
VLDB Journal,3, 517-542 (1994), Ralf Hartmut Gtifing, Editor 517

QVLDB

The W-Tree: An Index Structure for High-Dimensional

Data

King-lp Lin, H.V. Jagadish, and Christos Faloutsos

Received July 12, 1993; accepted May 20, 1994.

Abstract. We propose a file structure to index high-dimensionality data, which are

typically points in some feature space. The idea is to use only a few of the fea-

tures, using additional features only when the additional discriminatory power is

absolutely necessary. We present in detail the design of our tree structure and the

associated algorithms that handle such "varying length" feature vectors. Finally,

we report simulation results, comparing the proposed structure with the R*-tree,

which is one of the most successful methods for low-dimensionality spaces. The

results illustrate the superiority of our method, which saves up to 80% in disk ac-

cesses.

Key Words. Spatial index, similarity retrieval, query by content.

1. Introduction

Many applications require enhanced indexing that is capable of performing similarity

searching on several, non-traditional (exotic) data types. The target scenario is as

follows: given a collection of objects (e.g., 2-D images, 3-D medical brain scans,

or simply English words), we would like to find objects similar to a given sample

object. We rely on a domain expert to provide the appropriate similarity/distance

functions between two objects. A list of potential applications for such a system

follows:

• Image databases: Jagadish (1991) showed how to query for similar shapes,

describing each shape by the coordinates of a few rectangles that cover it

(,~20 features per shape). Niblack et al., (1993) supported queries on color,

shape and texture, using color histograms (64-256 attributes per image) as

feature vectors, and using the first 20 moments for shapes.

King-Ip Lin is a graduate student, and Christos Faloutsos, Ph.D., is Associate Professor, Department of

Computer Science, University of Maryland, College Park, MD 20742; H.V. Jagadish, Ph.D., is with AT&T
Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.

518

• Medical databases, where 1-D objects (e.g., ECGs), 2-D images (e.g., x-rays),

and 3-D images (e.g., MRI brain scans; Arya et al., 1993) are stored. The

ability to retrieve quickly past cases with similar symptoms is valuable for

diagnosis, as well as for medical teaching and research purposes.

• Time series, such as financial databases with stock-price movements. The goal

is to aid forecasting, by examining similar patterns that have appeared in the

past. Agrawal et al. (1993) used the co-elficients of the Discrete Fourier

Transform (DFT) as features.

• Multimedia databases, with audio (voice, music) or video (Narasimhalu and

Christodoulakis, 1991). Users might want to retrieve similar music scores or

video clips.

• D N A databases that contain a large collection of strings from a four-letter

alphabet (A,G,C,T); a new string has to be matched against the old strings,

to find the best candidates. The BLAST algorithm (Altschul et al., 1990)

uses successive, overlapping n-grams for indexing. When using n-grams as

features, we need 4 '~ features or 1,024 features for n = 5.

• Searching for names or addresses, (e.g., in a customer mailing list), which are

partially specified or have errors. For example "1234 Springs Road" instead

of "1235 Spring Rd," or "Mr. John Smith" instead of "Dr. J. Smith, Jr."

Similar applications include spelling, typing (Kukich, 1992), and O C R error

correction. Given a wrong string, we should search a dictionary to find the

closest strings to it. Triplets of letters are often used to assess the similarity

of two words (Angell et al., 1983), in which case we have ,~, 263 = 17,576

features per word (assuming that words consist exclusively of the 26 English

letters, ignoring digits, upper-case letters, etc.).

For all of these applications, we rely on an expert to derive features that

adequately describe the objects of interest. As 3agadish (1991) proposed, once

objects are mapped into points in some feature space, we can accelerate the search

by organizing these points in a spatial access method.

For a feature space with low dimensionality, any of the known spatial access

methods will work. However, in the above applications, the number of features per

object may range from 10 to 100. The spatial access methods of the past have mainly

concentrated on 2-D and 3-D spaces, such as the R-tree based methods (Guttman,

1984), and the linear-quadtree based methods (e.g., z-ordering; Orenstein and

Manola, 1988). Although conceptually they can be extended to higher dimensions,

they usually require time and/or space that grows exponentially with the number of

dimensions.

In this article, we propose a tree-structure that avoids the dimensionality problem.

The idea is to use a variable number of dimensions for indexing, adapting to the

number of objects to be indexed, and to the current level of the tree. Thus, for

nodes that are close to the root, we use only a few dimensions (and therefore,

we can store many branches, and enjoy a high fanout); as we descend the tree,

VLDB Journal 3 (4) Lin: The TV-Tree 519

we become more discriminating, using more and more dimensions. Given that the

feature vectors contract and extend dynamically, resembling a telescope, we called

our method the Telescopic-Vector tree, or TV-tree.

This article is organized as follows: Section 2 surveys related work, highlighting

the problems of high-dimensionality. Section 3 presents the intuition and motivation

behind the proposed method. Section 4 presents the implementation of our method,

Section 5 gives the experimental results, and Section 6 lists the conclusions.

2. Related Work

As mentioned above, feature extraction functions map objects into points in feature

space for a variety of applications; these points must be stored in a spatial access

method. The prevailing methods form three classes: R*-trees (Beckmann et al.,

1990) and the rest of the R-tree family (Guttman, 1984; Jagadish, 1990); linear

quadtrees (Samet, 1989); and grid-files (Nievergelt et al., 1984).

Different kinds of queries arise; the most typical ones are listed below:

• Exact match queries. Find whether a given query object is in the database.

For example, check if a certain inventory item exists in the database.

• Range queries. Given a query object, find all objects in the database that

are within a certain distance from the object. Similarity queries also fall

within this category. For example, find all buildings within 2 miles of the

Washington National Airport; find all words within a one-letter substitution

from the word "tex"; find all shapes that look like a Boeing 747.

• Nearest neighbor queries. Given a query item, find the item that is closest or

most similar to the query item. For example, find the fingerprint that is most

similar to the one given. Similarly, k-nearest neighbor queries can be asked.

• Allpair queries. Given a set of objects, find all pairs within distance e; or

find the k-closest pairs. For example, given a map, find all pairs of houses

that are within 100 feet of each other.

• Sub-pattern matching. Instead of looking at the objects as a whole, find a

sub-pattern within an object that matches our description. For example, find

stock movements that contain a certain pattern; or find all x-ray images that

contain tissue with tumor-like texture.

Previous work compared the performance of different spatial data structures.

Greene (1989) compared the R-tree, R+-tree, K-D-B-tree, and the 2-D Index

Sequential Access Method, and concluded that the R-tree and the R +-tree give the

better performances. Hoel and Samet (1992) compared the PMR-quadtree to the

R-tree variants for large line segment databases. Their results show that different

data structures are suited for different kinds of queries.

Most multidimensional indexing methods, however, explode exponentially with

the dimensionality, eventually reducing to sequential scanning. For linear quadtrees,

520

the effort is proportional to the hypersurface bounding the query region (Hunter and

Stieglitz, 1979); the hypersurface grows exponentialIly with the dimensionality. Grid

files face similar problems, because they require a directory that grows exponentially

with the dimensionality. The R-tree and its variants will suffer if a single feature

vector requires more storage space than a disk page can hold; in this case, the tree

will have a fanout of 1, reducing to a linked list.

Similar problems with high dimensionality have been reported for methods that

focus mainly on nearest-neighbor queries: Voronoi diagrams do not work at all for

dimensionalities higher than 3 (Aurenhammer, 1991). The method of Friedman et

al. (1975) does almost as much work as linear scanning for dimensionalities > 9.

The spiral search method of Bentley et al. (1980) also has a complexity that grows

exponentially with the dimensionality.

Relevant to our work is a wide variety of clustering algorithms (e.g., Hartigan,

1975; Salton and Wong, 1978; Murtagh, 1983, for surveys). However, the main goal

of these algorithms is to detect patterns in the data, and/or to assess the quality

o f the clustering scheme using the precision and recall measures; there is usually

little attention to measures like the space overhead and the time required to create,

search, and update the structure.

3. Intuition Behind the Proposed Method

As mentioned, several of the target applications require indexing in a high-dimensional

feature space. Current spatial access methods suffer from the dimensionality curse

(i.e., exploding exponentially with the dimensionalilty).

The solution we propose is to contract and extend the feature vectors dynamically,

that is, to use as few of the features as necessary to discriminate among the objects.

This agrees with the intuitive way that humans classify objects: for example, in

zoology, the species are grouped in a few broad classes first, using a few features

(e.g., vertebrates versus invertebrates). As the classification is further refined, more

and more features are gradually used (e.g., warm-blooded versus cold-blooded, or

lungs versus gills).

The basis of our proposed TV-tree is to use dynamically contracting and extending

feature vectors. Like any other tree, it organizes the data in a hierarchical structure:

Objects (i.e., feature vectors) are clustered into leaf nodes of the tree, and the

description of their Minimum Bounding Region (MI3R) is stored in the parent node.

Parent nodes are recursively grouped too, until the root is formed.

Compared to a tree that uses a fixed number of features, our tree provides

a higher fanout at the top levels, using only a few, basic features, as opposed to

many, possibly irrelevant, features.

As more objects are inserted into the tree, more features might be needed to

discriminate among the objects. At that time, new features are introduced. The

key point here is that features are introduced on a "when needed" basis and, thus,

we can soften the effect of the dimensionality curse.

VLDB Journal 3 (4) Lin: The TV-Tree 521

The basic telescopic vector concept can be applied to a tree with nodes that

describe bounding regions of any shape (cubes, spheres, rectangles, etc.). Also, there

is flexibility in the choice of the telescoping function, which selects the features of

interest at any level of the tree. We discuss these design choices in the next two

subsections.

3.1 Telescoping Function

In general, the telescoping problem can be described as follows. Given an n x 1

feature vector ~ and an m x n (m < n) contraction matrixAm, the m x 1 vector

A m ~ is an m-contraction of ~. A sequence of such matrices Am, with m = 1, . . .

describes a telescoping function provided that the following condition is satisfied:

If the ml-contractions of two vectors, ~ and if, are equal, then so are their respective

m2-contractions, for every m 2 ~ ml.

While a variety of telescoping functions can be defined (Appendix B), the most

natural choice is simple truncation. That is, each matrix Am has a 1 in positions

(1,1) through (m, m), along a diagonal, and 0 everywhere else. In this article, we

assume that truncation is the telescoping function selected.

The proposed method treats the features asymmetrically, favoring the first few

features over the rest, when truncation is used as the telescoping function. For

similarity queries, which are likely to be frequent in the application domains we

have in mind, it is intuitive that well ordered features will result in a more focused

search. Even for exact match queries, where the depth of the tree typically will not

be enough to have considered all features, a good choice of order will improve the

response time of our method. Notice, however, that the correc tness is not affected;

poor ordering may make our method examine many false alarms, and thus do more

work, but it will never create false dismissals.

In most applications, transforming the given feature vector will achieve good

ordering. Ordering the features on the basis of importance is exactly what the

Karhunen Lowe (KL) transform achieves (Fukunaga, 1990): Given a set of n vectors

with d features each, it returns d new features, which are linear combinations of

the old ones, and which are sorted in discriminatory power. Figure 1 gives a 2-D

example, where the vectors kl and k2 are the results of the KL transform on the

illustrated set of points.

The KL transform is optimal if the set of data is known in advance (i.e., the

transform is data-dependent). Sets of data with rare or no updates appear in real

applications: for example, databases that are published on CD-ROM, dictionaries,

or files with customer mailing lists that are updated in batches. The KL transform

will also work well if a large sample of data is available in advance, and if the new

data have the same statistical characteristics as the old ones.

In a completely dynamic case, we have to resort to data-independent transforms,

such as the Discrete Cosine Transform (DCT; Wallace, 1991), the Discrete Fourier

Transform (DFT), the Hadamard Transform (Hamming, 1977), and the Wavelet

522

Figure 1. Illustration of the Karhunen Lowe transform

f e l t u r e ' 2 Xx k l

I?x K X X

X
x x k2 x xxVx

" ,jJ x x w x . . . - '" - X

x x x fea tu re 1
x

x x X

X

Transform (Ruskai et al., 1992). Fortunately, many data-independent transforms will

perform as well as the KL if the data follow specific statistical models. For example,

the DCT is an excellent choice if the features arc; highly correlated. This is the

case in 2-D images, where nearby pixels have very similar colors. The JPEG image

compression standard (Wallace, 1991) exactly exploits this phenomenon, effectively

ignoring the high-frequency components of the DCT. Since the retained components

carry most of the information, the JPEG standard achieves good compression with

negligible loss of image quality.

We have observed similar behavior for the DFT in time series (Agrawal et

al., 1993). For example, random walks (also known as brown noise or brownian

walks) exhibit a skewed spectrum, with the lower-fi:equency components being the

strongest (and, therefore, most important for indexing). Specifically, the amplitude

spectrum is approximately O(f-1), where f is the frequency). Stock movements

and exchange rates have been successfully modeled as random walks (Mandelbrot,

1977; Chatfield, 1984). Birkhoff's theory (Schroeder, 1991) claims that "interesting"

signals, such as musical scores and other works of art, consist of pink noise, whose
spectrum is similarly skewed (0(/--05)).

In general, if the ~ statistical properties of the data are well understood, a data-

independent transform in many common situations will obtain near optimal results,

producing features sorted on the order of importance. We should stress again that

the use of a transform is orthogonal to the TV-tree--a suitable transform will just

accelerate the retrieval.

3.2 Shape of Bounding Region

As mentioned earlier, points are grouped together', and their minimum bounding

region (MBR) is stored in the parent node. The shape of the MBR can be chosen

to fit the application; it may be a (hyper-)rectangle:, cube, sphere etc. The simplest

VLDB Journal 3 (4) Lin: The TV-Tree 523

shape to represent is the sphere, requiring only the center and a radius. A sphere

of radius r is the set of points with Euclidean distance < r from the center of the

sphere. Note that the Euclidean distance is a special case of the Lp metrics, with

p=2:

Lp(Z, ff) = [E (x i - yi)P] lip (1)

i

For the L1 metric (Manhattan, or city-block distance), the equivalent of a sphere

is a diamond shape; for the Loo metric, the equivalent shape is a cube.

Definition. The Lp-sphere of center c' and radius r is the set of points whose Lp
distance from the center is < r.

The up-coming algorithms for the TV-tree will work with any Lp-sphere, without

any modifications to the TV-tree manipulation algorithms. The only algorithm that

depends on the chosen shape is the algorithm that computes the MBR of a set of

data. The algorithm for the diamond shape is presented in Appendix A.

Minor modifications are required in the TV-tree algorithms to accommodate

other popular shapes, such as rectangles or ellipses. Compared to Lp-spheres, these

shapes differ only in that they have a different radius for each dimension. The

required changes in the TV-tree algorithms are in the decision-making steps, such as

the criteria for choosing where to split, or which branch to traverse during insertion.

For the rest of this article, we concentrate on Lp-spheres as MBRs.

4. The TV-tree

4.1 Node Structure

Each node in the TV-tree represents the MBR (an Lp-sphere) of all of its descendents.

Each region is represented by a center, which is a vector determined by the telescoping

vectors representing the objects, and a scalar radius. We also call the center of the

region a telescopic vector (in the sense that it also contracts and extends depending

on the objects stored within the region). We use the term Telescopic Minimum
Bounding Region (TMBR) to denote an MBR with such a telescopic vector as a

center.

Definition. A telescopic Lp-sphere with center ~' and radius r, with dimensionality d
and with c~ active dimensions contains the set of points ff such that

and

ci =Yi i : 1 , . . . , d - - o~ (2)

d

rP --> E (ci -- yi) p (3)

i=d-a+l

524

Figure 2. Example of TMBRs (diamonds, spheres) with different o~

. -~ " 4

" " i 7 2 7 2 7

DI : Cemer (2) Radius I DI : C.cmter (2,6) Radius 2 S I: Center (2,6) Radius 2

D2 : Cemer (7, 6) Radius 2 D2: Center (7,4) Radius I $2: Center (7,4) Radius I

(a) (b) (c)

Number of active d i m e n s i o n . , = I Number of active dimensions = :Z

: Denotes extend indefinitely along the direction

N u m b e r of active dimension., = 2

• Center

In Figure 2a, D2 has 1 inactive dimension (the first one), and i active dimension

(the second one). D1 also has one active dimension (the first one). The dimension-

ality of D1 is 1 (only the first dimension has been taken into account in specifying

D1) and the dimensionality of D2 is 2 (both dimensions have been considered).

We need this concept because, as the tree grows., some leaf node will eventually

consist of points that all agree on their first, say, k dimensions. In this case, the

TMBR should exploit this fact; its first k dimensions are inactive dimensions, in the

sense that these dimensions cannot distinguish between the node's descendents.

In our presentation, the active dimensions are always the last ones. Moreover, we

can control the number of active dimensions o~ and ensure that all the TMBRs in

the tree have the same ce. This number is a design parameter of the TV-tree.

Definition. The number of active dimensions (o~) of a TV-tree is the (common) number

of active dimensions of all its TMBRs.

The notation TV-1 denotes a TV-tree with o~=1; Figure 2 shows the TMBRs

of TV-1 and TV-2 trees. The discriminatory power of the tree is determined by o~.

Whenever more discriminatory power is needed, new dimensions are introduced to

ensure that the number of active dimensions remains the same.

The data structure for a TMBR is as follows:

struct TMBR { TVECTOR v;

integer radius;}

struct TVECTOR { list_of (float feature_value);

integer no_of_dimensions;}

where TVECTOR stands for telescopic vector.

VLDB Journal 3 (4) Lin: The TV-Tree

Figure 3. Example of a W-1 tree (with diamonds)

525

F Dl

A

4.2 Tree Structure

The W-tree structure bears some similarity to the R-tree. Each node contains a set
of branches; each branch is represented by a TMBR denoting the space it covers;
all descendants of that branch will be contained within that TMBR; TMBRs are
allowed to overlap; and each node occupies exactly one disk page.

Examples of TV-l and TV-2 trees are given in Figures 3 and 4. Points A
through I denote data points (only the first two dimensions are shown).

In the TV-l tree, the number of active dimensions is 1, thus the diamonds
extend only along 1 dimension at any time. As a result, the shapes are straight lines
or rectangular blocks (extended infinitely). In the TV-2 case, the TMBR resembles
two dimensional &,-circles.

At each stage, the number of active dimensions is exactly as specified. Sometimes,
more than one level of the tree may using the same active dimensions. Figure 4 is
an example; the same pair of active dimensions is used at both levels of the tree
shown. More commonly, new active dimensions are used at each level. This is the
case in Figure 3 when D3 has to be split any further.

4.3 Algorithms

Search. For both exact and range queries, the algorithm starts with the root and
examines each branch that intersects the search region, recursively following these
branches. Multiple branches may be traversed because TMBRs are allowed to
overlap. The algorithm is straightforward and the pseudo-code is omitted for
brevity.

526

Figure 4. Example of a TV-2 tree (with sphelres)

ssI [$$2

I I I

Spatial join can be handled as well. Recall that such a query requires all pairs

of points that are close to each other (i.e., closer than a tolerance Q. Again,

a recursive algorithm that prunes out remote branches of the tree can be used;

efficient improvements on this algorithm have recently appeared (Brinkhoff et al.,

1993).

Similarly, nearest-neighbor queries can be handled with a branch-and-bound

algorithm (Fukunaga and Narendra, 1975). The algorithm works as follows: given

a (query)(query) point, examine the top-level branches, and compute upper and

lower bounds for the distance; descend the most promising branch, disregarding

branches that are too far away.

Insertion. To insert a new object, we traverse the tree, choosing the branch at each

stage that seems most suitable to hold the new object. Once we reach the leaf

level, we insert the object in the leaf. Overflow is handled by splitting the node, or

by re-inserting some of its contents. After the insertion/split/re-insert, we update

the TMBRs of the affected nodes along the path. For example, we may have to

increase the radius of a TMBR or decrease its dimensionality (i.e., contract the

telescopic vector of the center), to accommodate the new object (Figure 5).

The routine PickBranch(Node N, element e) examines the branches of the node

N and returns the branch that is most suitable to accommodate the element (point

or TMBR) e to be inserted. In choosing a branch, we use the following criteria,

in descending priority:
1. Minimum increase in overlapping regions within the node (i.e., choose the

TMBR such that after update, the number of new pairs of overlapping TMBR

is minimized within the node introduced; Figure 6a).

2. Minimum decrease in dimensionality (i.e., choose the TMBR with which the

new object can agree on as many coordinates as possible, so that it can

VLDB Journal 3 (4) Lin: The TV-Tree 527

Figure 5. Decrease in dimensionality during insertion

3 5

O P DI
f

(D o°

oi • • ,0)

,i
,¢'

,¢ w

Di : Center (3. 5). radiu.q 4
3 5

Di : Center (4). raditn; 1

accommodate the new object by contracting its center as little as possible.

For example, in Figure 6b, R1 is chosen to avoid contracting R2.

3. Minimum increase in radius (Figure 6c).

4. Minimum distance from the center of the TMBR to the point (in case the

previous two criteria tie; Figure 6d).

Handling overflowing nodes is another important aspect of the insertion algo-

rithm. Here an overflow can be caused not only by an insertion into a full node

but by an attempt to extend a telescopic vector as well. Splitting the node is the

most obvious way to handle overflow. However, reinsertion can also be applied,

selecting certain items to be reinserted from the top. This provides a chance to

discard dissimilar items from a node, usually achieving better clustering.

In our implementation we have chosen the following scheme to handle overflow,

treating the leaf node and the internal node differently:

• For a leaf node, a pre-determined percentage (Pri) of the leaf contents will

be reinserted if it is the first time a leaf node overflows during the current

insertion. Otherwise, the leaf node is split in two. Once again, different

policies can be used to choose the elements to be reinserted. Here we choose

those that are farthest away from the center of the region.

• For an internal node, the node is always split; the split may propagate

upwards.

528

Figure 6. Illustration of choose-branch criteria

N c w R3 , £ - " N e w RI

• o

.

• • : F , ' ,

° ° ° ° ° ° ° •

. °

RI."

°

• • • ° • ° ° '

R2

(a)

R1 is selected because extending

R2 or R3 will lead to a new pair

of overlapping regions

(b)

R1 is selected over R2 beacuse

selecting R2 will result in a

decrease in dimensionality of R2

P

(c)

RI is selected over R2 because

the resulting region will have a
smaller radius

(d)

RI is selected over R2 because

R1 's center is closer to the point
to be inserted

VLDB Journal 3 (4) Lin: The TV-Tree 529

Algorithm 1. Insert algorithm.

begin

end

/* Insert element e into tree rooted at N */

Proc Insert(Node N, element e)

1. Use PickBranch 0 to choose the best branch to follow; descend the tree until

the leaf node L is reached.

2. Insert the element into the leaf node L.

3. If leaf L overflows

If it is the first time during insertion

Choose the Pri elements farthest away from the center of L and re-insert

them from the top.

else

Split the leaf into two leaves.

4. Update the TMBRs that have been changed (because of insertion and/or

splitting).

Split an internal node if overflow occurs.

Splitting. The goal of splitting is to redistribute the set of TMBRs (or vectors, when

leaves are split) into two groups to facilitate future operations and provide high

space utilization. There are several ways to do the split. One way is to use a

clustering technique that groups vectors so that similar ones will reside in the same

TMBR.

Algorithm 2. Splitting by clustering

begin
/* assume N is an internal node; similar for leaf nodes */

Proc Split(Node N, Branch NewBranch, float rain_percent)

1. Pick as seeds the branches B1 and B2 with the two most dissimilar TMBRs

(i.e., the two with the smallest common prefix in their centers; on tie, pick

the pair with the largest distance between their centers). Let R1 and R2 be

the groups headed by B1 and B2, respectively.

2. For each of the remaining branches B:

Add B to that group R1 or R2 according to the PickBranchO function

end

Another way of doing the split is by ordering. The vectors (i.e., the centers of

the TMBRs) are ordered in some way and the best partition along the ordering is

found. The current criteria being used are (in descending priority):

1. Minimum sum of radius of the two TMBRs formed

2. Minimum of (sum of radius of TMBRs -- Distance between their centers)

In other words, we first try to minimize the area that the TMBRs cover; and

then minimize the overlap between the diamonds.

530

Ordering can be done in a few different ways. We have implemented one that

sorts the vectors lexicographically. Other orderings, such as a form of space-filling

curves (e.g., the Hilbert curve; Kamel and Faloutsos, 1993) can also be used.

Algorithm 3. Splitting by ordering

begin

/* assume N is an internal node; similar for leaf nodes */

/* min_fill is the minimum percentage (in bytes) of the node to be occupied */

Proc Split(Node N, Branch NewBranch, float min_fiU)

1. Sort the TMBRs of the branches by ascending row-major order of their

centers.

2. Find the best break-point in the ordering, to create two sub-sets: (a) ignore

the case where one of the subsets is too smallt (< min_fill bytes); (b) among

the remaining cases, choose the break-point such that the sum of the radius

of the TMBRs of the two sets is the smallest. Break ties by minimum (sum

of radius of TMBRs -- distance between the centers).

3. If requirement (a) above leaves no candidates, then sort the branches by

their byte size and repeat the above step, skipping step (a), of course.

end

The last step in the algorithm guards against the rare case where one of the

TMBRs has a long vector for center, while the rest have short vectors. In this case,

a seemingly good split might leave one of the two new nodes highly under-utilized.

The last step makes sure that the new nodes have similar sizes (byte-wise).

Deletion. Deletion is straightforward, unless it causes an underflow. In this case,

the remaining branches of the node are deleted and re-inserted. The underflow

may propagate upwards.

Extending and Contracting. As previously mentioned, extending and contracting of

TVECTORs are important aspects of the algorithm. Extending is done at the

time of split and reinsertion. When the objects inside a node are redistributed

(either by splitting into two or removing at reinsertion), it may be the case that the

remaining objects have the same values in the first few (or all) active dimensions.

Thus, during the recalculation of the new TMBR, extension will occur (i.e., new

active dimensions will be introduced and those on which all the objects agree will

be rendered inactive).

An example of extending diamonds is given in Figure 7. After extension, the

diamond extends only along the y-dimension.

On the other hand, contraction occurs during insertion. When an object is

inserted into a TMBR such that the inactive dimensions of the TMBR do not agree

completely with those of the object, the new TMBR will have some dimensions

contracted, resulting in a TMBR with lower dimensionality.

VLDB Journal 3 (4) Lin: The TV-Tree 531

Figure 7. Extending a TMBR (diamond), with ~ = 1

d

20 20 " ~

Befon~ Extending After Extending

Center (3), Radius 0 Center (3. 10), Radius 10

5. Experimental Results

We implemented the TV-tree as described above, in C+ + under UNIX, 1 and we

ran several experiments. The experiments form two sets: In the first, we tried to

determine what is a good value for the number of active dimensions (o~) for the

TV-tree; in the second set we compared the proposed method with the R*-tree,

which we believe is the fastest known variation of R-trees.

5.1 Experimental Setup

The test database was a collection of objects of fixed size, using dictionary words

from / u s r / d i c t / w o r d s as keys. To find the closest matches in the presence of

typing errors, the queries were exact match and range queries. For features, we

used the letter count for each word, ignoring the case of the letters. Thus, each

word is mapped to a vector v with 27 dimensions, one for each English alphabet

letter, and an extra one for the non-alphabetic characters. The L 1 distance among

two such vectors is a good measure for the edit distance; for this reason, we have

used Ll-spheres (diamonds) as our bounding shapes.

Finally, we apply the Hadamard Transform. 2 For n = 2 k, the Hadamard Trans-

form matrix is defined as follows:

1. UNIX is a registered Trademark of Novell, Inc.

2. Actually, we are using the 32-dimension Hadamard Transform matrix (Hamming, 1977) and padding

extra 0s to the feature vectors.

532

1 1 , n k + l =
H1 = 1 - 1 Hk -- Hk

on these letter-count vectors, appropriately zero-padded. The Hadamard Transform

is used to give each letter a more even weight, especially in the first few dimensions.

The TV-trees in the experiment used the algorithms described in the last section,

with forced re-insertion, and with the ordering method for splitting. We used rain_fill

= 45% and the percentage of elements to be reinserted to be Pri = 30%. These

numbers are comparable to the parameter for the optimal R*-tree parameters. This

number was chosen in order to provide a fair comparison for insertion behavior.

Experiments on 2,000 to 16,000 words were run, with words being randomly

drawn from the dictionary. We varied several parameters, such as the number of

active dimensions oL (from 1 to 4), and the tolerance c of the range query, from e

= 0 (exact match) up to 2.

For the exact match queries, we tried successful searches (i.e., the query word

was found in the dictionary), using half of the database words as query points.

Experiments with unsuccessful searches gave similar results and are omitted. We

also issued range queries with the words randomly drawn from the dictionary, (the

number of queries is half of the database words).

We measured both the number of disk accesses (assuming that the root is in

core), as well as the number of leaf accesses. The former measure corresponds to

an environment with limited buffer space; the latter approximates an environment

with enough buffer space that, except for the leaves, llhe rest of the tree fits in core.

5.2 Results

Analysis for the Number of Active Dimensions. The first set of experiments tried to

determine a good value for ol. Different numbers of active dimensions of the

TV-tree were tried. The results are shown in Figures 8 through 10. The page size

was 4K bytes and objects of size 100 bytes are used.

We also measured the total number of pages accessed, assuming that the whole

tree (except the root) was stored on the disk and no buffer for the internal levels

was available. The results are similar.

The results indicate that ce = 2 gives the best results, because the TV-2 tree

outperforms the rest. This can be interpreted as an optimization of two conflicting

factors: tree size and number of false drops. With a smaller o~, fewer dimensions

will be available to differentiate among the entries, thus more branches will have

to be searched. However, a larger ce will lead to a decrease of fanout per node,

making it necessary for more branches to be retrieved when the search space is

large. Moreover, effectively clustering objects in higher dimensions is also more

difficult, given the constraints in shapes allowed. (In l-D, one can always sort the

numbers and order it; but this method breaks down in higher dimensions). In the

experiments we ran, ce = 2 is the best compromise.

VLDB Journal 3 (4) Lin: The TV-Tree 533

Figure 8. Exact match queries (# leaf accesses vs. o~)

140 2000 words - - ~ ~ •
4000 words -+--- . . - . - - ' " "
64000 words ,o-° ,i, "
8000 words .-x-

120 10000 words -,¢,--

...... ~ x

/

• " / " ~3" E3 / ;
80 / ~ - . -

. i / "

~ f

~ ! / - , ÷

!.." , ° -

/ / . . " f "
; / o,-"

40 / / .." .+-"
i / ,- , = , , - ,4>

i - ,. /

/ / , - " /
.

/~/i. / / "
20 ~..._~ .#... ,/

I I I I 0 f i

1 2 3 4 5 6
N u m b e r o ! a c t i v e d i m e n s i o n s

Figure 9. Range queries (tolerance=l)(# of leaf accesses vs. o~)

=:

2OO

180

160

140

120

100

80

60

40

20

0

2000 words
4000 words -+----
6000 words -e--
8000 words .~

10000 words -=P--

B, "--,--.. / ." I /

. -.,iL
/ "

/ -

I " /
, Y

/ . . f . . ' J

/ j "

/ x

i / 0 "E] / / ..,e-
e :, .

/ / ° . o - " ' " i /

/ / la-
/ f" . ,

! i .." . ~ ~ -+

i /
/ /

i I I I I

1 2 3 4 5
Number of active dimensions

534

Figure 10. Range queries (tolerance=2)(# of disk accesses vs. o~)

¢1

O .

==
U
¢0

. J

240

220

200

180

160

140

120

100

80

60

40

20

0

2000 words --0---""
4000 words -~ - . - '~
6000 words -o-- J " " .,
8000 words .-x i'

10000 words -,6-- ,
. i ...)@

l .I --.."~ I~

.t ~ X
.t .j

.i"

i
. ...

.i /

i .

i" .."

i i / / -.E} 0 "0
i" D"*

. , / / . / ,
- - - - . - . & / . ."

. /

..,"" .÷ . . ° ° . . . ° . ° - ' ' ° '~ .

0 *"
. 0"" . . 1

I I I I I I

1 2 3 4 5 6
Number of active dimensions

Table 1. Disk access per insertion - object size 100 bytes

Dictionary size

4,000

8,000

12,000

16,000

Disk access per insertion

R*-tree TV-2 tree

5.25 4.75

5.51 5.21

6.19 5.28

6.50 5.35

5.3 Comparison with R*-Tree

lndex Creation. We measured the number of disk accesses (read + write) needed to

build the indexes. We assumed that every update of the index would be reflected

on the disk. We found that, in general, the insertion cost is cheaper in the W-tree.

This is due to the fact that the W-tree is usually shallower than the corresponding

R*-tree and, thus, fewer nodes need to be retrieved and fewer potential updates

need to be written back to disk. Table 1 shows the result for object size 100 bytes

with a 4K page size.

VLDB Journal 3 (4) Lin: The TV-Tree 535

F igure 11. D isk / lea f a c c e s s e s vs. db s ize - exact match q u e r i e s

100 , , , , , , , ,

80

J~
L~

~o 60
P,
¢ x

¢D

8
t~

40
Q

20

R*-tree: Disk access -e----
R ' - t ree: Leaf access --÷

TV -2 t ree: Disk access --B---
TV -2 tree: Leaf access -~--

~+ ...-.+

..~-"~" o B

..... - ° o - - B - ~x+" x
* _ . ~ : - ~

I I I I I I I I

2000 4000 6000 8000 10000 12000 14000 16000
Dict ionary s ize

The big jump between 4,000 and 8,000 for the TV-2 tree is because of an

introduced addition level. However, the TV-2 tree still has one level fewer than

the R*-tree. Thus, the increase in disk access for the TV-2 tree is slower after the

introduced level.

Search. The next set of experiments compared the proposed TV-tree with the

R*-tree. Figures 11 through 13 show the number of disk/leaf accesses as a function

of the database size (number of records). The number of leaf accesses is the lower

curve in each set. A 4,000 page size was used. The following results are for objects

of size 100 bytes.

As seen from the figures, the TV-2 tree consistently outperforms the R*-tree,

with up to 67-73% savings in total disk accesses for exact matches and similar

savings in leaf accesses. The savings for range queries are also high (,~., 40% for

large dictionary size).

Moreover, the savings increased with the size of the database, indicating that

our proposed method scales up well. As the database size increased from 2,000 to

16,000 elements, the savings in the number of leaf accesses increased consistently:

from 67% to 73% for exact match queries; from 50% to 58% for range queries

with tolerance e=l ; and from 33% to 42% for range queries with e=2.

536

Figure 12. Disk/leaf accesses vs. db size-range queries (tolerance = 1)

!
i
.=

Q

2O0

160

120

80

40

i i | , ,

R'-tree: Disk access -e--
R'-tree: Lead access +

TV-2 tree: Oisk access -¢--
TV-2tree: Leaf access -N-- / ..+

.,.., j / " "

, , e

" " ~ ~ i i : : : : : : : : : : ~ . . ' " ::..~
/ ~ o ° . o o

.~" o - - - ° " . ° x - " *
. . . / . . o o "

. . . - /~ " . ._.: : : : .~::

I I | I I I I I

2000 4000 6000 8000 10000 12000 14000 16000
Dictionary size

Figure 13. Disk/leaf accesses vs. db size-range queries (tolerance=2)

w

i

0

350

3O0

250

20O

150

100

50

, | i | i ! i i

R'-tree: Disk access ~ /
R*-tree: Leaf access -.+ /

TV-2 tree: Disk access .-e--- /
TV-2 tree: Leaf access -N.. / / / / / 4 -

~ . i " : :~

t " -o::::'""
i ~ o..:~-"

~,,.~.:::::.:- '"

..i. .'~ . .~ : : : . ' "

I I I I I I I I

2000 4000 6000 8000 10000 12000 14000 16000
Dictionary size

VLDB Journal 3 (4) Lin: The TV-Tree 537

Figure 14. Comparison of space requirements

800

.D

Z

700

600

500

400

300

200

100

R'-trees - ~
TV-2 tree -+---

I I I I I I I I

2000 4000 6000 8000 10000 12000 14000 16000
Dictionary size

Even if we only assume that the leaves are stored in the disk (while all the non-

leaf levels are read into memory buffer beforehand), the TV-2 tree still outperforms

the R*-tree significantly (around 60-70% for exact match and 25-35% for range

queries with c=2).

We also experimented with various sizes of database objects. Our method showed

more significant improvement when object size is small. As object size increases,

the leaf fan-out decreases, making the TV-tree grow faster, and offsetting some of

its advantages. However, even with object size 200, we still have improvement of

around 60% over R*-trees for exact match and 40% for range queries with c=2.

Comparison of Space Requirements. Figure 14 shows the number of nodes (= pages)

in the trees. The TV-tree requires fewer number of nodes (and thus less space).

The savings are 15-20%.

Since the object size is the same for both indexes, the number of leaf nodes are

also very similar (in fact, they will be identical when the utilization is the same).

This implies that all the savings in the TV-tree are from internal nodes, which

means that the non-leaf levels require a smaller buffer, which can be significant

when buffer space is limited.

538

6. Conclusions

In this article, we proposed the TV-tree as a method[for indexing high dimensional

objects. The benefit lies in its ability to adapt dynamically and use a variable number

of dimensions to distinguish between objects or groups of objects. Since this number

of required dimensions is usually small, the method saves space and leads to a larger

fan-out. As a result, the tree is more compact and :shallower, requiring fewer disk

accesses.

We presented the manipulation algorithms in detail, as well as guidelines for

choosing the design parameters (e.g., optimal actiwe dimension o~ = 2, minimum

fill factor = 45%). We implemented the method, and we reported performance

experiments, comparing our method to the R*-tree. The W-tree achieved access

cost savings of up to 80%, at the same time resuhing in a reduction in the size

of the tree, and hence its storage cost. Moreover, the savings seem to increase

with the size of the database, indicating that our method will scale well. In short,

we believe that the W-tree should be the method of choice for high dimensional

indexing.

Acknowledgments

This research was partially funded by the Institute for Systems Research, and by

the National Science Foundation under grants IRI-9205273 and IRI-8958546 (PYI),

with matching funds from EMPRESS Software, Inc. and Thinking Machines, Inc.

The authors thank Alexios Delis and Ibrahim M. Kamel for their help.

References

Agrawal, R., Faloutsos, C., and Swami, A. EfficienlL similarity search in sequence

databases. FODO Conference, Evanston, IL, 1993.

Altschul, S.E, Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. A basic local

alignment tool. Journal of Molecular Biology, 215(13):403-410, 1990.

Angell, R.C., Freund, G.E., and Willet, P. Automatic spelling correction using a

trigram similarity measure. Information Processing and Management, 19(4):255-

261, 1983.

Arya, M., Cody, W., Faloutsos, C., Richardson, J., and Toga, A. Qbism: A prototype

3-D medical image database system. IEEEData Engineering Bulletin, 16(1):38-42,

1993.

Aurenhammer, E Voronoi diagrams: A survey of .a fundamental geometric data

structure. AC M Computing Surveys, 23(3):345-405, 1991.

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. The R*-tree: An

efficient and robust access method for points and rectangles. A C M SIGMOD,

Atlantic City, NJ, 1990.

Bentley, J.L., Weide, B.W., and Yao, A.C. Optimal expected-time algorithms for

closest-point problems. ACM Transactions on Mathematical Software, 6(4):563-

580. 1980.

VLDB Journal 3 (4) Lin: The TV-Tree 539

Brinkhoff, T., Kriegel, H.-P., and Seeger, B. Efficient processing of spatial joins

using R-trees. Proceedings of the ACM SIGMOD, Washington, DC, 1993.

Chatfield, C. The Analysis of Time Series: An Introduction. London: Chapman and

Hall, 1984. Third edition.

Friedman, J.H., Baskett, E, and Shustek, L.H. An algorithm for finding nearest

neighbors. IEEE Transactions on Computers, C-24(10):1000-1006, 1975.

Fukunaga, K. Introduction to Statistical Pattern Recognition. New York: Academic

Press, 1990.

Fukunaga, K. and Narendra, P.M. A branch and bound algorithm for computing

k-nearest neighbors. IEEE Transactions on Computers, C-24(7):750-753, 1975.

Greene, D. An implementation and performance analysis of spatial data access

methods. Proceedings of Data Engineering, Boston, MA, 1989.

Guttman, A. R-trees: A dynamic index structure for spatial searching. Proceedings

of the ACM SIGMOD, 1984.

Hamming, R.W DigitalFilters. Englewood Cliffs, NJ: Prentice-Hall, 1977.

Hartigan, J.A. Clustering algorithms. New York: John Wiley & Sons, 1975.

Hoel, E.G. and Samet, H. A qualitative comparison study of data structures for

large line segment databases. Proceedings of the ACM SIGMOD Conference, San

Diego, CA, 1992.

Hunter, G.M. and Steiglitz, K. Operations on images using quad trees. IEEE

Transactions on PAMI, 1(2):145-153 (1979).

Jagadish, H.V. Spatial search with polyhedra. Proceedings of the Sixth IEEE Interna-

tional Conference on Data Engineering, Los Angeles, CA, 1990.

Jagadish, H.V. A retrieval technique for similar shapes. Proceedings of theACM

SIGMOD Conference, Denver, CO, 1991.

Kamel, I. and Faloutsos, C. Hilbert R-tree: An improved R-tree using fractals.

Systems Research Center (SRC) TR-93-19, University of Maryland, College

Park, MD, 1993.

Kukich, K. Techniques for automatically correcting words in text. ACM Computing

Surveys, 24(4):377-440, 1992.

Mandelbrot, B. Fractal Geometry of Nature. New York: W.H. Freeman, 1977.

Murtagh, E A survey of recent advances in hierarchical clustering algorithms. The

Computer Journal, 26(4):354-359, 1983.

Narasimhalu, A.D. and Christodoulakis, S. Multimedia information systems: The

unfolding of a reality. IEEE Computer, 24(10):6-8, 1991.

Niblack, W, Barber, R., Equitz, W, Flickner, M., Glasman, E., Petkovic, D., Yanker,

P., Faloutsos, C., and Taubin, G. The qbic project: Querying images by content

using color, texture, and shape. SPIE 1993 International Symposium on Electronic

Imaging: Science and Technology Conference 1908, Storage and Retrieval for Image

and Video Databases, San Jose, CA, 1993. Also available as IBM Research Report

RJ 9203 (81511), 1993.

Nievergelt, J., Hinterberger, H., and Sevcik, K.C. The grid file: An adaptable,

symmetric, multikey file structure. ACM TODS, 9(1):38-71, 1984.

540

Orenstein, J.A. and Manola, EA. Probe spatial data modeling and query processing

in an image database application. IEEE Transactions on Software Engineering;

14(5):611-629, 1988.

Ruskai, M.B., Beylkin, G., Coifman, R., Daubech,ies, I., Mallat, S., Meyer, Y.,

and Raphael, L. Wavelets and Their Applications. Boston: Jones and Bartlett

Publishers, 1992.

Salton, G. and Wong, A. Generation and search of clustered files. ACM TODS,

3(4):321-346, 1978.

Samet, H. The Design andAnalysis of Spatial Data Structures. Reading, MA: Addison-

Wesley, 1989.

Schroeder, M. Fractals, Chaos, Power Laws: Minutes From an lnfinite Paradise. New

York: W.H. Freeman and Company, 1991.

Wallace, G.K. The jpeg still picture compression :standard. CACM, 34(4):31-44,

1991.

Appendix

A. Calculation of the Telescopic Minimum Bounding Diamond (TMBD)

To find the TMBD of a given set of points or diamonds, we first find the largest

m such that all the TVECTORS (centers of the diamond or vectors corresponding to

data points) agree in the first m dimensions. Then we project the next ce dimensions,

where ce is the number of active dimensions of the W-tree. Thus, the projected

diamonds will reside in a ol-dimensional space. An example is given in Table 2,

assuming the diamonds are from a TV-2 tree.

In Table 2, m is 2 (and o~ is 2 by definition of the TV-2 tree). Note that the

projected second diamond has a radius of 0 because the third and fourth dimensions

are not active dimensions. This means that all points inside the diamond will have

coordinates that start with (1,0,8,7,...).

From there we find the minimum bounding diamond of the projected diamonds,

and use its center as the active dimensions of the final MBD. The non-active di-

mensions will be the common m dimensions we first found. Finding the minimum

bounding diamond-of these projected diamonds can be formulated as a linear

programming problem. However, we decided to use a faster approximation algo-

rithm to find the approximate MBD. The algorithm first calculates the bounding

(hyper)rectangle of the projected diamonds, and then use its center as the dia-

mond center. The smallest radius that is needed to cover all the diamonds is then

calculated.

VLDB Journal 3 (4) Lin: The TV-Tree 541

Table 2. Example of Diamond Projection in a TV-2 tree

Original diamond

Center

(1,0,3,4)

(1,0,8,7,5,6)

(1,0,2,6)

Projected diamond

Radius Center Radius

2 (3,4) 2

4 (8,7) 0

1.5 (2,6) 1.5

Algor i thm 4. Finding the MBD

begin

/*oz is the number of active dimensions */

Proc TMBD(Array of Diamonds D, integer o0;

1. Find min, the minimum dimensionality among all diamonds in D.

2. Find the maximum m such that all the diamonds have the same first m

dimensions.

3. I f m + ce < mi n

Set Startproject ~-- m + 1

Set Startproject ~-- m i n - oz + 1/* special case when some diamonds have

small dimensionality. This step is to ensure that there will be & active

dimensions */

4. Project each diamond to dimensions Startproject . . . Startproject + ol - 1,

setting the radius to 0 if none of the projected dimension is active,

otherwise retain the original radius.

5. Find the minimum bounding rectangle of the projected diamonds. Let c

center.

6. Set center of the result diamond ~-- the m common dimensions of the

diamonds concatenated with c.

7. Find the minimum distance that is needed to contain all diamonds, and set

this as the radius.

end

Continuing the example from Table 2, the bounding rectangle for the projected

diamonds has boundary (0.5, 8) along the first dimension, and (2, 7.5) along the

second. Its center is (4.25, 4.75). The radius required to cover all three diamonds

is 6. Thus, the final TMBR has center (1, O, 4,25, 4.75) and radius 6.

B. Telescoping Without Truncation

Given a feature vector of length n, its contraction to length m is achieved through

multiplication by the matrixAm. Here we present an example of a simple, summation-

based, telescoping function that does not involve truncation. The required series

of matrices A m are:

542

If n < 2m, Am has a 1 in position (1,1), (2,2), . . . , (2m- n, 2m- n), (2m- n + 1,

2 m - n + 1) , (2 m - n + 2 , 2 m - n + 1) , (2 m - n + 3 2 m - n + 2) , (2 m - n + 4 , 2 m

- n + 2), . . . , (n, m), and a 0 everywhere else.

In other words, the first 2m - n rows have a single 1 each on the diagonal, and

the remaining n - m rows have two ls each, in pairs, in a stretched out continuation

of the diagonal. Call this the halving step.

If n/4 < m < n/2, obtain the matrixAp, wherep = ceiling(n~2), using the halving

step, and then apply the halving step once more to the p length vector to create

an rn length vector. A m is obtained as the product of the two matrices for each

application of the halving step.

Similarly, for any value of m, enough applications of the halving step produce

the required contraction. The contraction for m = 1 is simply the summation of

all elements, induced by a matrix Am, which is a vector of all l's.

