore, useful to see what can be learned
from the structure of (5.13). This equation is formally a linear equation for b′, with a
forcing term given by ∇ × (u′ × B). Solutions to this equation for b′ are linearly (although
not homogeneously) related to B; that is

b′ = b′
ss + L(B). (5.15)

Here, L is a linear operator and b′
ss is that fluctuation field that exists in the absence of

a mean field B. At high Rm this ‘small-scale dynamo field’ is inescapable as we have
discussed at length above. However, it is not clear that the presence of this field poses any
difficulty for the calculation of the EMF. Clearly b′

ss is, by definition, that field that exists in
the absence of any large-scale field B. It seems unlikely therefore that, except in extremely
contrived situations, it can contribute to an EMF at high Rm; since its contribution to the
EMF would inevitably drive a large-scale field, which is supposed absent. In the nonlinear
regime, this argument clearly does not hold (as the small-scale dynamo subspace may
saturate and become unstable to large-scale perturbations as we shall discuss later). Indeed
some mechanisms for large-scale field generation rely on interactions arising nonlinearly
from a saturated small-scale dynamo (Squire & Bhattacharjee 2016).

Hence, it seems that, although the fluctuation dynamo field in the kinematic regime
is not linearly and homogeneously related to B, the EMF is. This is not to say that the
presence of small-scale dynamo action is irrelevant; indeed, as we shall see in § 5.4.2, in
the kinematic regime at high Rm the growth rate of the dynamo (at both large and small
scales) is completely controlled by the presence of a small-scale dynamo (Nigro et al.

2017).
The linear dependence of the EMF on the averaged field suggests an integral

representation of the form

Ei(x, t) =
∫ ∫

Kij(x, t; ξ , τ )Bj(x + ξ , t + τ) d3ξ dτ, (5.16)

for some kernel Kij.
If a separation of spatial scales (for example) also pertains then it is possible to expand

B in a Taylor series, i.e.

Bi(x + ξ) = Bi(x) + ξj

∂Bi

∂xj

(x) + 1
2
ξjξk

∂2Bi

∂xj∂xk

(x) + · · · . (5.17)
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For scale separation, |ξ | is small compared with a typical scale of B, and higher-order
terms may be neglected. As noted by Moffatt (1978) terms in the Taylor expansion
involving time derivatives of the mean field can be written in terms of the mean field
and spatial derivatives through back substitution into (5.10).

It is therefore natural, having made this approximation, to postulate a series expansion
of the EMF in terms of spatial gradients of the average field of the form

Ei = αijBj + βijk

∂Bj

∂xk

+ · · · , (5.18)

where the coefficients αij and βijk are known as turbulent transport coefficients.
In general, αij and βijk need to be calculated from the turbulent flow statistics (usually

this requires some approximations as we shall see). However, some general statements
about their form can be made immediately from (5.18).

We note that E is a polar vector, whereas B is an axial vector. From this we can
immediately deduce that αij is a pseudo-tensor, which can be decomposed into symmetric
and anti-symmetric parts as

αij = αs
ij − ǫijkγk. (5.19)

Hence, the ‘α-term’ in (5.18) takes the form αs
ijBj + (γ × B)i. The anti-symmetric part of

the α-tensor therefore contributes an extra mean velocity to the mean-field equations. The
symmetric part of the α-tensor obviously depends on the flow. In a system with preferred
directions, given by say gravity g and rotation Ω , it is given by Krause & Raedler (1980)

αij = α1δijĝ · Ω̂ + α2ĝiΩ̂j + α3ĝjΩ̂i. (5.20)

This form is useful; however, more enlightening is to consider the case where the
turbulence is statistically isotropic (although still not reflectionally symmetric). In this
case

αij = αδij, (5.21)

with γ = 0. The constant α is a pseudo-scalar, which can only be non-zero if the
turbulence lacks reflexional symmetry.

Similar considerations can lead to progress in understanding the second term in the
expansion. For the simple case of isotropic turbulence, the βijk-tensor is also isotropic and
so

βijk = βǫijk. (5.22)

Here, β is a pure scalar (i.e. it may be non-zero even for turbulence with no broken
symmetry).

I stress here that, in general, these tensors (even if deemed to be useful) will not be
homogeneous or isotropic. The presence of rotation, stratification and mean flows tend
to give a preferred direction to the turbulence and the tensors will not take a particularly
simple or enlightening form. There is now a significant body of work ascribing importance
to the generation of an EMF via particular parts of the tensors arising from different
physical interactions. I shall argue later that what really matters are the low-order statistics
of the MHD turbulence (in this case the EMF itself). Little progress can be made by
ascribing and naming effects.

However, it is still worth following the theory through to its logical conclusion; it
remains to determine the transport coefficients αij and βijk, ideally in terms of the
prescribed flow. There have been many attempts at this that we shall summarise in § 5.3.3.
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Before doing this, we shall briefly examine why this theory has proven so popular by
demonstrating solutions to the kinematic mean-field equations.

5.3.2. Solution of the mean-field (filtered) equations

With the assumption that the transport coefficients are isotropic, so that αij = αδij and
βijk = βǫijk the mean-field dynamo equations take the form

∂B

∂t
= ∇ × (U × B) + ∇ × (αB) − ∇ × (β∇ × B) + η∇2B. (5.23)

If β is constant, ∇ × (β∇ × B) = −β∇2B so the equation becomes

∂B

∂t
= ∇ × (U × B) + ∇ × (αB) + (η + β)∇2B. (5.24)

We can now see the role of the transport coefficients clearly for this choice of isotropic
turbulence. The ∇ × (αB) term is an inductive term leading to the generation of magnetic
field (we shall spell this out in the next section) whilst for this simple configuration the
β term acts like an enhanced diffusivity. We note that other components of the β tensor
can act so as to generate field for non-isotropic flows. Given that there are 27 of these
coefficients, it is fair to say that the role of them all has yet to be established. It is not even
clear that it is desirable so to do, as argued above.

The adoption of the mean-field dynamo equations circumvents Cowling’s theorem! All
the non-axisymmetric parts of the dynamo are encoded in the small scales, which are not
solved for. Hence axisymmetric solutions for the mean fields are allowed (and informative).
Combining (5.24) with the axisymmetric formalism equations given in (2.26)–(2.27) one
derives the axisymmetric mean-field dynamo equations

∂A

∂t
+ 1

s
(uP · ∇)(sA) = αB + ηT

(

∇2 − 1

s2

)

A, (5.25)

∂B

∂t
+ s(uP · ∇)

(

B

s

)

= ∇ × (αBP) · φ̂ + ηT

(

∇2 − 1

s2

)

B + sBP · ∇Ω, (5.26)

where now it is understood that A and B represent the poloidal and toroidal parts of the
mean magnetic field fields and ηT = η + β.

Cowling’s antidynamo theorem therefore is defeated by the presence of a source term αB

in the equation for the poloidal field. This source term, which is now called the α-effect
had been previously derived by Parker (1955). In the equation for the evolution of the
azimuthal field both the shear (the ω-effect) and the α-effect can operate to generate this
component of the field from the meridional field. Depending on the relative importance of
the α and ω effects, mean-field dynamos may be termed α2, αω or α2ω dynamos. There
are two ways of generating azimuthal field B from poloidal field BP: the α-effect or the
ω-effect. If the α-effect dominates, the dynamo is called an α2-dynamo. If the ω-effect
dominates it is an αω dynamo. We can also have α2ω dynamos where both mechanisms
operate equally.

The importance and utility of the mean-field ansatz can be seen by analysing the
kinematic mean-field dynamo solutions in a 2-D local Cartesian geometry. We seek
solutions independent of y, with no meridional flow and constant shear, U′, in the αω
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limit (i.e. we set ∇ × (αBP) · φ̂ = 0), so that

B =
(

−∂A

∂z
, B,

∂A

∂x

)

, u = (0, U′z, 0), (5.27a,b)

∂A

∂t
= αB + ηT∇2A,

∂B

∂t
= J(A, U′z) + ηT∇2B, (5.28a,b)

where J( f , g) = fxgz − gx fz. We seek wave-like solutions for A and B proportional
exp(σ t + ik · x), with k = (kx, 0, kz) to yield a dispersion relation of the form

(σ + ηTk2)2 = ikxαU′, (5.29)

with k2 = k2
x + k2

z , and so

σ = 1 + i√
2

(αU′kx)
1/2 − ηTk2. (5.30)

In a finite Cartesian domain of size d in the z-direction, one sets kz = π/d and large-scale
dynamo action will occur if the dimensionless dynamo number D = αU′d3/η2

T exceeds
a threshold. The bifurcation to large-scale dynamo action occurs in a Hopf bifurcation to
travelling waves. If D > 0 the waves travel in the negative x-direction, whilst if D < 0 they
travel in the positive x-direction.

At this point it is immediately clear why mean-field theory has proved so popular.
For an axisymmetric (indeed 1-D) model the theory can yield travelling wave solutions
reminiscent of the waves of sunspot activity seen in the solar observations. The theory
can easily be extended to bounded Cartesian domains – although care must be taken in
carrying out the instability calculations owing to the difference between convective and
absolute instabilities (Bassom & Gilbert 1997; Tobias, Proctor & Knobloch 1997), and to
spherical domains (Roberts 1972b).

5.3.3. Calculations of kinematic transport coefficients: theory and computation

We described above how solution of the mean-field equations can lead to large-scale
magnetic fields for simple choices of the transport coefficients. We also described in
§ 5.3.1 that basic properties of the transport coefficients (αij and βijk) can be determined
via consideration of symmetries (and on making the assumptions of homogeneity).

However, it is important to calculate these transport coefficients for solvable and realistic
models of turbulence (both in the kinematic and dynamic regime). We begin by describing
the kinematic evaluation of these coefficients – this is where the theory gets controversial,
as all the current analytical calculations of transport coefficients necessarily involve some
form of approximation.

First-order smoothing:
The simplest ansatz in which to calculate the transport coefficients in the kinematic

regime invokes the quasilinear approximation. This involves the discard of the
fluctuation/fluctuation → fluctuation interactions in the equation for the fluctuating field;
that is we set G = 0 in (5.13) to yield

∂b′

∂t
= ∇ × (U × b′) + ∇ × (u′ × B) + η∇2b′. (5.31)

The discard of the nonlinear term G can be understood as assuming that the Kubo
number (to be defined below) of the MHD turbulence is small (in the sense that
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the fluctuation/fluctuation interaction is small compared with the mean/fluctuation
interaction). This may occur in many circumstances of interest, although the conditions
for which the approximation is valid is difficult to determine a priori. Formally, however,
this is certainly the case when the fluctuating field is small compared with the mean field
i.e. |b′| ≪ |B|. It is also applicable when Rm ≪ 1 in which case one may also neglect the
∂b′/∂t term to leave

η∇2b′ = −∇ × (U × b′) − ∇ × (u′ × B), (5.32)

which can then easily be solved using standard linear transform techniques (see Moffatt
(1978) for a detailed description) to yield b′ and hence, as u′ is known, E .

The nonlinear term G can also be formally neglected a priori if the correlation time τc of
the turbulence (which is given in the kinematic regime) is sufficiently short. In particular
if the Kubo number urmsτc/ℓ ≪ 1 then (5.31) is justified. If in addition Rm ≫ 1 then

∂b′

∂t
≈ ∇ × (U × b′) + ∇ × (u′ × B). (5.33)

Again, this linear system may be solved by transform methods. In the simplified case with
no local mean flow one may write

E(t) = u(t) ×
∫ t

0
∇ × (u(t′) × B(t′)) dt′. (5.34)

In a statistically steady state and for isotropic turbulence this simplifies to give

E(t) =
∫ t

0
(α̂(t − t′)B(t′) − η̂T(t − t′)∇ × B(t′)) dt′. (5.35)

where α̂(t − t′) = −1
3 u′(t) · ω′(t′) and η̂T(t − t′) = 1

3 u′(t) · u′(t′).
For a mean field that is sufficiently slowly varying compared with the turbulence the

integral kernels can be approximated by δ-functions and so

E(t) = αB − η̂T∇ × B, (5.36)

with

α = −1
3

∫ t

0
u′(t) · ω′(t′) dt′ ≈ −1

3τcu′ · ω′, (5.37)

ηT = 1
3

∫ t

0
u′(t) · u′(t′) dt′ ≈ 1

3τcu′ · u′. (5.38)

First-order smoothing, which is applied within the kinematic framework, is designed
so that the EMF may be related to the mean magnetic field through properties of the
prescribed velocity field. The smoothing is such that the fluctuating magnetic field is
‘slaved’ to the velocity field and the mean magnetic field and so the EMF can be
readily calculated. At high Rm, for correlation times that are not short, this slaving is not
maintained and the magnetic fluctuations rapidly become decorrelated with the velocity
field. This has two major effects. The first is that the EMF cannot be evaluated explicitly
and one must resort to numerical procedures for its calculation (as described in the next
section). The second, and more severe, effect is that the loss of correlation can lead to a
diminution of the EMF relative to the fluctuations. This may have serious consequences
for large-scale dynamo theory in the kinematic regime at high Rm as described
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below – although, as we shall see, in section there will be some effects that can mitigate
the loss of correlation and to some extent rescue the theory.

Numerical evaluation of the transport coefficients:
With the growth of computing power, it is now possible to evaluate the transport

coefficients numerically, albeit at moderate Rm for 3-D flows. This is, of course, possible
both when the magnetic field is weak and does not act back on the flow and therefore the
transport coefficients are in the kinematic regime, or in the fully nonlinear regime so that
the effects of the Lorentz force on transport coefficients can be calculated – an important
topic discussed in § 6.5.

Constructing a reliable method for the calculation of the transport coefficients is not
trivial (especially when Rm is not small) since it involves the calculation of averages
and care must be taken to ensure that these averages are converged. Calculation of the
α-coefficient is conceptually straightforward. Consider (5.12) and (5.18). These are two
separate expressions for the EMF. In the case where the averages are spatial, the flow and
magnetic field can be decomposed into a spatial mean (in this case a uniform field) and
spatial fluctuations. Now a uniform field has no spatial derivatives and so (5.18) simplifies
to

Ei = αijBj. (5.39)

Hence, it is possible to impose constant mean fields with different orientations and

calculate Ei = u′ × b′ numerically to identify the different components of the α-tensor.
For a very turbulent flow at high(ish) Rm it turns out that u′ × b′(t) in the kinematic
regime may be a rapidly varying timeseries which takes a broad distribution of values
with a large variance and a relatively small mean (see e.g. Cattaneo & Hughes (2006) who
computed the alpha coefficient in a plane layer of rotating Boussinesq convection). This is
an indication that the systematic behaviour in the kinematic regime may be in competition
with (and perhaps dominated by) the disorganised or fluctuating dynamo behaviour (see
§ 5.4 for a more complete discussion of this); however, it is fair to say that the relative
effectiveness of the fluctuating and organised magnetic fields may depend on both the
form of the spectrum of the velocity and the value of Rm as demonstrated by Cattaneo
& Tobias (2014) – at very high Rm the dynamo is controlled by smaller eddies from
further down the spectrum with shorter correlation times, which means that averaging is a
more effective procedure and the distribution of the EMF is narrowed. Thus, in addition to
spatial averaging, temporal (or ensemble) averaging should also be utilised to ensure well
converged statistics.

Computing the turbulent diffusivity βijk is somewhat more problematic since that relates
the EMF to gradients of the organised magnetic field. This causes problems as there is no
simple method of imposing a magnetic field with a spatial gradient that is not prone to
grow exponentially via dynamo action at high Rm in the kinematic regime. Three methods
for evaluating the turbulent diffusivity have been suggested; the ‘test field’ method, the
‘turbulent Ångström’ method and the ‘Lagrangian statistics’ method.

The test field method, introduced by Schrinner et al. (2005) involves the solution of
an auxiliary equation and is a simple extension of the procedure outlined above for the
calculation of the α-effect. Here the aim is to calculate the EMF for a variety of applied test
magnetic fields with different orientations and field gradients. If the test fields are chosen
to be constants then the α-tensor can be recovered in a similar manner to that described
above. In principle the β-coefficients can be backed out by imposing a series of spatially
varying test fields and solving for the fluctuations, and hence the EMF. The test field
method has been criticised (Cattaneo & Hughes 2009) in that it requires a prohibitively
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large computational cost to evaluate the transport coefficients at high Rm. Nonetheless, at
the moderate Rm values that are currently achievable for current numerical computations
convergence of results does appear achievable if ensemble averages are used in addition to
spatial averages.

The turbulent Ångström method (Tobias & Cattaneo 2013a) is based on that used to
measure the thermal conductivity of solids. The method consists of applying an oscillatory
source of magnetic field (usually via an oscillating current) with a given frequency larger
than the largest natural frequency of the turbulence. Here the turbulent diffusivity can be
calculated from the response measured at the frequency of the imposed oscillating field.
This method is attractive as the turbulent diffusivity can be calculated to any required
precision, simply by analysing a long enough timeseries for the magnetic field, although
this may be computationally expensive.

The final method, which involves calculating Lagrangian statistics, is formally valid
in the infinite Rm limit and is outlined in Moffatt (1978). Briefly, both the α and β

tensors may be evaluated numerically by calculating averages over Lagrangian trajectories.
This method can (and has) been extended to the finite Rm case by adding stochastic
fluctuations to the Lagrangian trajectories (Drummond & Horgan 1986). This elegant
method appears to merit further investigation.

5.3.4. Organised Kazantsev dynamos

We have described above how organised magnetic fields may be expected to emerge for
flows that lack reflectional symmetry, and how, under certain assumptions, the evolution
of the large-scale field may be determined in the kinematic regime by turbulent transport
coefficients that encode the eddy/eddy → mean interactions. Even earlier, in § 4.2.1, we
also discussed how the Kazantsev model for random (short correlation time) flows could
yield insight into the onset of small-scale dynamos.

It turns out that the Kazantsev model can be extended to random flows that lack
reflectional symmetry; in this case the velocity and magnetic correlators are defined
using two functions – one, as before, related to the energy density (either kinetic or
magnetic), the other to the helicity (either kinetic or magnetic) (Vainshtein & Kichatinov
1986). The two parts of the magnetic correlator are then described by a pair of coupled
Schrödinger-like equations (Vainshtein & Kichatinov 1986; Berger & Rosner 1995). The
analysis is now more complicated, yet it is possible to demonstrate that the system remains
self-adjoint (Boldyrev, Cattaneo & Rosner 2005). These authors demonstrated that, for
sufficient kinetic helicity, extended states are found that do not decay exponentially
at infinity. These are the ‘large-scale dynamo solutions’, analogous to the mean-field
solutions. It can, however, be shown that at large Rm the largest growth rates remain
associated with the localised bound states, so that the overall dynamo growth rate
remains controlled by small-scale dynamo action (Malyshkin & Boldyrev 2008a,b). This
competition between large and small-scale dynamos in the kinematic regime will be the
theme of our discussion in the next few sections.

5.4. The competition between kinematic large- and small-scale dynamos

The discussion of organised random dynamos in the last section described how the
growth rate of magnetic fields is determined by the small-scale dynamo, even if there
is a large-scale component. In that simple case, the growth-rate for bound (small-scale)
states can be shown to be larger than those for extended (large-scale) solutions.

In a non-random flow, the magnetic field must emerge as an eigenfunction to the
kinematic dynamo problem with a well-defined (average) growth rate σ ; hence large and
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small scales grow at this same rate. It is then appropriate to ask which processes control the
growth rate of a dynamo containing large and small scales? Moreover, if this is controlled
by the small-scale dynamo action, then what is the role of large-scale (or mean-field)
dynamo theory in determining the behaviour of the large scales.

The first of these questions has been addressed over a number of years by a variety of
authors. The theoretical considerations of § 4 show that in a flow with coherent structures
over spectrum of scales, kinematically the dynamo growth is dominated by dynamo action
driven by the dynamo eddy which is just supercritical and has the fastest turnover time.
As Rm is increased, this dynamo scale moves further and further down the spectrum
generating field at ever faster rates. Moreover, the field that is generated is dominated by
energy at scales smaller than the characteristic scale of the eddy. These considerations are
all borne out by numerical calculations of kinematic dynamos at high Rm (see e.g. Tobias
& Cattaneo 2008a, 2013b). The dynamo growth-rate in the kinematic regime is therefore
set by the small-scale dynamo; fundamentally, chaotic stretching on the advective time
scale has a tendency to win out over an EMF induced by correlations. In this kinematic
regime there is nothing really to stop the generation of exceptionally small scales except
for the action of diffusion on the resistive scales. Of course as all scales grow at the same
rate this tendency for field to be generated on small scales manifests itself in the form of
the eigenfunction, which is dominated by fields close to the resistive scale (all other things
being equal).

The answer to the second question, that of the utility of kinematic mean field theory in
describing the dynamics of the unfiltered equations, we shall defer to later (§ 5.4.2). We
shall first discuss how dynamo theorists have approached the problem of the competition
between large and small-scale dynamos in the kinematic regime, and whether there are
any strategies for promoting the generation of organised field over the small-scale, random
fields in the kinematic regime.

5.4.1. The role of shear: suppressing the small-scale dynamo

Most efforts to promote the large-scale dynamo over the small-scale dynamo involve the
addition of a large-scale shear flow. As we have described above, in the absence of shear,
the kinematic growth rate is determined by the stretching of the small-scale dynamo. This
effect also manifests itself in the distribution of the EMF, which in certain circumstances
can be calculated to have a small mean and a large variance caused by the fluctuations.
If one is to promote the generation of organised magnetic fields over that of small-scale
fields then two strategies immediately suggest themselves; either utilise the shear to boost
the mean EMF by introducing new effects (i.e. new terms in the transport coefficients) or
utilise the shear to suppress the small-scale dynamo.

Much attention has focussed on the first of these strategies (see e.g. Yousef et al. 2008;
Käpylä & Brandenburg 2009; Sridhar & Singh 2010 among others). Indeed it can be
shown that the presence of a prescribed large-scale shear flow can lead to extra terms
in the transport coefficients and hence in the EMF. Moreover a shear flow can in principle
interact with a weak and highly fluctuating EMF to produce large-scale field (Richardson
& Proctor 2010). All of these mechanisms can be shown to boost the generation of a mean
EMF, in certain circumstances. However, at high Rm, if this large-scale field is ever to
be seen in the kinematic regime, there must be some mechanism present to suppress the
small scales which have a tendency to dominate. It would also help to differentiate the two
dynamos if the large-scale dynamo were to exhibit a different dynamics than that of the
small scales.
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A rather different, and potentially more promising, way to proceed is to recognise
that, as indicated by fast dynamo theory, the small-scale dynamo relies on the presence
of chaotic stretching to survive at high Rm. In order to give the large-scale dynamo a
chance (Courvoisier & Kim 2009), it is imperative to suppress the small-scale dynamo
by reducing the chaotic stretching in the flow. Such a strategy was proposed by Tobias &
Cattaneo (2013b). They argued that the addition of a shear flow to a chaotic (or turbulent)
flow will increase the regions of integrability in the flow, thus reducing chaos and hence
the effectiveness of the small-scale dynamo at high Rm. If such a dynamo also has
broken reflectional symmetry and is capable of generating an EMF and hence large-scale
fields then it is possible that the suppression of the small-scale dynamo will lead to the
emergence of large-scale fields. Tobias & Cattaneo (2013b) and Cattaneo & Tobias (2014)
investigated the properties of just such a dynamo. They considered a velocity field in a
Cartesian domain that was comprised of a combination of generalised Galloway–Proctor
flows imposed at a range of scales together with a large-scale shear flow. In particular
they considered a multi-scale generalisation of the cellular Galloway–Proctor flow that is
maximally helical and takes the form of an infinite array of clockwise and anti-clockwise
rotating helices. The pattern of helices itself rotates in a circle with a scale-dependent
frequency and can be decorrelated on a time scale τd. The decorrelation time of the flow
is also scale-dependent and scales in the same manner as the turnover time. Hence the
magnetic Reynolds number is also a function of scale and was chosen to decrease as the
spatial scale decreases (see Tobias & Cattaneo 2013b for details).

To this time-dependent helical multi-scale flow, a steady unidirectional large-scale shear
of the form

us = (V0 sin y, 0, 0), (5.40)

was added and dynamo solutions were sought (in a similar manner to the calculations for
the Galloway–Proctor flow of § 4.1) at high Rm.

In the absence of shear, the flow is an excellent small-scale dynamo. For χ =
Rm/Rmc ≫ 1 all the magnetic energy is, as expected, concentrated at small scales and
generated on a typical time scale of a Galloway–Proctor eddy. There is no sign of a
large-scale organised component of the magnetic field. The situation changes significantly
when shear is added. Although the small-scale dynamo is still operational, its growth-rate
is reduced (see Tobias & Cattaneo 2013b). At high Rm in the kinematic regime the role of
an imposed shear is always to lower the growth rate of a small-scale dynamo. As explained
above, this is due to the introduction of regions of integrability to the otherwise chaotic
flow. This statement has caused some controversy in the literature, but is correct at high
enough Rm since the operation of such a dynamo relies on the presence of chaos in the
flow. Dynamos for which the shear increases the dynamo growth rate are either poor
small-scale dynamos to start with, or are simply not being investigated at high enough
χ = Rm/Rmc.

Moreover, once the small-scale dynamo is suppressed, it is reasonable to require that
the large-scale dynamo can be detected. Figure 8(a), which shows Bx( y, t) the average (in
x) of the toroidal (shear-aligned) field at a given z-level, demonstrates that this expectation
is met. The average field can be seen to take the form of systematic dynamo waves
propagating in the regions of strong shear (of the type envisaged by Parker). In the absence
of helicity of the small-scale flow, the shear still amplifies fields in bands but there is
no systematic generation of spatio-temporally coherent field. That the shear reduces the
fluctuations is clear on examination of the probability distribution (as shown by the p.d.f.)
for the EMF in figure 8(b). This shows the distribution of EMF as measured by imposing
a mean field. In the absence of shear the distribution is dominated by the fluctuations with
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Figure 8. (a) Space–time (t, y) plot of average magnetic field Bx( y, t) at fixed z = 0 for dynamo with shear
(V0 = 5) and small-scale flow with net helicity (after Cattaneo & Tobias 2014); here 0 ≤ y < 2π whilst 0 ≤
t ≤ 40. (b) Probability density function of EMF for a fixed small-scale helical flow and a range of strength of
shear flow (defined in (5.40)) V0 = 0 (black), V0 = 1 (red), V0 = 2 (yellow), V0 = 5 (green), V0 = 10 (cyan),
and V0 = 20 (blue). As the shear is increased the distribution narrows significantly with a small change in the
mean EMF (after Cattaneo & Tobias 2014) © AAS. Reproduced with permission.

a large variance and a small mean (as shown by the black curve). As the strength of the
shear is increased the variance of the distribution decreases markedly, although the mean
shifts barely at all. This demonstrates (for this flow at least) that the crucial role of shear
at high Rm in the kinematic regime is to suppress the fluctuations, rather than modify the
mean.

These results led Cattaneo & Tobias (2014) to propose a general ‘suppression principle’,
namely ‘At high Rm large-scale dynamo action can only be observed if there is
a mechanism that suppresses the small-scale fluctuations.’ As discussed earlier, the
kinematic framework dynamo theory is linear and the solutions are superposable –
large-scale dynamo action can therefore only be observed if the small-scale dynamo is
suppressed. In the cases discussed above the shear acted so as to suppress the fluctuations.
It is possible, however, to envisage other mechanisms that may act in this way. In most
circumstances, however, dynamo action proceeds in the nonlinear regime (see § 6). There
one can envisage a nonlinear mechanism that leads to either the suppression of the
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small-scale dynamo or the saturation of the fluctuating field at a reasonable amplitude.
In the saturated regime, whether the large-scale field can be observed depends on the ratio
of the saturation amplitude for the large and small scales, which is itself a contentious
issue in dynamo theory, as we shall see.

5.4.2. What does mean-field theory get right in the kinematic regime?

Mean-field theory describes the evolution of filtered or averaged quantities. In order for
this theory to have utility in the kinematic regime, one would expect that application of the
filter to the eigenfunctions of the full equations should correspond to the eigenfunctions of
the filtered equations. Moreover, the growth rate of the large-scale structure of the solutions
should coincide with the growth rate predicted by the filtered equations. As we have argued
above, this second expectation is never met at high Rm – the growth rate is determined by
the stretching of the small scales (Tobias & Cattaneo 2008a).

However, it is possible to construct more complicated cases, for example with the
addition of shear, where the filtered (mean-field) equations have a growth rate and a
frequency (Parker 1955; Tobias & Cattaneo 2013b). The shear breaks the isotropy of the
filtered equations and the isotropy of the statistics of the velocity in the unfiltered system
and therefore one expects a breaking of symmetry of the statistics of the solutions. In
that case one might hope that the frequency, as manifested by the speed of propagation
of the dynamo waves to be the same both in the solutions of the filtered equations
and those of the unfiltered equations in a statistical sense. Here, symmetry breaking
acts to perturb the frequency away from zero and is controlled by a change in the
symmetry of the large scales. Nigro et al. (2017) considered just such a case based on
the Tobias–Cattaneo dynamo of § 5.4.1. They determined a range of solutions with a
travelling helical (dynamo) wave, that remains coherent for long periods of time and whose
frequency is determined by mean-field effects. The wave could only be identified from the
rest of the structure by a persistent phase-coherent signal with the rest of the solution
being incoherent in time. They argued from this that it is better to consider a definition of
large-scale dynamo action that considers the time scale of evolution of the pattern, rather
than one that relies on spatial scales alone, i.e. spatio-temporal averaging is the natural
choice for determining organisation. Further, as kinematic large-scale dynamo action
consists of a long-lived coherent pattern embedded in a sea of incoherent fluctuations; the
filtered equations simply average over the fluctuations. Encouragingly, they predicted that
mean-field electrodynamics is capable of predicting the frequency of this coherent signal.

This gives hope for the construction of a sensible framework for deriving a filtered
equation in the nonlinear regime. As argued by Nigro et al. (2017), as nonlinearity
becomes important different scales may continue to grow at different rates and saturate
at relative amplitudes completely different from those of the kinematic phase, controlling
the fluctuations relative to the mean. If this were the case then they argue that the filtering
technique used to identify spatio-temporally coherent large-scale fields in the kinematic
regime may continue to be utilised in the nonlinear regime. We shall therefore finally (and
none too soon for the referee!) move into the dynamic regime, and examine solutions to
the coupled Navier–Stokes/induction system.

6. Turbulent saturation of the dynamo instability

6.1. Basic considerations

Consider first the ‘simpler’ case where initially the magnetic field is weak, the Lorentz
force (being quadratic in the magnetic field) can be neglected, and kinematic theory applies
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at least to the initial stages of the dynamo evolution. Given the arguments of the previous
few sections, at large enough Rm one expects the magnetic field to grow exponentially with
a well-defined growth rate, with large and small scales growing at the same rate. The shape
of the eigenfunction, and its coherence on time scales longer than typical time scales of
the flow, may be controlled by the degree of breaking of reflectional symmetry of the flow.
Eventually the kinematic phase must finish, as the Lorentz force becomes significant, and
the dynamo instability saturates. Such a dynamo with a well-defined kinematic regime has
been termed an essentially kinematic dynamo (Tobias et al. 2011a).

How the dynamo instability saturates depends on the form of the turbulence that
underlies the initial instability. Presumably, the dynamo equilibrates on a range of scales
with a mean amplitude of the magnetic field that depends on scale (so there will also
exist a magnetic energy spectrum alongside the kinetic energy spectrum). However,
different considerations are now required, just as for the kinematic regime, to describe
the saturation of dynamos for the cases of low and high Pm those cases with or without
broken reflectional symmetry.

We shall first of all consider small-scale dynamo saturation, describing the current state
of theory and numerical experiments. As might be expected, different considerations come
into play for the saturation of organised magnetic fields and we introduce the contentious
issue of the generation of large-scale field in the nonlinear regime at high Rm in § 6.5. In
order for the instability to saturate in a statistically steady state, on average the inductive
terms in the induction equation must balance the diffusive terms. Given that, all other
things being equal, the kinematic dynamo puts magnetic energy on the smallest scale
possible, it is unlikely that an essentially kinematic dynamo will typically saturate by
increasing the diffusion of the magnetic field – since the magnetic field in the kinematic
regime is already structured to maximise diffusion; clearly some modification of the
inductive nature of the velocity field is needed. Therefore the field usually saturates by
primarily modifying the ∇ × (u × B) term in the induction equation. The simplest way to
achieve this is to modify the velocity field via the momentum equation.

The question then arises as to the nature of this modification. Is there an easily
identifiable property of the velocity field that in the kinematic phase leads to the
exponential growth of the field whilst in the saturated state yields a statistically stationary
magnetic field? Discussions of dynamo saturation can be divided into three broad
paradigms. The first is the equipartition argument, that the magnetic energy will grow
until it is comparable with the kinetic energy. This is a nice criterion as it can be applied
with great generality, without knowing much about the details of the dynamo system;
however, it suffers from two main problems. It is easy to construct both examples where
the saturation magnetic energy is substantially lower than the kinetic energy (Brummell
et al. 2001) and where it greatly exceeds it (Stellmach & Hansen 2004). Even in systems
where the energies are comparable, they may not be comparable at all scales (Vainshtein &
Cattaneo 1992). The second paradigm is a marginal stability argument that the nonlinear
effects of the magnetic field are to bring the system back to marginality. In some sense this
must be the case as, on average, induction balances diffusion in the induction equation, as
argued above. However, this is not an equivalent criterion to reducing Rm to its marginal
value by modifying a typical amplitude of the velocity. This is linked with the limitation
of the usefulness of the definition of the global Rm based on the system scale discussed in
§ 2.4.1.

The third paradigm is more sophisticated and invokes some subtle modification of the
Lagrangian properties of the flow. Given the arguments of § 4.1 that chaos is required
for a dynamo to operate at high Rm, it seems plausible that if the magnetic field is able
to reduce the level of chaos in the flow then this can lead to saturation. Interestingly, it
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seems as though the general case is that saturation occurs without suppression of chaos at
high Rm. Saturated dynamo flows have been shown to continue to stretch exponentially by
Cattaneo & Tobias (2009) as evidenced by their ability to amplify exponentially a passive
vector field. Indeed the set of vector fields that do not grow exponentially when stretched
by the turbulence appears to have measure zero. Unfortunately this implies that there is
no general theory for the saturation of the dynamos and that, perhaps unsurprisingly, the
physics of the momentum equation will play an important role.

6.2. Saturation of high Pm dynamos

6.2.1. High Pm dynamos: general considerations and random flows

Just as for the kinematic regime, there is a large difference between high and low Pm

regimes with regard to the saturation of dynamos. In the high Pm regime the dynamo is
operating at scales in the sub-inertial range of the velocity for which the kinetic Reynolds
number is small and the inertial term in the momentum equation can be neglected. The
velocity can then formally be decomposed into two parts u = uF + uM where uF is the
original velocity driven by the forcing (either mechanical or buoyancy) i.e. it is the velocity
of the kinematic dynamo problem and has a characteristic scale ≫ lη, the other uM is the
magnetically driven velocity. These two components then evolve independently (Brummell
et al. 2001), as the inertial terms has been neglected.

To fix ideas, consider the case where the velocity is kinematically driven solely on one
scale, say the integral scale of the calculation. As noted in § 4.1. this will lead kinematically
to a growing dynamo eigenfunction for the magnetic field that is concentrated at the
resistive Rm−1/2 scale. If Rm is large (i.e. in the kinematic fast dynamo regime) then this
is much smaller than the scale of the velocity. These small-scale filamentary fields now
drive flows on scales smaller than the velocity via the Lorentz force, eventually generating
strong enough magnetic energy at the velocity scale to modify the original flow. Because
of the simplicity of system at low Re, estimates for the strength of the generated magnetic
field can be obtained where B2/U2 ∼ Rm1/2Re−1, where B is measured in units of the
Alfvén velocity. This estimate is borne out at moderate Rm, but breaks down at higher Rm

(Brummell et al. 2001). At such low Re and Rm the saturation mechanism is simply to
drive flows via the Lorentz force that can counteract the advective properties of the driven
flow.

For multi-scale velocity fields at moderate and large Re the situation is more complicated
and saturation can be investigated using semi-analytical models, phenomenological
models and numerical experiments. The semi-analytical models are ultimately based
on some closure of the MHD equations. For random flows described by the Kazantsev
formalism, the magnetically driven velocity produces a change in the velocity correlator,
which leads to the nonlinear saturation (Subramanian 1999, 2003). Alternatively a
Fokker–Planck equation for the probability distribution function for magnetic fluctuations
can be derived. It can be shown that the coefficients of this equation again are determined
by the velocity correlation function which can be modified nonlinearly in a similar manner
to above (Boldyrev 2001). However, all of these results rely on some assumption of the role
of the Lorentz force and that the flows remain δ-correlated in time even in the presence of
a saturating magnetic field.

At high Pm an interesting phenomenological description for multi-scale dynamos has
been proposed (Schekochihin et al. 2002). The initial kinematic growth of field at the
resistive scale (which is much smaller than the viscous scale) is modified when u · ∇u ≈
B · ∇B at that scale. The left-hand side is easily estimated to be v2/lν . To estimate the
right-hand side the authors use the foliated structure of the magnetic field to yield an

912 P1-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1055


The turbulent dynamo

estimate of b2/lν , where b is a typical field strength at the scale lη. The nonlinear saturation
therefore begins when the magnetic energy comes into equipartition with the kinetic
energy at the viscous scale, and dynamo growth associated with eddies at the viscous scale
is halted. This suppression is believed to be the result of a subtle modification of the eddy
geometry; the Lorentz force causes the eddies to align with the local magnetic field, thus
reducing induction. However, slightly larger eddies can still sustain growth and so growth
will continue until the magnetic energy comes into equipartition with the energy of these
eddies; this process continues until the magnetic energy reaches equipartition with the
kinetic energy at the integral scale. This nonlinear adjustment is characterised by a growth
of the magnetic energy on an algebraic (rather than exponential) time with a shift to the
generation of magnetic fields on larger scales. It is possible to construct models where the
final state only reaches a fraction of global equipartition. This occurs when Pm is large but
Pm ≤ Re1/2, and for this regime B2/U2 ≈ Pm/Re1/2 (Schekochihin et al. 2002). In this
scenario, however, the characteristic scale of the saturated magnetic field is still smaller
than the viscous scale.

6.2.2. High Pm dynamos: numerical experiments

There have been many simulations of dynamo saturation at moderate to high Pm that seem
to confirm the phenomenological picture described above (Maron, Cowley & McWilliams
2004). In the kinematic phase the magnetic spectrum appears compatible with the k3/2

prediction of the Kazantsev model, whilst the magnetic field does indeed appear foliated.
Dynamo saturation occurs when the magnetic and kinetic energies are comparable; as
the saturation progresses the magnetic spectrum grows and flattens with the creation
of magnetic structures at larger scales. The magnetic energy always exceeds the kinetic
energy and the field is more intermittent than the velocity, with the p.d.f. for the velocity
field remaining close to that of a Gaussian whilst that for the magnetic field is better
described by an exponential. The degree of intermittency is, however, reduced in the
saturated state as compared with the kinematic state (Cattaneo 1999). Interestingly, the
high Pm formalism seems to persist for Pm ∼ O(1) (see Tobias et al. (2012) for more
details) although quite how well the phenomenological picture is replicated is unclear,
owing to numerical limitations. It is clear though that at Pm ∼ O(1) the magnetic fields
are more intermittent that the velocity and the local magnetic field introduces statistical
anisotropy in the flow in the nonlinear regime.

6.3. Saturation of low Pm dynamos

At present, the low Pm regime remains largely unexplored, owing to the computational
constraints described earlier for the kinematic problem. Because the dynamo operates in
the inertial range of the turbulence inertial terms certainly remain important. Analytical
progress can only be made by resorting to standard closure models such as the
eddy-damped quasi-normal Markovianised (EDQNM) model (Pouquet, Frisch & Leorat
1976) (see § 6.4 for a discussion of EDQNM and other closures).

However, some progress can be made by adopting dimensional arguments. For
non-rotating systems, Fauve & Pétrélis (2007) identify a possible scaling for the level of
saturation of dynamos at low Pm. For the realistic case where Rmc becomes independent
of Pm as Pm gets small, the scaling is given by

B2

μ
∼ ρU2, (6.1)
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so that the level of saturation of the magnetic energy becomes independent of Pm. This
is in marked contrast to the scaling for large Pm discussed above. Unfortunately, even
with current computational power, simulations of dynamos at low Pm are difficult, and
it appears as though all simulations (whatever the quoted value of Pm) are currently in
the Pm ∼ O(1) regime, with all the associated dynamics (see e.g. Mininni 2006; Iskakov
et al. 2007). For reasons discussed in Tobias et al. (2012), any calculation that aims
to test nonlinear saturation in the low Pm regime (and that resolves the inertial range
and the numerically growing eigenfunction) has a requirement in terms of grid points
of several thousands (or tens of thousands). Using LES for the velocity should save a
factor of ten in resolution (Ponty et al. 2007), but care must be taken in applying sub-grid
modelling to MHD flows as emphasised by Miesch (2015). There is, however, a case where
dynamo saturation at low Pm can be calculated (Seshasayanan, Gallet & Alexakis 2017b).
This utilises an asymptotic reduction of the equations for rapid rotation; as noted earlier
rapid rotation has the tendency to make low Pm dynamos act like high Pm dynamos.

6.4. Analytic closure theories for nonlinear dynamos

Analytical progress for nonlinear dynamos is difficult and, just as for hydrodynamic
turbulence, almost always relies on closure approximations. It is important to stress that
closure theories for MHD are on shakier ground than those for hydrodynamic flows;
whereas in hydrodynamic turbulence there is a vast body of experimental evidence and
many systematic attempts to test closures and reduction hypotheses, there is no such thing
in MHD. Much more needs to be done in evaluating the accuracy and applicability of
closure hypotheses for MHD; intuition for such problems is often misleading. One other
shortcoming of the procedure is that often expedient assumptions about the nature of the
turbulence are made (for example homogeneity and isotropy) in order to make analytical
progress in deriving the expressions for the EMF, and hence the transport coefficients. For
geophysical and astrophysical situations these assumptions are often poor and so it would
be better to proceed without making such assumptions – this is the philosophy behind
direct statistical simulation (DSS) as described in § 10.

Here, we do not give details of the various possible closure schemes, as a discussion of
these even for the hydrodynamic problem is well beyond the scope here. The interested
reader is directed to the excellent review by Yokoi (2019). We only include here a flavour
of the assumptions and shortcomings of the various closures.

The simplest closure scheme possible is to consider only quasilinear interactions in both
the momentum equation and the induction equations. That is to discard eddy/eddy → eddy
interactions in both equations. This is expected to work well for the case where there are
systematic mean flows and fields, but may not be appropriate when cascade and inverse
cascade processes play a dominant role.

For cases where the eddy/eddy → eddy interactions are key, more work is needed
to capture the nature of the interactions. Following Yokoi (2019) we explain the
schemes using a model nonlinear system that schematically represents the hydrodynamic
momentum equation in the form

∂u

∂t
= uu − p + νu; (6.2)

extension of the formalism of the schemes to MHD, although not their applicability, is
then straightforward. Here, the uu term is simply a prototypical nonlinear term. Hence

∂〈u〉
∂t

= 〈uu〉 − 〈p〉 + ν〈u〉, (6.3)
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where 〈〉 indicates an average quantity. The nonlinearity in this equation of course leads to
the problem that the second-order correlation is required to solve for the mean and that the
third-order correlation is also needed because

∂〈uu〉
∂t

= 〈uuu〉 + ν〈uu〉. (6.4)

The fourth-order correlation appears in the equation for the evolution of the third-order
correlation because

∂〈uuu〉
∂t

=
(∫

〈uuuu〉
)

+ 〈uuuu〉 + ν〈uuu〉, (6.5)

where the Poisson equation for the pressure has been used.
What is clear is that some closure is needed that can express the fourth-order correlations

in terms of lower-order correlations (either via a functional form or by deriving an
evolution equation). For inhomogeneous systems this closure can be achieved by setting
the values of higher order cumulants (which for the first three correspond to centred
moments) to zero (see § 10).

However, if one also makes the assumption of homogeneity, then progress can be made
by transforming to spectral (wavenumber) space and deriving the evolution equation for
the spectral energy, E(k), in terms of the spectral energy flux, Π(k), and the spectral
energy transfer, T(k). Because the energy is a measure of the second-order correlations
and the flux and energy transfer represent triple correlations, a closure can be achieved by
expressing T(k) or Π(k) in terms of E(k).

The most basic attempt to achieve this is to consider quasi-normal models (Monin,
Yaglom & Lumley 1975) in which the p.d.f. of the velocity field is Gaussian and so the
fourth-order correlation may be expressed as a sum of the products of the second-order
correlations. However, this severe degree of approximation can lead to lack of realisability
in the sense that negative energies may be achieved.

In order to alleviate this problem, which can be traced to the overestimation of triple
correlations, Orszag (1970) suggested placing a scale-dependent damping term τ(k) in
the evolution equation for the triple correlations. Together with the assumption that the
turbulence does not depend on its history (i.e. lacks memory via Markovianisation) this
leads to the EDQNM approximation. The addition of the scale-dependent eddy-damping
time can certainly resolve the issue of non-realisability; however, the eddy-damping time
depends critically on an assumed eddy-damping rate μ(k), which is a given parameter.
Indeed, simplifications (for example the so-called ‘minimal τ approximation’, where the
eddy-damping time is itself a parameter independent of scale) have also been suggested
and explored (Kleeorin et al. 2002).

One of the central uncertainties of utilising closure models for MHD turbulence and
dynamos arises because the eddy-damping rate (and hence time) does depend on the
magnetic field strength and is not given a priori. Magnetic fields lend memory to the
turbulence through the presence of restoring forces and waves, and this should be taken
into account in any theory. For all the theories described above, some assumption must
be made about this dependence, which does not arise self-consistently from the theory.
It is certainly the case that, whereas in hydrodynamic turbulence there is overwhelming
evidence that this quantity is of the order of the turnover time, there is no consensus on
what this quantity should be in MHD theory. Indeed it may depend sensitively on the field
strength and magnetic Reynolds number of the magnetised turbulence.

However, one scheme that does enable some self-consistent derivation of the time
scale for the turbulence is the direct-interaction approximation (DIA) introduced by
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Kraichnan (1959). Here, via Green’s function techniques, a closed system of equations
comprising an equation for the correlation function and one for the response function is
derived. The method of derivation is long and involved (and beyond the scope of this paper
– although see Yokoi 2019), taking in such mathematical joys as perturbation expansions,
partial summations and renormalisation methods via Feynman diagrams. It goes without
saying that, in order to close the system, some assumptions must be made even for this
technically challenging procedure. There is much work to be done on understanding the
basic response of turbulence in the presence of a magnetic field at different Rm even for the
case where the magnetic field has not been self-consistently generated by the turbulence.

Finally for this section, we stress that the closure models described above are all
essentially formulated and solved in spectral space, and that, as noted, this approach
relies on the turbulence being homogeneous (and for some simplifications isotropic). The
astrophysical turbulence that leads to the generation of cosmical magnetic fields is almost
never homogeneous (and certainly not isotropic) and so this approach may be limited in
applicability. One approach aimed at circumventing this issue is to derive statistical models
that do not rely on homogeneity. Perforce, these models are less amenable to analytical
descriptions and solution and numerical algorithms and techniques must be developed
for their progression (see § 10 for a discussion of DSS). However, some progress can be
made in including inhomogeneity via the two-scale direct interaction approximation. This
approach combines multiple-scale analysis (of the type used to derive mean-field theory)
with the DIA. In short, the method proceeds by introducing two time scales (one order one
– called fast for convenience – and one slow) and spatial scales (one small and one order
one), so that

ξ = x, X = ǫx; τ = t, T = ǫt, (6.6a–d)

with ǫ ≪ 1. All variable are then expanded into mean fields and perturbations so that

f = f (X , T) + f ′(ξ , X ; τ, T). (6.7)

Progress is now made by assuming that the fluctuation field is homogeneous with respect
to the fast space variable, and expanding the fluctuating variables in a power series
in the small parameter ǫ, so that f ′ = f ′

0 + ǫf ′
1 + · · · , making assumptions about the

statistical properties of f0 and calculating the turbulent fluxes (for example Reynolds
stresses and EMFs) via DIA. This has the potential to be a formidable approach leading to
breakthroughs for certain instability and dynamo problems (see e.g. Yokoi 2018).

6.5. Saturation of systematic fields

In this section we consider probably the most contentious issue in turbulent dynamo
theory, the mechanism for the nonlinear saturation of systematic fields. It is fair to say that
this issue is technically and computationally challenging and no consensus has emerged. It
would be possible to construct a whole review of this topic without really doing it justice,
so here I will only recount the salient arguments.

We have demonstrated how prescribed turbulent flows with broken reflectional
symmetry can lead to the generation of an EMF that leads to the direct generation of
systematic magnetic fields (in a manner analogous to the driving of mean flows via a
Reynolds stress in the momentum equation). There are two possible general mechanisms
for how systematic fields may continue to be generated in the nonlinear regime. The first
is that the kinematic mechanism of direct driving via an EMF continues to proceed in
the nonlinear regime. Here we stress that direct driving refers to eddy/eddy → mean
interactions (in the language of fluid turbulence). If this were the case then it might
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be possible to develop a theory for the nonlinear behaviour of this driving, including
parameterising the role of the large-scale magnetic field in modifying the transport
coefficients. A second possibility is that in the nonlinear regime a scale-by-scale inverse
cascade proceeds whereby energy is successively transferred locally in scale to larger
spatial scales, eventually reaching the system scale of the object. It is fair to say that
currently both of these mechanisms (direct driving and inverse cascades) are believed to
contribute.

As noted above, even in the nonlinear regime, the induction equation is still formally
linear in the magnetic field and so it can be argued that the machinery of kinematic
mean-field electrodynamics can, and should, still be of utility. Indeed, the arguments there
were based on solution of the induction equation alone, which is an important component
of the nonlinear dynamo system.

It should even be possible to continue to couch the direct generation of systematic
magnetic fields in the nonlinear regime in terms of the calculation of transport coefficients
similar to those outlined in § 5.3.3. What would be needed here is to utilise the saturated
velocity field in the equations for the evolution of the fluctuating magnetic field ((5.31))
to calculate the evolution of the EMF. Formally this, of course, would yield the correct
prescription, as this is simply a proxy for solving the induction equation. There are two
major problems with this approach, however. The first is that there is no general theory
for the turbulent response of the fluctuating velocity field to the presence of a magnetic
field (either large or small scale) as should have become clear in our discussions earlier.
The second is that, even were such a theory possible, we have seen that determination
of the transport coefficients can only proceed if certain approximations (for example
low Rm or short correlation time, τc, for the turbulence) are utilised. So for example,
if the turbulence is assumed to maintain a short correlation time then the transport
coefficients can be described by equations such as (5.38), where now u and ω must be
interpreted as the saturated velocity and vorticity. Astrophysical dynamos are certainly
not at low Rm. Moreover it has often been argued that a significant consequence of
the presence of magnetic field in turbulence is to add memory to the flow, thereby
increasing the correlation time (τc) of the turbulence and making the approximations
of first-order smoothing less valid in the nonlinear regime (even if they were assumed
valid in the kinematic regime). It seems as though the desire to express everything in
terms of a mean-field theory based on kinematic considerations is causing considerable
complications.

6.5.1. Catastrophic (Vainshtein–Cattaneo) quenching

Perhaps the greatest challenge to mean-field theory in the dynamic regime arises from
arguments proposed in the early nineties by Vainshtein and Cattaneo (Cattaneo &
Vainshtein 1991; Vainshtein & Cattaneo 1992) and extended by Gruzinov & Diamond
(1994). The arguments concern the level of saturation of the organised field that can be
generated by an EMF, before the EMF is itself suppressed by the nonlinear effects of
Lorentz force in the momentum equation.

One way to proceed would be to assume on energetic grounds that the Lorentz force
can only begin to suppress a kinematic effect once the energy in the magnetic field is
comparable with that of the turbulence. Traditionally (and naively) it has been assumed
that this occurs when the magnetic energy of the mean field is in equipartition with the
kinetic energy of the flow, i.e. when

〈ρu2〉 ∼ B2
0/μ, (6.8)
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where B2
0 = B · B is the energy in the mean field. Hence a simple phenomenological

model would then be to take the nonlinear dependence of the transport coefficients as

α = α0

1 + B2
0/B

2
, β = β0

1 + B2
0/B

2
, (6.9a,b)

where α0 and β0 are the values of the transport coefficients derived in the kinematic
approximation and B2 is the non-dimensional equipartition energy (i.e. normalised with
the kinetic energy of the flow). Note that this prescription implicitly assumes that the mean
field dominates (or at least is of the same order of magnitude as) the fluctuating field in
the saturated regime, and so it is the mean field that leads to saturation of the transport.
The expressions in (6.9a,b) are attractive as they lead to a saturation of the mean field
for an energy comparable with that of the turbulence. Moreover these expressions rely
only on the calculation of the mean or organised fields, which requires little in the way of
computational expense.

However, the assumption that the magnetic energy is dominated by the organised
component is questionable at high Rm as pointed out clearly by Cattaneo & Vainshtein
(1991) and Vainshtein & Cattaneo (1992). The distribution of magnetic energy with spatial
scale at high Rm is a key issue for understanding nonlinear dynamo saturation. One can
proceed on either physical or mathematical grounds to understand this distribution –
computational models, although suggestive and informative, are not at the point of
unambiguously settling this issue.

On physical grounds, it is argued that if there is a large-scale component of the field
generated kinematically in a turbulent dynamo then turbulence will also amplify magnetic
fields on the small scale via the action of eddies with short turnover times. Hence one
might expect the small-scale fields (kinematically) to be more energetic than those on
large scales. If diffusion plays a role in setting the ratio of these energies then one might
expect a relationship of the form

b2 ∼ RmpB2
0, (6.10)

where b2 = b′
· b′ and 0 ≤ p ≤ 2 is a flow- and geometry-dependent coefficient.

If this is the case, and assuming that magnetic fields with this energy do distort
the eddies with correlations that lead to the generation of organised field (i.e. those
with significant broken reflectional symmetry), then this may indicate that the transport
coefficients are altered significantly once this strong small-scale field reaches equipartition
with the kinetic energy of the turbulence, i.e. when

〈ρu2〉 ∼ RmpB2
0/μ. (6.11)

One might then expect that the expressions in (6.9a,b) to be replaced by

α = α0

1 + RmpB2
0/B

2
, β = β0

1 + RmpB2
0/B

2
. (6.12a,b)

At high Rm, one can then argue that the efficiency of the transport coefficients is
strongly suppressed, even when the organised field B0 is small; a phenomenon known
as ‘catastrophic’ quenching (Cattaneo & Vainshtein 1991; Vainshtein & Cattaneo 1992). It
certainly seems plausible that the transport coefficients begin to be suppressed when the
mean field is weak. However, the generation of a mean EMF relies on correlations in the
turbulence between the fluctuating magnetic field and eddies, which is a subtle interplay,
so arguments on physical grounds may be misleading. Hence, other approaches to this
issue have been employed.
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The first of these is to derive analytical expressions for the EMF (and hence the transport
coefficients) utilising closure approximations (such as those discussed in § 6.4) and to
then apply conservation laws that are valid in the non-dissipative system. This approach
can yield significant insight (in fact even understanding the role played by conservation
laws is important) but is only as good as the closure approximations that are utilised. For
a more extensive discussion see Diamond, Hughes & Kim (2005) and Brandenburg &
Subramanian (2005). We give a brief explanation here.

Let us start by describing a closed domain, with no fluxes in or out of the region. We
noted in (2.19) that the total magnetic helicity changes only via dissipation or through
surface fluxes from the domain. Hence, for an ideal closed system, magnetic helicity is a
quadratic (although not sign-definite) invariant quantity. For a closed dissipative system
with no surface fluxes, global magnetic helicity can only be created or destroyed via
irreversibility introduced by diffusive processes, i.e.

d
dt

〈A · B〉 = −2η〈 j · B〉. (6.13)

We recall here that angular brackets refer to volume averages. Note at this point that, for
this closed system, this immediately allows some inference about 〈 j · B〉 in the steady
state, namely that 〈 j · B〉 = 0.

Furthermore, if one defines an intermediate average (such as coordinate averaging in the
mean-field sense as discussed in § 5.1) and denotes it by an overbar then in the steady state

〈 j′ · b′〉 + 〈 j · B〉 = 0, (6.14)

so that the average current helicity from the fluctuations is of the opposite sign to that from
the means in the steady state, and if there is no mean current then 〈 j′ · b′〉 = 0.

Indeed, if there is no mean current another exact result emerges from consideration of
Ohm’s law, giving

E · B0 = − 1
σ

〈 j′ · b′〉 + 〈e′
· b′〉 = αB2

0, (6.15)

where B0 is the uniform mean field, with no associated current. This exact result relates
the transport coefficient α to the fluctuating current density and the average correlation
between the fluctuating magnetic field and EMF.

Finally, for a closed domain one may obtain evolution equations for the magnetic helicity
contributions from large and small scales, namely

d
dt

〈A · B〉 = 2〈E · B〉 − 2η〈 j · B〉, (6.16)

and
d
dt

〈a′
· b′〉 = −2〈E · B〉 − 2η〈 j′ · b′〉. (6.17)

Hence, the 〈E · B〉 term acts to transfer magnetic helicity between fluctuating and mean
magnetic fields. It is clear then for this closed system that if the large-scale magnetic
helicity is to grow it must be at the expense of the small-scale magnetic helicity; recall
though that magnetic helicity is not sign definite so it is certainly possible for these to
grow together if they are of opposite signs.

We note here that the expressions derived above allow evaluation of an expression for
the projection of the average EMF onto the mean field, i.e. E · B0, in terms of correlations
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between j′ and b′, instead of correlations between u′ and b′. However, in the nonlinear
regime we know none of u′, b′ or j′, so what has this manipulation gained us?

The answer arises from utilising results from calculations employing the closure
approximations described in § 6.4 – specifically calculations employing the EDQNM
approximation, and generalisations thereof. These calculations (see e.g. Pouquet et al.

1976; Kleeorin et al. 2002) yield an approximate relationship between the α-coefficient
for homogeneous isotropic turbulence and the kinetic and current helicity, namely that

α ∼ −τc

3
〈u′

· ω′ − j′ · b′〉. (6.18)

At this point it is worth commenting again on the status and interpretation of this
expression. Unlike the earlier global balance relationships, which are exact, it is to be
stressed that this expression can only be derived via approximate closure relationships or
via linearisation about a pre-existing turbulent MHD state at low Rm and short τc (Proctor
2003). Equation (6.18) has clearly replaced the calculation of correlations between u′ and
b′ with those between j′ and b′. This is only possible if some dynamical relationship
between j′ and u′ has been approximated.

One key limitation in this expression is the assumption that the correlation time of the
turbulence, τc remains unaffected by the presence of large-scale magnetic field, which is
not necessarily true at high Rm, as discussed earlier. Nonetheless, what is clear is that the
expression (6.18) does reduce to that given in (5.38) in the kinematic regime; the correction
to the kinematic result often being termed a magnetically driven α-effect, αM .

Because, in this approximation, the current helicity from the small scales plays a key
role determining the correction to the transport coefficient, it is now possible to combine
this with the exact results of (6.17) to derive an evolution equation for the transport
coefficient α. For details of this see Gruzinov & Diamond (1994), Kleeorin, Rogachevskii
& Ruzmaikin (1995) and Blackman & Brandenburg (2002); which include the further
assumptions/simplifications (such as relating 〈a′

· b′〉 to 〈 j′ · b′〉 via a spectral relationship)
required to derive the evolution equation.

The evolution equation is given in full in Blackman & Brandenburg (2002) who also
show that, in the saturated steady state for large-scale fields with no associated currents
(i.e. uniform fields),

α = α0

1 + RmB2
0/B

2
, (6.19)

a result first derived by Gruzinov & Diamond (1994), which is in agreement with the
catastrophic quenching result of Cattaneo & Vainshtein (1991) in (6.12a,b). There is
therefore now little debate as to the nature of the quenching of the α-effect in closed
systems with no large-scale currents; particularly as we shall see that the quenching
formula is consistent with the results of numerical experiments (albeit at low and moderate
Rm.)

Physically this result can be interpreted as the conservation of magnetic helicity placing
a topological constraint on the nature of the magnetic field (as discussed in § 2.3.1).
In order to grow the large-scale magnetic field, the knotted small-scale field that is
naturally generated kinematically must be untangled, which is impossible if the topological
constraint is maintained. If the presence of small magnetic diffusion is the only source of
irreversibility allowing the untangling of magnetic field, then this places a severe constraint
on the level of the mean field that can be generated – or at least the time scale on which it
can be generated.

One interpretation of a formula such as that of (6.19) is that large-scale field generation
is completely suppressed for mean fields an order of magnitude smaller than equipartition
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(B0 ∼ O(Rm−1/2B)). However, consideration of the full evolution equation given in,
say, Blackman & Brandenburg (2002) demonstrates that even with this ‘catastrophic’
quenching formula the energy in the large-scale magnetic field continues to grow on a
time scale controlled by the irreversible process, in this case magnetic diffusion (an ohmic
time). In the long run (for example in the case of the Sun a time scale comparable with the
age of the star) reaching a statistically steady state with significant large-scale field may
be possible, see also Moffatt & Dormy (2019). However, ‘in the long run we are all dead’
(Keynes 1923).

6.5.2. Large-scale currents and helicity fluxes: can they help?

‘E pur si muove’ Attributed (perhaps incorrectly) to Galileo.

Catastrophic quenching as envisaged by Vainshtein & Cattaneo (1992) and Gruzinov
& Diamond (1994) places a severe constraint on the applicability of mean-field theory
at high Rm. Large-scale organised fields can only be generated from a weak seed field
on an ohmic time scale, this being the time taken for the action of ohmic dissipation to
untangle the knotted field. However, it may be that other processes can be identified that
break reversibility and hence the topological constraints placed on the field, which we
shall discuss below. Another option is that the magnetic field may not have been generated
all the way from kinematic values by a turbulent EMF, but may simply be sustained by
an EMF that arises from an instability of the field itself. These more laminar ‘essentially
nonlinear’ dynamos will be described in § 7.

When a mean current j is allowed, this naturally leads to the presence of large-scale
current helicity 〈 j · B〉. Care does need to be taken here as the presence of a large-scale
current leads to both questions of the nature of the separation of scales and the presence of
a turbulent diffusion because of the presence of large-scale field gradients. The inclusion
of a mean current may seems natural, since it is difficult to see how a dynamo can generate
a magnetic field with no mean current. In that case (6.19) (subject to the same assumptions
and approximations) is modified to

α = α0

1 + RmB2
0/B

2
+ Rm β〈 j · B〉

B2 + Rm〈B2〉
, (6.20)

as first derived by Gruzinov & Diamond (1994); here, β is the magnitude of the turbulent
diffusivity. Thus, although the kinematic α-effect is catastrophically quenched, if one can
(somehow) generate large-scale fields with a non-trivial current helicity then they can be
maintained via a magnetically driven EMF, the second term in (6.20) (see also § 7).

However, it is not at all clear how one generates these significant large-scale fields
from a weak seed field (e.g. in a galaxy). It may be that shear flows play a major role
here in producing a large-scale field strong enough so that nonlinear effects can kick
in. However, if one is relying on turbulence (i.e. fluctuation–fluctuation interactions)
to do the job then there must be another process breaking reversibility for this to
proceed quickly. Blackman & Field (2000) proposed that catastrophic quenching, or the
associated generation of large-scale fields on an ohmic time scale, may be circumvented
if irreversibility is introduced to the system by allowing magnetic helicity fluxes into
and out of the domain. For example if magnetic helicity associated with small scales is
preferentially lost on a time scale τflux then the rate of generation of large-scale field may
occur on this time scale. Mathematically this can be seen by reinstating the helicity flux
term into (6.13) and hence also into (6.16) and (6.17). The presence of this term breaks the
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reliance on ohmic processes to reconfigure (untangle) the magnetic field, and hence may
alleviate the catastrophic quenching or allow the more rapid generation of large-scale field.
There are two, physically distinct, contributions to the helicity flux; one diffusive and one
ideal. Clearly the diffusive flux should become analogously weak to the ohmic dissipation
of magnetic helicity in the limit of high Rm, so we are relying on the ideal flux to do the
job!

There are a number of issues with this picture that require further investigation. The
first is that the ideal flux term takes the form of a surface integral; it is not obvious
whether a term that relies on losses through a surface can lead to a significant impact
on the generation of large-scale fields throughout a large volume. The second is whether
the ideal fluxes manage to avoid scaling with the magnetic Reynolds number (not directly,
since the diffusivity does not appear explicitly in these terms, but through the form of the
magnetic field). This may be checked using numerical calculations as described in the next
subsection, at least at moderate Rm; this potential lifebelt for the generation of large-scale
fields at high Rm should be investigated more closely in the near future. Finally, it may
be that it is enough to separate spatially the region of large-scale field generation from
that of large-scale field storage. Faced with the proposal of catastrophic quenching, Parker
(1993) introduced the concept of interface dynamos, which made use of precisely this
idea. More investigation of dynamos with inhomogeneous turbulence and shear flows may
reveal whether this model can function at high Rm. Shear-enhanced diffusion and other
methods of introducing irreversibility on a fast time scale may also play an important
role here.

6.5.3. Numerical investigations of catastrophic quenching

The theoretical arguments proposed above can be somewhat tested by devising numerical
experiments. These, in general, take two complementary forms: dynamo experiments
examine the nature of the generated magnetic field when it is allowed to evolve freely
in a turbulent flow, whereas turbulent transport experiments typically impose a large-scale
field (perhaps a uniform field or a large-scale field with a large-scale current) and measure
the response of the turbulence in creating an EMF. Of course, the first of these approaches
is more natural, with the magnetic field self-consistently evolving with the turbulence. The
second approach, though, offers more control and the potential to determine the functional
dependence of the EMF on parameters such as the imposed field strength, rotation rate,
and magnetic Prandtl number.

However, it must be stressed that such numerical simulations are limited in the range
of Rm that are accessible and it is difficult to extrapolate the results of these to the
astrophysically relevant high Rm regime. For example, a spectral calculation performed
with 109 degrees of freedom with a reasonable separation of scales between large and
small scales is able to reach magnetic Reynolds numbers of O(103) (Hughes & Tobias
2010).

Simulations are usually configured in one of two ways. In the first a flow is driven
via a prescribed body force, typically chosen to drive a relatively small-scale flow with
significant kinetic helicity (to maximise the chances of driving an EMF and hence a
large-scale dynamo) and potentially a shear flow. In the second driving is via buoyancy
in thermal convection, where helicity emerges naturally via the interaction with rotation;
clearly the second of these is of more relevance astrophysically although there is less
control over the form of the flow.

The list of numerical experiments performed over the past twenty or so years is long,
and a complete review is well beyond the scope here. The interested reader is directed
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to Brandenburg & Subramanian (2005) for a thorough review of the early attempts and
Brandenburg (2018) for a briefer review of later attempts.

In a closed domain all simulations (albeit at low and moderate Rm) are consistent with
the picture of catastrophic quenching of the EMF (or diffusive growth of the mean field).
For example Cattaneo & Hughes (1996) utilised a forcing that, in the absence of magnetic
field, was designed to drive a small-scale Galloway–Proctor flow (here small-scale is
defined as k = 1) and measured the response of the turbulent EMF to an imposed
uniform (k = 0) magnetic field in a triply periodic box. They found results consistent
with (6.12a,b). Analogous results were found for dynamo calculations driven by helical
turbulence by Blackman & Brandenburg (2002) (and see references therein), where for
closed systems the large-scale field only grew ohmically after an exponential kinematic
phase. It seems as though there is now reasonable agreement for homogeneous, confined
systems; the magnetic field can only emerge after an ohmic time scale.

For open systems, where boundary conditions that allow magnetic helicity to escape
or enter the domain, the situation is more controversial, and more detailed calculations
at higher Rm are needed. Briefly, it does appear that the dynamos in these open domains
do seem to have a different character to those in closed domains – at least at moderate
Rm. For example, Hubbard & Brandenburg (2010) found that, as Rm is increased both the
diffusive volume term and helicity flux contribution to irreversibility decrease, although
intriguingly the diffusive volume term decreases more rapidly as a function of Rm (at least
for moderate Rm). Linear extrapolation would seem to indicate that the boundary term
would dominate at sufficiently high Rm. Similar results have also been found by Del Sordo,
Guerrero & Brandenburg (2013). However, it does seem in all current cases as though the
ratio of mean field to fluctuating field continues to decrease with Rm (Brandenburg 2018;
Cattaneo, Bodo & Tobias 2020). Clearly this issue is difficult to address computationally,
although the status of mean-field theory in the nonlinear regime may become clearer in
the next few years.

7. Essentially nonlinear dynamos

Up to this point, we have focussed on dynamos (whether large or small scale) that have
a well-defined kinematic regime; the role of the Lorentz force is simply to saturate the
dynamo. These types of dynamo have been termed essentially kinematic (whether in the
linear or nonlinear regime), and much attention has focussed on whether such dynamos
may act to generate organised magnetic fields, as we have seen.

However, another type of dynamo is possible; one where the components of the flow
that lead to the generation of the field are themselves driven by the instabilities of, or
the intervention of, a finite amplitude magnetic field. Such a dynamo would not exist in
the limit of vanishingly small magnetic field (it is necessary to have a finite amplitude
magnetic perturbation to sustain such a dynamo). These dynamos, which have been termed
essentially nonlinear (Tobias et al. 2011a), often use the presence of a finite amplitude
magnetic field to facilitate the extraction of energy from an energy reservoir (typically a
shear flow that cannot act as a dynamo in its own right).

It has been argued that such essentially nonlinear dynamos are better candidates for
generating organised magnetic fields at high Rm than essentially kinematic dynamos.
The line of reasoning here is that, as argued at length above, organised magnetic fields
are generated through correlations between the small-scale, usually turbulent, velocity
and small-scale magnetic fields. For essentially kinematic dynamos, the small-scale flow
exists in the absence of magnetic field and is driven by either an external forcing or
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Figure 9. (a) Hydrodynamic self-sustaining process (Waleffe 1997) and (b) self-sustaining dynamo processes
in shear flows prone to MHD instabilities (Rincon, Ogilvie & Cossu 2007). After Riols et al. (2013).

a hydrodynamic instability. The magnetic field is then generated by the induction of
turbulent motions; at high Rm it is difficult to maintain the correlations between the
magnetic field and driving flow that are required for a net EMF. The loss of correlations
therefore leaks a weakening of the mean-field generation mechanism.

However, in the contrasting case of an essentially nonlinear dynamo, the finite amplitude
magnetic field drives dynamics (either as a result of a hydromagnetic instability or through
relaxing a constraint on the flow) yielding magnetic field perturbations and velocity
field perturbations that are likely to be correlated (as they have the same source). Of
course, this process may be affected adversely by the presence of turbulence that will
act so as to destroy these correlations. This is, I believe, an interesting avenue for future
research.

Some examples of essentially nonlinear magnetically driven dynamos have been
examined in detail. One of particular interest is that dynamo that exists through the
interaction of a shear flow with the magnetic buoyancy instability (Cline, Brummell &
Cattaneo 2003). In this scenario large-scale toroidal magnetic field is generated from
large-scale poloidal field by a shear flow. The regeneration of poloidal field occurs owing
to the combined action of magnetic buoyancy and Kelvin–Helmholtz instabilities; this
can only occur if the initial magnetic fields exceed a critical threshold. Furthermore, the
instabilities lead to fluctuating velocities that are strongly correlated with the unstable
magnetic fields – unsurprising as these velocities are themselves driven by the field. This
leads to the generation of a large-scale magnetic field and the cycle can begin again.
To a fluid dynamicist the description should be reminiscent of a self-sustaining process,
particularly that described by Waleffe (1997) for nonlinear transition in wall-bounded shear
flows.

This analogy has been carried much further in the description of another essentially
nonlinear dynamo in an excellent series of papers by Rincon and collaborators (see e.g.
Rincon et al. (2007); Riols et al. (2013) and others). Here the dynamo is driven by
the magnetorotational instability, which is a joint instability of differential rotation and
magnetic field. Here, a Keplerian shear flow is hydrodynamically stable via Rayleigh’s
criterion. However, in a finite domain, and in the presence of dissipation, a finite amplitude
magnetic field can lead to the destabilisation of the shear and the generation of turbulence.
This turbulence may itself lead to the sustainment of the magnetic field sufficient to
maintain the instability. Such a ‘bootstrapping’ dynamo bears all the hallmarks of a
self-sustaining process, and the strong analogies with nonlinear transition in shear flows
have been emphasised, as shown in figure 9, which is adapted from Riols et al. (2013).
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It remains to be seen whether these mechanisms continue to work at high Rm, but
this is an extremely promising avenue for research in astrophysical dynamos. Other
such dynamos that may benefit from such an analysis include dynamos driven by
magnetic buoyancy, current-driven instabilities, joint instabilities of differential rotation
and magnetic fields and possibly the geodynamo. Methods from transition, such as the
calculation of minimal seeds and exact nonlinear solutions, could be useful in aiding
progress in all of these cases.

8. Balances in rapidly rotating magnetised convection and the geodynamo

This perspective has focussed mainly on the key problem of generating magnetic field in
the astrophysically relevant limit of high magnetic Reynolds number (Rm). However, for
the construction of models of planetary magnetic fields, the conceptual difficulty lies not
in the solution of the induction equation at high Rm, but rather that of the momentum
equation in the rapidly rotating limit in the presence of a magnetic field. This difficulty
takes the form of the solution of equations with variability on a vast range of temporal
scales. Here we shall focus on descriptions of the geodynamo, although of course the
theoretical difficulties will propagate through to models of other rapidly rotating solar
system planets and exoplanets.

8.1. Time scales in the geodynamo

Earth’s magnetic field is believed to be generated in the outer core by the motion of the
iron-rich fluid there. The driving mechanism for this motion is still the subject of debate;
most models utilise driving by thermal or compositional convection, although the role
of instabilities driven by precession or tides are still of interest. The Earth, of course,
rotates with a period (TΩ) of one day, which sets the shortest time scale of interest for the
geodynamo. Once the magnetic field is generated by the dynamo it allows magnetically
mediated waves (so called MAC and torsional waves) with periods of years and decades.
It is believed that a typical convective time Tc for the Earth is of the order of 10−100 years,
whilst the magnetic field diffuses on a time scale Tη ∼ 104 years. Finally the viscous and
thermal time scales are extremely long Tκ ∼ Tν ∼ 109−1010 years. The ratio of these time
scales is encoded in the relevant non-dimensional parameters, i.e.

Ro = TΩ

Tc

∼ 10−5−10−6, Re = Tν

Tc

∼ 108−109, Rm = Tη

Tc

∼ 103, (8.1a–c)

Pm = Tη

Tν

∼ 10−5, Pr = Tκ

Tν

∼ 1, E = TΩ

Tν

∼ 10−15, (8.2a–c)

where Ro is the Rossby number and E = Ro/Re is the Ekman number. Note that most of
these numbers are either very small or very large, reflecting the large separation of time
scales. However, the magnetic Reynolds number, the source of all the problems for stellar
and galactic dynamos, is not prohibitively large. Therefore we do not anticipate too much
difficulty in the solution of the induction equation and our attention should be focussed on
the momentum equation.

The vast range of temporal scales provides the most significant obstacle to the
construction of a theoretical framework for the geodynamo. However, extra difficulties
arise from a lack of knowledge of the strength and the form of the magnetic field in the
core of the Earth, which leads to some strong debate about the nature of the important
terms in the balance of the momentum equation.
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8.2. Geostrophic and magnetostrophic balance

Consider the momentum (2.1), but now in a frame rotating with angular velocity Ω and
where the body force F arises from buoyancy in a gravity g. In this case the equation takes
the form

ρ

(

∂u

∂t
+ u · ∇u +2Ω × u

)

= −∇p + j × B + ρν∇2u + ρg

Inertia Coriolis Pressure Lorentz Viscous Buoyancy.

⎫

⎬

⎭

.

(8.3)
Here, the pressure terms also includes a contribution from the centrifugal acceleration. In
the Earth’s interior it is well established that, on time scales of relevance to the dynamo,
the inertial and viscous terms do not contribute to the leading-order balance of terms
in the momentum equation owing to the smallness of the Rossby and Ekman numbers,
respectively. The Coriolis and pressure terms certainly do enter into the leading-order
balance, with the buoyancy force acting to drive the dynamics. The debate surrounds the
role of the magnetic field in the balance, since this arises from the dynamo generated field
and cannot be theoretically determined a priori.

The discussion below follows similar lines of argument to those given in Nataf &
Schaeffer (2015) and Aurnou & King (2017) and see the recent papers of Schwaiger,
Gastine & Aubert (2019) and Aubert (2019). The importance of the Lorentz force relative
to the Coriolis force can be determined by calculating the ratio of the two, given by

ΛC = | j × B|
|2ρΩ × u| ∼ B2

2μρℓBΩu
, (8.4)

where B is a typical magnetic field strength and the magnitude of the current density
has been estimated as | j| ∼ B/(μℓB); here, the subscript C is (somewhat provocatively)
used for ‘correct’ as this measure gives the correct ratio of the relative importance of
the Lorentz and Coriolis forces; ΛC is often termed the modified Elsasser number. Of
course the typical amplitude of B and u is a scale-dependent quantity that emerges from
the dynamo calculations, but it is of interest to estimate the typical size of this ratio for
the measured field (∼40 µT) and inferred flow (10−3 m s−1) in the Earth’s core. For these
values ΛC ∼ 0.05−0.1. This would seem to indicate that the Lorentz force, at least at the
largest scale, is subdominant to the pressure and the Coriolis terms, and that a so-called
leading-order geostrophic balance occurs where

2ρΩ × u ∼ −∇p

Coriolis Pressure

}

. (8.5)

Here, the mathematical symbol ∼ is used in the loose sense of being of the same order as
(or balancing).

Given the difficulty of estimating the typical amplitudes of the magnetic fields and flows
(and indeed the currents) as a function of spatial scale, progress is often made by making
one more assumption in the induction equation to link the three. If the fluid is assumed to
be at asymptotically low Rm then one may approximate the Lorentz force as

F L ∼ 1
μ

B · ∇b′, (8.6)

where B is the large-scale field and b′ is the small induced field given by

0 ∼ B · ∇u + η∇2b′, (8.7)
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so that B ∼ BuℓB/η. The attractiveness of this approach becomes clear on realising that,
on making the approximation, all the unknown terms disappear in the ratio (8.4) and for
this limit the ratio of the Lorentz term to the Coriolis term is given by the Elsasser number

Λ = B
2

2μρηΩ
. (8.8)

Here, B is the typical size of the large-scale magnetic field and can be measured, whilst
all the other quantities are known (or semi-known) a priori. Λ is known as the Elsasser
number and is nearly always quoted as the measure of the relative importance of the
Lorentz to Coriolis force. In the Earth’s core Λ ∼ 1. Taken at face value this would place
the Earth’s core in magnetostrophic balance at largest scales, i.e.

2ρΩ × u ∼ −∇p + j × B

Coriolis Pressure Lorentz

}

. (8.9)

Even though estimates based on the modified Elsasser number (ΛC) give the
leading-order balance as geostrophic at the largest scale, it is clear from (8.4) that
the importance of the Lorentz force in the momentum equation is scale dependent. At
intermediate or small scales, the precise definition of which depends on the assumed form
of the spectrum for the velocity and magnetic field, it is likely that magnetostrophic balance
is re-established at a scale for which Rm ∼ 1 (∼ 104−105m) in the Earth’s core (Nataf &
Schaeffer 2015; Aurnou & King 2017). Of course, because Pm is small, this length scale
is much larger than the viscous scale (and indeed the Rossby scale). For scales smaller
than this one enters a diffusive regime with a strong applied field. In that regime, for
scales larger than the Rossby scale the flow is heavily influenced by rotation, whilst for
smaller scales the dynamics is prototypical diffusive MHD (Nataf & Schaeffer 2015); the
kinetic energy spectrum EK(k) ∼ k−3, whilst the magnetic energy spectrum is even steeper
EM(k) ∼ k−5.

It is worth mentioning here some theoretical arguments in favour of magnetostrophic
balance in the geodynamo. Much of these arise from considerations of the linear theory
of magnetoconvection, both in a plane layer and spherical shell. For magnetoconvection
studies the magnetic field is imposed and the critical Rayleigh number Rac is calculated
as a function of rotation rate and magnetic field strength. These are measured by
the non-dimensional input parameters E = ν/2ΩL2, Q = B2

0/μρνη or Λ = Q E =
B2

0/(2μρηΩ). Briefly, as noted in Chandrasekhar’s monograph (Chandrasekhar 1961),
both rotation and magnetic fields separately act so as to suppress convection, with (in
a plane layer) Rac ∼ E−4/3 as E → 0 so that Rac gets large; the associated critical
wavenumber kc ∼ E−1/3 so that the preferred mode is at small scales. In the non-rotating,
magnetised case Rac ∼ Q as Q → ∞ so that Rac gets large with large field. Here also
the associated mode is at small scales so that kc ∼ Q1/6. Remarkably when both strong
rotation and magnetic fields are present, the preferred mode has Λ ∼ 1 and neither Rac nor
kc are asymptotically large. The magnetic field breaks the constraints imposed by rotation
to allow efficient convection, there is a sweet spot at Λ ∼ 1 in parameter space for linear
convection to onset.

The existence of this sweet spot has formed the basis of the argument for the adoption of
magnetostrophy in dynamo calculations. It is argued that, all other things being equal, the
dynamo will try to locate itself in a state in which convection is optimised. This is certainly
a plausible argument, although it should be stressed that it is not necessarily the case that
convection is optimised in the nonlinear regime for the same parameters that optimise it
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in the linear regime; recall that investigating the linear regime for magnetoconvection is
implicitly a low Rm calculation. Moreover the breaking of the rotational constraint does not
need to take place at all scales to allow efficient convection, allowing the possibility that
geostrophic balance may proceed at large scales whilst magnetostrophy reigns at smaller
scales.

At this point we note that it now sometimes traditional to designate a system as being in
MAC (Magneto–Archimedes–Coriolis) balance when the primary balance is geostrophic
(i.e. Coriolis force balanced by pressure) but the component of the Coriolis force that is
not balanced by pressure is balanced by buoyancy and the Lorentz force at the next order,
this then takes the form of balancing

2ρ Ω × u ∼ −∇p + j × B + ρg

Coriolis Pressure Lorentz Buoyancy

}

. (8.10)

It is interesting to note that if (8.10) holds then the magnetic field generated should be a
function of the modified Rayleigh number (R̃a = (αΔTL)/ηΩ) only (Dormy, Oruba &
Petitdemange 2018).

Recently Schwaiger et al. (2019) have argued that this balance should be termed
QG-MAC (for quasi-geostrophic-MAC) balance to indicate that the primary balance is
geostrophic whilst the Lorentz force enters in at the next order, although here we shall
use the more usual terminology. However, it is fair to say that there is no overwhelming
evidence or argument for assuming a particular force balance in the Earth’s core.
The investigation of these balances, in the relevant parameter regime of low Pm, is a
very worthwhile topic of future investigations. Although this is difficult with current
computational resources for the dynamo problem, much can be learned by studying
balances in the nonlinear rotating magnetoconvection problem (see e.g. Stellmach &
Hansen 2004).

8.2.1. Consequences of MAC balance: Taylor’s constraint

Enforcing MAC balance imposes a serious constraint on the nature of the possible dynamo
solutions. Here, we derive the simplest constraint on the form of the integrated Lorentz
force known as Taylor’s constraint.

Taking the φ-component (in cylindrical polar coordinates (s, φ, z) of (8.10) and
integrating over cylinders aligned with the rotation axis one obtains

∫

2ρ(Ω × u)φ dS ∼ −
∫

(∇p)φ dS +
∫

( j × B)φ dS +
∫

(ρg)φ dS, (8.11)

where dS = s dφ dz. As buoyancy is purely radial the final term is zero and the pressure
term integrates to zero. Finally the Coriolis term can also be shown to be zero by using the
divergence theorem over the cylinder. Hence, the only term to contribute to (8.11) is the
Lorentz force and so

∫

( j × B)φ dS = 1
μ

∫

((∇ × B) × B)φ dS = 0. (8.12)

This Taylor constraint ensures that the Lorentz torque on any cylindrical surface parallel
to the rotation axis is zero.

It is possible to construct dynamos that solve the induction equation in addition to
maintaining Taylor’s constraint both in two (Roberts & Wu 2018) and three (Li, Jackson
& Livermore 2018) dimensions. This elegant formalism certainly provides a way forward
for finding exact solutions that satisfy MAC balance. Numerical computations usually do,
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however, solve the full momentum equation (albeit in the wrong parameter regime) and
utilise the size of the departures from the solution to (8.12) (the degree of ‘Taylorisation’)
as a measure of the degree to which they have been successful in obtaining solutions that
are in MAC balance.

8.3. Computational models of the geodynamo

For all the reasons described above, computational modelling of the geodynamo remains
a formidable venture. The modern era of massively parallel computational geodynamo
modelling was started by the seminal work of Glatzmaier & Roberts (1995). They
simulated the interaction of rotating, anelastic convection with magnetic fields to produce
dynamo models that bore striking resemblance to the observed magnetic field; they even
managed to observe reversing magnetic fields. That this tour de force calculation was so
successful is surprising given the large discrepancy between the parameters that could
be reached computationally and those that pertained to the Earth. With the increase in
computational power, a large number of subsequent papers have attempted to refine and
improve on the Glatzmaier and Roberts models. The culmination of these efforts so far
are two recent high resolution models (Aubert, Gastine & Fournier 2017; Schaeffer et al.

2017).
The first of these models (Aubert et al. 2017) uses large-eddy simulations for the

momentum equation (although the induction equation is fully resolved). The parameters
are selected to get as close as computationally possible to the values in the Earth whilst
maintaining a QG-MAC balance and keeping a constant Rm. This is achieved by scaling
the input parameters with a parameter ǫ (in this case the convective power) in a consistent
manner – this is similar in spirit to the distinguished limit calculations pioneered by
Dormy (2016) discussed below. Here, in the simplest set-up, Pm ∝ ǫ1/2, E ∝ ǫ, Pr ∝ 1,
Rm ∝ 1. Here, ǫ ∼ 1 corresponds to the conditions found successfully to produce MAC
balance in a moderately rotating model, whilst ǫ small is appropriate for the Earth. The
impressive numerical calculations are performed for a range of parameters on the path,
ǫ = 1 corresponds to E ∼ 3 × 10−5 and ǫ = 3 × 10−4, gives E = 10−8. As expected,
the solutions take the form of a MAC balanced dynamo field following diffusivity-free
power-based scaling laws. Schaeffer et al. (2017) also consider numerical simulations of
dynamo action in a similar parameter regime (E ∼ 10−7, Pm ∼ 0.1, Rm > 500). They
find magnetic fields in MAC balance, with the magnetic energy one order of magnitude
larger than the kinetic energy. Interestingly, they find inhomogeneity of the solution with
a dynamical contrast between the interior and the exterior of the cylinder parallel to the
axis of rotation that circumscribes the inner core, the so-called tangent cylinder. Inside
the tangent cylinder, the strong magnetic field is generated by a polar vortex. Outside
the tangent cylinder, however, the kinetic energy is mostly non-zonal, with zonal winds
being suppressed by the Lorentz force. At different spatial and temporal scales the flow
may be either geostrophic (for large-scale and low frequency flows and for small-scale
convection in weak field regions) or in MAC balance (for high frequency large-scale modes
or convective modes at intermediate scales).

8.3.1. The search for a distinguished limit

As noted above, geodynamo models are usually integrated in completely the wrong
parameter range, but sometimes yield solutions that resemble the geomagnetic field. When
and why is this the case, and how can one continue to achieve solutions in MAC balance
as computers get faster? It is tempting to try to compute numerical models with all the
parameters set to be as close as possible to their correct geophysical values (in particular
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low E and low Pm). Is this the most sensible approach, given current computational
limitations?

An alternative, and more considered, approach was pioneered by Dormy (2016) who
studied the properties of a large set of dynamo models at moderate Ekman number (with
E ≈ O(10−4)). He argued that, at such moderate values amenable to rapid computation, it
was necessary to increase Pm from its order-one value to achieve the correct balance for the
generated magnetic field; indeed it is also of interest to examine rapidly rotating dynamos
where inertia is completely suppressed (Hughes & Cattaneo 2016) – in this regime Pm is
infinite. Of course, when E is reduced, as computational resources become more lavish,
one should move away from these models and Pm should be reduced in tandem with
the Ekman number. Dormy argued that a distinguished limit should be found where all
parameters, including Pm scale with the Ekman number as E → 0 to leave one on the
balanced dynamo branch. This is also the approach taken by Aubert et al. (2017), as
described above, although the scalings selected for the variation of the parameters are
slightly different.

8.4. Asymptotic models of the geodynamo

An alternative approach to performing DNS of the geodynamo is to construct asymptotic
models valid in the regime of strong rotation (i.e. asymptotically small Rossby number Ro).
This has much in common with the approach advocated by Dormy (2016) and Aubert et al.

(2017). The difference here is that the models are predicated on the fact that the separation
of time scales discussed earlier leads naturally to reduced dynamics. There are two reasons
why one might seek an asymptotic solution to a complicated problem. The first is that
performing an asymptotic expansion often leads to the development of a model where
analytic progress is possible and an elegant solution emerges; there are many examples of
this use of such models. The second reason is that it is the right thing to do for a given
problem; performing the expansion does not lead to a reduction in the complexity of the
problem (for example a 3-D partial differential equation may stay a 3-D partial differential
equation) but performing the expansion does, by design, lead to a set of reduced equations
that no longer contain the small parameters, which is therefore more amenable to solution.
Such models have sometimes been viewed with suspicion, ironically sometimes even by
researchers happy to utilise the Boussinesq approximation as an asymptotic framework for
modelling.

The models for the geodynamo summarised here are of the second kind. The first
multi-scale asymptotic models were constructed by Childress & Soward (1972), who
performed a weakly nonlinear analysis of Boussinesq convective dynamos in a plane layer;
their analysis showed how weak large-scale magnetic fields were readily generated. The
Childress–Soward model has been developed, first by Fautrelle & Childress (1982) who
extended the analysis to intermediate field strengths, and more recently to include the
effects of multiple length scales perpendicular to the rotation axis to enable the description
of strongly forced convection. In a series of papers (see Calkins et al. 2015; Calkins,
Julien & Tobias 2017; Calkins 2018; Plumley et al. 2018 and the references therein)
the asymptotic theory for modelling of quasi-geostropic dynamo models (QGDM) was
developed.

Here, we give a brief description of the derivation of the simplest form of the QGDM
in a Cartesian plane layer (x, y, z) with gravity pointing in the (negative) z-direction.
The starting point of the derivation are the non-dimensional equations of Boussinesq
magnetised convection in a plane layer of depth H, rotating about the vertical z-axis.
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These are given by

(

∂u

∂t
+ u · ∇u

)

+ 1
E

ẑ × u = −∇Π + Λ

PmE
B · ∇B + Ra

Pr
T + ∇2u, (8.13)

∂T

∂t
+ u · ∇T = 1

Pr
∇2T, (8.14)

∂B

∂t
= ∇ × (u × B) + 1

Pm
∇2B, (8.15)

∇ · B = 0, (8.16)

∇ · u = 0. (8.17)

Here, length is non-dimensionalised with respect to H, time with the viscous diffusion
time across the layer H2/ν, giving a typical velocity scale of ν/H. In addition magnetic
fields are non-dimensionalised with a typical field strength B and temperatures with the
temperature drop across the layer (ΔT). In addition to the non-dimensional parameters
given in (8.2a–c) and (8.8) the ration of the thermal driving to diffusive processes is given
by the familiar Rayleigh number,

Ra = αΔTgH3

νκ
, (8.18)

with α here being the coefficient of thermal expansion.
Just as for the Childress–Soward dynamo model, the anisotropic structure of rotating

convection is exploited; H/L is set to be large, where H is the vertical scale of the
convection and L is the horizontal scale. We set H/L = ǫ−1, with ǫ a small parameter.
In general, the degree of anisotropy is expected to be related to the strength of rotation
as measured by the Rossby number of the convective turbulence, and so a natural choice
is to set ǫ = Ro; this is the scaling utilised by Calkins et al. (2015). However, the Rossby
number is an output parameter of a convective system and can only be guaranteed to be
small a priori in certain circumstances. It is useful to consider a case where the separation
of scales is determined by an input parameter. In the linear regime of rotating convection,
anisotropy is governed by the Ekman number and ǫ = E1/3 is a possible choice. The
scaling of the anisotropy allows for the use of multiple-scale asymptotics in time and the
axial space direction such that

∂z → ∂z + ǫ∂Z, ∂t → ∂t + ǫ3/2∂τ + ǫ2∂T . (8.19a,b)

Hence Z = ǫz is the large-scale vertical coordinate over which convection occurs and τ =
ǫ3/2t and T = ǫ2t are the ‘slow’ mean magnetic and ‘extremely slow’ mean temperature
time scales. Note that these time scales are in the correct ordering as described in § 8.1.
The slow and fast independent variables are therefore denoted by (Z, τ, T) and (x, t),
respectively. In the more general derivation of Calkins et al. (2015), slow horizontal scales
are also utilised.

All of the dependent variables are decomposed into mean and fluctuating variables
according to

f = f (Z, τ, T) + f ′(x, Z, t, τ, T), (8.20)

912 P1-61

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1055


S.M. Tobias

(b)(a)

(c) (d )

Figure 10. Volumetric renderings of the small-scale vertical vorticity (a,b) and current density (c,d)
illustrating two flow regimes observed in the reduced convection simulations, namely the plume regime
Pr = 10, R̃a = 200 (a,c) and the geostrophic turbulence regime (b,d) Pr = 1, R̃a = 100. Here gravity points
downwards whilst rotation is about a vertical axis. After Calkins et al. (2016).

with the ‘fast’ averaging operator such that f ′ ≡ 0 , Each variable is then expanded in a
power series according to

f (x, Z, t, τ, T) = f0(Z, τ, T) + f ′
0(x, Z, t, τ, T)

+ ǫ1/2[ f1/2(Z, τ, T) + f ′
1/2(x, Z, t, τ, T)]

+ ǫ[ f1(Z, τ, T) + f ′
1(x, Z, t, τ, T)] + O(ǫ3/2), (8.21)

and substituted into the governing equations. The equations are then separated into mean
and fluctuating components. The leading-order balance in the fluctuating momentum
equation is geostrophy and closure of the system is obtained by imposing so-called
solvability conditions to eliminate secular growth. This allows the derivation of prognostic
equations for the vertical vorticity and vertical velocity, respectively. Similar techniques
are utilised for the temperature and induction equations.

In the most realistic of these models both the Rayleigh number and magnetic Prandtl
numbers are also scaled so that we set, Ra ∼ ǫ−4 and Pm ∼ ǫ1/2. Importantly, the
magnetic field is also scaled so that magnetic energy is asymptotically larger than the
kinetic energy, which is physically realistic. The method of multiple scales is used to derive
3-D reduced PDEs for large-scale (slow) and small-scale (fast) quantities.

As noted above, the dynamics is such that the QGDM is geostrophic to leading order,
with the strong magnetic field entering into the prognostic equation that determines
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the dynamics. This dynamics in plane-layer models is beginning to be investigated in
both the kinematic and nonlinear dynamo regimes. Hydrodynamically, quasi-geostrophic
convection in a plane layer passes through four typical configurations, (a) cellular
convection, (b) columnar convection, (c) plume convection and (d) geostrophic turbulence
as the Rayleigh number increases. Figure 10 shows the vorticity for the final two such
asymptotic solutions in the kinematic regime, and the small-scale current generated by
the corresponding kinematic dynamo. Interestingly, all the convection regimes act as
large-scale dynamos, with the properties of the large-scale magnetic field remaining
relatively insensitive to the precise form of the convection. These models have recently
been extended into the nonlinear regime by Plumley et al. (2018).

It is to be hoped that these models will be able to give some insight as to the behaviour of
rapidly rotating planetary dynamos at low Rossby and magnetic Prandtl number. It will be
interesting to utilise other choices for the small parameter that leads to a large anisotropy
ratio; these choices may simply be guided by the results of numerical simulations (see e.g.
Aubert 2019). Of crucial importance, of course, is to extend these models to more realistic
geometries such as spherical shells and thermal annuli, and to investigate the dynamics of
reduced models with other dynamic balances.

9. A word on dynamo experiments

Although this perspective is concerned with the theory of turbulent dynamos, it would be
remiss to conclude without some discussion of the amazing dynamo experiments that have
been performed over the past thirty or so years. Primarily these have been constructed so
as to address the question of the nature of dynamo action near to onset, i.e. for Rm close
to Rmc.

A typical laboratory dynamo is usually designed to drive a large-scale flow with
desirable laminar dynamo properties; i.e. they are usually optimised so that Rmc is as
small as possible; even obtaining a working laboratory dynamo is a formidable challenge.
For example, the Riga dynamo experiment (see e.g. Gailitis et al. 2002), is designed
to mimic the Ponomarenko dynamo described in § 2.5.1. This dynamo was the first
experimental realisation of self-excitation in a liquid metal flow, and took the form of
a 3 metre long helical sodium flow driven by a propeller. The dynamo growth rates
and frequencies from the experiments agreed well with numerical predictions (to within
5 %–10 %). Interestingly, computation seems to indicate that de-optimising the azimuthal
velocity may lead to the introduction of interesting saturation effects.

The Karlsruhe experiment (see e.g. Stieglitz & Müller 2001) was largely based on
the Roberts dynamo of § 2.5.1. Here, a liquid sodium flow was driven in an array of
columnar helical pipes, confined in a cylindrical container. The dynamo experiments
demonstrated that kinematic dynamo action occurs, with a well-predicted growth rate.
The saturated magnetic field oscillated about a well defined mean value for fixed flow
rates. The experiments could detect two quasi-dipolar magnetic fields of opposite polarity.
For both the Riga and Karlsruhe dynamos, the flows are tightly constrained and remain
close to the targeted laminar flows for optimal dynamo action; perhaps it is no surprise
that they worked so well.

All of the experimental dynamos utilise liquid metals for which, Pm ∼ O(10−6−10−5)

≪ 1, as discussed earlier. Hence, even though Rmc is moderate. the corresponding
Reynolds numbers are vast. For constrained flows, such as those of the Riga and Karlsruhe
dynamo experiments, this is not such a problem. However, the presence of turbulence at
a high Re does have a significant impact on the experimental search for dynamo action
in less constrained flows such as the VKS (von Kármán sodium) experiment (Monchaux

912 P1-63

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1055


S.M. Tobias

et al. 2007). There the flow of liquid sodium was driven in a cylindrical container by
rotating propellers. The desired large-scale ‘French washing machine’ (von Kármán) flow
is known from computation to be a decent dynamo, and the experiment was optimised so
that the (axisymmetric) mean flow provided the lowest possible Rmc. As this mean flow is
axisymmetric, the magnetic field generated is expected to have a non-axisymmetric m = 1
structure. However, because Re is large, this flow is unstable and turbulent fluctuations
are found that are comparable in magnitude with the mean flow. As discussed in § 4.2.2,
this has a negative effect on the dynamo efficiency of the experiment, increasing Rmc

and rendering dynamo action impossible unless magnetic material is used for the driving
disks. Interestingly, when magnetic field growth is sustained, it is an (axisymmetric)
m = 0 magnetic field that dominates; the experiment is a superb example of mean-field
electrodynamics in action. Here, a non-axisymmetric turbulent flow driven by vortices
near the impellers provides an α-effect that interacts with the shear generated near the
rotating disks to yield a mean-field dynamo of αω-type (Ravelet et al. 2012). Although
this experiment does rely on the presence of magnetic impellers for dynamo action, it is
fair to state that their presence simply acts so as to reduce the Rmc, and that such a set-up
would produce a dynamo should higher Rm be reachable. Furthermore, once this material
is used the system undergoes a bewildering array of nonlinear dynamics, including the
generation and reversals of a large-scale field; much can be learned here of the nonlinear
behaviour of large-scale magnetic fields in turbulent systems.

It is important to also mention the ‘whirling dervish’ experiments of the Grenoble
group (see e.g. Brito et al. 2011). This liquid sodium experiment investigates magnetised
spherical Couette flow, with a strongly magnetised inner core. Although the field is
imposed, so that this is not strictly a dynamo experiment, much has been learned about
the possible balances and dynamics of waves in rapidly rotating MHD systems from this
experiment. Next, and extremely impressively, turbulent transport coefficients have been
calculated in liquid metal experiments in a sphere by the Madison group (Rahbarnia et al.

2012). Although of course these experiments are perforce at low Rm, they give a crucial
insight into the behaviour of driven low Pm fluids.

Dynamo experiments are currently being constructed or modified in both Dresden and
Maryland. The Dresden experiment takes the form of a precession driven dynamo, with 8
m3 of liquid sodium being rotated at angular velocities of up to 10 Hz, to give Rm ≈ 700
(Stefani et al. 2015). Incredibly the experiment will generate a gyroscopic torque of 8
MNm on the foundations of the building. Such experiments are not undertaken lightly.

In general though, it is important to reflect that it is very difficult to have computational
and experimental models of dynamos in the same regime. DNS likes to sit close to
the Pm = 1 boundary, whilst liquid metal experiments are constrained to be at low Pm.
For dynamo theorists interested in data-driven modelling, this may pose some issues, as
discussed below.

10. Discussion: what of the future?

‘I may not have gone where I intended to go, but I think I have ended up where I intended
to be’.

Douglas Adams

The previous discussion has emphasised that the current status of the theory of turbulent
dynamos is uncertain, both for the geodynamo and for its astrophysical counterparts.
Despite the heroic efforts to solve the relevant equations numerically, computational
efforts are limited to parameter regimes that are far from those that pertain to naturally
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occurring dynamos. Perhaps this is best emphasised by a recent calculation by P. Käpylä
(private communication). He demonstrates that, even if the computational resources were
available to undertake numerical simulation of turbulent dynamos, the power required to
simulate a star such as the Sun is 1022 W. This is equivalent to the luminosity of a M9V
main sequence red dwarf. Although this is a fairly cool star, the point is well made.

The lack of (computational) power for numerical simulations manifests itself as a
different type of deficiency for geodynamo models from astrophysical dynamo models. For
astrophysical models, the key point is that the flows that can be simulated are too laminar
and too diffusive and there is also not enough separation of scales between the resistive
and viscous scales. Hence, for astrophysical dynamo theorists even solving the induction
equation is a formidable task, which is beyond the computational power of the near future.
For planetary dynamos, such as the geodynamo, the numerical solutions are too viscous
and too slowly rotating (although the low Pm problem is also manifest here). It is very
difficult to achieve solutions that are in the relevant asymptotic regime of geostrophy or
magnetostrophy.

So what is the correct way to proceed? For planetary dynamos, since the viscosity is
known to play a minor role, it is useful to examine models that do not rely on viscosity, such
as those that are driven by waves (see e.g. Davidson & Ranjan 2018) or those that saturate
via the enforcement of Taylor’s constraint – or a modified Taylor’s constraint that includes
the temporal variation of the zonal flow – (see e.g. Wu & Roberts 2015; Li et al. 2018).
Another promising avenue to pursue is to determine a distinguished limit (or a path through
parameter space) that maintains the correct balances, even though the computational
resources are not adequate currently to simulate the vast range of temporal scales; this
is the approach taken by Dormy (2016) and Aubert et al. (2017). Furthermore, given the
vast separation in spatial and temporal scales for the Earth’s interior, a programme based
on the derivation and solution of asymptotic models is warranted (Calkins 2018). This
programme will require the development of a new class of time stepping methods that
are capable of efficiently integrating reduced equations that evolve on very different time
scales (i.e. slow–fast dynamics). One issue that remains puzzling has to be the mechanism
that leads to the reversals of the Earth’s field. Presumably such an abrupt transition relies
on nonlinear effects (see e.g. Jones 2008). One cannot rely on inertia, which is small, to be
the source of nonlinearity, so that leaves potentially the Lorentz force or the temperature
advection and there are constraints on the action of both of these.

For the Sun and other astrophysical bodies, the problem remains the lack of techniques
to deal with flows on a vast range of spatial scales. Clearly any numerical code is capable
of only resolving an extremely limited range of these scales. There is little prospect in the
near future of developing numerical algorithms that are capable of simulating these bodies
directly. Even methods designed specifically for simulating a large range of spatial scales,
such as those that employ adaptive-mesh refinement, are not suitable for turbulent flows,
where high resolution is required globally rather than over a small fraction of the domain.
Some procedure must therefore be developed for the parameterisation of the low-order
statistics of the scales below the smallest that can be resolved. Such sub-grid models are
extremely difficult to construct for MHD turbulence (Miesch 2015). Moreover, we have
stressed here that it is key that such parameterisations (even if couched in terms of the
construction of turbulent transport coefficients) respect the inherent conservation laws of
the original system in the relevant limit. As we have shown, for example, conservation of
magnetic helicity plays a vital part in constraining the dynamo solutions. We discuss two
such possible methods for making progress in both the planetary and astrophysical dynamo
problem here. The first is to utilise DSS via cumulant expansions (see e.g. Marston, Qi &
Tobias 2019).
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10.1. Direct statistical simulation

The DSS approach involves the direct solution of differential equations derived for
the low-order statistics of fluid flows (such as mean flows and two-point correlation
functions). In this methodology the equations take the form of a truncated (equal-time)
cumulant expansion that respects the inhomogeneity and anisotropy of the underlying
dynamo system. This approach is therefore a generalisation of the methods discussed in
§ 6.4 to anisotropic and inhomogeneous systems. Because of the increased complexity, a
computational approach is required to facilitate this approach (see e.g. Tobias, Dagon &
Marston 2011b). Details of the technical procedures utilised are given in Marston et al.

(2019); here we omit the details, but give a schematic representation.
Briefly, the method proceeds by considering the system as a dynamical system and

deriving evolution equations for the cumulants of the probability distribution function
of the turbulent state. This is much less computationally expensive than solving the
Fokker–Planck equation (or the equivalent Hopf equation) for the whole p.d.f. although
that approach may also be worth pursuing (see e.g. Venturi 2018).

Briefly, consider a dynamical system where the state variable q(x, t) (in the case
of dynamos this may include information about the velocity, pressure, magnetic field,
temperature etc of the fluid) evolves via

qt = L(q) + N (q, q) + f (x, t). (10.1)

Here, L is a linear operator, whilst N is a nonlinear (in the simplest case quadratic)
operator and f (x, t) is an (often stochastic) driving term.

The method proceeds by defining the low-order cumulants which, up to third order, are
given by

c1(r) = 〈q〉, (10.2)

c2(r1, r2) = 〈q′(r1) q′(r2)〉, (10.3)

c3(r1, r2, r3) = 〈q′(r1) q′(r2) q′(r3)〉, (10.4)

so that to this order the first cumulant is given by the mean. Here, as before, the averaging
process may be taken over a coordinate or be defined as an ensemble mean. The second
and third cumulants are the centred moments (or two and three point correlation functions).
They may also be thought of as the functional derivatives of the Hopf functional.

Equations for the evolution of the cumulants may be derived either via brute force
(potentially utilising symbolic manipulators) or via the Hopf functional technique.
Schematically these take the form of a cumulant hierarchy

∂c1

∂t
= L(c1) + N (c2

1 + c2), (10.5)

∂c2

∂t
= L(c2) + N (c1c2 + c3) + Γ, (10.6)

∂c3

∂t
= L(c3) + N (c1c3 + c2c2 + c4). (10.7)

Here, Γ encodes the net action of the stochastic driving on the second cumulant (see e.g.
Tobias et al. 2011b for more details). As for classical moment hierarchies, the evolution
equation for the nth cumulant cn depends on cn+1. Hence, as for the models discussed
in § 6.4, progress can only be made by truncating the hierarchy. For computational
practicality, this is usually done by setting N (c3) = 0, so that the effect of the third
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cumulant on the evolution equation for the second cumulant is discarded; setting c3 = 0 is
certainly sufficient to achieve this. If the cumulant equation is truncated at second order,
the approach is known as CE2, which is formally equivalent to the stochastic structural
stability theory of Farrell & Ioannou (2003). Truncated at this order the equations are
realisable, in the sense that energy densities and probabilities are positive. Moreover,
global conservation laws are respected for quadratic invariants (such as magnetic helicity
and total energy of the MHD system). This can be shown by deriving the CE2 equations as
an exact counterpart of the quasilinear (QL) approximation. CE2 is quasilinear in the sense
that it includes interactions of mean quantities with eddies to give eddies and interactions
of eddies with eddies to give means (either flows or fields), but neglects interactions of
eddies with eddies to give eddies (which we term eddy–eddy scattering). In this sense,
CE2 is the self-consistent, nonlinear (i.e. dynamic), inhomogeneous, anisotropic version
of first-order smoothing.

Of course it is important to go beyond the traditional QL approximation for DSS. As
evidenced by the discussion in § 6.4, a wealth of possible extensions of QL approaches are
available.

Perhaps the most obvious route to take is to include one extra evolution equation in
the hierarchy for the statistics. This alternative, which has been termed CE3, relies on
discarding c4. If this is the route to be taken then some steps must be taken to ensure the
realisability of the system. This can be achieved by including an eddy-damping term in the
equation for the third cumulant; this form of DSS is then the anisotropic, inhomogeneous
version of EDQNM of § 6.4. A more sophisticated approach involves ensuring realisability
by projecting out the eigenvectors associated with the unphysical negative eigenvalues of
the second cumulant (Marston et al. 2019).

However, a naive implementation of CE3 may be prohibitively computationally
expensive owing to the ‘curse of dimensionality’; the statistics typically have a higher
dimension than the underlying fields. This limitation has been addressed in a recent
paper (Allawala, Tobias & Marston 2020) that performs DSS in a reduced basis;
the basis is calculated using a proper orthogonal decomposition of the eigenvectors
of the second moment of the fields, retaining only those modes that are important in
the evolution of the second cumulant. The procedure can be very effective in reducing
the computational cost with limited loss of accuracy. This is a form of unsupervised
learning, with training based upon full resolution simulations. An alternative may be to
utilise a form of machine learning to represent the high-order statistics based on the state
of the first and second cumulants; such an approach would go one step beyond current
machine learning approaches that parameterise the relationship between the turbulent
transport coefficients and the evolving mean fields.

An alternative to proceeding to higher order is instead to derive statistical equations
that are the closures of the generalisation of the QL approximation. The generalised
quasilinear (GQL) approximation is achieved by separating all the state variables into large
and small scales via a spectral filter rather than by a decomposition into a formal mean and
fluctuations (Marston et al. 2016). Nonlinear interactions involving only small scales are
then removed, so that the evolution equation for the small scales remains formally linear.
This facilitates the closure of the system in a generalised CE2 (or GCE2) method. For a
range of fluid and MHD problems it has been shown that GQL performs in a superior
fashion to the standard formal QL approximation (see e.g. Tobias & Marston 2017).
Further investigation is needed as to the reason for the marked superiority of GQL over
QL; however, it has been noted that GQL allows the transfer of energy between fluctuation
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Figure 11. Evolution of the large-scale mode as a function of z and t; at Pm = 4 for (a) Rm = 4500, and (b)
Rm = 12 000. In (a) the solution reaches a steady state, whilst in (b) DSS leads to a time-dependent state. After
Squire & Bhattacharjee (2015).

modes of different scales by scattering off large-scale modes; this mechanism is disallowed
in QL.

In the dynamo (and magnetorotational instability) context the simplest form of DSS,
namely CE2, has been utilised in the landmark paper of Squire & Bhattacharjee (2015). In
that paper the turbulence and dynamo induced by the magnetorotational instability (MRI)
were analysed. They considered a case where homogeneous turbulence was susceptible to
a large-scale dynamo instability; the instability saturated in an inhomogeneous equilibrium
that depends on the value of the magnetic Prandtl number (Pm). Examples of the
large-scale structure of the magnetic field from the direct statistical simulation, for two
different values of Rm is given in figure 11. What is interesting is that the dependence of
the angular momentum transport on Pm in the CE2 model is qualitatively similar to the
nonlinear MRI turbulence found from DNS. It is also important to note that the use of
DSS allowed for the analysis of cases at more extreme values of Pm than were available
to DNS. As stated by the authors, this suggests that these ‘. . . models may be used to
gain insight into the astrophysically relevant regimes of very low or high Pm’. Finally for
statistical models and methods, it is important to derive a firm theoretical foundation on
which to build algorithms and computational models. As for pure turbulence and climate
research, where statistical models are more widely utilised, there needs to be a program
of research that attempts to answer the questions as to whether it possible to construct
a non-equilibrium theory that describes the interaction of mean flows and magnetic
fields with turbulence in inhomogeneous, anisotropic dissipative systems (such as dynamo
systems). For example, is there a well-defined procedure for connecting fluctuations
to dissipation in turbulent magnetised flows that are not homogeneous and isotropic
(and may be stratified and rotating)? These will probably take the form of generalised
fluctuation–dissipation theorems; progress in this area could lead to the development of
meaningful statistical theories for the turbulent generation of magnetic field.

10.2. A data-driven approach to dynamo theory?

In the past few years it has been suggested that progress in modelling many physical
systems can be accelerated by utilising data-driven methods (see e.g. Spears et al. 2018;
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Brunton, Noack & Koumoutsakos 2020). These methods take advantage of the rapid
advances in computational power and algorithmic development and can be used either
independently or in conjunction with a physics-based approach. As noted by Kutz (2017),
the two cultures of statistics and data science, namely machine learning and statistical
learning, may both be of interest for the modelling of turbulent flows. In general, the former
is concerned with prediction whilst the latter is concerned with ‘inference of interpretable
models from data’ (sometimes termed model reduction).

How might these methods be brought to bear on the dynamo problems at hand? It is
perhaps easier to visualise a route to success for the second approach. In fact, dynamo
theorists through the application and evaluation of mean-field theory have been trying to
construct reduced models for dynamos for over fifty years. As we have seen, in mean-field
theory, the idea is to parameterise the effects of all the unresolved scales using transport
coefficients in reduced models for the mean fields. Here there is a strict separation
of scales and separate evolution equations can be determined. There has recently been
an interesting application of machine learning to the problem of constructing turbulent
transport coefficients by Nauman & Nättilä (2019). Here DNS of a helically forced dynamo
system was performed. The data from this simulation were compared with a mean-field
model, with the EMF parameterised as either a linear or nonlinear functional of the
mean field. Other analytical models for the EMF were also compared with the data using
Bayesian inference with Markov chain Monte Carlo sampling. From training on data, it
was possible to construct the transport coefficients, although it was shown to be extremely
difficult to constrain the formulae for the quenching of the transport coefficients by the
mean field. Interestingly, the data-driven approach could also show that non-locality in
time could play an important role in relating the transport coefficients to the mean field.

A central problem for the application of a data-driven approach to the dynamo problem
arises quite simply because of the lack of available data to constrain the models. As we
have seen, it is simply not possible to perform laboratory or numerical experiments at (or
even close to) the relevant conditions for an astrophysical object (or indeed the Earth’s
dynamo). So what is the way forward with current computational resources?

Computational models are certainly capable of faithfully and efficiently simulating
a range of spatial and temporal scales, although calculations will necessarily miss
contributions to the evolution from the scales above and below those being simulated.
Typically, as we have seen, the effect of the smaller spatial scales can be modelled utilising
their statistical properties since these evolve on a faster time scale than the larger scales.
A hierarchical multi-scale data-driven approach (HMDD) may therefore be effective. For
this approach, the starting point is a simulation of the smallest scales at parameter values
that are comfortable for the available computational resources; the availability of these
resources will certainly limit the range of scales that can be simulated. These simulations
will be conducted for a range of imposed larger-scale conditions (e.g. magnetic field
and shear strength and orientation) and the data from these will be used for training.
In this case the output of the training will be the statistics of the small scales for all
larger scale conditions. Once this training has been achieved, the process can be repeated
with a range of scales on a slightly larger length scale and longer time scale, with the
statistics of the small scales parameterised by the output of the training. Of course, the
parameters pertaining to the evolution of these larger scales will be different, as will
the prevailing balances, so the statistics of these scales can only be found via the data
from this simulation being utilised for training again. This process is repeated until a
global-scale calculation is possible (with the accurate, learned statistics from the smaller
scales repeatedly being utilised). Although, this approach may require many levels of
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training for a realistic geophysical or astrophysical problem, at each level of training
the computational costs are designed not to be restrictive. This HMDD programme of
research is technically challenging, but perhaps is able to marry the better aspects of
physics driven and data-driven approaches together without ad hoc assumptions. It is clear
that data-driven methods will play a role in advancing our understanding of dynamos, but
there are so little data (here laboratory experiments and astrophysical observations will
play a key role in validation and verification of the procedures) that one must proceed with
caution.

Finally, for data-driven methods in dynamos it is intriguing to note that machine learning
is now at the point where learning techniques can be utilised to solve equations efficiently
after training (Li et al. 2020) and that there are now techniques for constructing models
by recovering reduced equation sets from data (Brunton, Proctor & Kutz 2016). Both of
these advances, in conjunction with the necessary understanding of the allied physics and
mathematical structure of dynamos, should lead to a significant leaps in our understanding
and ability to model dynamos.

10.3. Final thoughts

Whatever the successful approach turns out to be, I believe it will not emerge from a
blind application of computing power. However, that is not to say that there is no role for
direct numerical solution of dynamo systems. Such an approach should be regarded as the
construction of silicon-based thought experiments, rather than the direct modelling of the
astrophysical objects. Much can be learned from the investigation of such models; though,
given the restrictions and the sensitivity of the dynamo system, extreme care must be taken
in extrapolating conclusions to the relevant regimes for geophysics or astrophysics.
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