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ABSTRACT

The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic
fields has been studied for incompressible gases, little is known about dynamo action in highly compressible,
supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the
first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-
dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 10243

cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl
numbers Pm = ν/η = 0.1–10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for
Pm � 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rmcrit = 129+43

−31, showing
that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions
of the present and early universe, we conclude that magnetic fields need to be taken into account during structure
formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful
jets and outflows, both greatly affecting the initial mass function of stars.
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1. INTRODUCTION

Magnetic field amplification via the turbulent dynamo is be-
lieved to be the main cause of cosmic magnetism. The turbulent
dynamo is important for the formation of the large-scale struc-
ture of the universe (Ryu et al. 2008), in clusters of galaxies
(Subramanian et al. 2006) and in the formation of the first cos-
mological objects (Schleicher et al. 2010). It determines the
growth of magnetic energy during solar convection (Cattaneo &
Hughes 2001; Moll et al. 2011; Pietarila Graham et al. 2010),
in the interior of planets (Roberts & Glatzmaier 2000), and in
liquid metal experiments on Earth (Monchaux et al. 2007). It
may further explain the far-infrared–radio correlation in spiral
galaxies (Schleicher & Beck 2013). After the turbulent dynamo
has amplified tiny seeds of the magnetic field, which can be
generated during inflation, the electroweak or the QCD phase
transition (Grasso & Rubinstein 2001), the large-scale dynamo
kicks in and generates the large-scale magnetic fields that we
observe in planets, stars, and galaxies today (Beck et al. 1996;
Brandenburg & Subramanian 2005).

The properties of the turbulent dynamo strongly depend on
the magnetic Prandtl number, Pm = ν/η, defined as the ratio
of viscosity ν to magnetic diffusivity η (Schekochihin et al.
2004). On large cosmological scales and in the interstellar
medium, we typically have Pm � 1, while for the interior
of stars and planets, the case with Pm � 1 is more relevant
(Schekochihin et al. 2007). Numerical simulations, on the other
hand, are typically restricted to Pm ∼ 1, because of limited
numerical resolution. Simulations by Iskakov et al. (2007) have
clearly demonstrated that the turbulent dynamo operates for
Pm � 1 in incompressible gases, even though an asymptotic
scaling relation has not been confirmed. While the bulk of
previous work was dedicated to exploring the turbulent dynamo
in the incompressible regime (Brandenburg et al. 2012), most
astrophysical systems show signs of high compressibility. This

is particularly true during the formation of the first cosmological
objects (Latif et al. 2014), in the interstellar medium of galaxies
(Larson 1981) and in the intergalactic medium (Iapichino et al.
2013). The compressibility of the plasma can be characterized
in terms of the sonic Mach number M = V/cs, the ratio of the
turbulent velocity V, and the sound speed cs. The Mach number
typically exceeds unity by far in all of these systems, which is a
hallmark of highly compressible, supersonic turbulence.

In the framework of the Kazantsev model (Kazantsev 1968),
Schober et al. (2012a) derived analytical dynamo solutions for
the limiting cases Pm → ∞ and Pm → 0, considering different
scaling relations of the turbulence, while Bovino et al. (2013)
derived a numerical solution of the Kazantsev equation for finite
values of Pm. These studies strongly suggest that the turbulent
dynamo operates for different values of Pm, as long as the
magnetic Reynolds number, Rm = V L/η, is sufficiently high,
where L is the characteristic size of the large-scale turbulent
structures.

However, a central restriction of the Kazantsev framework is
the assumption of an incompressible velocity field, for which
a separation into solenoidal and compressible parts is not nec-
essary. The distinction between solenoidal and compressible
modes, however, may be essential for highly compressible, su-
personic turbulence. Furthermore, the Kazantsev framework as-
sumes that the turbulence is δ-correlated in time, which is not
appropriate for real turbulence. The resulting uncertainties in-
troduced by that assumption, however, are only a few percent
(Schekochihin & Kulsrud 2001; Kleeorin et al. 2002; Bhat &
Subramanian 2014), while the assumption of incompressibil-
ity is a severe limitation. Ultimately, the full nonlinear solution
through three-dimensional (3D) simulations is needed to de-
termine the behavior of the growth rates under more realistic
conditions.

We note that the turbulent dynamo has also been studied
in the context of so-called shell models (Frick et al. 2006, and
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references therein). These approaches allow us to derive theoret-
ical predictions for the magnetic field growth in the exponential
and in the saturated regime, and are highly complementary to
the methods presented here.

In this Letter, we present the first investigation of the turbulent
dynamo and its dependence on the magnetic Prandtl number in
the highly compressible, supersonic regime. For this purpose,
we consider supersonic turbulence with Mach numbers ranging
from M = 3.9 to 11, and magnetic Prandtl numbers between
Pm = 0.1 and 10. The results are compared with the predictions
from the Kazantsev model. Section 2 defines the numerical
methods used in the simulations, Section 3 summarizes current
dynamo theories, Sections 4 and 5 present our results and
conclusions.

2. NUMERICAL SIMULATIONS

We use a modified version of the FLASH code (Fryxell et al.
2000; v4) to integrate the 3D, compressible, magnetohydro-
dynamical (MHD) equations, including viscous and resistive
dissipation terms,

∂

∂t
ρ + ∇ · (ρv) = 0, (1)

∂

∂t
(ρv) + ∇ ·

(
ρv⊗v − 1

4π
B⊗B

)
+ ∇ptot

= ∇ · (2νρS) + ρF, (2)

∂

∂t
E + ∇ ·

[
(E + ptot) v − 1

4π
(B · v) B

]

= ∇ ·
[

2νρv · S +
1

4π
B × (η∇ × B)

]
, (3)

∂

∂t
B = ∇ × (v × B) + η∇2B, (4)

∇ · B = 0. (5)

In these equations, ρ, v, ptot = pth + (1/8π ) |B|2, B, and E =
ρεint + (1/2)ρ |v|2 +(1/8π ) |B|2 denote plasma density, velocity,
pressure (thermal plus magnetic), magnetic field, and energy
density (internal plus kinetic, plus magnetic), respectively.
Physical shear viscosity is included via the traceless rate of strain
tensor, Sij = (1/2)(∂iuj +∂jui)−(1/3)δij∇·v in the momentum
Equation (2), and controlled by the kinematic viscosity, ν.
Physical diffusion of B is controlled by the magnetic resistivity
η in the induction Equation (4). To solve the MHD equations, we
use the positive-definite second-order accurate HLL3R Riemann
scheme, capable of handling strong shocks (Waagan et al. 2011).
The MHD equations are closed with an isothermal equation of
state, pth = c2

s ρ.
To drive turbulence with a given Mach number M, we apply

a divergence-free large-scale forcing term F as a source term
in the momentum Equation (2). The forcing is modeled with a
stochastic Ornstein–Uhlenbeck process (Federrath et al. 2010),
such that F varies smoothly in space and time with an auto-
correlation equal to the eddy-turnover time, T = L/(2Mcs) on
the largest scales, L/2 in our periodic simulation domain of side
length L.

The efficiency of magnetic field amplification depends on
the growth rate, which in turn depends on the driving mode,
the Mach number, the Reynolds numbers Re and Rm, and the
Prandtl number, Pm (Federrath et al. 2011; Schober et al. 2012a;
Bovino et al. 2013; Schleicher et al. 2013). We run most of our
simulations until saturation of the magnetic field is reached.
Given the Reynolds numbers achievable in state-of-the-art sim-
ulations, this can take several hundred crossing times. Satu-
ration occurs when the Lorentz force induces a back reaction
of the magnetic field strong enough to counteract the turbu-
lent twisting, stretching and folding of the field (Brandenburg &
Subramanian 2005). We determine the saturation levels by mea-
suring the ratio of magnetic to kinetic energy, (Emag/Ekin)sat.

Here we study the dependence of the turbulent dynamo on
Pm, which is accomplished by varying the physical viscosity and
resistivity. Table 1 provides a complete list of all simulations and
key parameters. To test convergence, we run simulations with
N3

res = 1283–10243 grid points.

3. DYNAMO THEORY

Theories for the turbulent dynamo are based on the Kazantsev
model (Kazantsev 1968; Brandenburg & Subramanian 2005),

− κdiff(
)
d2ψ(
)

d
2
+ U (
)ψ(
) = −Γψ(
), (6)

which assumes zero helicity, δ-correlation in time, and does
not take into account the mixture of solenoidal-to-compressible
modes in the turbulent velocity field. These limitations are
related to the fact that the Kazantsev equation was historically
only applied to incompressible turbulence, while we apply it
here to highly compressible, supersonic turbulence.

The similarity of Equation (6) with the quantum-mechanical
Schrödinger equation allows us to solve it both numerically
and analytically, which requires an assumption for the scaling
of the turbulent velocity correlations. Numerical simulations of
turbulence find a power-law scaling within the inertial range
(
ν < 
 < L),

δv(
) ∝ 
ϑ, (7)

where 
ν and L are the viscous and integral scale, respec-
tively. The exponent ϑ varies from 1/3 for incompressible,
non-intermittent Kolmogorov turbulence up to 1/2 for highly
compressible, supersonic Burgers turbulence. Numerical sim-
ulations of mildly supersonic turbulence with Mach num-
bers M ∼ 2–7 find ϑ ∼ 0.37–0.47 (Boldyrev et al. 2002;
Kowal & Lazarian 2010; Federrath et al. 2010). Highly super-
sonic turbulence with M > 15 asymptotically approaches the
Burgers limit, ϑ = 0.5 (Federrath 2013). Observations of in-
terstellar clouds indicate a comparable velocity scaling with
ϑ ∼ 0.38–0.5 (Larson 1981; Heyer & Brunt 2004; Roman-
Duval et al. 2011). Given this range of exponents, we investigate
how the theoretical results depend on ϑ , by studying cases with
ϑ = 0.35, 0.40, and 0.45.

Using the Wentzel–Kramers–Brillouin (WKB) approxima-
tion we obtain an analytical solution of the Kazantsev equa-
tion, which depends on the velocity scaling exponent ϑ . Re-
sults for Pm � 1 and Pm � 1 have been reported in Schober
et al. (2012a, 2012b). More recently, Bovino et al. (2013) ap-
plied a Numerov scheme to solve Equation (6) numerically
for Pm ∼ 0.1–10, the regime currently accessible in dynamo
simulations. The dependence on the velocity correlation expo-
nent ϑ forms the main extension of the original, incompress-
ible Kazantsev equation into the compressible regime (note that
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Table 1
List of Turbulent Dynamo Simulations

Simulation Model N3
res M Pm Re Rm Γ (T −1) (Emag/Ekin)sat

(1) (2) (3) (4) (5) (6) (7) (8)

(01) Dynamo_512_Pm0.1_Re1600 5123 11 0.1 1600 160 (2.7 ± 3.0) × 10−3 n/a
(02) Dynamo_1024_Pm0.1_Re1600 10243 11 0.1 1600 160 (1.9 ± 50) × 10−3 n/a
(03) Dynamo_512_Pm0.2_Re1600 5123 11 0.2 1600 320 (3.5 ± 0.4) × 10−2 (6.0 ± 2.0) × 10−4

(04) Dynamo_512_Pm0.5_Re1600 5123 11 0.5 1600 810 (2.0 ± 0.2) × 10−1 (1.0 ± 0.3) × 10−2

(05) Dynamo_512_Pm2_Re1600 5123 11 2 1600 3200 (4.5 ± 0.4) × 10−1 (3.0 ± 1.0) × 10−2

(06) Dynamo_256_Pm5_Re1600 2563 11 5 1600 8000 (6.4 ± 0.6) × 10−1 (3.9 ± 1.3) × 10−2

(07) Dynamo_512_Pm5_Re1600 5123 11 5 1600 8000 (5.8 ± 0.6) × 10−1 (5.2 ± 1.7) × 10−2

(08) Dynamo_1024_Pm5_Re1600 10243 11 5 1600 8000 (6.2 ± 0.6) × 10−1 (4.6 ± 1.5) × 10−2

(09) Dynamo_256_Pm10_Re1600 2563 11 10 1600 16000 (6.9 ± 0.7) × 10−1 (4.0 ± 1.3) × 10−2

(10) Dynamo_512_Pm10_Re1600 5123 11 10 1600 16000 (6.4 ± 0.6) × 10−1 (5.7 ± 1.9) × 10−2

(11) Dynamo_1024_Pm10_Re1600 10243 11 10 1600 16000 (6.5 ± 0.6) × 10−1 (4.8 ± 1.6) × 10−2

(12) Dynamo_128_Pm10_Re4.7 1283 4.0 10 4.7 47 (6.0 ± 160) × 10−3 n/a
(13) Dynamo_256_Pm10_Re4.6 2563 3.9 10 4.6 46 (5.8 ± 160) × 10−3 n/a
(14) Dynamo_128_Pm10_Re15 1283 6.4 10 15 150 (3.4 ± 0.6) × 10−2 n/a
(15) Dynamo_256_Pm10_Re15 2563 6.4 10 15 150 (4.3 ± 0.7) × 10−2 n/a
(16) Dynamo_128_Pm10_Re26 1283 7.5 10 26 260 (2.9 ± 0.3) × 10−1 (4.1 ± 1.6) × 10−2

(17) Dynamo_256_Pm10_Re26 2563 7.6 10 26 260 (2.6 ± 0.3) × 10−1 (4.3 ± 1.4) × 10−2

(18) Dynamo_128_Pm10_Re39 1283 8.2 10 39 390 (3.4 ± 0.3) × 10−1 (4.3 ± 1.4) × 10−2

(19) Dynamo_256_Pm10_Re38 2563 8.2 10 38 380 (3.2 ± 0.3) × 10−1 (5.0 ± 1.9) × 10−2

(20) Dynamo_512_Pm10_Re38 5123 8.2 10 38 380 (3.1 ± 0.6) × 10−1 n/a
(21) Dynamo_512_Pm10_Re88 5123 9.4 10 88 880 (4.5 ± 0.5) × 10−1 (5.2 ± 1.7) × 10−2

(22) Dynamo_512_Pm10_Re190 5123 10 10 190 1900 (5.4 ± 0.5) × 10−1 (6.0 ± 2.0) × 10−2

(23) Dynamo_512_Pm10_Re390 5123 10 10 390 3900 (5.9 ± 0.6) × 10−1 (6.3 ± 2.1) × 10−2

(24) Dynamo_256_Pm10_Re790 2563 10 10 790 7900 (6.5 ± 0.6) × 10−1 (5.3 ± 1.8) × 10−2

(25) Dynamo_512_Pm10_Re790 5123 11 10 790 7900 (6.6 ± 0.7) × 10−1 (6.4 ± 2.1) × 10−2

Rogachevskii & Kleeorin 1997 have followed a similar approach
for mildly compressible, low-Mach number turbulence). How-
ever, the generalizations by Schober et al. (2012a, 2012b) still
do not account for variations in the solenoidal-to-compressible
mode mixture that is excited in supersonic turbulence.

4. RESULTS AND DISCUSSION

To get a visual impression of the differences in the magnetic
field structure between low-Pm and high-Pm dynamo action, we
plot magnetic energy slices in Figure 1. By definition, magnetic
dissipation is much stronger in low-Pm compared to high-Pm
turbulence (for Re = const, as in our numerical experiments),
but we find that the dynamo operates in both cases. This is the
first time that dynamo action is confirmed in low-Pm, highly
compressible, supersonic plasma.

We now determine the dynamo growth rate as a function of
Pm for fixed Re = 1600 and as a function of Re for fixed
Pm = 10, in order to compare the analytical and numerical
solutions of the Kazantsev equation with the MHD simulations.
Depending on Pm and Re, we find exponential magnetic energy
growth over more than six orders of magnitude for simulations
in which the dynamo is operational. We determine both the
exponential growth rate Γ and the saturation level (Emag/Ekin)sat.
The measurements are listed in Table 1 and plotted in Figure 2.

In the left-hand panel of Figure 2, we see that Γ first in-
creases strongly with Pm for Pm � 1. For Pm � 1 it keeps
increasing, but more slowly. The theoretical models by Schober
et al. (2012a) and Bovino et al. (2013) both predict an in-
creasing growth rate with Pm. The purely analytical solution
of the Kazantsev equation (6) by Schober et al., using the
WKB approximation, yields power laws for Rm > Rmcrit,
while the numerical solution of Equation (6), using the Nu-
merov method by Bovino et al., yields a sharp cutoff when
Pm � 1, closer to the results of the 3D MHD simulations. The

agreement of the theoretical prediction with the MHD simu-
lations is excellent for Pm � 1, while for Pm � 1 they only
agree qualitatively. The discrepancy arises because the theo-
retical models assume zero helicity, δ-correlation of the turbu-
lence in time, and currently do not distinguish different mix-
tures of solenoidal and compressible modes in the turbulent
velocity field. Finite time correlations, however, do not seem
to change the Kazantsev result significantly (Bhat & Subra-
manian 2014) and our simulations have zero helicity. Thus, the
missing distinction between solenoidal and compressible modes
may be the main cause of the discrepancy, because the dy-
namo is primarily driven by solenoidal modes and the amount
of vorticity strongly depends on the driving and Mach num-
ber of the turbulence (Mee & Brandenburg 2006; Federrath
et al. 2011).

The saturation level as a function of Pm is shown in the bottom
left-hand panel of Figure 2. It increases with Pm similar to the
growth rate and is also well converged with increasing numerical
resolution. We currently do not have a theoretical model to
predict the dynamo saturation level, but it may be possible to
develop one based on an effective magnetic diffusivity, which
limits the growth of the magnetic field when the back reaction
through the Lorentz force prevents turbulence from further
stretching, twisting and folding the field (Subramanian 1999;
Brandenburg & Subramanian 2005). However, we currently lack
a model that applies to the highly compressible regime of MHD
turbulence and that covers the dependence on Pm, although we
provide a simple model for the dependence of (Emag/Ekin)sat on
Re below.

Finally, the right-hand panels of Figure 2 show the growth
rate and saturation level as a function of Re. Similar to the
dependence on Pm, we find a nonlinear increase in Γ with Re,
which is qualitatively reproduced with the numerical solution
by Bovino et al. (2013). However, the critical Reynolds number
for dynamo action is much lower in the MHD simulations than
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Figure 1. Magnetic energy slices through our simulations with grid resolutions of 10243 points. The magnetic field grows more slowly for magnetic Prandtl numbers
of Pm = 0.1 (left-hand panel) compared to Pm = 10 (right-hand panel), but we find dynamo action in both cases, for the first time in highly compressible, supersonic
plasmas.

(An animation and a color version of this figure are available in the online journal.)

Figure 2. Left panels: dynamo growth rate Γ (top panel) and saturation level (Emag/Ekin)sat (bottom panel) as a function of Pm for fixed Re = 1600. Resolution studies
with 2563, 5123, and 10243 grid cells demonstrate convergence, tested for the extreme cases Pm = 0.1 and 10. Theoretical predictions for Γ by Schober et al. (2012a)
and Bovino et al. (2013) are plotted with different line styles for a typical range of the turbulent scaling exponent ϑ = 0.35 (dotted), 0.40 (solid), and 0.45 (dashed).
Right panels: same as left panels, but Γ and (Emag/Ekin)sat are shown as a function of Re for fixed Pm = 10. The dot-dashed line is a fit to the simulations, yielding
a constant saturation level of (Emag/Ekin)sat = 0.05 ± 0.01 for Re > Recrit ≡ Rmcrit/Pm = 12.9 and the triple-dot-dashed line shows the result of Subramanian’s
modified model for the saturation level (Subramanian 1999).

(A color version of this figure is available in the online journal.)

predicted by the theoretical model, which may have the same
reasons as the discrepancy found for the dependence on Pm, i.e.,
the lack of dependence on the actual turbulent mode mixture in
the theoretical models.

In order to determine the critical magnetic Reynolds number
for dynamo action, we perform fits with

Γ = β [ln(Pm) + ln(Re)] − γ, (8)
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using the fit parameters β and γ , which are related to the
critical magnetic Reynolds number Rmcrit = exp (γ /β). From
the fits with Equation (8) to all our simulations, we find that
dynamo action is suppressed for Rm < Rmcrit = 129+43

−31 in
highly compressible, supersonic MHD turbulence. Our result is
significantly higher than the critical magnetic Reynolds number
measured in simulations of subsonic, incompressible MHD
turbulence by Haugen et al. (2004a), who find Rmcrit ∼ 20–40
for Pm � 1, and higher than in mildly compressible simulations,
where Rmcrit ∼ 50 for Pm = 5 and M ∼ 2 (Haugen
et al. 2004b). The reason for the higher Rmcrit compared to
incompressible turbulence is the more sheet-like than vortex-
like structure of supersonic turbulence (Boldyrev 2002; Schmidt
et al. 2008) and the reduced fraction of solenoidal modes (Mee &
Brandenburg 2006; Federrath et al. 2010, 2011). The difference
with the theoretical models lies primarily in Rmcrit. Bovino et al.
(2013) predicted a much higher Rmcrit ∼ 4100 for ϑ = 0.45,
while fits to their theoretical model yield β = 0.11–0.19,
in agreement with the range found in the MHD simulations
(β = 0.141 ± 0.004). This demonstrates that the discrepancy
between the MHD simulations and the Kazantsev model is
primarily in the predicted Rmcrit value, while the qualitative
behavior (determined by the β parameter) is covered by the
theoretical dynamo models.

The saturation level shown in the bottom right-hand panel of
Figure 2 is consistent with a constant level of (Emag/Ekin)sat =
0.05 ± 0.01 for Re > Recrit ≡ Rmcrit/Pm = 12.9 in highly
compressible, supersonic turbulence with Mach numbers M ∼
10, typical for molecular clouds in the Milky Way. Given our
measurement of Rmcrit = 129, we can compute Subramanian’s
theoretical prediction (Subramanian 1999) for the saturation
level, (Emag/Ekin)sat = (3/2)(L/V )τ−1Rm−1

crit ∼ 0.01, which
is significantly smaller than our simulation result, assuming
that τ = T = L/V is the turbulent crossing time on the
largest scales of the system. However, Subramanian notes that
the timescale τ is an “unknown model parameter.” Thus, a
more appropriate timescale for saturation may be the eddy
timescale on the viscous scale, 
ν = LRe−1/(ϑ+1) for a given
turbulent velocity scaling following Equation (7), because this
is where the field saturates first. We find τ (
ν) = 
ν/v(
ν) =
T Re(ϑ−1)/(ϑ+1) and with Re = Recrit = 12.9+4.3

−3.1, we obtain
(Emag/Ekin)sat = 0.035 ± 0.005 for a typical range of the
velocity scaling exponent ϑ = 0.4 ± 0.1, from molecular cloud
observations and simulations of supersonic turbulence (Larson
1981; Heyer & Brunt 2004; Roman-Duval et al. 2011). The
saturation level of our 3D MHD simulations thus agrees within
the uncertainties with our modified version of Subramanian’s
model. We note that the dependence on Pm (see the bottom left-
hand panel of Figure 2) is, however, not included in the current
model and requires further theoretical development.

To support our conclusions, we show magnetic energy power
spectra in Figure 3. They are qualitatively consistent with the
incompressible dynamo studies by Mason et al. (2011) and
Bhat & Subramanian (2013). We clearly see that the power
spectra for Pm = 0.1 dissipate on larger scales (lower k)
than the Pm = 10 spectra, consistent with the theoretical
expectation by a factor of (10/0.1)1/(1+θ) ∼ 22–27 for our
relevant θ ∼ 0.4–0.5. Nevertheless, even for Pm = 0.1, we
see the dynamo-characteristic increase in magnetic energy over
all scales. The magnetic spectra roughly follow the Kazantsev
spectrum (∼k3/2) on large scales (Kazantsev 1968; Bhat &
Subramanian 2014) in the Pm = 10 case, but we would expect
the same to hold in the Pm = 0.1 case, if our simulations had

Figure 3. Time evolution of magnetic energy power spectra for simulation
models 2 and 11 in Table 1: Pm = 0.1 (dotted lines; from bottom to top:
t/T = 2, 5, 10, 15, 18) and Pm = 10 (dashed lines; from bottom to top:
t/T = 2, 5, 10, 15, 24). The solid lines show the time-averaged kinetic energy
spectra with the 1σ time variations shown as error bars. Note that for Pm = 10,
the last magnetic energy spectrum (t = 24 T ) has just reached saturation on
small scales (the Pm = 0.1 runs did not reach saturation within the compute
time available to us, because the growth rates are so small; cf. Figure 2). The
evolution and curvature of the spectra indicate that the magnetic field will
continue to grow on large scales during the nonlinear dynamo phase.

(A color version of this figure is available in the online journal.)

larger scale separation. The final spectrum for Pm = 10 has
just reached saturation on small scales (approaching the kinetic
energy spectrum at high k), but continues to grow on larger
scales during the nonlinear dynamo phase. The Pm = 0.1 runs
did not have enough time to reach saturation yet (see Figure 2),
but we expect a qualitatively similar behavior in the nonlinear
dynamo phase also for models with Pm < 1. We emphasize that
the kinetic energy spectra shown in Figure 3 and the saturation
levels plotted in the bottom panels of Figure 2 take into account
the variations in the density field, i.e., Ekin = (1/2)ρv2,
because—unlike incompressible turbulence—the density varies
by several orders of magnitude in our highly compressible,
supersonic turbulence simulations (for a recent analysis of the
typical density structures and probability density functions, see
Federrath 2013).

5. CONCLUSIONS

We presented the first quantitative comparison of theoretical
models of the turbulent dynamo with 3D simulations of super-
sonic MHD turbulence. We find that the dynamo operates at low
and high magnetic Prandtl numbers, but is significantly more
efficient for Pm > 1 than for Pm < 1. We measure a critical
magnetic Reynolds number for dynamo action, Rmcrit = 129+43

−31
in highly compressible, supersonic turbulence, which is a fac-
tor of ∼3 times higher than found in studies of subsonic and
incompressible turbulence. Rmcrit is, however, still several or-
ders of magnitude lower than the magnetic Reynolds number
in stars, planets, and in the interstellar medium of galaxies in
the present and early universe, allowing for efficient turbulent
dynamo action in all of these environments. This has important
consequences for the star formation rate and for the initial mass
function of stars, because magnetic fields suppress gas fragmen-
tation and lead to powerful protostellar jets and outflows (see
Krumholz et al. 2014; Padoan et al. 2014; Offner et al. 2014;
Federrath et al. 2014, and references therein). We conclude that
magnetic fields need to be taken into account during structure
formation in the present and early universe.
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the Jülich Supercomputing Centre (grant hhd20), the Leib-
niz Rechenzentrum, and the Gauss Centre for Supercomput-
ing (grant pr32lo), the Partnership for Advanced Computing in
Europe (PRACE grant pr89mu), and the Australian National
Computing Infrastructure (grant ek9). The software used in this
work was in part developed by the DOE-supported Flash Center
for Computational Science at the University of Chicago.

REFERENCES

Beck, R., Brandenburg, A., Moss, D., Shukurov, A., & Sokoloff, D.
1996, ARA&A, 34, 155

Bhat, P., & Subramanian, K. 2013, MNRAS, 429, 2469
Bhat, P., & Subramanian, K. 2014, ApJL, 791, L34
Boldyrev, S. 2002, ApJ, 569, 841
Boldyrev, S., Nordlund, Å., & Padoan, P. 2002, PhRvL, 89, 031102
Bovino, S., Schleicher, D. R. G., & Schober, J. 2013, NJPh, 15, 013055
Brandenburg, A., Sokoloff, D., & Subramanian, K. 2012, SSRv, 169, 123
Brandenburg, A., & Subramanian, K. 2005, PhR, 417, 1
Cattaneo, F., & Hughes, D. W. 2001, A&G, 42, 030000
Federrath, C. 2013, MNRAS, 436, 1245
Federrath, C., Chabrier, G., Schober, J., et al. 2011, PhRvL, 107, 114504
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, M.

2010, A&A, 512, A81
Federrath, C., Schrön, M., Banerjee, R., & Klessen, R. S. 2014, ApJ, 790, 128
Frick, P., Stepanov, R., & Sokoloff, D. 2006, PhRvE, 74, 066310
Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273
Grasso, D., & Rubinstein, H. R. 2001, PhR, 348, 163
Haugen, N. E. L., Brandenburg, A., & Dobler, W. 2004a, PhRvE, 70, 016308
Haugen, N. E. L., Brandenburg, A., & Mee, A. J. 2004b, MNRAS, 353, 947
Heyer, M. H., & Brunt, C. M. 2004, ApJL, 615, L45

Iapichino, L., Viel, M., & Borgani, S. 2013, MNRAS, 432, 2529
Iskakov, A. B., Schekochihin, A. A., Cowley, S. C., McWilliams, J. C., &

Proctor, M. R. E. 2007, PhRvL, 98, 208501
Kazantsev, A. P. 1968, JETP, 26, 1031
Kleeorin, N., Rogachevskii, I., & Sokoloff, D. 2002, PhRvE, 65, 036303
Kowal, G., & Lazarian, A. 2010, ApJ, 720, 742
Krumholz, M. R., Bate, M. R., Arce, H. G., et al. 2014, in Protostars and Planets

VI ed. H. Beuther, R. Klessen, C. Dullemond, & Th. Henning (Tucson, AZ:
Univ. Arizona Press), arXiv:1401.2473

Larson, R. B. 1981, MNRAS, 194, 809
Latif, M. A., Schleicher, D. R. G., & Schmidt, W. 2014, MNRAS, 440, 1551
Mason, J., Malyshkin, L., Boldyrev, S., & Cattaneo, F. 2011, ApJ, 730, 86
Mee, A. J., & Brandenburg, A. 2006, MNRAS, 370, 415
Moll, R., Pietarila Graham, J., Pratt, J., et al. 2011, ApJ, 736, 36
Monchaux, R., Berhanu, M., Bourgoin, M., et al. 2007, PhRvL, 98, 044502
Offner, S. S. R., Clark, P. C., Hennebelle, P., et al. 2014, in Protostars and Planets

VI ed. H. Beuther, R. Klessen, C. Dullemond, & Th. Henning (Tucson, AZ:
Univ. Arizona Press), arXiv:1312.5326

Padoan, P., Federrath, C., Chabrier, G., et al. 2014, in Protostars and Planets
VI ed. H. Beuther, R. Klessen, C. Dullemond, & Th. Henning (Tucson, AZ:
Univ. Arizona Press), arXiv:1312.5365

Pietarila Graham, J., Cameron, R., & Schüssler, M. 2010, ApJ, 714, 1606
Roberts, P. H., & Glatzmaier, G. A. 2000, RvMP, 72, 1081
Rogachevskii, I., & Kleeorin, N. 1997, PhRvE, 56, 417
Roman-Duval, J., Federrath, C., Brunt, C., et al. 2011, ApJ, 740, 120
Ryu, D., Kang, H., Cho, J., & Das, S. 2008, Sci, 320, 909
Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L., & McWilliams,

J. C. 2004, ApJ, 612, 276
Schekochihin, A. A., Iskakov, A. B., Cowley, S. C., et al. 2007, NJPh, 9, 300
Schekochihin, A. A., & Kulsrud, R. M. 2001, PhPl, 8, 4937
Schleicher, D. R. G., Banerjee, R., Sur, S., et al. 2010, A&A, 522, A115
Schleicher, D. R. G., & Beck, R. 2013, A&A, 556, A142
Schleicher, D. R. G., Schober, J., Federrath, C., Bovino, S., & Schmidt, W.

2013, NJPh, 15, 023017
Schmidt, W., Federrath, C., & Klessen, R. 2008, PhRvL, 101, 194505
Schober, J., Schleicher, D., Bovino, S., & Klessen, R. S. 2012a, PhRvE,

86, 066412
Schober, J., Schleicher, D., Federrath, C., Klessen, R., & Banerjee, R.

2012b, PhRvE, 85, 026303
Subramanian, K. 1999, PhRvL, 83, 2957
Subramanian, K., Shukurov, A., & Haugen, N. E. L. 2006, MNRAS,

366, 1437
Waagan, K., Federrath, C., & Klingenberg, C. 2011, JCoPh, 230, 3331

6

http://dx.doi.org/10.1146/annurev.astro.34.1.155
http://adsabs.harvard.edu/abs/1996ARA&A..34..155B
http://adsabs.harvard.edu/abs/1996ARA&A..34..155B
http://dx.doi.org/10.1093/mnras/sts516
http://adsabs.harvard.edu/abs/2013MNRAS.429.2469B
http://adsabs.harvard.edu/abs/2013MNRAS.429.2469B
http://dx.doi.org/10.1088/2041-8205/791/2/L34
http://adsabs.harvard.edu/abs/2014ApJ...791L..34B
http://adsabs.harvard.edu/abs/2014ApJ...791L..34B
http://dx.doi.org/10.1086/339403
http://adsabs.harvard.edu/abs/2002ApJ...569..841B
http://adsabs.harvard.edu/abs/2002ApJ...569..841B
http://dx.doi.org/10.1103/PhysRevLett.89.031102
http://adsabs.harvard.edu/abs/2002PhRvL..89c1102B
http://adsabs.harvard.edu/abs/2002PhRvL..89c1102B
http://dx.doi.org/10.1088/1367-2630/15/1/013055
http://adsabs.harvard.edu/abs/2013NJPh...15a3055B
http://adsabs.harvard.edu/abs/2013NJPh...15a3055B
http://dx.doi.org/10.1007/s11214-012-9909-x
http://adsabs.harvard.edu/abs/2012SSRv..169..123B
http://adsabs.harvard.edu/abs/2012SSRv..169..123B
http://dx.doi.org/10.1016/j.physrep.2005.06.005
http://adsabs.harvard.edu/abs/2005PhR...417....1B
http://adsabs.harvard.edu/abs/2005PhR...417....1B
http://dx.doi.org/10.1093/mnras/stt1644
http://adsabs.harvard.edu/abs/2013MNRAS.436.1245F
http://adsabs.harvard.edu/abs/2013MNRAS.436.1245F
http://dx.doi.org/10.1103/PhysRevLett.107.114504
http://adsabs.harvard.edu/abs/2011PhRvL.107k4504F
http://adsabs.harvard.edu/abs/2011PhRvL.107k4504F
http://dx.doi.org/10.1051/0004-6361/200912437
http://adsabs.harvard.edu/abs/2010A&A...512A..81F
http://adsabs.harvard.edu/abs/2010A&A...512A..81F
http://dx.doi.org/10.1088/0004-637X/790/2/128
http://adsabs.harvard.edu/abs/2014ApJ...790..128F
http://adsabs.harvard.edu/abs/2014ApJ...790..128F
http://dx.doi.org/10.1103/PhysRevE.74.066310
http://adsabs.harvard.edu/abs/2006PhRvE..74f6310F
http://adsabs.harvard.edu/abs/2006PhRvE..74f6310F
http://dx.doi.org/10.1086/317361
http://adsabs.harvard.edu/abs/2000ApJS..131..273F
http://adsabs.harvard.edu/abs/2000ApJS..131..273F
http://dx.doi.org/10.1016/S0370-1573(00)00110-1
http://adsabs.harvard.edu/abs/2001PhR...348..163G
http://adsabs.harvard.edu/abs/2001PhR...348..163G
http://dx.doi.org/10.1103/PhysRevE.70.016308
http://adsabs.harvard.edu/abs/2004PhRvE..70a6308H
http://adsabs.harvard.edu/abs/2004PhRvE..70a6308H
http://dx.doi.org/10.1111/j.1365-2966.2004.08127.x
http://adsabs.harvard.edu/abs/2004MNRAS.353..947H
http://adsabs.harvard.edu/abs/2004MNRAS.353..947H
http://dx.doi.org/10.1086/425978
http://adsabs.harvard.edu/abs/2004ApJ...615L..45H
http://adsabs.harvard.edu/abs/2004ApJ...615L..45H
http://dx.doi.org/10.1093/mnras/stt611
http://adsabs.harvard.edu/abs/2013MNRAS.432.2529I
http://adsabs.harvard.edu/abs/2013MNRAS.432.2529I
http://dx.doi.org/10.1103/PhysRevLett.98.208501
http://adsabs.harvard.edu/abs/2007PhRvL..98t8501I
http://adsabs.harvard.edu/abs/2007PhRvL..98t8501I
http://adsabs.harvard.edu/abs/1968JETP...26.1031K
http://adsabs.harvard.edu/abs/1968JETP...26.1031K
http://dx.doi.org/10.1103/PhysRevE.65.036303
http://adsabs.harvard.edu/abs/2002PhRvE..65c6303K
http://adsabs.harvard.edu/abs/2002PhRvE..65c6303K
http://dx.doi.org/10.1088/0004-637X/720/1/742
http://adsabs.harvard.edu/abs/2010ApJ...720..742K
http://adsabs.harvard.edu/abs/2010ApJ...720..742K
http://www.arxiv.org/abs/1401.2473
http://dx.doi.org/10.1093/mnras/194.4.809
http://adsabs.harvard.edu/abs/1981MNRAS.194..809L
http://adsabs.harvard.edu/abs/1981MNRAS.194..809L
http://dx.doi.org/10.1093/mnras/stu357
http://adsabs.harvard.edu/abs/2014MNRAS.440.1551L
http://adsabs.harvard.edu/abs/2014MNRAS.440.1551L
http://dx.doi.org/10.1088/0004-637X/730/2/86
http://adsabs.harvard.edu/abs/2011ApJ...730...86M
http://adsabs.harvard.edu/abs/2011ApJ...730...86M
http://dx.doi.org/10.1111/j.1365-2966.2006.10476.x
http://adsabs.harvard.edu/abs/2006MNRAS.370..415M
http://adsabs.harvard.edu/abs/2006MNRAS.370..415M
http://dx.doi.org/10.1088/0004-637X/736/1/36
http://adsabs.harvard.edu/abs/2011ApJ...736...36M
http://adsabs.harvard.edu/abs/2011ApJ...736...36M
http://dx.doi.org/10.1103/PhysRevLett.98.044502
http://adsabs.harvard.edu/abs/2007PhRvL..98d4502M
http://adsabs.harvard.edu/abs/2007PhRvL..98d4502M
http://www.arxiv.org/abs/1312.5326
http://www.arxiv.org/abs/1312.5365
http://dx.doi.org/10.1088/0004-637X/714/2/1606
http://adsabs.harvard.edu/abs/2010ApJ...714.1606P
http://adsabs.harvard.edu/abs/2010ApJ...714.1606P
http://adsabs.harvard.edu/abs/2000RvMP...72.1081R
http://adsabs.harvard.edu/abs/2000RvMP...72.1081R
http://adsabs.harvard.edu/abs/1997PhRvE..56..417R
http://adsabs.harvard.edu/abs/1997PhRvE..56..417R
http://dx.doi.org/10.1088/0004-637X/740/2/120
http://adsabs.harvard.edu/abs/2011ApJ...740..120R
http://adsabs.harvard.edu/abs/2011ApJ...740..120R
http://dx.doi.org/10.1126/science.1154923
http://adsabs.harvard.edu/abs/2008Sci...320..909R
http://adsabs.harvard.edu/abs/2008Sci...320..909R
http://dx.doi.org/10.1086/422547
http://adsabs.harvard.edu/abs/2004ApJ...612..276S
http://adsabs.harvard.edu/abs/2004ApJ...612..276S
http://dx.doi.org/10.1088/1367-2630/9/8/300
http://adsabs.harvard.edu/abs/2007NJPh....9..300S
http://adsabs.harvard.edu/abs/2007NJPh....9..300S
http://dx.doi.org/10.1063/1.1404383
http://adsabs.harvard.edu/abs/2001PhPl....8.4937S
http://adsabs.harvard.edu/abs/2001PhPl....8.4937S
http://dx.doi.org/10.1051/0004-6361/201015184
http://adsabs.harvard.edu/abs/2010A&A...522A.115S
http://adsabs.harvard.edu/abs/2010A&A...522A.115S
http://dx.doi.org/10.1051/0004-6361/201321707
http://adsabs.harvard.edu/abs/2013A&A...556A.142S
http://adsabs.harvard.edu/abs/2013A&A...556A.142S
http://dx.doi.org/10.1088/1367-2630/15/2/023017
http://adsabs.harvard.edu/abs/2013NJPh...15b3017S
http://adsabs.harvard.edu/abs/2013NJPh...15b3017S
http://dx.doi.org/10.1103/PhysRevLett.101.194505
http://adsabs.harvard.edu/abs/2008PhRvL.101s4505S
http://adsabs.harvard.edu/abs/2008PhRvL.101s4505S
http://dx.doi.org/10.1103/PhysRevE.86.066412
http://adsabs.harvard.edu/abs/2012PhRvE..86f6412S
http://adsabs.harvard.edu/abs/2012PhRvE..86f6412S
http://dx.doi.org/10.1103/PhysRevE.85.026303
http://adsabs.harvard.edu/abs/2012PhRvE..85b6303S
http://adsabs.harvard.edu/abs/2012PhRvE..85b6303S
http://adsabs.harvard.edu/abs/1999PhRvL..83.2957S
http://adsabs.harvard.edu/abs/1999PhRvL..83.2957S
http://dx.doi.org/10.1111/j.1365-2966.2006.09918.x
http://adsabs.harvard.edu/abs/2006MNRAS.366.1437S
http://adsabs.harvard.edu/abs/2006MNRAS.366.1437S
http://dx.doi.org/10.1016/j.jcp.2011.01.026
http://adsabs.harvard.edu/abs/2011JCoPh.230.3331W
http://adsabs.harvard.edu/abs/2011JCoPh.230.3331W

	1. INTRODUCTION
	2. NUMERICAL SIMULATIONS
	3. DYNAMO THEORY
	4. RESULTS AND DISCUSSION
	5. CONCLUSIONS
	REFERENCES

