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Abstract

One of the most important numerical quantities that can be computed from a
graph G is the two-variable Tutte polynomial. Specializations of the Tutte poly-
nomial count various objects associated with G, e.g., subgraphs, spanning trees,
acyclic orientations, inversions and parking functions. We show that by parti-
tioning certain simplicial complexes related to G into intervals, one can provide
combinatorial demonstrations of these results. One of the primary tools for pro-
viding such a partition is depth-first search.



1 Introduction and definitions

Tutte defined the polynomial that bears his name as the generating function for
two parameters, namely the internal and external activities, associated with the
spanning trees of a connected graph. In this paper we will propose a number of
new, but related, notions of external activity. We will show in the next six sec-
tions that using these other definitions of activity can lead to combinatorial proofs
of results about many specializations of tG. These evaluations count subgraphs,
acyclic orientations, subdigraphs, inversions and parking functions. The basic idea
is to use depth-first search to associate a spanning forest F with each object to
be counted. This partitions the simplicial complex of all objects (ordered by in-
clusion) into intervals, one for each F . Every interval turns out to be a Boolean
algebra consisting of all ways to add externally active edges to F . Expressing the
Tutte polynomial in terms of sums over such intervals permits us to extract the
necessary combinatorial information.

The idea of using partitions to get information about the Tutte polynomial
goes back to Crapo [8] and has also been used by Bari [2], Dawson [9, 10], Gessel
and Wang [18], Gordon and Traldi [20], and others. See Björner [4] for a good
account of the connection between Tutte polynomials, partitions, and shellability.
See Brylawski [5] and his survey with Oxley [6] for the general theory of the Tutte
polynomial. Partitioning simplicial complexes into Boolean algebras also has other
applications. See, for example, the paper of Garsia and Stanton [15]. Finally, we
should mention that Kleitman and Winston [23] have used depth-first search to
construct a bijection in a context similar to ours. However, our paper is the first to
systematically mine the combination of the partitioning and DFS ideas to obtain
a wide range of results.

Let G denote a graph with vertex set V . In most of our work (in particular, for
depth-first search and its variations) we assume that V is totally ordered. Often we
will take V = {1, 2, . . . , n}. We will permit G’s edge set to have loops and multiple
edges, calling two edges with the same endpoints parallel. It will be convenient to
identify a graph with its edge set and use the notation G for both. All the previous
conventions will apply to digraphs as well.

All of our subgraphs are spanning, that is, a subgraph of G has the same vertex
set as G. Thus we identify subgraphs of G with subsets of the edge set. A subgraph
of G is a forest if it is acyclic; in particular, it must contain no loops or parallel
edges. The connected components of a forest are trees.

Before defining the Tutte polynomial, tG(x, y), we make the convention that,
except where stated otherwise, G is a connected graph. This is no loss of generality
for two reasons. First, if G is disconnected then tG(x, y) is just the product of the
Tutte polynomials of the components of G. Furthermore, most of the algorith-
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mic constructions that we will use can be carried out in G by applying them to
each component. In the few places where this is not true, we will indicate what
modifications need to be made for the general case.

Now suppose we are given G and a total ordering of its edges. Consider a
spanning tree T of G. An edge e ∈ G − T is externally active if it is the largest
edge in the unique cycle contained in T ∪ e. We let

EA(T ) = set of externally active edges of T

and
ea(T ) = |EA(T )|

where | · | denotes cardinality. Of course, the set of externally active edges depends
on both G and T . However, G will always be clear from context. An edge e ∈ T
is internally active if it is the largest edge in the unique cocycle contained in
(G − T ) ∪ e. (A cocycle is a minimal disconnecting subset of G.) We let

IA(T ) = set of internally active edges of T

and
ia(T ) = |IA(T )|.

Tutte [40] then defined his polynomial as

tG(x, y) =
∑

T⊆G

xia(T )yea(T ) (1)

where the sum is over all spanning trees T of G. Tutte showed that tG is well-
defined, i.e., independent of the ordering of the edges of G. Henceforth, we will
not assume that the edges of G are ordered unless it is explicitly stated.

We end this section by reviewing the notion of depth-first search, which we
abbreviate to DFS. Given a graph H with vertex set V , we will use the following
algorithm to create the DFS forest F of H .

DFS1 Let F := ∅.

DFS2 Let v be the least unvisited vertex in V . Mark v as visited.

DFS3 Pick some unvisited vertex u adjacent to v by an edge e if such a vertex
exists. Mark u as visited and set v := u, F := F ∪ e. Repeat this step
until v has no unvisited neighbors.

DFS4 If there is a visited vertex with unvisited neighbors, let v be the most
recently visited such vertex and go to DFS3. Otherwise, go to DFS2
and repeat the process until all vertices are visited.

The DFS variants that we will introduce in the next sections are all constructed
by specifying the vertex u and the edge e in step DFS3.
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2 Subgraphs

Let G be a graph with |V | = n, and let H be a subgraph. We denote by c(H) the
number of components of H. We introduce two useful invariants associated with
H, namely

σ(H) = c(H) − c(G) = c(H) − 1 (2)

and
σ∗(H) = |H | − |V |+ c(H) = |H| − n + c(H) (3)

where we recall that |H | denotes the number of edges in H . These quantities are
naturally associated with the cycle matroid of G whose independent sets consist
of all spanning forests F of G. The rank of H ⊆ G in this matroid is

ρ(H) = max{|F | : F ⊆ H with F a spanning forest of G}

= |V | − c(H)

and the corank is

ρ∗(H) = max{|C| : C ⊆ H with G− C connected}

= |H| − c(G− H) + 1.

Thus
σ(H) = ρ(G) − ρ(H)

and
σ∗(H) = ρ∗(G) − ρ∗(G − H).

It is well known [4] that one evaluation of the Tutte polynomial is the generating
function for subgraphs of G with respect to the invariants σ and σ∗.

Theorem 2.1 We have

tG(1 + x, 1 + y) =
∑

H⊆G

xσ(H)yσ∗(H) (4)

where the sum is over all subgraphs H of G.

The version of depth-first search that will be useful in connection with sub-
graphs H ⊆ G is greatest-neighbor DFS. Each time we perform DFS3 we visit
the unvisited neighbor with largest label first. (However, we still always start the
search at the vertex with smallest label. One of the reasons for these conventions
is to coincide with those used later when discussing inversions in trees.) We also
assume that each set of parallel edges is totally ordered and that we always take
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Figure 1: A greatest-neighbor DFS forest F for H ⊆ G

the largest edge connecting two vertices. If H has greatest-neighbor DFS forest
F , then we write F+(H) = F which we will often abbreviate to F(H) = F . It is
convenient to root each tree of F(H) at its least vertex. We also note that F(H)
does not depend on the edges of G− H and that c(F(H)) = c(H).

By way of illustration, suppose we have the graph G in Figure 1. The two sets
of parallel edges are ordered lexicographically. Then the given subgraph H has
greatest-neighbor forest F with components rooted at vertices 1 and 3.

Now given a spanning forest F ⊆ G let us say that an edge e ∈ G − F is
(greatest-neighbor) externally active if

F(F ∪ e) = F.

We write E+(F ), or simply E(F ), for the set of greatest-neighbor externally active
edges. In our previous example, edges {1, 2}, {3, 7}, {2, 2} and a = {4, 6} are
externally active while {1, 5}, {5, 7} and d = {7, 8} are not.

The next result follows easily from the definitions. In it, ⊎ stands for disjoint
union.

Proposition 2.2 If H is any subgraph and F is any spanning forest of G then

F(H) = F ⇐⇒ F ⊆ H ⊆ F ⊎ E(F ).

Thus the intervals [F, F ⊎ E(F )] partition the simplicial complex of all subgraphs
of G into Boolean algebras, one for each spanning forest.

To turn this proposition into an enumerative result, note that if F(H) = F
then c(H) = c(F ) so σ(H) = σ(F ) = c(F )−1 and σ∗(H) = |H |−|F | = |H∩E(F )|.
Thus, if we fix a forest F and sum over the corresponding interval

∑

H :F(H)=F

xσ(H)yσ∗(H) = xσ(F )
∑

A⊆E(F )

y|A|
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= xσ(F )(1 + y)|E(F )|.

Summing over all forests F , we have

∑

H⊆G

xσ(H)yσ∗(H) =
∑

F⊆G

xσ(F )(1 + y)|E(F )|.

But from Theorem 2.1, we know that the left-hand side is just tG(1 + x, 1 + y).
Thus, changing y to y − 1, we have

tG(1 + x, y) =
∑

F⊆G

xσ(F )y|E(F )|

or
x tG(1 + x, y) =

∑

F⊆G

xc(F )y|E(F )|, (5)

an equation that will be useful in the future. Note that if G were allowed to be
disconnected then the factor of x on the left of this equation would be replaced
with xc(G).

We will now give a characterization of the edges in E(F ) that will allow us to
mine more combinatorial information from equation (5). Consider a tree T in F
rooted at its smallest vertex. Then we will use all the usual family tree conventions
when talking about vertices of T (parent, child, and so on). Also, we call a pair of
vertices (u, v) in T an inversion (respectively non-inversion) if u is an ancestor of
v and u > v (respectively u < v). Finally, a cross edge is e = {u, v} where u is not
a descendant of v and vice-versa.

Lemma 2.3 Suppose G is a graph with spanning forest F and e ∈ G − F . Then
e ∈ E(F ) if and only if e is of one of the following types:

1. e = {u, v} where v is a descendant of u, and (w, v) is an inversion where w
is the child of u on the unique u-v path in F , or

2. e < f where f ∈ F is an edge with the same endpoints as e, or

3. e is a loop.

Figure 2 shows a schematic diagram of an externally active edge corresponding
to an inversion. For a concrete example, see Figure 1 where edges {1, 2} and {3, 7}
are of type 1, edge a = {4, 6} is of type 2 and {2, 2} is of type 3.

Proof of Lemma 2.3. It suffices to show that F(F ∪ e) does not contain e
if and only if e is one of these three types. If e is of type 1, then DFS will reach
u before v. But since we are using greatest-neighbors, the search will continue to
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Figure 2: The inversion case of Lemma 2.3

w regardless of the presence of {u, v}. By the time the search reaches v, u has
already been visited and so e cannot be used in that direction either. The parallel
edge case follows from using greatest edges, and loops are never in forests.

For the converse, suppose that e is not one of the three types. Then e must be
of the form

i. e = {u, v} where v is a descendant of u and (w, v) is a non-inversion, where
w is the child of u on the unique u-v path in F , or

ii. e > f where f ∈ F is an edge with the same endpoints as e, or

iii. e is a cross edge.

In the first two cases, the greatest-neighbor search will be forced to traverse e the
first time it is encountered. So e ∈ F(F ∪ e). In the third case, suppose e = {u, v}
and that u is searched first in F . Then v would eventually be visited as a neighbor
of u in F ∪ e. Again, this forces e ∈ F(F ∪ e).

3 Orientations

If G is a graph, then an orientation O of G is a digraph obtained by assigning one
of the two possible directions to each edge of G. If e = {u, v} is an edge then the
corresponding arc will be denoted ~e with possible directions ~e = uv or ~e = vu. For
enumerative purposes, we also consider each loop to have two possible directions.
A suborientation of G is an orientation of a subgraph of G. A digraph is acyclic
if it contains no directed cycles. Loops and oppositely directed parallel edges are
considered cycles.

We can use the Tutte polynomial and DFS to count acyclic suborientations of
G. Given any digraph D, we use least-neighbor search, which goes to the smallest
vertex at each step. If there are parallel arcs between the two vertices, they are
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Figure 3: A digraph D and forest F ⊆ D

ordered and the smallest one is taken. (In DFS2 we still always start at the least
unvisited vertex.) Of course, we only traverse arcs in the proper direction. If D

has least-neighbor DFS forest F , then we write ~F−(D) = F .
The trees generated by the least-neighbor search of D are related to certain

components of the digraph. We call a digraph initially connected if there is a di-
rected path from the smallest vertex to any other. An arbitrary digraph can be
decomposed into initial components as follows. The first component contains all
vertices reachable by a directed path from the least vertex. Remove these vertices
and the second component will contain vertices reachable from the smallest vertex
that remains, etc. The digraph in Figure 3 has three initially connected compo-
nents, namely the subdigraphs induced by the vertex sets {1, 2, 3, 5}, {4, 6, 8} and
{7}. Note that all arcs between two such components are directed from the later
to the earlier component. In general, we say that an arc uv is directed later to
earlier if u is visited after v in DFS.

We will write c(D) for the number of initial components of D. Notice that if
D has DFS forest F , then c(D) = c(F ). Also, c(F ) coincides with the number of
components of F considered as an undirected graph (sometimes called the weak
components).

Given a digraph D containing a forest F , the arcs uv ∈ D−F can be partitioned
into four types:

• Forward arcs where u is an ancestor of v,

• Backward arcs where u is a descendant of v,

• Cross arcs where u is neither an ancestor nor a descendant of v, and

• Loops.
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Figure 4: A graph G, suborientation O, and least-neighbor forest F

For example, with respect to the digraph D and subforest F of Figure 3 we have
forward arc 12; backward arcs 31, 64; cross arcs 42, 75, 78, 86; and a loop at the
vertex 8. It will be convenient to keep this partition in mind in the future.

Now suppose G is a graph and F ⊆ G is a forest. Consider F to be a suborien-
tation of G, where each edge is directed away from the root of its tree. Let ~E−(F )
be the set of all orientations ~e of edges in G− F such that

1. F ∪ ~e is acyclic, and

2. ~F−(F ∪ ~e ) = F .

We call the arcs in ~E−(F ) (directed) least-neighbor externally active. Note that by

the condition 1, ~E−(F ) never contains any loops. Also, ~E−(F ) contains at most
one orientation of each edge of G which is not a loop: if e = {u, v} with u an
ancestor or descendant of v then ~e must be oriented forward by condition 1; if e is
a cross edge then it must be directed later to earlier by condition 2. If we consider
the graph G and suborientation O in Figure 4, then the arcs in ~E−(F ) are 15, 41,
64, 75 and b oriented in the direction 68.

The analog of Proposition 2.2 in this setting is as follows.

Proposition 3.1 If O is any suborientation and F is any spanning forest of G
then

O is acyclic and ~F−(O) = F ⇐⇒ F ⊆ O ⊆ F ⊎ ~E−(F ).

Proof. First suppose that O is acyclic and that ~F−(O) = F . Then clearly F ⊆ O.

If O ⊆/ F ⊎ ~E−(F ), then some ~e ∈ O must violate condition 2 (since O is acyclic

by assumption). But this implies ~F−(O) 6= F , a contradiction.

For the other direction, condition 2 implies ~F−(O) = F . To verify acyclicity,
suppose to the contrary that v1, v2, . . . , vk, v1 is a directed cycle in O. If all the
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vi are on the same path from the root of some tree of F , then some cycle arc is
oriented backward, contradicting the observation after the definition of ~E−(F ).

Otherwise we have a cross arc, say vkv1. We can assume that all cross arcs
have endpoints in the same tree of F , since once we have left a component by a
cross arc we can never return. Note that v1 is earlier that vk because all cross
arcs are directed later to earlier. Also v1 is not an ancestor of vk by definition of
cross arc. Assume, by induction, that vi−1 is earlier than vk and not vk’s ancestor.
Now vi−1vi must be either a forward or cross arc. In the former case, vi is earlier
than and not an ancestor of vk. In the latter case, vi must be earlier than vi−1

and therefore earlier than vk. Also, vi cannot be an ancestor of vk: Since vi−1vi

is a cross arc, every descendant of vi is earlier than vi−1, but by the induction
hypothesis vk is later than vi−1. Thus the induction hypothesis holds for vi, which
is a contradiction when i = k.

Next, we characterize the arcs in ~E−(F ) just as we did for E(F ). The proof is
similar to that of Lemma 2.3 and is left to the reader.

Lemma 3.2 Suppose G is a graph with spanning forest F and e ∈ G − F . Then
~e ∈ ~E−(F ) if and only if ~e is of one of the following types:

1. ~e = uv is a forward arc, and (w, v) is a non-inversion where w is the child
of u on the unique u-v path in F , or

2. ~e > ~f where ~f ∈ F is an edge with the same endpoints and orientation as ~e,
or

3. ~e is a cross arc directed later to earlier.

In our previous example the arc 15 is of type 1, arc b = 68 is of type 2, and all
other arcs in ~E−(F ) are of type 3.

Comparing Lemmas 2.3 and 3.2 (in particular, the conditions in the proof of
the converse of the former and in the statement of the latter), we immediately
obtain a corollary.

Corollary 3.3 Suppose G is a graph with spanning forest F . Then

|G| = |F | + |E(F )| + |~E−(F )|.

We are now ready to count suborientations by initial components and number
of edges. If we did not assume that G was connected, the factor of xyn−1 on the
right side of the following equation would be replaced by xc(G)yn−c(G).
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Theorem 3.4 If G has n vertices, then

∑

O

xc(O)y|O| = xyn−1(1 + y)σ∗(G) tG

(

1 + x +
x

y
,

1

1 + y

)

(6)

where the sum is over all acyclic suborientations of G.

Proof. Using Proposition 3.1, Corollary 3.3, and the fact that |F | = n − c(F ) for
any spanning forest F ⊆ G,

∑

~F−(O)=F

xc(O)y|O| = xc(F )y|F |
∑

A⊆~E−(F )

y|A|

= xc(F )y|F |(1 + y)|
~E−(F )|

= xc(F )y|F |(1 + y)|G|−|F |−|E(F )|

= xc(F )yn−c(F )(1 + y)|G|−n+c(F )−|E(F )|

= yn(1 + y)|G|−n

(

x(1 + y)

y

)c(F ) (

1

1 + y

)|E(F )|

.

Summing over all F , we obtain from equation (5),

∑

O

xc(O)y|O| = yn(1 + y)|G|−n x(1 + y)

y
tG

(

1 +
x(1 + y)

y
,

1

1 + y

)

which agrees with (6).

We can rewrite this theorem using the same invariants as for subgraphs. For
any digraph D on n vertices, let

σ(D) = c(D) − 1

and
σ∗(D) = |D| − n + c(D).

Now replace x by xy in equation (6)

∑

O

xc(O)y|O|+c(O) = xyn(1 + y)σ∗(G) tG

(

1 + xy + x,
1

1 + y

)

or
∑

O

xσ(O)yσ∗(O) = (1 + y)σ∗(G) tG

(

1 + x + xy,
1

1 + y

)

(7)
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Several special cases are of interest.
To count acyclic suborientations O by edges without regard to the number of

initial components, we set x = 1 in (6) and obtain

∑

O

y|O| = yn−1(1 + y)σ∗(G) tG

(

2 +
1

y
,

1

1 + y

)

.

Similarly, setting x = 1 in (7) we get

∑

O

yσ∗(O) = (1 + y)σ∗(G) tG

(

2 + y,
1

1 + y

)

.

In particular,

2σ∗(G) tG

(

3,
1

2

)

= number of acyclic suborientations of G.

On the other hand, counting such orientations by number of initial components
is done by putting y = 1 in (6):

∑

O

xc(O) = x2σ∗(G) tG

(

1 + 2x,
1

2

)

.

To count those O for which c(O) = 1, i.e., those which are initially connected, we
put x = 0 in (7) and obtain

∑

c(O)=1

y|O| = yn−1(1 + y)σ∗(G) tG

(

1,
1

1 + y

)

.

In particular,

2σ∗(G) tG

(

1,
1

2

)

= number of initially connected acyclic suborientations of G.

Finally, to count acyclic orientations of G, i.e., those O with |O| = |G|, we
divide (6) by y|G| and take y → ∞. The result is

∑

|O|=|G|

xc(O) = x tG (1 + x, 0) . (8)

In particular,

tG(2, 0) = number of acyclic orientations of G, and

tG(1, 0) = number of initially connected acyclic orientations of G.

This interpretation of tG(2, 0) was found by Stanley in [38], while Greene and
Zaslavsky [21] discovered the one for tG(1, 0). These authors expressed their results
in terms of chromatic polynomials.
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4 Subdigraphs

Let G be a graph. A directed subgraph or subdigraph of G is a digraph D that
contains up to one copy of each orientation of every edge of G. Thus we permit both
orientations of an edge (including loops) to appear in a subdigraph, as opposed to
a suborientation where only one is permitted.

We now consider greatest-neighbor DFS on the set of all subdigraphs of G. The
only difference from the subgraph case is that now we are constrained to follow
the directions on the arcs. If digraph D has greatest-neighbor forest F, we write
~F+(D) = F . There is also the set ~E+(F ) of (directed) greatest-neighbor externally

active orientations ~e of edges of G such that ~F+(F ⊎~e ) = F . Notice that because
of the disjoint union, we have ~e ∈/ F . However, if uv ∈ F then we always have

vu ∈ ~E+(F ).
The next four results are similar to those we have seen in the previous sections,

so we will only indicate a proof of the third. In what follows, if F is a forest then
an E-active edge is an edge e in E(F ), i.e., e is greatest-neighbor externally active
in the undirected sense. All other edges of G − F will be called E-passive.

Proposition 4.1 If D is any subdigraph and F is any spanning forest of G then

~F+(D) = F ⇐⇒ F ⊆ D ⊆ F ⊎ ~E+(F ).

Lemma 4.2 Suppose G is a graph with spanning forest F . Then ~e ∈ ~E+(F ) if
and only if ~e is of one of the following types:

1. e is an E-active arc directed forward.

2. e is any arc of G directed later to earlier.

Corollary 4.3 Suppose G is a graph with spanning forest F . Then

|G| = |~E+(F )| − |E(F )|.

Proof. The edges of G can be partitioned into those in F , those that are E-active
and those that are E-passive. The following table lists the number of times each
sort of edge is counted in ~E+(F ) and E(F ).

edges ~E+(F ) E(F )
F 1 (backward) 0
E-active 2 (forward and backward) 1
E-passive 1 (later to earlier) 0
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Since the net difference is 1 in each case, the result follows.

Theorem 4.4 If G has n vertices, then

∑

D

xc(D)y|D| = xyn−1(1 + y)|G| tG

(

1 +
x

y
, 1 + y

)

(9)

and
∑

D

xσ(D)yσ∗(D) = (1 + y)|G| tG (1 + x, 1 + y) (10)

where the sum is over all subdigraphs of G.

As special cases, we can count subdigraphs by edges or σ∗ invariant:

∑

D

y|D| = yn−1(1 + y)|G| tG

(

1 +
1

y
, 1 + y

)

= (1 + y)2|G|

∑

D

yσ∗(D) = (1 + y)|G| tG (2, 1 + y)

2|G| tG(2, 2) = number of subdigraphs of G = 4|G|,

or by number of initial components:
∑

D

xc(D) = x2|G| tG (1 + x, 2)

∑

c(D)=1

y|D| = yn−1(1 + y)|G| tG (1, 1 + y)

2|G| tG(1, 2) = number of initially connected subdigraphs of G.

From equations (4) and (10), we see that
∑

D

xσ(D)yσ∗(D) = (1 + y)|G|
∑

H⊆G

xσ(H)yσ∗(H).

This equality can also be proved directly by exhibiting a 2|G|-to-1 map from sub-
digraphs D of G to subgraphs H ⊆ G that preserves the appropriate invariants
as follows: From Lemma 4.2, D can be represented by a triple (F, E, A) where

F = ~F+(D), E is the set of directed E-active edges in D, and A is the rest of the
arcs of D (so the corresponding edges could be an arbitrary subset of G). Similarly,
Lemma 2.3 shows that H can be represented by a pair (F,E) where F = F+(H)
and E is the set of E-active edges in H. It is easy to verify that the projection
map

(F, E, A) → (F, E)

(where we change arcs to edges in the image) has the desired properties.
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5 Complete graphs

We will now show how our results on orientations and subdigraphs can be combined
with the generating function for the Tutte polynomial of a complete graph to obtain
various new generating functions, some of which generalize results already in the
literature. For brevity, let tn(x, y) = tKn

(x, y). Tutte [41, equation (17)] obtained
an equation equivalent to the following which can be derived using the exponential
formula.

Theorem 5.1 The Tutte polynomial of the complete graph has exponential gener-
ating function

∑

n≥1

tn(x, y)
un

n!
=

1

x− 1















∑

n≥0

y(n
2)(y − 1)−n un

n!





(x−1)(y−1)

− 1











.

Next we find the generating function for acyclic digraphs, which are just acyclic
suborientations O ⊆ Kn. To do this, it will be convenient to define the graphic
generating function of a sequence (an)n≥0 to be

∑

n≥0

an

un

(1 + y)(
n

2)n!
.

According to equation (6), the count of acyclic digraphs on n vertices by number
of arcs and initial components is given by

an(x, y)
def
=

∑

O⊆Kn

xc(O)y|O| = xyn−1(1 + y)(
n−1

2 ) tn

(

1 + x +
x

y
,

1

1 + y

)

.

Applying the previous theorem yields

∑

n≥1

an(x, y)

yn(1 + y)(
n−1

2 )

un

n!
=

x

y

1

x + x
y















∑

n≥0

1

(1 + y)(
n
2)

(

−y

1 + y

)−n
un

n!





(x+ x
y
)( −y

1+y
)

− 1











=
1

1 + y











∑

n≥0

(−1)n (1 + y)n

yn

un

(1 + y)(
n

2)n!





−x

−1







. (11)

If we define a0(x, y) = 1 and replace u by yu

1+y
, then this last result simplifies.

Corollary 5.2 The graphic generating function for acyclic digraphs is

∑

n≥0

an(x, y)
un

(1 + y)(
n

2)n!
=





∑

n≥0

(−1)n un

(1 + y)(
n

2)n!





−x

.
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Stanley [38] and Robinson [35] obtained this result when x = y = 1, as did
Liskovets [29] and Rodionov [36] when x = 1. When x and y are integers with
y ≥ 0, Stanley also gives an interpretation to these graphic generating functions in
terms of the theory of posets of full binomial type developed by himself, Doubilet
and Rota [11].

We can derive the generating function for initially connected acyclic digraphs
counted by number of arcs using

cn(y)
def
=

an(x, y)

x

∣

∣

∣

∣

∣

x=0

.

Dividing equation (11) by x and letting x → 0 yields the desired formula.

Corollary 5.3 The graphic generating function for initially connected acyclic di-
graphs is

∑

n≥1

cn(y)
un

(1 + y)(
n
2)n!

= ln





∑

n≥0

(−1)n un

(1 + y)(
n
2)n!





−1

.

Putting together these last two theorems, we see that

∑

n≥0

an(x, y)
un

(1 + y)(
n

2)n!
= exp



x
∑

n≥1

cn(y)
un

(1 + y)(
n

2)n!





This is a special case of a more general exponential formula for digraphs which
does not seem to have been stated before.

Theorem 5.4 (Exponential formula for digraphs) Let D be a class of ini-
tially connected labeled digraphs with the property that an order-preserving change
of labels does not affect membership in D. Let cn(y) count digraphs in D on the
label set {1, 2, . . . , n} by number of arcs. Then

exp



x
∑

n≥1

cn(y)
un

(1 + y)(
n
2)n!



 =
∑

k,m,n≥0

bk,m,n xkym un

(1 + y)(
n
2)n!

(12)

where bk,m,n is the number of digraphs on {1, 2, . . . , n} with m arcs, k initial com-
ponents, and every such component in D.

Proof. Taking the coefficient of xkun on both sides of equation (12), it suffices to
show

1

(1 + y)(
n
2)n!

∑

m≥0

bk,m,n ym =
1

k!

∑

n1+···+nk=n

k
∏

i=1

cni
(y)

(1 + y)(
ni
2 )ni!
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where the sum is over all ordered partitions of n. Equivalently

∑

m≥0

bk,m,n ym =
1

k!

∑

n1+···+nk=n

(

n

n1, . . . , nk

)

cn1
(y) · · · cnk

(y) (1 + y)
∑

i<j
ninj

The left side of this formula just counts digraphs D on n vertices with k initial
components by number of arcs. But the right sums to the same thing. The
multinomial coefficient counts the number of ways to partition the vertices of
D into k ordered subsets for the initial components. Summing over all ordered
partitions of n and then dividing by k! gives coefficients which count unordered
partitions of the vertices. The cni

(y) give the arc count for each component. And
the power of 1 + y accounts for the arcs between components which must all be
directed from a later to an earlier component.

A general theory of exponential formulas has been developed by Stanley [39],
but this result does not seem to be a consequence. In the example we have been
considering, the set D consists of all initially connected acyclic digraphs.

As a further demonstration, we can count digraphs without the acyclicity con-
dition. Let dn(x, y) =

∑

D xc(D)y|D| (respectively, en(y) =
∑

D y|D|) where the sum
is over all digraphs (respectively, all initially connected digraphs) on n vertices.
The graphic generating function for all digraphs by number of arcs is

∑

n≥0

(1 + y)2(n
2) un

(1 + y)(
n
2)n!

=
∑

n≥0

(1 + y)(
n
2)un

n!

Using our Exponential Formula, we immediately get the following result.

Corollary 5.5 The graphic generating function for dn(x, y) is

∑

n≥0

dn(x, y)
un

(1 + y)(
n
2)n!

=





∑

n≥0

(1 + y)(
n

2)un

n!





x

.

The graphic generating function for en(y) is

∑

n≥1

en(y)
un

(1 + y)(
n
2)n!

= ln





∑

n≥0

(1 + y)(
n
2)un

n!



 .

6 Neighbors-first search

A specialization of tn(x, y) that has received some attention is tn(y)
def
= tn(1, y).

Mallows and Riordan [30] first studied this polynomial as the inversion enumer-
ator for trees. See also the book of Foata [12, pp. 144–147] and the papers of
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Gessel, Sagan and Yeh [19] and Gessel [17]. Kreweras [28] has given a number
of other interpretations to this polynomial which have been further studied by
Moszkowski [31]. See also Beissinger [3], who gives a bijective proof that tn(1, y)
counts inversions. In Section 9 we will give a table of these polynomials.

For completeness, we state the connection with the inversion polynomial. It
follows directly from Lemma 2.3 applied to G = Kn.

Proposition 6.1 If T is a tree, let inv T stand for the number of inversions of T .
Then

tn(y) =
∑

T

yinv T

where the sum is over all trees with n vertices.

We will now give another interpretation of tn(y) using a modified version of
DFS which is sometimes called neighbors-first search or NFS (see [7, p. 154]). The
following steps are applied to a graph H to build an NFS forest F . Note that
marking and searching a vertex are now two separate actions.

NFS1 Let F = ∅.

NFS2 Let v be the least unmarked vertex in V and mark v.

NFS3 Search v by marking all neighbors of v that have not been marked and
adding to F all edges from v to theses vertices.

NFS4 Recursively search all the vertices marked in NSF3 in increasing or-
der, stopping when every vertex that has been marked has also been
searched.

NSF5 If there are unmarked vertices, then return to NSF2. Otherwise, stop.

Thus NFS searches nodes in a depth-first manner but marks children in a locally
breadth-first manner. In choosing the vertex u in NFS2, we will always pick the
one with smallest label and use the smallest ordered edge. Denote the resulting
forest by F = FN (H). As an example, for the graph H in Figure 5 we start at
vertex 1, designating 3 and 4 as its children. Next we search node 3 and mark 5, 6
and 8 as its offspring. Note that 4 cannot be a child of 3 since it is already a child
of 1. The search now continues at 5, and so forth.

Observe that traversing a forest F by NFS gives a linear ordering to the children
of each vertex, i.e., the order in which we search them from smallest to largest label.
We will display this as a left-to-right order of the siblings when we draw F in the
plane and use corresponding terminology.
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Figure 5: A graph H and NSF forest F

As usual, given a spanning forest F of a graph G, we define EN (F ), the set of
edges externally active with respect to NFS, to be those edges e in G−F such that

FN (F ∪ e) = F.

The next set of results should be easy for the reader to prove by mimicking what
we did in Section 2. Proofs are therefore omitted.

Proposition 6.2 If H is any subgraph and F is any spanning forest of G then

FN(H) = F ⇐⇒ F ⊆ H ⊆ F ⊎ EN(F ).

Proposition 6.3 If G is a connected graph, then

tG(1 + x, y) =
∑

F⊆G

xσ(F )y|EN(F )|

where the sum is over all spanning forests of G. In particular

tn(y) =
∑

T

y|EN (T )| (13)

where the sum is over all trees on n vertices.

Theorem 6.4 Suppose G is a graph with spanning forest F and e ∈ G−F . Then
e ∈ EN(F ) if and only if e is of one of the following types:

1. e = {u, v} where v is a descendant of u’s parent, and w < u where w is the
sibling of u on the unique path from their parent to v in F , or
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Figure 6: The first case of Theorem 6.4

2. e > f where f ∈ F is an edge with the same endpoints as e, or

3. e is a loop.

Since our applications will all be to G = Kn, only the first of these three cases
really matters. A schematic diagram of this case is given in Figure 6.

It follows from Propositions 6.1 and 6.3 that the distribution of |EN(T )| for
labeled NFT trees is the same as that for invT . We digress briefly to note that
the the distribution of external activities for unlabeled ordered trees is given by
the q-Catalan numbers studied by Andrews [1], Fürlinger and Hofbauer [14], and
Krattenthaler [27]. Any unlabeled ordered tree can be given an NFT labeling by
labeling the root as 1 and then making sure that the labels on the children of
every vertex increase from left to right. Thus we can let the external activity of an
unlabeled tree T be the external activity of any NFT labeling of T as a spanning
tree of a complete graph. Now define polynomials Cn(q) by C0(q) = 1 and

Cn(q) =
n−1
∑

k=0

qkCk(q)Cn−k−1(q). (14)

The first few values are

C0(q) = C1(q) = 1, C2(q) = 1 + q, C3(q) = 1 + 2q + q2 + q3,

C4(q) = 1 + 3q + 3q2 + 3q3 + 2q4 + q5 + q6.

If we compute the external activities of the unlabeled ordered trees on 3 edges (see
Figure 7), then we obtain

∑

|T |=3

q|EN (T )| = 1 + 2q + q2 + q3.

This is evidence for the next theorem.
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Figure 7: Externally active edges for unlabeled ordered trees on 3 edges

Theorem 6.5 We have
Cn(q) =

∑

|T |=n

q|EN (T )|

where the sum is over all unlabeled ordered trees T with n edges.

Proof. It suffices to show that the tree sum satisfies the recursion (14). Now any
tree T can be decomposed into two trees T ′ and T ′′ where

T ′ = rightmost subtree of the root r, and

T ′′ = T − T ′

Here we make the convention that the edge joining r to T ′ is removed in T − T ′.
Also, if r has only one subtree, it is considered rightmost so that T ′′ = r in this
case. But if |T | = n and |T ′′| = k, then |T ′| = n − k − 1. So by case 1 of
Theorem 6.4

q|EN (T )| = qkq|EN (T ′)|q|EN (T ′′)|.

Summing over all T , we obtain the desired result by induction.

We now return to the main stream of our development. For the rest of this
section and the next, all of our external activities will be with respect to the graph
Kn. In this case, given any tree T , we can derive a simple formula for |EN(T )|. Let
v1, v2, . . . , vn be the order in which the nodes of T are first searched using NFS.
Note that this is a depth-first order. Define the prefix code of T to be the sequence

c(T ) = c1, c2, . . . , cn

where ci is the number of children of vertex vi. We could also define c(T ) recursively
by

c(T ) = c1, c(T1), c(T2), . . . , c(Tk)
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where T1, T2, . . . , Tk are the subtrees of v1 listed in order of increasing labels of
their roots. For example, the nodes of the tree in Figure 5 are searched in the
order

v1, v2, . . . , v8 = 1, 3, 5, 7, 6, 8, 4, 2 (15)

which gives it prefix code

c1, c2, . . . , c8 = 2, 3, 1, 0, 0, 0, 1, 0.

Theorem 6.6 If T is a tree with prefix code c1, c2, . . . , cn then

|EN(T )| = (c1 − 1) + (c1 + c2 − 2) + · · · + (c1 + c2 + · · · + cn−1 − n + 1)

= (n − 1)c1 + (n − 2)c2 + · · · + cn−1 −

(

n

2

)

Using our previous example

n−1
∑

k=1

(n − k)ck −

(

n

2

)

= 7 · 2 + 6 · 3 + 5 · 1 + 4 · 0 + 3 · 0 + 2 · 0 + 1 · 1 −

(

8

2

)

= 10

while

EN(T ) = {{4, 3} {4, 5} {4, 6} {4, 7} {4, 8} {6, 5} {6, 7} {8, 5} {8, 6} {8, 7}}

which has 10 elements.
Proof of Theorem 6.6. It suffices to show that the term c1 + c2 + · · ·+ ci − i

counts all externally active edges whose left end is vi+1. We will do this by induction
on i. This is clearly true for i = 0. For i > 0, we distinguish two cases.

If ci > 0, then vi+1 is the leftmost child of vi. Now {vi, u} active implies that
so is {vi+1, u} (Theorem 6.4), yielding c1 + c2 + · · ·+ ci−1 − i +1 edges. Also, there
are active edges from vi+1 to each of its siblings, for ci − 1 more edges. These are
the only active edges and the total is correct.

If ci = 0, then vi is a leaf and we get to vi+1 by backtracking. But then vi+1

was the leftmost of all the vertices joined to vi by externally active edges. So vi+1

has exactly one less (= ci − 1) active edge than vi did. Thus we are finished by
induction.

We can use the NFS interpretation of tn(y) to give a combinatorial proof of an
identity for its generating function first proved by other means in [16].
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Theorem 6.7 Let

J(u) =
∑

n≥0

tn+1(y)
un

n!

then

J(u) =
∑

n≥0

y(n
2)J(u)J(yu) · · ·J(yn−1u)

un

n!

Proof. Taking the coefficient of un

n!
on both sides, we get the equivalent statement

tn+1(y) =
∑

k≥0

n1+···+nk+k=n

y(k
2)

[

y(k−1)n1tn1+1(y)
] [

y(k−2)n2tn2+1(y)
]

· · ·
n!

n1!n2! · · ·nk!k!

=
∑

k≥0

n1+···+nk+k=n

(

n

k, n1, n2, . . . , nk

)

tn1+1(y)tn2+1(y) · · · y
∑k

i=1
(k−i)(ni+1).

where the factor involving tni+1(y) comes from J(yk−iu).
To see that this last expression enumerates trees T by externally active edges,

consider the subtrees T1, T2, . . . , Tk of the root of T . Suppose these trees have roots
w1, w2, . . . , wk and n1, n2, . . . , nk other vertices respectively. Then the multinomial
coefficient counts the number of ways to pick the roots and then the other sets of
vertices.

The active edges {v, w} are of two types:

• edges where v and w are in the same Ti, and

• edges where v ∈ Ti and w = wj for some i < j

Edges of the first sort are accounted for by tn1+1(y)tn2+1(y) · · · tnk+1(y) while those
of the second are taken care of by the power of y.

We end with a characterization of forests in terms of prefix codes that will help
us in Section 7. Since it is well known we omit the proof.

Theorem 6.8 The sequence c1, c2, . . . , cn is a prefix code for a tree if and only if

1.
j

∑

i=1

(ci − 1) ≥ 0 for j < n, and

2.
n

∑

i=1

(ci − 1) = −1
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Notice that the preceding conditions could be rewritten as

j
∑

i=1

ci ≥ j for j < n, and

n
∑

i=1

ci = n − 1.

We can make the characterization in Theorem 6.8 even stronger by using parent
functions. Suppose we are given a tree T having vertices {1, . . . , n} and NFS order
v1 = 1, v2, . . . , vn. The corresponding parent function is p : {2, . . . , n} → {1, . . . , n}
defined by p(i) = j if the vertex labeled i has parent vj. Returning to the tree in
Figure 5 with NFS order given by (15), we see that it has parent function

p(2) = 7, p(3) = 1, p(4) = 1, p(5) = 2, p(6) = 2, p(7) = 3, p(8) = 2.

Observe that |p−1(j)| = cj. This should motivate the following result whose
proof, since it follows easily from the previous theorem, is omitted.

Corollary 6.9 The function p : {2, . . . , n} → {1, . . . , n} is a parent function for
a tree if and only if

|p−1(1) ∪ p−1(2) ∪ · · · ∪ p−1(j)| ≥ j for j < n

7 Hashing and parking functions

We now describe an application of tn(y) to hash coding, which is a method for
storing and retrieving data efficiently. Knuth [24, Chapter 6] gives a comprehensive
account of storage and retrieval methods, and in particular of hash coding (Section
6.4). The hashing technique we discuss here is called “open addressing with linear
probing.” It was analyzed earlier by Knuth in [25]. We consider only the storage
aspect; retrieval is similar and is discussed in detail by Knuth.

Suppose we have m boxes labeled 1 to m, and n < m objects labeled 1 to n
which are to be put into the boxes. Each object i has a preferred box h(i), where
the function h is called a hash function. We now insert the objects in the order 1,
2, . . . , n into the boxes. When we insert object i, we place it into box h(i) if this
box is empty. Otherwise, we probe boxes h(i) + 1, h(i) + 2, . . . in turn and place
object i into the first empty box we find. Box numbers are taken modulo m, so
that box 1 is probed after box m. Since there are more boxes than objects, every
object will eventually be placed into a box. Given a hash function h, which may
be an arbitrary function from {1, 2, . . . , n} to {1, 2, . . . , m}, we let B(h) be the



the electronic journal of combinatorics 3 (2) (1996), #R9 24

9
8
7
6
5
4
3
2
1

1 1

2

1

2
3

1

2
3

4

1

2
3

4

5

1

2
3

4

5
6

Figure 8: Open address hashing

number of times an occupied box is probed during the insertion process. (Note
that Knuth counts as a probe the box into which an object is inserted, but we do
not.) By way of illustration, consider the array of m = 9 boxes in Figure 8 where
the box numbers are given on the far left. Reading the diagram from left to right
shows the placement of n = 6 objects using the hash function

h(1) = 9, h(2) = 3, h(3) = 3, h(4) = 9, h(5) = 4, h(6) = 3.

The number of probes is

B(h) = 0 + 0 + 1 + 1 + 1 + 3 = 6.

The following lemma, which appears in [24, pp. 530–531], is very useful.

Lemma 7.1 (Rearrangement Lemma) Suppose h and g are two hash func-
tions such that the sequence g(1), . . . , g(n) is a rearrangement of h(1), . . . , h(n).
Then

1. the same boxes are filled in the insertion process for h and g, and

2. B(h) = B(g).

We now study the distribution of B(h) among the mn possible hash functions
h : {1, 2, . . . , n} → {1, 2, . . . ,m}, where n < m. Let Kn,m,i be the number of such h
with B(h) = i. Also, let Ln,m,i be the number of these functions with the property
that after all n objects are inserted, box m is empty. Since all boxes are equally
likely to be empty, we have

Ln,m,i =
k

m
Kn,m,i, (16)
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where k = m− n is the number of empty boxes.
We now examine the polynomial

Ln,m(y) =
∑

i≥0

Ln,m,i yi. (17)

Suppose we perform the insertions corresponding to a hash function counted by
Ln,m(y). Consider the sequence of boxes after completing these insertions. This
sequence can be broken up into k = m−n subsequences, each of which consists of
zero or more filled boxes followed by an empty box. Since no object will ever probe
any of the k empty boxes, the sequence of boxes can be obtained by decomposing
the hash function into k functions and doing the insertions for each separately.
In the example from Figure 8, there are k = 3 subsequences, consisting of boxes
{3, 4, 5, 6, 7}, {8}, and {9, 1, 2}. By the Rearrangement Lemma and the properties
of exponential generating functions, we have

∑

n≥0

Ln,n+k(y)
un

n!
=





∑

n≥0

Ln,n+1(y)
un

n!





k

. (18)

It remains to determine Ln,n+1(y).
The functions counted by Ln,n+1(y) are called parking functions: they are hash

functions p : {1, . . . , n} → {1, . . . , n + 1} that leave box n + 1 empty. The name
derives from the scenario [24, p. 545, exercise 29] in which the boxes are interpreted
as parking spaces and the objects are cars trying to park, with the hash function
giving the preferred spot of each car. The term “parking function” was coined
by Konheim and Weiss [26]. We have the following characterization of parking
functions.

Theorem 7.2 The hash function p : {1, . . . , n} → {1, . . . , n + 1} is a parking
function if and only if

|p−1(1) ∪ p−1(2) ∪ · · · ∪ p−1(j)| ≥ j for j < n + 1.

Furthermore, in this case

B(p) = nc1 + (n − 1)c2 + · · · + cn −

(

n + 1

2

)

,

where ci = |p−1(i)|.

Proof. Suppose that p is a parking function. Since the first j boxes can be filled
only from objects in p−1(1)∪ p−1(2)∪ · · ·∪ p−1(j), we must have |p−1(1)∪p−1(2)∪
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· · · ∪ p−1(j)| ≥ j for j < n + 1. The converse follows from the observation that if
|p−1(1) ∪ p−1(2) ∪ · · · ∪ p−1(j)| ≥ j then box j will be filled.

To prove the formula for B(p) it suffices to show that c1 + c2 + . . . + cj − j
counts the number of times box j is probed after it is filled, for j = 1, 2, . . . , n.
But c1 + c2 + · · ·+ cj is the total number of objects that start their search in box
j or before. And of these, the first j objects will occupy the first j boxes, leaving
c1 + c2 + . . . + cj − j to probe box j.

Comparison of Theorem 7.2 with Theorem 6.6 and Corollary 6.9 shows that
there is a bijection between NFS trees T on {1, 2, . . . , n+1} and parking functions
p : {1, . . . , n} → {1, . . . , n + 1} such that EN (T ) = B(p). Thus

Ln,n+1(y) = tn+1(y). (19)

This was first proved by Kreweras [28], who studied the functions satisfying the
property of Theorem 7.2, but did not identify them as parking functions. For
further work on parking functions, see Schützenberger [37], Riordan [34], Foata
and Riordan [13], and Moszkowski [31].

In analyzing the performance of hash coding as a storage method, one wants
to know the expected value of B(h) over all hash functions h : {1, 2, . . . , n} →
{1, 2, . . . , m}, assuming that all are equally likely. Although Knuth computes this
expected value without knowing Ln,m(y), it is interesting to see how this value can
be derived from our results.

The expected value of B(h) over all hash functions is clearly the same as the
expected value of B(h) over hash functions that leave box m empty, which is
L′

n,m(1)/Ln,m(1). By (16) and (17),

Ln,n+k(1) =
k

n + k
(n + k)n = k(n + k)n−1.

Also, by (18) and (19) we have

∑

n≥0

L′
n,n+k(1)

un

n!
= k





∑

n≥0

tn+1(1)
un

n!





k−1
∑

n≥0

t′n+1(1)
un

n!
. (20)

We know that tn+1(1) = (n+1)n−1. It remains to evaluate t′n+1(1). By equation (4),
we have

tn+1(y) =
∑

H

(y − 1)σ∗(H)

where the sum is over all connected graphs on {1, 2, . . . , n + 1}. Then

t′n+1(1) =
∑

H

σ∗(H) (y − 1)σ∗(H)−1
∣

∣

∣

y=1
.
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The only non-zero terms in this sum occur when 1 = σ∗(H) = |H|−(n+1)+c(H).
Since H is connected, this implies it must be unicyclic. The number of such graphs
is known [32, 43]. Substituting this value into the previous equation gives

t′n+1(1) =
1

2

n+1
∑

j=3

(

n + 1

j

)

j! (n + 1)n−j. (21)

Now let

T = T (u) =
∑

n≥0

(n + 1)n−1 un

n!
. (22)

It is well known that
T j

1 − uT
=

∑

l≥0

(l + j)l u
l

l!
.

See, for example, Riordan’s book [33, p. 147]. It follows that

∞
∑

n=j−1

(

n + 1

j

)

j! (n + 1)n−j u
n

n!
=

uj−1T j

1 − uT
.

Combining this equation with (20), (21), and (22) yields

∑

n≥0

L′
n,n+k(1)

un

n!
=

k

2
T k−1

∞
∑

j=3

uj−1T j

1 − uT

=
k

2

∞
∑

i=2

uiT i+k

1 − uT

=
k

2

∞
∑

i=2

∑

l≥0

(l + i + k)l u
l+i

l!

=
∑

n≥0

un

n!

n
∑

i=2

1

2

(

n

i

)

i! k(n + k)n−i.

Dividing by Ln,n+k(1) = k(n+k)n−1 and setting m = n+k, we obtain the expected
value.

Proposition 7.3 The expected value of B(h) as h varies over all hash functions
from {1, 2, . . . , n} to {1, 2, . . . , m} (n < m) is

1

2

n
∑

i=2

(

n

i

)

i! m1−i =
1

2

[

n(n − 1)

m
+

n(n − 1)(n − 2)

m2
+ · · ·

]

. (23)
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To relate Proposition 7.3 to Knuth’s results, we note that he considers the
quantity C ′

n−1 which is the expected number of probes to insert the nth object
for a random hash function from {1, 2, . . . n} to {1, 2, . . . m}. Since Knuth counts
the probe of a vacant box, which we do not, (23) is equal to

∑n
j=1(C

′
j−1 − 1).

Conveniently, he is also interested in the quantity Cn = 1
n

∑n
j=1 C ′

j−1. Since (23)
is equal to n(Cn − 1), it is easy to check that Knuth’s formula (40) in [24, p. 530]
agrees with Proposition 7.3.

8 Comments and open questions

Several areas related to what we have presented deserve further investigation.

(1) There are many other specializations of the Tutte polynomial that enumer-
ate various classes of objects. See Brylawski’s survey article [5] or his article with
Oxley [6] for a list in the context of matroids. How many of these can be explained
by either DFS?

(2) Stanley’s interpretation of tG(2, 0) was actually part of a more general
result [38]. He proved that if G is a connected graph and k is a positive integer,
then

k tG(1 + k, 0) (24)

is the number of pairs (O, f ) where

• O is an acyclic orientation of G, and

• f : V → {1, 2, . . . , k} is a function such that uv ∈ O. implies f(u) ≤ f(v).

Also we know, from equation (8), that (24) counts pairs (O, g) where

• O is an acyclic orientation of G, and

• g : V → {1, 2, . . . , k} is a function such that u, v in the same initial compo-
nent of O implies g(u) = g(v).

Recently Serge Elnitsky [private communication] has found a direct bijection be-
tween such pairs.

(3) In Theorem 6.7, we proved an identity for J(u) =
∑

n≥0 tn+1(y)un/n!. This
is a special case of the fact [16] that

J(u)J(yu) · · ·J(yku) =
∑

n≥0

(1 + y + · · · + yk)ny(n
2)J(u)J(yu) · · · J(yn−1u)

un

n!
.
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Unfortunately, we have not been able to find a combinatorial proof of this formula
based on counting externally active edges.

(4) Parking functions have been receiving a lot of attention recently because
of their connection with a problem in representation theory. The Rearrangement
Lemma shows that there is an action of permutations π in the symmetric group
Sn on parking functions p : {1, . . . , n} → {1, . . . , n + 1} given by

πp(i) = p(π−1i).

Thus the set of parking functions can be made into an Sn-module which we denote
by Pn.

Now consider the polynomial ring Rn = C[x1, . . . xn, y1, . . . , yn] where C is the
complex numbers. Let π ∈ Sn act on q ∈ Rn diagonally, i.e.,

πq(x1, . . . xn, y1, . . . , yn) = q(xπ1, . . . xπn, yπ1, . . . , yπn).

If J ⊆ Rn is the ideal of nonconstant invariants of this action, then the quotient
Rn/J is another Sn-module. Mark Haiman conjectured that there is an isomor-
phism

Pn
∼= Q⊗ (Rn/J) (25)

where Q is a module for the sign representation. Moreover, since the bidegree of a
polynomial in the x’s and y’s is preserved under the action of Sn, Rn/J is a bigraded
Sn-module. If we ignore the y-grading then (25) seems to be an isomorphism of
x-graded Sn-modules, where the degree of a parking function p is B(p) as defined
in Section 7.

There is a sizable amount of numerical evidence for this conjecture. However,
it is still mysterious that two such differently defined objects should turn out to
be isomorphic. For more information about this question, see [22].

9 Tables

We will now give tables for various quantities that we have studied.
Tables 1a and 1b contain the Tutte polynomials of the complete graphs tn(x, y)

for n ≤ 8. For n ≤ 3, the polynomials are written in the usual format. For
4 ≤ n ≤ 8, we let

tn(x, y) =
∑

i,j

tn,i,jx
iyj

and then display the coefficients in a rectangular matrix with the entry in row j
and column i of the nth array being being tn,i,j .

Table 2 gives the specializations tn(y) = tn(1, y) which are also inversion enu-
merators for trees.
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t1(x, y) = 1
t2(x, y) = x
t3(x, y) = x + x2 + y

t4(x, y) :

j\i 0 1 2 3
0 0 2 3 1
1 2 4 0 0
2 3 0 0 0
3 1 0 0 0

t5(x, y) :

j\i 0 1 2 3 4
0 0 6 11 6 1
1 6 20 10 0 0
2 15 15 0 0 0
3 15 5 0 0 0
4 10 0 0 0 0
5 4 0 0 0 0
6 1 0 0 0 0

t6(x, y) :

j\i 0 1 2 3 4 5
0 0 24 50 35 10 1
1 24 106 90 20 0 0
2 80 145 45 0 0 0
3 120 105 15 0 0 0
4 120 60 0 0 0 0
5 96 24 0 0 0 0
6 64 6 0 0 0 0
7 35 0 0 0 0 0
8 15 0 0 0 0 0
9 5 0 0 0 0 0

10 1 0 0 0 0 0

Table 1a: Tutte polynomials of complete graphs for n ≤ 6
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t7(x, y) :

j\i 0 1 2 3 4 5 6
0 0 120 274 225 85 15 1
1 120 644 721 280 35 0 0
2 490 1225 700 105 0 0 0
3 945 1330 420 35 0 0 0
4 1225 1085 210 0 0 0 0
5 1260 756 84 0 0 0 0
6 1120 469 21 0 0 0 0
7 895 245 0 0 0 0 0
8 645 105 0 0 0 0 0
9 420 35 0 0 0 0 0

10 245 7 0 0 0 0 0
11 126 0 0 0 0 0 0
12 56 0 0 0 0 0 0
13 21 0 0 0 0 0 0
14 6 0 0 0 0 0 0
15 1 0 0 0 0 0 0

t8(x, y) :

j\i 0 1 2 3 4 5 6 7
0 0 720 1764 1624 735 175 21 1
1 720 4488 6020 3136 700 56 0 0
2 3444 10696 8470 2380 210 0 0 0
3 7980 15120 7490 1260 70 0 0 0
4 12495 15855 5320 560 0 0 0 0
5 15400 13986 3360 224 0 0 0 0
6 16261 11123 1960 56 0 0 0 0
7 15464 8196 980 0 0 0 0 0
8 13600 5580 420 0 0 0 0 0
9 11200 3500 140 0 0 0 0 0

10 8680 1988 28 0 0 0 0 0
11 6328 1008 0 0 0 0 0 0
12 4333 448 0 0 0 0 0 0
13 2779 168 0 0 0 0 0 0
14 1660 48 0 0 0 0 0 0
15 916 8 0 0 0 0 0 0
16 462 0 0 0 0 0 0 0
17 210 0 0 0 0 0 0 0
18 84 0 0 0 0 0 0 0
19 28 0 0 0 0 0 0 0
20 7 0 0 0 0 0 0 0
21 1 0 0 0 0 0 0 0

Table 1b: Tutte polynomials of complete graphs for n = 7, 8
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t1(y)= 1

t2(y)= 1

t3(y)= 2 + y

t4(y)= 6 + 6 y + 3 y2 + y3

t5(y)= 24 + 36 y + 30 y2 + 20 y3 + 10 y4 + 4 y5 + y6

t6(y)= 120 + 240 y + 270 y2 + 240 y3 + 180 y4 + 120 y5 + 70 y6 + 35 y7

+15 y8 + 5 y9 + y10

t7(y)= 720 + 1800 y + 2520 y2 + 2730 y3 + 2520 y4 + 2100 y5 + 1610 y6 + 1140 y7

+750 y8 + 455 y9 + 252 y10 + 126 y11 + 56 y12 + 21 y13 + 6 y14 + y15

t8(y)= 5040 + 15120 y + 25200 y2 + 31920 y3 + 34230 y4 + 32970 y5 + 29400 y6

+24640 y7 + 19600 y8 + 14840 y9 + 10696 y10 + 7336 y11 + 4781 y12

+2947 y13 + 1708 y14 + 924 y15 + 462 y16 + 210 y17 + 84 y18 + 28 y19

+7 y20 + y21

Table 2: The inversion enumerator for trees
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