
The Twin Diffie-Hellman Problem and Applications

David Cash1 Eike Kiltz2 Victor Shoup3

February 10, 2009

Abstract
We propose a new computational problem called the twin Diffie-Hellman problem. This

problem is closely related to the usual (computational) Diffie-Hellman problem and can be used
in many of the same cryptographic constructions that are based on the Diffie-Hellman problem.
Moreover, the twin Diffie-Hellman problem is at least as hard as the ordinary Diffie-Hellman
problem. However, we are able to show that the twin Diffie-Hellman problem remains hard,
even in the presence of a decision oracle that recognizes solutions to the problem — this is a
feature not enjoyed by the Diffie-Hellman problem in general. Specifically, we show how to build
a certain “trapdoor test” that allows us to effectively answer decision oracle queries for the twin
Diffie-Hellman problem without knowing any of the corresponding discrete logarithms. Our
new techniques have many applications. As one such application, we present a new variant of
ElGamal encryption with very short ciphertexts, and with a very simple and tight security proof,
in the random oracle model, under the assumption that the ordinary Diffie-Hellman problem
is hard. We present several other applications as well, including: a new variant of Diffie and
Hellman’s non-interactive key exchange protocol; a new variant of Cramer-Shoup encryption,
with a very simple proof in the standard model; a new variant of Boneh-Franklin identity-based
encryption, with very short ciphertexts; a more robust version of a password-authenticated key
exchange protocol of Abdalla and Pointcheval.

1 Introduction

In some situations, basing security proofs on the hardness of the Diffie-Hellman problem is hindered
by the fact that recognizing correct solutions is also apparently hard (indeed, the hardness of
the latter problem is the decisional Diffie-Hellman assumption). There are a number of ways for
circumventing these technical difficulties. One way is to simply make a stronger assumption, namely,
that the Diffie-Hellman problem remains hard, even given access to a corresponding decision oracle.
Another way is to work with groups that are equipped with efficient pairings, so that such a decision
oracle is immediately available. However, we would like to avoid making stronger assumptions, or
working with specialized groups, if at all possible.

In this paper, we introduce a new problem, the twin Diffie Hellman problem, which has the
following interesting properties:

• the twin Diffie-Hellman problem can easily be employed in many cryptographic constructions
where one would usually use the ordinary Diffie-Hellman problem, without imposing a terrible
efficiency penalty;

1 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332 USA. cdc@gatech.edu. Part of this
work completed while at CWI.

2 Cryptology & Information Security Group, CWI, Amsterdam, The Netherlands. kiltz@cwi.nl. Supported by
the research program Sentinels.

3 Dept. of Computer Science, New York University, Courant Institute, 251 Mercer Street, New York, NY 10012,
USA. shoup@cs.nyu.edu. Supported by NSF award number CNS-0716690.

1

• the twin Diffie-Hellman problem is hard, even given access to a corresponding decision oracle,
assuming the ordinary Diffie-Hellman problem (without access to any oracles) is hard.

Using the twin Diffie-Hellman problem, we construct a new variant of ElGamal encryption that
is secure against chosen ciphertext attack, in the random oracle model, under the assumption that
the ordinary Diffie-Hellman problem is hard. Compared to other ElGamal variants with similar
security properties, our scheme is attractive in that it has very short ciphertexts and a very simple
and tight security proof.

At the heart of our method is a “trapdoor test” which allows us to implement an effective
decision oracle for the twin Diffie-Hellman problem without knowing any of the corresponding
discrete logarithms. This trapdoor test has many applications, including: a new variant of Diffie
and Hellman’s non-interactive key exchange protocol [12], which is secure in the random oracle
model assuming the Diffie-Hellman problem is hard; a new variant of Cramer-Shoup encryption
[10] with a very simple security proof, in the standard model, under the hashed decisional Diffie-
Hellman assumption; a new variant of Boneh-Franklin identity-based encryption [6], with very short
ciphertexts, and a simple and tighter security proof in the random oracle model, assuming the
bilinear Diffie-Hellman problem is hard; a very simple and efficient method of securing a password-
authenticated key exchange protocol of Abdalla and Pointcheval [2] against server compromise,
which can be proved secure, using our trapdoor test, in the random oracle model, under the Diffie-
Hellman assumption.

1.1 Hashed ElGamal Encryption and its relation to the Diffie-Hellman problem

To motivate the discussion, consider the “hashed” ElGamal encryption scheme [1]. This public-key
encryption scheme makes use of a group G of prime order q with generator g ∈ G, a hash function
H, and a symmetric cipher (E,D). A public key for this scheme is a random group element X, with
corresponding secret key x, where X = gx. To encrypt a message m, one chooses a random y ∈ Zq,
computes

Y := gy, Z := Xy, k := H(Y, Z), c := Ek(m),

and the ciphertext is (Y, c). Decryption works in the obvious way: given the ciphertext (Y, c), and
secret key x, one computes

Z := Y x, k := H(Y, Z), m := Dk(c).

The Diffie-Hellman Assumption. Clearly, the hashed ElGamal encryption scheme is secure
only if it is hard to compute Z, given the values X and Y . Define

dh(X, Y) := Z, where X = gx, Y = gy, and Z = gxy. (1)

The problem of computing dh(X, Y) given random X, Y ∈ G is the DH problem. The DH as-
sumption asserts that this problem is hard. However, this assumption is not sufficient to establish
the security of hashed ElGamal against a chosen ciphertext attack, regardless of what security
properties the hash function H may enjoy.

To illustrate the problem, suppose that an adversary selects group elements Ŷ and Ẑ in some
arbitrary way, and computes k̂ := H(Ŷ , Ẑ) and ĉ := Ek̂(m̂) for some arbitrary message m̂. Further,
suppose the adversary gives the ciphertext (Ŷ , ĉ) to a “decryption oracle,” obtaining the decryption
m. Now, it is very likely that m̂ = m if and only if Ẑ = dh(X, Ŷ). Thus, the decryption oracle

2

can be used by the adversary as an oracle to answer questions of the form “is dh(X, Ŷ) = Ẑ?”
for group elements Ŷ and Ẑ of the adversary’s choosing. In general, the adversary would not
be able to efficiently answer such questions on his own, and so the decryption oracle is leaking
some information about that secret key x which could conceivably be used to break the encryption
scheme.

The Strong DH Assumption. Therefore, to establish the security of hashed ElGamal against
chosen ciphertext attack, we need a stronger assumption. For X, Ŷ , Ẑ ∈ G, define the predicate

dhp(X, Ŷ , Ẑ) := dh(X, Ŷ) ?= Ẑ.

At a bare minimum, we need to assume that it is hard to compute dh(X, Y), given random X, Y ∈
G, along with access to a decision oracle for the predicate dhp(X, ·, ·), which on input (Ŷ , Ẑ),
returns dhp(X, Ŷ , Ẑ). This assumption is called the strong DH assumption [1].1 Moreover, it is not
hard to prove, if H is modeled as a random oracle, that hashed ElGamal is secure against chosen
ciphertext attack under the strong DH assumption, and under the assumption that the underlying
symmetric cipher is itself secure against chosen ciphertext attack. This was proved in [1, 24], for a
variant scheme in which Y is not included in the hash; including Y in the hash gives a more efficient
security reduction (see [11]). Note that the strong DH assumption is different (and weaker) than
the so-called gap DH assumption [28] where an adversary gets access to a full decision oracle for
the predicate dhp(·, ·, ·), which on input (X̂, Ŷ , Ẑ), returns dhp(X̂, Ŷ , Ẑ).

1.2 The Twin Diffie-Hellman Assumptions

For general groups, the strong DH assumption may be strictly stronger than the DH assumption.
One of the main results of this paper is to present a slightly modified version of the DH problem
that is just as useful as the (ordinary) DH problem, and which is just as hard as the (ordinary) DH
problem, even given access to a corresponding decision oracle. Using this, we get a modified version
of hashed ElGamal encryption which can be proved secure under the (ordinary) DH assumption, in
the random oracle model. This modified system is just a bit less efficient than the original system.

Again, let G be a cyclic group with generator g, and of prime order q. Let dh be defined as in
(1). Define the function

2dh : G3 → G2

(X1, X2, Y) 7→ (dh(X1, Y),dh(X2, Y)).

We call this the twin DH function. One can also define a corresponding twin DH predicate:

2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2) := 2dh(X1, X2, Ŷ) ?= (Ẑ1, Ẑ2).

The twin DH assumption states it is hard to compute 2dh(X1, X2, Y), given random X1, X2, Y ∈
G. It is clear that the DH assumption implies the twin DH assumption. The strong twin DH
assumption states that it is hard to compute 2dh(X1, X2, Y), given random X1, X2, Y ∈ G, along
with access to a decision oracle for the predicate 2dhp(X1, X2, ·, ·, ·), which on input (Ŷ , Ẑ1, Ẑ2),
returns 2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2).

One of our main results is the following:

1We remark that in more recent papers the name strong DH assumption also sometimes refers to a different
assumption defined over bilinear maps [4]. We follow the original terminology from [1].

3

Theorem 1. The (ordinary) DH assumption holds if and only if the strong twin DH assumption
holds.

The non-trivial direction to prove is that the DH assumption implies the strong twin DH
assumption.

A Trapdoor Test. While Theorem 1 has direct applications, the basic tool that is used to prove
the theorem, which is a kind of “trapdoor test,” has even wider applications. Roughly stated, the
trapdoor test works as follows: given a random group element X1, we can efficiently construct a
random group element X2, together with a secret “trapdoor” τ , such that

• X1 and X2 are independent (as random variables), and

• if we are given group elements Ŷ , Ẑ1, Ẑ2, computed as functions of X1 and X2 (but not
τ), then using τ , we can efficiently evaluate the predicate 2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2), making a
mistake with only negligible probability.

We note that our trapdoor test actually appears implicitly in Shoup’s DH self-corrector [32];
apparently, its implications were not understood at the time, although the techniques of Cramer
and Shoup [10] are in some sense an extension of the idea. We discuss the connection between our
trapdoor test and Shoup’s DH self-corrector in Section 8.

1.3 Applications and Results

1.3.1 The twin ElGamal encryption scheme

Theorem 1 suggests the following twin ElGamal encryption scheme. This scheme makes use of a
hash function H and a symmetric cipher (E,D). A public key for this scheme is a pair of random
group elements (X1, X2), with corresponding secret key (x1, x2), where Xi = gxi for i = 1, 2. To
encrypt a message m, one chooses a random y ∈ Zq and computes

Y := gy, Z1 := Xy
1 , Z2 := Xy

2 , k := H(Y, Z1, Z2), c := Ek(m).

The ciphertext is (Y, c). Decryption works in the obvious way: given the ciphertext (Y, c), and
secret key (x1, x2), one computes

Z1 := Y x1 , Z2 := Y x2 , k := H(Y, Z1, Z2), m := Dk(c).

The arguments in [1] and [11] carry over, so that one can easily show that the twin ElGamal
encryption scheme is secure against chosen ciphertext attack, under the strong twin DH assumption,
and under the assumption that (E,D) is secure against chosen ciphertext attack, if H is modeled as
a random oracle. By Theorem 1, the same holds under the (ordinary) DH assumption.

Note that the ciphertexts for this scheme are extremely compact — no redundancy is added,
as in the Fujisaki-Okamoto transformation [13]. Moreover, the security reduction for our scheme
is very tight. We remark that this seems to be the first DH-based encryption scheme with short
ciphertexts. All other known constructions either add redundancy to the ciphertext [13, 29, 33, 9, 3]
or resort to assumptions stronger than DH [1, 11, 24].

1.3.2 The twin DH key-exchange protocol

In their paper [12], Diffie and Hellman presented the following simple, non-interactive key exchange
protocol. Alice chooses a random x ∈ Zq, computes X := gx ∈ G, and publishes the pair (Alice, X)

4

in a public directory. Similarly, Bob chooses a random y ∈ Zq, computes Y := gy ∈ G, and publishes
the pair (Bob, Y) in a public directory. Alice and Bob may compute the shared value Z := gxy ∈ G
as follows: Alice retrieves Bob’s entry from the directory and computes Z as Y x, while Bob retrieves
Alice’s key X, and computes Z as Xy. Before using the value Z, it is generally a good idea to hash
it, together with Alice’s and Bob’s identities, using a cryptographic hash function H. Thus, the key
that Alice and Bob actually use to encrypt data using a symmetric cipher is k := H(Alice, Bob, Z).

Unfortunately, the status of the security of this scheme is essentially the same as that of the
security of hashed ElGamal against chosen ciphertext attack, if we allow an adversary to place
arbitrary public keys in the public directory (without requiring some sort of “proof of possession”
of a secret key). The issue is very similar to the problem inherent in ElGamal, where an adversary
and inject a key Ŷ of its choosing and then request a symmetric key k with Ŷ and some other
user’s key X. The adversary can test dhp(X, Ŷ , Ẑ) for any Ẑ by checking if k = H(Alice, Bob, Ẑ).

To avoid this problem, we define the twin DH protocol, as follows: Alice’s public key is (X1, X2),
and her secret key is (x1, x2), where Xi = gxi for i = 1, 2; similarly, Bob’s public key is (Y1, Y2),
and his secret key is (y1, y2), where Yi = gyi for i = 1, 2; their shared key is

k := H(Alice, Bob,dh(X1, Y1),dh(X1, Y2),dh(X2, Y1),dh(X2, Y2)),

where H is a hash function. Of course, Alice computes the 4-tuple of group elements in the hash as

(Y x1
1 , Y x1

2 , Y x2
1 , Y x2

2),

and Bob computes them as

(Xy1
1 , Xy2

1 , Xy1
2 , Xy2

2).

Using the “trapdoor test,” it is a simple matter to show that the twin DH protocol satisfies a
natural and strong definition of security, under the (ordinary) DH assumption, if H is modeled as
a random oracle.

1.3.3 A variant of Cramer-Shoup encryption

We present a variant of the public-key encryption scheme by Cramer and Shoup [10]. Using our
trapdoor test, along with techniques originally developed for identity-based encryption [4], we give
an extremely simple proof of its security against chosen-ciphertext attack, in the standard model,
under the decisional DH assumption [14]: given X and Y , it is hard to distinguish dh(X, Y) from
Z, for random X, Y, Z ∈ G. In fact, our proof works under the weaker hashed decisional DH
assumption: given X and Y , it is hard to distinguish H(dh(X, Y)) from k, for random X, Y ∈ G,
and random k in the range of H. As a simple extension we show that a recent variant of the
Kurosawa-Desmedt scheme from [22] can be obtained using our framework. This variant has
shorter ciphertexts, and its security relies on the hashed DH assumption.

Obviously, our variants are secure under the DH assumption if H is modeled as a random
oracle. We also note that by using the Goldreich-Levin theorem, a simple extension of our scheme,
which is still fairly practical, can be proved secure against chosen ciphertext attack under the DH
assumption.

The observation that a variant of the Cramer-Shoup encryption scheme can be proved secure
under the hashed decisional DH assumption was also made by Brent Waters, in unpublished work
(personal communication, 2006) and independently by Goichiro Hanaoka and Kaoru Kurosawa, in
recent work [21]. In the same paper, Hanaoka and Kurosawa give two schemes based on techniques

5

different from ours, where the first achieves CCA security in the standard model based on the
DH assumption and the second achieves security based on the hashed DH assumption and has
ciphertext lengths equal to those of the Kurosawa-Desmedt scheme.

1.3.4 Identity-based encryption

Strong versions of assumptions also seem necessary to analyze some identity-based encryption (IBE)
schemes that use bilinear pairings. As a further contribution, we give a twin version of the bilinear
DH (BDH) assumption and prove that its (interactive) strong twin BDH variant is implied by the
standard BDH assumption.

The well-known IBE scheme of Boneh and Franklin [6] achieves security against chosen cipher-
text attacks, in the random oracle model, by applying the Fujisaki-Okamoto transformation. Our
techniques give a different scheme with shorter ciphertexts and a tighter security reduction.

The same technique can also be applied to the scheme by Sakai and Kasahara [31] which is
based on a stronger bilinear assumption but has improved efficiency.

1.3.5 Other applications

Our twinning technique and in particular the trapdoor test can be viewed as a general framework
that gives a method for “updating” a protocol Π whose security relies on the strong DH assumption
to a protocol Π′ that has roughly the same complexity as Π, but whose security is solely based on
the DH assumption. Apart from the applications mentioned above, we remark that this technique
can also be applied to the undeniable signatures and designated confirmer signatures from [28], the
key-exchange protocols from [23], and the public-key encryption scheme from [7].

As another application of our trapdoor test, in Section 9 we show how one can easily convert
the very elegant and efficient protocol of Abdalla and Pointcheval [2] for password-authenticated
key exchange, into a protocol that provides security against server compromise, without adding
any messages to the protocol, and still basing the security proof, in the random oracle model, on
the DH assumption.

2 A trapdoor test and a proof of Theorem 1

It is not hard to see that the strong twin DH assumption implies the DH assumption. To prove that
the DH implies the strong twin DH assumption, we first need our basic tool, a “trapdoor test.” Its
purpose will be intuitively clear in the proof of Theorem 1: in order to reduce the strong twin DH
assumption to the DH assumption, the DH adversary will have to answer decision oracle queries
without knowing the discrete logarithms of the elements of the strong twin DH problem instance.
This tool gives us a method for doing so.

Theorem 2 (Trapdoor Test). Let G be a cyclic group of prime order q, generated by g ∈ G.
Suppose X1, r, s are mutually independent random variables, where X1 takes values in G, and each
of r, s is uniformly distributed over Zq, and define the random variable X2 := gs/Xr

1 . Further,
suppose that Ŷ , Ẑ1, Ẑ2 are random variables taking values in G, each of which is defined as some
function of X1 and X2. Then we have:

(i) X2 is uniformly distributed over G;

6

(ii) X1 and X2 are independent;

(iii) if X1 = gx1 and X2 = gx2, then the probability that the truth value of

Ẑr
1Ẑ2 = Ŷ s (2)

does not agree with the truth value of

Ẑ1 = Ŷ x1 ∧ Ẑ2 = Ŷ x2 (3)

is at most 1/q; moreover, if (3) holds, then (2) certainly holds.

Proof. Observe that s = rx1 + x2. It is easy to verify that X2 is uniformly distributed over G, and
that X1, X2, r are mutually independent, from which (i) and (ii) follow. To prove (iii), condition on
fixed values of X1 and X2. In the resulting conditional probability space, r is uniformly distributed
over Zq, while x1, x2, Ŷ , Ẑ1, and Ẑ2 are fixed. If (3) holds, then by substituting the two equations
in (3) into (2), we see that (2) certainly holds. Conversely, if (3) does not hold, we show that (2)
holds with probability at most 1/q. Observe that (2) is equivalent to

(Ẑ1/Ŷ x1)r = Ŷ x2/Ẑ2. (4)

It is not hard to see that if Ẑ1 = Ŷ x1 and Ẑ2 6= Ŷ x2 , then (4) certainly does not hold. This leaves
us with the case Ẑ1 6= Ŷ x1 . But in this case, the left hand side of (4) is a random element of G
(since r is uniformly distributed over Zq), but the right hand side is a fixed element of G. Thus,
(4) holds with probability 1/q in this case.

Using this tool, we can easily prove Theorem 1. So that we can give a concrete security result,
let us define some terms. For an adversary B, let us define his DH advantage, denoted AdvDHB,G,
to be the probability that B computes dh(X, Y), given random X, Y ∈ G. For an adversary A,
let us define his strong twin DH advantage, denoted Adv2DHA,G, to be the probability that A
computes 2dh(X1, X2, Y), given random X1, X2, Y ∈ G, along with access to a decision oracle for
the predicate 2dhp(X1, X2, ·, ·, ·), which on input Ŷ , Ẑ1, Ẑ2, returns 2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2).

Theorem 1 is a special case of the following:

Theorem 3. Suppose A is a strong twin DH adversary that makes at most Qd queries to its
decision oracle, and runs in time at most τ . Then there exists a DH adversary B with the following
properties: B runs in time at most τ , plus the time to perform O(Qd log q) group operations and
some minor bookkeeping; moreover,

Adv2DHA,G ≤ AdvDHB,G +
Qd

q
.

In addition, if B does not output “failure,” then its output is correct with probability at least 1−1/q.

Proof. Our DH adversary B works as follows, given a challenge instance (X, Y) of the DH problem.
First, B chooses r, s ∈ Zq at random, sets X1 := X and X2 := gs/Xr

1 , and gives A the challenge
instance (X1, X2, Y). Second, B processes each decision query (Ŷ , Ẑ1, Ẑ2) by testing if Ẑ1Ẑ

r
2 = Ŷ s

holds. Finally, if and when A outputs (Z1, Z2), B tests if this output is correct by testing if
Z1Z

r
2 = Y s holds; if this does not hold, then B outputs “failure,” and otherwise, B outputs Z1.

The proof is easily completed using Theorem 2.

7

3 Definitions

We say that a function f(k) is negligible if for every c > 0 there exists an kc such that f(k) < 1/kc

for all k > kc.

3.1 Public key encryption

We recall the usual definitions for chosen ciphertext security.
Let PKE be a public-key encryption scheme. Consider the following chosen ciphertext attack

game, played between a challenger and a adversary A:

1. The challenger generates a public key/secret key pair, and gives the public key to A.

2. A makes a number of decryption queries to the challenger, where each such query is a cipher-
text Ĉ. For each query, the challenger decrypts Ĉ and sends the result to A.

3. A makes one challenge query, which is a pair of equal-length messages (m0,m1). For each
query, the challenger chooses b ∈ {0, 1} at random, encrypts mb, and sends the resulting
ciphertext C to A.

4. A makes more decryption queries, just as in step 2, but with the restriction that Ĉ 6= C.

5. A outputs b̂ ∈ {0, 1}.

The advantage AdvCCAA,PKE is defined to be |Pr[b̂ = b]−1/2|. The scheme PKE is said to be secure
against chosen ciphertext attack if for all efficient adversaries A, the advantage AdvCCAA,PKE is
negligible as a function of the security parameter.

If we wish to analyze a scheme PKE in the random oracle model, then hash functions are modeled
as random oracles in the security analysis, where both challenger and adversary are given access
to the random oracle in the above attack game. We write AdvCCAro

A,PKE for the corresponding
advantage in the random oracle model.

3.2 Symmetric encryption

If SE = (E,D) is a symmetric cipher, then one defines security against chosen ciphertext attack
in exactly the same way, except that in step 1 of the above attack game, the challenger simply
generates a secret key (and no public key)2. The advantage AdvCCAA,SE is defined in exactly the
same way, and PKE is said to be secure against chosen ciphertext attack if for all efficient adversaries
A, the advantage AdvCCAA,SE is negligible.

The usual construction of a chosen-ciphertext secure symmetric encryption scheme is to combine
a one-time pad and a message-authentication code (MAC). We remark that such schemes do not
necessarily add any redundancy to the symmetric ciphertext. In fact, Phan and Pointcheval [30]
showed that a strong PRP [16] directly implies a length-preserving chosen-ciphertext secure sym-
metric encryption scheme that avoids the usual overhead due to the MAC. In practice, the modes
of operation CMC [19], EME [20], and EME* [18] can be used to encrypt large messages. The
resulting scheme is chosen-ciphertext secure provided that the underlying block-cipher is a strong
PRP.

2We note that a more standard definition also gives the adversary access to an encryption oracle, but this is not
necessary for our applications

8

3.3 Identity-based encryption

An IBE scheme consists of algorithms for master key generation, user key generation, encryption,
and decryption. The master key generation algorithm outputs a random private/public master key
pair. The user key generation algorithm uses the private master key and outputs a private user
key for any identity. To encrypt a message for a user, one inputs the master public key and that
user’s identity to the encryption algorithm. Decryption then uses the user’s private key to recover
the message.

The concept of chosen ciphertext security naturally adapts to IBE. For an adversary A and IBE
scheme IBE, the game is as follows:

1. The challenger generates a master public key/secret key pair, and gives the master public key
to A.

2. Amakes user secret key queries and decryption queries to the challenger. Each user secret key
query is an identity îd , and the challenger responds by running the user secret key generation
on îd and sending that key to A. Each decryption query is an identity îd and ciphertext
ĉ, and the challenger responds by decrypting Ĉ using the secret key for id and sending the
result to A.

3. A makes one challenge query, which is an identity id and a pair of equal-length messages
(m0,m1). The challenger chooses b ∈ {0, 1} at random, encrypts mb for id , and sends the
resulting ciphertext C to A. A is not allowed to choose id after requesting the user private
key for id in the previous step.

4. A makes more user secret key queries and decryption queries, just as in step 2, but with the
restriction that îd 6= id in user secret key queries and (îd , Ĉ) 6= (id , C) in decryption queries.

5. A outputs b̂ ∈ {0, 1}.

As before, we define the advantage AdvCCAA,IBE as |Pr[b̂ = b] − 1/2|. When a hash function is
modeled as a random oracle, we denote the advantage by AdvCCAro

A,IBE.

3.4 Target collision-resistant hash functions

We briefly recall the definition of target collision-resistant hash functions. Let T be a family of
functions from D to R. The target collision-resistance game goes as follows.

1. The adversary gives an element x ∈ D to the challenger.

2. The challenger chooses a random function from T, represented by a hash key k. It gives k to
the adversary.

3. The adversary gives a second element x′ ∈ D to the challenger.

We define the advantage AdvTCRA,T of A as Pr[x 6= x′ ∧ Tk(x) = Tk(x′)]. We say that T is target
collision-resistant if AdvTCRA,T is negligible for every poly-time A. In our schemes below, we let
the (random) hash key be implicitly available in the public parameters and simply write T(x) when
evaluating the hash function.

9

4 Twin ElGamal encryption

We are now able to establish the security of the twin ElGamal encryption scheme described in
§1.3.1, which we denote PKE2dh. The security will be based on the strong twin DH assumption,
of course, and this allows us to borrow the “oracle patching” technique from previous analyzes of
hashed ElGamal encryption based on the strong DH assumption [11]. We stress, however, that
unlike previous applications of this technique, the end result is a scheme based on the original DH
assumption.

Theorem 4. Suppose H is modeled as a random oracle and that the DH assumption holds. Then
PKE2dh is secure against chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext attack against
PKE2dh in the random oracle model, and that A runs in time τ , and makes at most Qh hash
queries and Qd decryption queries. Then there exists a DH adversary Bdh and an adversary Bsym

that carries out a chosen ciphertext attack against SE, such that both Bdh and Bsym run in time at
most τ , plus the time to perform O((Qh + Qd) log q) group operations; moreover,

AdvCCAro
A,PKE2dh

≤ AdvDHBdh,G + AdvCCABsym,SE +
Qh

q
.

Proof. In light of Theorem 1, the proof is fairly standard. We proceed with a sequence of games.

Game 0. Let Game 0 be the original chosen ciphertext attack game, and let S0 be the event that
b̂ = b in this game.

In this game, the challenger generates the secret key (x1, x2) and computes the corresponding
public key (X1, X2). We have to describe how the random oracle is implemented by the
challenger. This is done in a special way to facilitate the proof. The challenger implements
the random oracle using an associative array L, indexed by elements of G3, where each
element in the array takes an initial, default value of ⊥, indicating that it is undefined. In
addition, the challenger prepares some values in advance, to be used later as part of the
ciphertext generated in response to the adversary’s challenge query. Namely, the challenger
chooses a random symmetric key k, and a random y ∈ Zq, sets Y := gy, Z1 := Xy

1 , and
Z2 := Xy

2 . The challenger also sets L[Y, Z1, Z2] := k, which intuitively represents the fact
that H(Y, Z1, Z2) = k.

Now, the challenger sends the public key to the adversary. Whenever the adversary makes
a random oracle query, the challenger sends the corresponding entry in L to the adversary,
initializing it, if necessary, to a random symmetric key if it is currently ⊥.

To process decryption queries in step 2 of the chosen ciphertext attack game, suppose the
ciphertext is (Ŷ , ĉ). If Ŷ = Y , then the challenger simply responds with Dk(ĉ). Otherwise,
the challenger decrypts as usual, using the secret key (x1, x2), and processing its own random
oracle queries using L, just as above.

To process the challenge query in step 3, the challenger uses the values Y, Z1, Z2, k generated
in the initialization step, and computes c := Ek(mb). The ciphertext (Y, c) is given to the
adversary.

Decryption queries in step 4 are processed just as in step 2.

10

That finishes the description of Game 0. Despite the syntactic differences, it is clear that

AdvCCAro
A,PKE2dh

= |Pr[S0]− 1/2|. (5)

Game 1. We now describe Game 1, which is the same as Game 0, but with the following differ-
ence: in the initialization step, the challenger does not initialize L[Y, Z1, Z2]. Everything else
remains exactly the same.

Let S1 be the event that b̂ = b in Game 1. Let F be the event that the adversary queries
the random oracle at (Y, Z1, Z2) in Game 1. Note that the challenger never queries the
random oracle at this point, due to the special way that decryption and challenge queries are
processed. Since both Games 0 and 1 proceed identically unless F occurs, we have

|Pr[S1]− Pr[S0]| ≤ Pr[F]. (6)

We claim that

Pr[F] ≤ Adv2DHB2dh,G, (7)

where B2dh is an efficient strong twin DH adversary that makes at most Qh decision oracle
queries. We sketch at a very high level how B2dh works. Basically, B2dh runs just like the
challenger in Game 1, but for every random oracle query (Ŷ , Ẑ1, Ẑ2), B2dh sends this triple to
its own decision oracle, and marks it “good” or “bad” accordingly (this is the only time B2dh

uses its decision oracle). Using this information, B2dh can easily process decryption requests
without using the secret key: given a ciphertext (Ŷ , ĉ) with Ŷ 6= Y , it checks if it has already
seen a “good” triple of the form (Ŷ , ·, ·) among the random oracle queries; if so, it uses the key
associated with that triple; if not, it generates a random key, and it will stay on the lookout
for a “good” triple of the form (Ŷ , ·, ·) in future random oracle queries, associating this key
with that triple to keep things consistent. At the end of the game, B2dh checks if it has seen
a “good” triple of the form (Y, ·, ·); if so, it outputs the last two components.

Of course, Theorem 1 gives us an efficient DH adversary Bdh with

Adv2DHB2dh,G ≤ AdvDHBdh,G +
Qh

q
. (8)

Finally, it is easy to see that in Game 1, the adversary is essentially playing the chosen
ciphertext attack game against SE. Thus, there is an efficient adversary Bsym such that

|Pr[S1]− 1/2| = AdvCCABsym,SE. (9)

The theorem now follows by combining (5)–(9).

Instantiating PKE2dh with a length-preserving chosen-ciphertext secure symmetric encryption
scheme (see Section 3), we obtain a DH-based chosen-ciphertext secure encryption scheme with the
following properties.

Optimal ciphertext overhead. The ciphertext overhead, i.e. ciphertext size minus plaintext
size, is exactly one group element, which is optimal for Diffie-Hellman based schemes.

Encryption/decryption efficiency. Encryption needs three exponentiations in G, one of which
is to the fixed-base g (that can be shared among many public-keys). Decryption only needs

11

one sequential exponentiation in G to compute Y x1 and Y x2 simultaneously, which is nearly
as efficient as one single exponentiation (see, e.g., [27]).

5 Non-interactive key exchange

In this section we give a model and security definition for non-interactive key exchange and analyze
the twin DH protocol from section §1.3.2. After the seminal work of Diffie and Hellman on this
subject, it does not seem to have been explored further in the literature, except in the identity-based
setting.

5.1 Model and security

A non-interactive key exchange scheme KE consists of two algorithms: one for key generation and
one for computing paired keys. The key generation algorithm is probabilistic and outputs a public
key/secret key pair. The paired key algorithm takes as input an identity and public key along with
another identity and a secret key, and outputs a shared key for the two identities. Here, identities
are arbitrary strings chosen by the users, and the key authority does not generate keys itself but
acts only as a phone book.

For security we define an experiment between a challenger and an adversary A. In this experi-
ment, the challenger takes a random bit b as input and answers oracle queries for A until A outputs
a bit b̂. The challenger answers the following types of queries for A:

Register honest ID. A supplies a string id . The challenger runs the key generation algorithm
to generate a public key/secret key pair (pk, sk) and records the tuple (honest, id ,pk, sk) for
later. The challenger returns pk to A.

Register corrupt ID. In this type of query, A supplies both the string id and a public key pk.
The challenger records the tuple (corrupt, id ,pk) for later.

Get honest paired key. Here A supplies two identities id , id ′ that were registered as honest.
Now the challenger uses the bit b: if b = 0, the challenger runs the paired key algorithm using
the public key for id and the secret key for id ′. If b = 1, the challenger generates a random
key, records it for later, and returns that to the adversary. To keep things consistent, the
challenger returns the same random key for the set {id , id ′} every time A queries for their
paired key (perhaps in reversed order).

Get corrupt paired key. Here A supplies two identities id , id ′, where id was registered as cor-
rupt and id ′ was registered as honest. The challenger runs the paired key algorithm using
the public key for id and the secret key for id ′ and returns the paired key.

When the adversary finally outputs b̂, it wins the experiment if b̂ = b. For an adversary A, we
define its active attack advantage AdvAAA,KE to be |Pr[b̂ = b] − 1/2|. When a hash function is
modeled as a random oracle in the experiment, we denote the adversary’s advantage by AdvAAro

A,KE.

5.2 Security of the twin DH protocol

We prove the twin DH protocol secure under the DH assumption using our trapdoor test. We
denote the twin DH protocol by KE2dh.

12

Theorem 5. Suppose H is modeled as a random oracle and that the DH assumption holds. Then
KE2dh is secure against active attacks.

In particular, suppose A is an adversary that attacks KE2dh in the random oracle model, and
that A runs in time τ , and makes at most a total of Q oracle queries of all types. Then there
exists a DH adversary Bdh that runs in time at most τ plus the time to perform O(Q log q) group
operations; moreover,

AdvAAro
A,KE2dh

≤ 2AdvDHBdh,G + 4Q/q.

Proof. We proceed with a sequence of games.

Game 0. Let Game 0 be the original attack experiment and let S0 be the event that b̂ = b in this
game. To help with the proof, we describe a specific way for the challenger to implement the
experiment. The challenger uses two associative arrays, L and K, both initially empty. L
will store random oracle responses, and K will store responses to paired key queries.

As the adversary issues random oracle queries, the challenger stores its responses in L, indexed
by the input to the oracle. Whenever the adversary issues a paired key query for some
identities (id , id ′), the challenger first uses the honest identity’s secret key to compute the
parties’ inputs to the random oracle, say (id , id ′, Z1, Z2, Z3, Z4). Now the challenger uses
b. If b = 1, then it returns K[id , id ′], initializing it to a random key if necessary. It does
not modify L in this case. If b = 0, however, then it performs a few checks to keep things
consistent, as they would be in a real experiment. If L[id , id ′, Z1, Z2, Z3, Z4] = k has been
initialized, it stores K[id , id ′] := k and returns k to the adversary. Otherwise, the challenger
generates a random k and stores it at both K[id , id ′] and L[id , id ′, Z1, Z2, Z3, Z4].

We claim that this way of running the game does not affect the distributions involved. If
b = 0, then the oracle responses are managed consistently. If b = 1, then the honest key pair
oracle responses are totally independent of the rest of the game, because they are stored in
K and only accessed when responding to future key pair queries. Thus we have

AdvAAro
A,KE2dh

= |Pr[S0]− 1/2|. (10)

Game 1. In this game, when the adversary requests a paired key for honest identities id and id ′,
the challenger it ignores the bit b and always processes the queries as if b = 1. That is, it only
stores the new paired key in K and not in L. Everything else is exactly the same. Thus, if the
adversary happens to query the random oracle at the corresponding point for the paired key
of id and id ′, then the challenger will check L, see that entry is uninitialized, and generate a
fresh random response instead of the one stored in K.

Let S1 be the event that b̂ = b in Game 1. Let F be the event that the adversary queries
random oracle H at a point (id , id ′, Ẑ1, Ẑ2, Ẑ3, Ẑ4) such that the point is the correct input to
the random oracle for the paired key of some registered identities id , id ′. By the construction
of Game 1, it is clear that

|Pr[S1]− Pr[S0]| ≤ Pr[F]. (11)

Moreover, we have

Pr[S1] = 1/2. (12)

13

All that remains is to bound Pr[F]. We claim that

Pr[F] ≤ 2(AdvDHBdh,G + 2Q/q), (13)

where Bdh is an efficient DH adversary. We give a high-level description of Bdh.

Bdh gets a DH instance (X, Y) as input and simulates the challenger’s behavior in Game 1. It
maintains the associative arrays L[·] and K[·, ·] to manage random oracle queries and paired
keys respectively.

When registering an honest identity id , Bdh generates a random bit bid and random
rid , sid , tid ∈ Zq. If bid = 0, Bdh computes

X1 := Xgtid X2 := Xsid
1 /grid

and if bid = 1, Bdh instead computes

X1 := Y gtid X2 := Xsid
1 /grid .

The pair (X1, X2) is returned as the public key for id . Bdh saves the bit bid , trapdoor
information rid , sid , and randomizing factor tid for later in the simulation. Bdh registers
corrupt identities by simply saving them.

For honest and corrupt paired key queries with identities id , id ′, Bdh returns K[id , id ′] if it is
initialized. Otherwise it generates a random key k, stores it in K[id , id ′], and returns it.

On a random oracle query H(id , id ′, Ẑ1, Ẑ2, Ẑ3, Ẑ4), Bdh returns the corresponding entry from
L if it is already initialized. If not, Bdh must decide if this is the correct input to the
random oracle for the paired key of id , id ′ in order to “patch” together queries and maintain
consistency. We now describe how Bdh manages the patching.

If id , id ′ are not in the correct order in the query, then the query certainly won’t correspond
to their paired key. Otherwise, assume id is honest (a similar argument works for the case
that id ′ is honest), and let the public keys of id , id ′ be (X1, X2), (Y1, Y2) respectively. Bdh

uses the trapdoor information for id to evaluate (with some error) the predicates

2dhp(X1, X2, Y1, Ẑ1, Ẑ3) and 2dhp(X1, X2, Y2, Ẑ2, Ẑ4)

as in Theorem 2. If both of these predicates evaluate to 1, then Bdh determines that the tuple
(id , id ′, Ẑ1, Ẑ2, Ẑ3, Ẑ4) is the input for their paired key, it marks that tuple as “good” and
stores k in K[id , id ′].

Bdh runs until the adversary halts and then looks in L for a good tuple with honest identities
id , id ′ such that bid 6= bid ′ . If Bdh finds such a good tuple (id , id ′, Ẑ1, Ẑ2, Ẑ3, Ẑ4), it looks up
the public keys (X1, X2), (Y1, Y2) for id , id ′. Suppose that bid = 0 and b′id = 1. Then Bdh

computes an output for the DH problem by

Z := Z1/
(
Xtid′Y tid gtid tid′

)
.

A similar computation works in the case that bid = 1 and bid = 0.

Finally we claim that Bdh produces the correct solution to its DH instance with probability at
least (1/2)(Pr[F]−2Q/q). First observe that all of the public keys given to the adversary are
uniform and independent by Theorem 2. Also by Theorem 2, the probability that Bdh makes
an error when patching together queries is at most 2Q/q. It is also easy to check that the
bits bid , bid ′ are independent of the adversary’s view. Thus, conditioned on the event that the

14

adversary queries a good tuple, Bdh is able to compute the correct value Z with probability
1/2, and (13) follows.

The theorem is proved by combining (10), (11),(13) and (12). The bound on the number of group
operations follows from the observation that Bdh only performs a constant number of exponentia-
tions per oracle query.

6 A variant of the Cramer-Shoup encryption scheme

In this section we show how to apply our trapdoor test to construct public-key encryption schemes
with security proofs in the standard model. We give a new assumption based on the decisional
Diffie-Hellman problem and describe several schemes with varying efficiency and security properties.

6.1 The (twin) DDH assumption

Let G be a group of order q and let g be a random generator. Distinguishing the two distributions
(X, Y,dh(X, Y)) and (X, Y, Z) for random X, Y, Z ∈ G is the decision Diffie-Hellman (DDH)
problem. For an adversary B, let us define his DDH advantage, denoted AdvDDHB,G, by

AdvDDHB,G = Pr[B(X, Y,dh(X, Y)) = 1]− Pr[B(X, Y, Z) = 1], (14)

where X, Y, Z are uniform random variables on G. The DDH assumption states that the DDH
problem is hard.

As a natural decision variant of the twin DH problem, the twin DDH problem is distinguish-
ing the two distributions (X1, X2, Y,dh(X1, Y)) and (X1, X2, Y, Z) for random X1, X2, Y, Z ∈ G.
The strong twin DDH assumption states that the twin DDH problem is hard, even given access
to a decision oracle for the predicate for 2dhp(X1, X2, ·, ·, ·), which on input (Ŷ , Ẑ1, Ẑ2) returns
2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2). (Note the value dh(X2, Y) is never provided as input to the distinguisher
since otherwise the strong twin DDH assumption could be trivially broken using the 2dhp oracle.)
For an adversary B, we define its strong twin DDH advantage, denoted Adv2DDHB,G, by

Adv2DDHB,G = Pr[B(X1, X2, Y,dh(X1, Y)) = 1]− Pr[B(X1, X2, Y, Z1) = 1], (15)

where X1, X2, Y, Z1 are uniform random variables on G, and B has access to an oracle for
2dhp(X1, X2, ·, ·, ·).

We also consider potentially weaker “hashed” variants of the above two assumptions. For a
hash function H : G → {0, 1}κ, the hashed DDH problem is to distinguish the two distributions
(X, Y,H(dh(X, Y)) and (X, Y, k), for random X, Y ∈ G and k ∈ {0, 1}κ. The hashed DDH assump-
tion states that the hashed DDH problem is hard. Finally, the strong twin hashed DDH assumption
states that it is hard to distinguish the distributions (X1, X2, Y,H(dh(X, Y)) and (X1, X2, Y, k),
even with access to an oracle computing 2dhp(X1, X2, ·, ·, ·), where X1, X2, Y ∈ G and k ∈ {0, 1}κ
are random.

We note that the (strong twin) hashed DDH assumption simplifies to the (strong twin) DDH
assumption if the range of the hash function is G instead of {0, 1}κ and H is the identity (i.e., it
maps Z ∈ G to Z ∈ G). Furthermore, there are natural groups (such as non-prime-order groups)
where the DDH problem is known to be easy yet the hashed DDH problem is still assumed to be

15

hard for a reasonable choice of the hash function [14]. If H is modeled as random oracle then the
hashed DDH and the DH assumptions become equivalent.

Using the trapdoor test in Theorem 2, we can prove an analogue of Theorem 3.

Theorem 6. The (hashed) DDH assumption holds if and only if the strong twin (hashed) DDH
assumption holds. In particular, suppose A is a strong twin (hashed) DDH adversary that makes
at most Qd queries to its decision oracle, and runs in time at most τ . Then there exists a (hashed)
DDH adversary B with the following properties: B runs in time at most τ , plus the time to perform
O(Qd log q) group operations and some minor bookkeeping; moreover,

Adv2DDHA,G ≤ AdvDDHB,G +
Qd

q
.

6.2 A variant of the Cramer-Shoup scheme

We now can consider the following encryption scheme which we call PKEecs. This scheme makes
use of a symmetric cipher (E,D) and a hash function T : G → Zq which we assume to be target
collision-resistant [11].

A public key for this scheme is a tuple of random group elements (X1, X̃1, X2, X̃2), with corre-
sponding secret key (x1, x̃1, x2, x̃2), where Xi = gxi and X̃i = gx̃i for i = 1, 2. To encrypt a message
m, one chooses a random y ∈ Zq, computes

Y := gy, t := T(Y), Z1 := (Xt
1X̃1)y, Z2 := (Xt

2X̃2)y, k := H(Xy
1), c := Ek(m),

and the ciphertext is (Y, Z1, Z2, c). Decryption works as follows: given the ciphertext (Y, Z1, Z2, c)
and secret key (x1, x̃1, x2, x̃2), one computes t := T(Y) and checks if

Y x1t+x̃1 = Z1 and Y x2t+x̃2 = Z2. (16)

If not, then one rejects the ciphertext. (In this case, we say the ciphertext is not consistent).
Otherwise, compute

k := H(Y x1), m := Dk(c).

We remark that since |G| = |Zq| = q, hash function T could be a bijection. See [8] for efficient
constructions for certain groups G.

Relation to Cramer-Shoup. Our scheme is very similar to the one by Cramer and Shoup [10].
Syntactically, the difference is that in Cramer-Shoup the value Z1 is computed as Z1 = Xy

3 (where
X3 is another random group element in the public key) and t is computed as t = T(Y, Z1). However,
our variant allows for a simple security proof based on the hashed DDH assumption whereas for the
Cramer-Shoup scheme only proofs based on the DDH assumption are known (and the known proofs
do not seem to extend to the hashed case because the reductions all apply algebraic operations to
the challenge input). In Appendix A, we review the proof of the original Cramer-Shoup scheme
and show how the scheme can be analyzed using the twin DDH assumption. The purpose of this
appendix is expository.

We now show that, using the trapdoor test, PKEecs allows for a very elementary proof under the
hashed DDH assumption. We stress that are security proof is not in the random oracle model.

Theorem 7. Suppose T is a target collision resistant hash function. Further, suppose the hashed
DDH assumption holds, and that the symmetric cipher SE = (E,D) is secure against chosen cipher-

16

text attack. Then PKEecs is secure against chosen ciphertext attack.
In particular, suppose A is an adversary that carries out a chosen ciphertext attack against

PKEecs and that A runs in time τ , and makes at most Qd decryption queries. Then there exists a
hashed DDH adversary Bddh, an adversary Bsym that carries out a chosen ciphertext attack against
SE, and a TCR adversary Btcr such that both Bddh, Bsym and Btcr run in time at most τ , plus the
time to perform O(Qd log q) group operations; moreover,

AdvCCAA,PKE ecs ≤ AdvDDHBddh,G,H + AdvCCABsym,SE + AdvTCRBtcr,T +
Qd

q
.

Proof. We proceed with a sequence of games.

Game 0. Let Game 0 be the original chosen ciphertext attack game, and let S0 be the event that
b̂ = b in this game.

AdvCCAA,PKE ecs = |Pr[S0]− 1/2|. (17)

Game 1 Let Game 1 be like Game 0, but with the following difference. Game 1 aborts if the
adversary, at any time, makes a decryption query containing a Ŷ such that Ŷ 6= Y and
T(Ŷ) = T(Y) where Y comes from the challenge ciphertext. Using a standard argument
from [11] it is easy to show that

|Pr[S1]− Pr[S0]| ≤ AdvTCRBtcr,T. (18)

Game 2. Let Game 2 be as Game 1 with the following differences. For computing the public-key
the experiment picks x1, x2, y, a1, a2 ∈ Zq at random and computes X1 = gx1 , X2 = gx2 , and
Y = gy. Next, it computes t := T(Y) and

X̃1 := X−t
1 ga1 , X̃2 := X−t

2 ga2 .

Note that the way the public-key is setup uses a technique to prove selective-ID security for
IBE schemes [4].

The challenge ciphertext (Y, Z1, Z2, c) for message mb is computed as

t := T(Y), Z1 := Y a1 , Z2 := Y a2 , k := H(Xy
1), c := Ek(mb). (19)

This is a correctly distributed ciphertext for mb and randomness y = logg(Y) since, for
i = 1, 2, (Xt

i X̃i)y = (Xt−t
i gai)y = (gai)y = Y ai = Zi. We can assume (Y, Z1, Z2, k) to be

computed in the beginning of the experiment since they are independent of m0,m1.

A decryption query for ciphertext (Ŷ , Ẑ1, Ẑ2, ĉ) is answered as follows. Compute t̂ = T(Ŷ).
If t = t̂ then verify consistency by checking if Z1 = Ẑ1 and Z2 = Ẑ2. If the ciphertext is
consistent then use the challenge key k defined in (19) to decrypt ĉ. If t 6= t̂ then proceed as
follows. For i = 1, 2, compute Z̄i = (Ẑi/Ŷ ai)1/(t̂−t). Consistency of the ciphertext is verified
by checking if

Ŷ x1 = Z̄1 and Ŷ x2 = Z̄2. (20)

Let ŷ = logg Ŷ . The value Ẑi was correctly generated iff Ẑi = (X t̂
i X̃i)ŷ = (X t̂−t

i gai)ŷ =
(Ŷ xi)t̂−t · Ŷ ai which is equivalent to Z̄i = Ŷ xi . Hence, (20) is equivalent to the test from
the original scheme (16). If the ciphertext is consistent then one can use the symmetric key
k̂ = H(Z̄1) = H(Ŷ x1) to decrypt ĉ and return m̂ = Dk̂(ĉ).

17

Let S2 be the event that b̂ = b in this game. As we have seen,

Pr[S2] = Pr[S1]. (21)

Game 3. Let Game 3 be as Game 2 with the only difference that the value k to compute the
challenge ciphertext is now chosen at random. We claim that

|Pr[S3]− Pr[S2]| ≤ Adv2DDHB2ddh,G,H, (22)

where B2ddh is an efficient strong twin hashed DDH adversary that makes at most Qd queries
to the decision oracle. B2ddh is defined as follows. Using the values (X1, X2, Y, k) from its
challenge (where either k = H(dh(X1, Y)) or k is random), adversary B2ddh runs (without
knowing x1, x2, y) the experiment as described in Game 2 using k as the challenge key in (19)
to encrypt mb. Note that the only point where Games 2 and 3 make use of x1 and x2 is the
consistency check (20) which B2ddh equivalently implements using the 2dhp oracle, i.e. by
checking if

2dhp(X1, X2, Ŷ , Z̄1, Z̄2)

holds. We have that if k = H(dh(X1, Y)) ∈ {0, 1}κ, this perfectly simulates Game 2, whereas
if k ∈ {0, 1}κ is random this perfectly simulates Game 3. This proves (22).

Finally, it is easy to see that in Game 3, the adversary is essentially playing the chosen
ciphertext attack game against SE. Thus, there is an efficient adversary Bsym such that

|Pr[S3]− 1/2| = AdvCCABsym,SE. (23)

The theorem now follows by combining (17)–(23) with Theorem 6.

6.3 A variant with shorter ciphertexts

Consider a ciphertext in the above scheme that is of the form (Y = gr, Z1 = (Xt
1X̃1)r′ , Z2, c) with

r 6= r′. Such a ciphertext is inconsistent and should therefore be rejected by (16) in the decryption
algorithm. Essentially, the trapdoor test says that in the view of the adversary, the unique value Z2

that leads the simulation (as described in the proof of Theorem 7) to falsely accept such ciphertexts
is a uniformly distributed group element. Therefore, the adversary can never guess this “bad Z2”
and, with high probability, the simulation of the CCA experiment is correct.

With this intuition it is easy to see that one can as well replace Z2 ∈ G in the ciphertext by Z ′
2 =

KDF(Z2) ∈ {0, 1}k, where KDF : G→ {0, 1}k is a secure key-derivation function. (For uniform X ∈
G, KDF(X) is computationally indistinguishable from an uniform bitstring in {0, 1}k.) Accordingly,
decryption is modified to check Z ′

2 = KDF(Y x2t+x̃2). This variant shortens the ciphertexts by
replacing a group element by a bitstring in {0, 1}k.

Yet another variant uses the value Z2 directly as a source for an integrity check of the symmetric
cipher. Here we assume that symmetric encryption satisfies the stronger notion of (one-time)
authenticated encryption [22]. Such a ciphertext can, for example, be obtained by combining a
one-time pad with a message authenticated code (MAC). The idea is to move the value Z2 from
the ciphertext into the symmetric key which we re-define as k = H(Xy

1 ·Z2) = H(Xy
1 ·(Xt

2X̃2)y). Now,
if (Y, Z1) is inconsistent (in the above sense that r 6= r′) then the value for Z2 used in the simulation
is random and will make the symmetric key k essentially look random (from the adversary’s view).
Consequently, the authenticity property of the symmetric cipher makes the simulated decryption

18

algorithm reject this ciphertext. After applying one more simplification (defining Z2 = Xy
2) we get

the following scheme which we call PKEfkd
.

Public and secret keys as the same as in PKEecs with the difference that the element X̃2 is no
longer needed in the public-key. To encrypt a message m, one chooses a random y ∈ Zq, computes

Y := gy, t := T(Y), Z1 := (Xt
1X̃1)y, k := H(Xy

2), c := Ek(m),

and the ciphertext is (Y, Z1, c). Decryption works as follows: given the ciphertext (Y, Z1, c), and
secret key (x1, x̃1, x2), one computes t := T(Y) and checks if

Y x1t+x̃1 = Z1.

If not, reject; otherwise, compute

k := H(Y x2), m := Dk(c).

This scheme is essentially the public-key encryption scheme presented in [22]. Here, using the
trapdoor test we offer a different and maybe simpler interpretation of its security.

Theorem 8. Suppose T is a target collision resistant hash function. Further, suppose the hashed
DDH assumption holds, and that the symmetric cipher SE = (E,D) is secure in the sense of au-
thenticated encryption. Then PKEfkd

is secure against chosen ciphertext attack.

A proof and a more precise security statement can be looked up in [22] or can alternatively be
obtained by modifying the proof of Theorem 7 as described above. We remark that even though it
is not explicitly mentioned in [22] their original proof already implies security of the PKEfkd

scheme
based on the hashed DDH assumption.

6.4 A variant with security from the DH assumption

We now consider an extension of PKEecs that achieves security based on the (computational) DH
assumption. The idea is to first extend the public keys and ciphertexts to have several Xi and Zi

terms, respectively, and then use the Goldreich-Levin hard-core function [17, 16] as the hash func-
tion to extract symmetric key bits. Because security depends on the reduction to the hard-coreness
of the function, the reduction is not very tight, and so we carry out the analysis in asymptotic terms.
Below, we denote by fgl the Goldreich-Levin hard-core function for dh’(X, Y,R) := (dh(X, Y), R).

Let κ be the security parameter, and for simplicity we assume that it is also the length (in
bits) of the symmetric keys for (E,D). Let ν = O(log κ) be some integer that divides κ, and
` := κ/ν. In this scheme, the secret key now consists of 2(` + 1) random elements of Zp, denoted
xi, x̃i for i = 1, . . . , ` + 1. The public key contains the 2(` + 1) corresponding group elements
Xi = gxi , X̃i = gx̃i , for i = 1, . . . , ` + 1, along with a random bit string R of length long enough to
evaluate a hard-core function with ν output bits (u := 2 log |G| bits are sufficient). To encrypt a
message m, one chooses a random y ∈ Zq and computes

Y := gy, t := T(Y), Zi := (Xt
i X̃i)y for i = 1, . . . , ` + 1.

Then one sets ki := fgl(X
y
i , R) ∈ {0, 1}ν (i = 1, . . . , `). Note that X`+1, X̃`+1, and Z`+1 are not

used for key derivation. Finally, a concatenation of all ki yields a symmetric key k ∈ {0, 1}κ that

19

is used to encrypt m as c := Ek(m). The ciphertext is (Y, Z1, . . . , Z`+1, c). Decryption first verifies
the consistency of (Y, Z1, . . . , Z`+1, c) by checking if Y xit+x̃i = Zi for all i = 1, . . . , ` + 1. Then the
key k is reconstructed as the concatenation of ki = fgl(Y xi , R) for i = 1, . . . , `, and finally m is
recovered by computing m := Dk(c).

In order to analyze this scheme we will need the following version of the Goldreich-Levin theo-
rem.

Theorem 9. Suppose that Agl is a probabilistic poly-time algorithm such that Agl(X, Y,R, k) dis-
tinguishes k = fgl(dh(X, Y), R) from a uniform string with non-negligible advantage, for random
X, Y ∈ G and random R ∈ {0, 1}u. Then there exists a probabilistic poly-time algorithm Adh that
computes dh(X, Y) with non-negligible probability for random X, Y .

Using our techniques, it also not hard to show that this theorem still holds if we assume
that Agl additionally gets as input a random X ′ ∈ G and has access to an oracle computing
2dhp(X, X ′, ·, ·, ·). We will use this augmented version in our analysis below.

Theorem 10. Suppose T is a target collision resistant hash function. Further, suppose the DH
assumption holds, and that the symmetric cipher SE = (E,D) is secure against chosen ciphertext
attack. Then PKEdh is secure against chosen ciphertext attack.

Proof. We proceed with a sequence of games. For each i, let Si be the event that b̂ = b in Game i.

Game 0. We define Game 0 to be the original CCA game that A plays against PKEdh. By
definition,

|Pr[S0]− 1/2| = AdvCCAA,PKEdh
(24)

Game 1. Game 1 is the same as Game 0, except now if the adversary asks for a decryption of a
ciphertext containing Ŷ 6= Y but T(Ŷ) = T(Y), where Y is from the challenge ciphertext,
then the game aborts. By the target-collision resistance of T, we have that

|Pr[S1]− Pr[S0]| ≤ negl(κ). (25)

Games 2. Game 2 is the same as Game 1, except that k is set to a uniform and independent bit
string. We claim that

|Pr[S2]− Pr[S1]| ≤ negl(κ). (26)

We will prove this by a hybrid argument. For j = 0, . . . , ` we define the hybrid games Hj and H′
j .

Intuitively, in Hj and H′
j , k1, . . . , kj will be uniformly random strings, while kj+1, . . . , k` will be

computed normally. The hybrids will be defined so that Hj and H′
j have exactly the same output

distribution, but are run in a slightly different way to facilitate the proof. In addition, H′
0 will have

the same output distribution as Game 1, and H` will have that of Game 2. (The hybrid games H0

and H′
` will not be defined.) In the analysis, we will show that the games Hj and H′

j induce the
same output distribution and that the games H′

j−1 and Hj are computationally indistinguishable.
We now describe the hybrid games. Fix some j ∈ {0, . . . , `}. We start with Hj and show how

to define H′
j afterwards. In Hj , the public key is generated as follows. It samples y ←R Zq and sets

Y := gy, t := T(Y). For i = 1, . . . `, i 6= j, Xi, X̃i are generated normally. The game then samples

20

xj , x`+1, aj , a`+1 ←R Zq and computes

Xj := gxj , X`+1 := gx`+1 , X̃j := X−t
j gaj , X̃`+1 := X−t

`+1g
a`+1 . (27)

Finally, it samples R←R {0, 1}u and sets the public key to (X1, X̃1, . . . , X`+1, X̃`+1, R).
To compute the challenge ciphertext, Hj does the following. It uses the Y that it computed at

the start of the game, and sets Zi := Y xi for i 6= j, ` + 1. It sets Zj := Y aj and Z`+1 := Y a`+1 .
For i = 1, . . . , j, it sets ki ←R {0, 1}ν . For i = j + 1, . . . , ` it computes ki := fgl(Y xi , R). It uses
k := k1 . . . k` and computes c := Ek(mb), and the challenge ciphertext is (Y, Z1, . . . , Z`+1, c).

To respond to a decryption query for the ciphertext (Ŷ , Ẑ1, . . . , Ẑ`+1, ĉ), Hj first computes
t̂ := T(Ŷ). If t̂ = t, it checks if Ẑi = Zi for all i. If this holds it decrypts ĉ using k. If t̂ 6= t, it
verifies the consistency of Zi for i 6= j, ` + 1, normally. It then computes

Z̄j := (Ẑj/Ŷ
aj

j)1/(t−t̂), Z̄`+1 := (Ẑ`+1/Ŷ
a`+1

`+1)1/(t−t̂)

and tests if
Ŷ xj = Z̄j and Ŷ x`+1 = Z̄`+1. (28)

If this holds, it computes k̂j := fgl(Z̄j , R) and then computes the rest of the k̂i normally (as
fgl(Y xi , R)) and decrypts ĉ using k̂ := k̂1 . . . k̂`. This completes the decryption of Hj .

We let the hybrid game H′
j be exactly like Hj+1, except that kj+1 is computed as kj+1 :=

fgl(Y xj+1 , R) instead of being set to a random string. Note that in both Hj and H′
j , k1, . . . , kj are

set to random strings and kj+1, . . . , k` are computed normally. The only difference between Hj

and H′
j is the way in which the games are “managed,” but the output distributions are exactly the

same. The change between Hj and H′
j is essentially like the change between Games 1 and 2 in the

proof of Theorem 7, and the same argument there can be applied here. The essential difference
between Hj and H′

j is which elements in the key are “trapdoor elements”: in Hj they are Xj , X̃j

while in H′
j they are Xj+1, X̃j+1.

We are now ready to describe our adversary that breaks the hardcore-ness of fgl. Let Bgl be
an adversary that gets (X, X ′, Y,R, s) as input, where either s = fgl(dh(X, Y), R) or s is a random
string. In addition, Bgl has access to an oracle computing 2dhp(X, X ′, Ŷ , Ẑ, Ẑ ′).
Bgl does the following. It selects j ←R {1, . . . , `}, sets Xj := X, and X`+1 := X ′. It proceeds

to simulate H′
j−1 for A, except that it sets kj := s. The only point where xj and x`+1 are used is

in the consistency check in (28), which Bgl can perform by using an oracle query as in the proof of
Theorem 7. When A outputs b̂, Bgl checks if b̂ = b, and outputs 1 if this holds and 0 otherwise.

It is not hard to check that, conditioned on s = fgl(dh(X, Y), R), Bgl simulates H′
j−1 for A, and

conditioned on the event that s was random, Bgl simulates Hj . Then the following standard hybrid

21

argument applies.

Pr [Bgl(X, Y,R, s) = 1| s = fgl(dh(X, Y), R)]− Pr [Bgl(X, Y,R, s) = 1| s is random]

=
1
`

∑̀
j=1

Pr
[
b̂ = b in H′

j−1

]
− 1

`

∑̀
j=1

Pr
[
b̂ = b in Hj

]

=
1
`

∑̀
j=1

(
Pr

[
b̂ = b in H′

j−1

]
− Pr

[
b̂ = b in Hj

])
=

1
`

(
Pr

[
b̂ = b in H′

0

]
− Pr

[
b̂ = b in H`

])
(29)

=
1
`

(Pr [S1]− Pr [S0])

We get (29) by recalling that Pr
[
b̂ = b in Hj

]
= Pr

[
b̂ = b in H′

j

]
for j = 1, . . . , `− 1.

Finally, if the advantage of Bgl is non-negligible, then by Theorem 9 (augmented with our
trapdoor test), we get an adversary Bdh that solves the DH problem with non-negligible advantage.
Then, by the DH assumption, (26) follows.

Returning to the proof of the theorem, in Game 2 the adversary is mounting a chosen-ciphertext
attack against the symmetric encryption scheme. Thus, by the CCA security of SE,

Pr[S2] = negl(k). (30)

The proof is completed by combining (24), (25), (26), and (30).

7 Identity-based encryption

In this section we show how to apply the trapdoor test in Theorem 2 to identity-based encryption.
We give a bilinear version of the strong twin DH problem and show that it can be reduced to the
standard bilinear DH problem. We then use this assumption to construct a new IBE scheme that
we call twin Boneh-Franklin. While our scheme is not as computationally efficient as some other
CCA secure schemes, it only incures one group element of overhead in the ciphertexts and has
tighter reduction to the BDH assumption than the original (CPA) scheme on which it is based.

7.1 The (twin) BDH assumption

In groups equipped with a pairing ê : G×G→ GT , we can define the function

bdh(X, Y,W) := Z, where X = gx, Y = gy, W = gw, and Z = ê(g, g)wxy.

Computing bdh(X, Y,W) for random X, Y,W ∈ G is the bilinear DH (or BDH) problem. For
an adversary B, let us define his BDH advantage, denoted AdvBDHB,G, as the probability that B
computes bdh(X, Y,W) for random X, Y,W ∈ G. The BDH assumption states that solving the
BDH problem is hard. Next we define a predicate

bdhp(X, Ŷ , Ŵ , Ẑ) := bdh(X, Ŷ , Ŵ) ?= Ẑ.

We can also consider the BDH problem where, in addition to random (X, Y,W), one is also given
access to an oracle that on input (Ŷ , Ŵ , Ẑ) returns bdhp(X, Ŷ , Ŵ , Ẑ). The strong BDH assump-
tion [25] states that the BDH problem remains hard even with the help of the oracle.

22

For reasons similar to the issue with hashed ElGamal encryption, the strong BDH assumption
seems necessary to prove the CCA security of the basic version [25] of the original Boneh-Franklin
IBE [6]. We can repeat the ”twinning” idea and define the twin BDH problem, where one must
compute 2bdh(X1, X2, Y,W) for random X1, X2, Y,W , where we define

2bdh(X1, X2, Y,W) := (bdh(X1, Y,W),bdh(X2, Y,W)).

The strong twin BDH problem is the same as the twin BDH problem, but the adversary has access
to an oracle computing the predicate

2bdhp(X1, X2, Ŷ , Ŵ , Ẑ1, Ẑ2) := 2bdh(X1, X2, Ŷ , Ŵ) ?= (Ẑ1, Ẑ2),

for Ŷ , Ŵ , Ẑ1, Ẑ2 of its choice. For an adversary B, define his strong twin BDH advantage, denoted
Adv2BDHB,G, as the probability that B computes bdh(X, Y,W) when given random X, Y,W ∈ G
along with access to an oracle for the predicate 2bdhp(X1, X2, ·, ·, ·, ·), which on input Ŷ , Ŵ , Ẑ1, Ẑ2

returns 2bdhp(X1, X2, Ŷ , Ŵ , Ẑ1, Ẑ2). The strong twin BDH assumption states that the BDH prob-
lem is still hard, even with access to the decision oracle.

We will need a slight generalization of the trapdoor test in Theorem 2 to prove the following
theorem. It is easy to check that Theorem 2 is still true if the elements Ẑ1, Ẑ2 are in a different
cyclic group of the same order (we will take them in the range group of the pairing), and we replace
Ŷ with ê(Ŷ , Ŵ). With this observation, we can prove an analogue of Theorem 3.

Theorem 11. Suppose B2bdh is a strong twin BDH adversary that makes at most Qd queries to
its decision oracle, and runs in time at most τ . Then there exists a BDH adversary Bbdh with
the following properties: Bbdh runs in time at most τ , plus the time to perform O(Qd log q) group
operations and some minor bookkeeping; moreover,

Adv2BDHB2bdh,G ≤ AdvBDHBbdh,G +
Qd

q
.

In addition, if Bbdh does not output “failure,” then its output is correct with probability at least
1− 1/q.

7.2 Twin Boneh-Franklin

Theorem 11 admits a simple analysis of the following IBE scheme, which we call the twin Boneh-
Franklin IBE scheme. This scheme will use two hash functions, H (which outputs symmetric keys)
and G (which outputs group elements), and a symmetric cipher (E,D). A master public key is a pair
of group elements (X1, X2), where Xi = gxi for i = 1, 2. The master private key is (x1, x2), which
are selected at random from Zq by the setup algorithm. The secret key for an identity id ∈ {0, 1}∗
is (S1, S2) = (G(id)x1 ,G(id)x2). To encrypt a message m for identity id , one chooses y ∈ Zq at
random and sets

Y := gy, Z1 := ê(G(id), X1)y, Z2 := ê(G(id), X2)y, k := H(id , Y, Z1, Z2), c := Ek(m).

The ciphertext is (Y, c). To decrypt using the secret key (S1, S2) for id , one computes

Z1 := ê(S1, Y), Z2 := ê(S2, Y), k := H(id , Y, Z1, Z2), m := Dk(c).

We shall denote this scheme IBE2bdh. Now we can essentially borrow the analysis of the original
Boneh-Franklin scheme under the strong BDH assumption [25], except now we get that the scheme

23

is secure against chosen ciphertext attacks under the strong twin BDH assumption. By Theorem 11,
we get that the above IBE scheme is CCA secure under the BDH assumption if the symmetric cipher
is secure and the hash functions are treated as random oracles. This is captured in the following
theorem.

Theorem 12. Suppose H and G are modeled as random oracles. Further, suppose the DH assump-
tion holds, and that the symmetric cipher SE = (E,D) is secure against chosen ciphertext attack.
Then IBE2bdh is secure against chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext attack against
IBE2bdh in the random oracle model, and that A runs in time τ , and makes at most Qh hash queries,
Qd decryption queries, and Qid user secret key queries. Then there exists a BDH adversary Bbdh

and an adversary Bsym that carries out a chosen ciphertext attack against SE, such that both Bbdh

and Bsym run in time at most τ , plus the time to perform O((Qid+Qh+Qd) log q) group operations;
moreover,

AdvCCAro
A,IBE2bdh

≤ e · (Qid + 1) ·
(

2Qh + Qd

q
+ AdvBDHBbdh,G + AdvCCABsym,SE

)
.

Proof. As with our other proofs, we proceed with a sequence of games.

Game 0. Let Game 0 be the original IBE chosen ciphertext attack game, and let S0 be the event
that b̂ = b in this game.

The challenger chooses the master private key (x1, x2) and gives the adversary the correspond-
ing master public key (X1, X2) as normal. To track random oracle responses, the challenger
uses two associative arrays L and K. L will store responses for G and K will store responses
for H, and both will initially have all entries set to ⊥. When processing a random oracle
response, the adversary returns the corresponding entry if it is defined, and otherwise initial-
izes it with an appropriate random value and returns that. Apart from this bookkeeping, the
challenger runs Game 0 exactly as specified in the definition, and we have

AdvCCAro
A,IBE2bdh

= |Pr[S0]− 1/2|. (31)

Game 1. Game 1 will be like Game 0, but now we change how the challenger processes queries to
G. Now, in addition to inserting oracle responses into L, the challenger also “marks” some
entries in the L array used to store G responses. On query G(îd), in addition to the normal
processing, with probability δ the challenger marks L[îd]. The challenger completely hides
the marks from the adversary.

At the end of the game, the challenger looks at L and decides if it should abort the game. For
each user secret key query that the adversary issued during the game, the challenger checks
if the entry in L for that identity is marked. If any of them are marked, the challenger aborts
the game. Finally it checks the entry L[id], where id is the identity from the challenge query.
If that entry is not marked, then the challenger aborts. Otherwise it proceeds normally.

Let S1 be the event that b̂ = b in Game 1 and F1 be the event that the challenger aborts.
Since the coins that determine F1 are independent of the rest of the game, it follows that

|Pr[S1]− Pr[S0]| = Pr[F1] ≤ δ · (1− δ)Qid ,

and if we set δ = 1/(1 + Qid),

|Pr[S1]− Pr[S0]| ≤ (e(1 + Qid))−1. (32)

24

Game 2 Game 2 will be like Game 1, except that now the challenger sets up some of the challenge
ciphertext in advance. Before starting the game, it chooses a random symmetric key k,
random y ∈ Zq and random W ∈ G, sets Y := gy, Z1 := ê(W,X1)y and Z2 := ê(W,X2)y.

Now the challenger uses these values in the rest of the game. When creating the challenge
ciphertext, the challenger sets K[id, Y, Z1, Z2] := k (overwriting the entry if it is already
defined), computes c := E(k, mb), and returns (Y, c).

For decryption queries, when the adversary asks for the decryption of (Ŷ , ĉ) under identity
îd, if îd = id, L[id] is marked, and Ŷ = Y , then the challenger uses k to decrypt ĉ. Otherwise,
the challenger decrypts normally.

For the challenge query, the challenger uses k to compute c := E(k, mb) and returns (Y, c).

Let S2 be the event that b̂ = b in Game 2. Since Game 2 and Game 1 only differ when the
adversary manages to query H(id, Y, Z1, Z2) before the challenge query, and this event only
happens if the adversary can guess Y , an independently chosen group element. Thus

|Pr[S2]− Pr[S1]| ≤ QH/q. (33)

Game 3 Game 3 will include one simple change from Game 2: it no longer immediately stores the
value k in K as described in Game 2. Instead, it leaves that entry unchanged, but still uses
the k, Y, Z1, Z2 generated at the beginning of the game to generate the challenge ciphertext.

Let S3 be the event that b̂ = b in Game 3. Let F2bdh be the event that the adversary queries
H at (id , Y, Z1, Z2), where id is the identity used in the challenge ciphertext. Since Game 2
and Game 3 are exactly the same when F2bdh does not occur, it follows that

|Pr[S3]− Pr[S2]| ≤ Pr[F2bdh]. (34)

We claim that

Pr[F2bdh] ≤ Adv2BDHB2bdh,G, (35)

for an efficient strong twin BDH adversary B2bdh that makes Qh +Qd decision oracle queries.
We give a high level description of B2bdh. B2bdh gets (X1, X2, Y,W) as input and begins to
run Game 3, acting as the challenger for the adversary. Of course, it sets the master public
key to (X1, X2) and uses (Y, c) as challenge ciphertext, where c := Ek(mb), as in Game 3.

We need to describe how B2bdh answers queries for the random oracles and user secret keys.
When the adversary requests G(îd), if that entry gets marked, B2bdh chooses a new random
r ∈ Zq, sets L[îd] := Wgr, and gives Wgr to the adversary. If the entry does not get marked,
B2bdh returns gr instead. (Note that B2bdh can respond with the corresponding user secret
key for unmarked identities.) In either case, r is remembered for later.

When the adversary requests the user secret key for an unmarked identity îd, B2bdh retrieves
the r used to generate the entry gr in L[îd], and returns (Xr

1 , Xr
2). If the adversary requests

the user secret key for a marked identity, B2bdh immediately aborts.

For H queries, B2bdh implements the same oracle patching idea used in the proof of Theorem 4.
On query H(îd, Ŷ , Ẑ1, Ẑ2), B2bdh looks up Ŵ stored at L[îd] and queries its decision oracle
with (Ŷ , Ŵ , Ẑ1, Ẑ2), and marks the tuple as “good” or “bad” depending on the answer. If it
finds a good tuple, it uses the corresponding key to decrypt ciphertexts with Ŷ . Otherwise,
it generates a random symmetric key to use with those ciphertexts, and watches for a good

25

tuple to come up as a hash query. When it sees one, it “patches” that query by returning the
symmetric key generated earlier.

After the game ends, B2bdh checks that the identity from the test query was unmarked. If not,
B2bdh aborts. Otherwise, it examines K and looks for a good entry of the form K[id, Y, Z1, Z2]
(where id and Y are from the test query). If it finds one, it looks up the Ŵ = Wgr and
corresponding r and outputs (Z1/ê(X1, Y)r, Z2/ê(X2, Y)r). It is straightforward to check
that B2bdh solves the strong twin BDH problem whenever the event F2bdh would happen in
Game 3.

Finally, in Game 3 the adversary is essentially playing the chosen ciphertext game against
SE. Thus there is an adversary Bsym such that

|Pr[S1]− 1/2| = AdvCCABsym,SE. (36)

The theorem follows by combining (31)–(36).

We remark that our ideas can also be applied to the IBE scheme from Sakai-Kasahara [31].
The resulting IBE scheme is more efficient, but its security can only be proved based on the
(computational) q-BDHI assumption [5].

8 Relation to Shoup’s DH self-corrector

In [32], Shoup presented a simple DH self-corrector, which implicitly contained our trapdoor test
(our Theorem 2).3 In this section, we describe Shoup’s DH self-corrector, using the high-level
notion of our trapdoor test.4

Let G be a group of prime order q with generator g ∈ G. In general, a DH self-corrector
works as follows. Suppose A is a probabilistic, polynomial-time algorithm that on a random input
(X, Y) ∈ G × G, outputs a list L of group elements, such that L contains dh(X, Y) with non-
negligible probability. A self-corrector C is a probabilistic, polynomial-time algorithm that uses A
as a subroutine, so that for all inputs (X, Y) ∈ G × G, it correctly computes dh(X, Y) with all
but negligible probability; that is, the output of C is a single group element (or possibly “failure”),
which is an incorrect solution to the given instance of the DH problem with negligible probability.

Here is how we can construct C, using the trapdoor test, and an algorithm A, as above, as
a subroutine. First, using the well-known random self reducibility property of the DH problem,
along with standard amplification techniques, we can convert A into a probabilistic, polynomial-
time algorithm A′ that for all inputs (X, Y), computes a list L′ of group elements, such that L′

does not contain dh(X, Y) with negligible probability. On input (X, Y), the self-corrector C runs
as follows:

3Maurer and Wolf [26] also present a DH self-corrector, based, however, on completely different principles.
4Actually, we present a slightly less efficient, less general, but simpler, version of Shoup’s corrector.

26

public system parameters: g, U, V ∈ G
shared secret password: pw

P Q

x←R Zq, X ← gxUpw X−−−−−−−−−−→
y ←R Zq, Y ← gyV pw

Z ← (X/Upw)y

k ← H(pw, idP , idQ, X, Y, Z)

Z ← (Y/V pw)x

k ← H(pw, idP , idQ, X, Y, Z)

Y←−−−−−−−−−−

session key: k

Figure 1: Protocol SPAKE2

initialize the trapdoor test with X1 := X,
obtaining X2 and a corresponding trapdoor

L1 ← A′(X1, Y)
L2 ← A′(X2, Y)
for each Z1 in L1 and each Z2 in L2 do

if 2dhp(X1, X2, Y, Z1, Z2) then
output Z1 and halt

output “failure”

If 2dhp(X1, X2, ·, ·, ·) is implemented using the trapdoor test, and q is large (which is the interesting
case, of course), then it is clear that C makes a mistake with negligible probability.

9 Password authenticated Key Exchange

Abdalla and Pointcheval [2] presented a very efficient and elegant protocol for password authen-
ticated key exchange (PAKE), called SPAKE2. If users have weak passwords, it prevents offline
dictionary attacks. Security is proved in the random oracle model, under the DH assumption. The
protocol makes use of a group G of prime order q, a generator g ∈ G, and a hash function H, which
we model as a random oracle. The protocol has additional system parameters U and V , which are
randomly chosen elements of G. Furthermore, passwords pw are viewed as elements of Zq. Protocol
SPAKE2 is described in Figure 1. Both users compute the value Z = dh(X, Y), and then compute
the session key as k = H(pw, idP , idQ, X, Y, Z).

Often, users play very distinct roles. One user may be a client, which obtains the password by
keyboard entry, while the other is a server, which is a machine that keeps a password file, containing
information for each client who is authorized to access the server. A type of attack that we would
like to provide some defense against is a server compromise, in which an adversary obtains the
server’s password file. Given the password file, the adversary can certainly impersonate the server;
however, we would like to make it as hard as possible for the adversary to impersonate a client,
and gain unauthorized access to the server.

27

public system parameters: g, U, V ∈ G
password: pw, (π0, π1) := G(pw, idP , idQ)

P Q

secret: π0, π1 secret: π0, L := gπ1

x←R Zq, X ← gxUπ0
X−−−−−−−−−−→

y ←R Zq, Y ← gyV π0

Z ← (X/Uπ0)y, N ← Ly

k ← H(π0, X, Y, Z, N)

Z ← (Y/V π0)x, N ← (Y/V π0)π1

k ← H(π0, X, Y, Z, N)

Y←−−−−−−−−−−

session key: k

Figure 2: Protocol SPAKE+
2

Given the password file, an adversary can always mount an offline dictionary attack to recover
a given client’s password; ideally, this would be all the adversary could do; in particular, it should
be infeasible to recover a strong password.

Consider again protocol SPAKE2. The roles of the two users in that protocol are quite symmet-
ric, but for concreteness, let us say that P is the client, and Q is the server. In the most obvious
implementation, Q would explicitly store the password pw in the password file. Clearly, this im-
plementation is undesirable, as an adversary that compromises the server immediately recovers the
password.

While there are generic transformations that can transform any PAKE protocol into a PAKE
protocol that provides protection against security compromise (see [15]), we present a protocol,
SPAKE+

2 , which does so more directly. With this protocol, if the server is compromised, the best
an adversary can do to impersonate a client is an offline dictionary attack.

In addition to SPAKE2, protocol SPAKE+
2 employs another hash function G, which has range

Zq × Zq, and which we also model as a random oracle. Let pw be the password shared between
client P and server Q, which is an arbitrary bit string. The protocol is described in Figure 2. Here,
the client stores (π0, π1), while the server stores (π0, L), where L := gπ1 and

(π0, π1) := G(pw, idP , idQ).

Of course, the client can derive (π0, π1) from pw. Both users compute the values Z = dh(X, Y) =
gxy and N = gπ1y, and then compute the session key as k = H(π0, X, Y, Z, N).

It is not hard to argue that protocol SPAKE+
2 offers the same level of security as protocol

SPAKE2 under normal conditions, when the server is not compromised. However, consider what
happens if the server Q is compromised in protocol SPAKE+

2 , and the adversary obtains π0 and
L. At this point, the adversary could attempt an offline dictionary attack, as follows: evaluate G
at points (pw′, idP , idQ) for various passwords pw′, trying to find pw′ such that G(pw′, idP , idQ) =
(π0, ·). If this succeeds, then with high probability, pw′ = pw, and the adversary can easily
impersonate the client.

28

The key property we want to prove is the following: if the above dictionary attack fails, then
under the DH assumption, the adversary cannot impersonate the client. Intuitively, to impersonate
the client, the adversary will have to compute dh(L, Y ′), where L is the value gπ1 stored on the
server, and Y ′ := gy is a random group element generated by the server. If the dictionary attack
fails, then the adversary does not see π1. However, he may also interact with the client, who uses
the value π1 in its calculation of N . To prove that the adversary cannot compute dh(L, Y ′), one
would normally have to appeal to the strong DH assumption. However, because the hash happens
to already include Z in addition to N , it is not hard to prove, using Theorem 2, that the (ordinary)
DH assumption suffices.

References

[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS,
pages 143–158. Springer-Verlag, Berlin, Germany, April 2001.

[2] Michel Abdalla and David Pointcheval. Simple password-based encrypted key exchange pro-
tocols. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 191–208.
Springer-Verlag, Berlin, Germany, February 2005.

[3] Joonsang Baek, Byoungcheon Lee, and Kwangjo Kim. Secure length-saving ElGamal encryp-
tion under the computational Diffie-Hellman assumption. In ACISP 2000, pages 49–58, 2000.

[4] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 223–238. Springer-Verlag, Berlin, Germany, May 2004.

[5] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73.
Springer-Verlag, Berlin, Germany, May 2004.

[6] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer-Verlag, Berlin,
Germany, August 2001.

[7] Xavier Boyen. Miniature CCA2 PK encryption : Tight security without redundancy. In Ad-
vances in Cryptology—ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science,
pages 485–501. Berlin: Springer-Verlag, 2007.

[8] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security from identity-
based techniques. In ACM CCS 05, pages 320–329. ACM Press, November 2005.

[9] Jean-Sébastien Coron, Helena Handschuh, Marc Joye, Pascal Paillier, David Pointcheval, and
Christophe Tymen. GEM: A generic chosen-ciphertext secure encryption method. In Bart
Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 263–276. Springer-Verlag, Berlin,
Germany, February 2002.

29

[10] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of
LNCS, pages 13–25. Springer-Verlag, Berlin, Germany, August 1998.

[11] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing,
33(1):167–226, 2003.

[12] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
537–554. Springer-Verlag, Berlin, Germany, August 1999.

[14] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Secure Hashed Diffie-Hellman over non-
DDH groups. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 361–381. Springer-Verlag, Berlin, Germany, May 2004.

[15] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making password-based
key exchange resilient to server compromise. In Cynthia Dwork, editor, CRYPTO 2006, LNCS,
pages 142–159. Springer-Verlag, Berlin, Germany, August 2006.

[16] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University
Press, Cambridge, UK, 2001.

[17] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st
ACM STOC, pages 25–32. ACM Press, May 1989.

[18] Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with associated
data. In Anne Canteaut and Kapalee Viswanathan, editors, INDOCRYPT 2004, volume 3348
of LNCS, pages 315–327. Springer-Verlag, Berlin, Germany, December 2004.

[19] Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 482–499. Springer-Verlag, Berlin, Germany,
August 2003.

[20] Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki Okamoto,
editor, CT-RSA 2004, volume 2964 of LNCS, pages 292–304. Springer-Verlag, Berlin, Germany,
February 2004.

[21] Goichiro Hanaoka and Kaoru Kurosawa. Efficient chosen ciphertext secure public key en-
cryption under the computational diffie-hellman assumption. In ASIACRYPT, pages 308–325,
2008.

[22] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation.
In Alfred Menezes, editor, Advances in Cryptology, Proceedings of CRYPTO 2007, Lecture
Notes in Computer Science, pages 553–571. Springer-Verlag, 2007. Full version available from
http://eprint.iacr.org/2007/288.

30

http://eprint.iacr.org/2007/288

[23] Caroline Kudla and Kenneth G. Paterson. Modular security proofs for key agreement protocols.
In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 549–565. Springer-
Verlag, Berlin, Germany, December 2005.

[24] Kaoru Kurosawa and Toshihiko Matsuo. How to remove MAC from DHIES. In ACISP 2004,
pages 236–247, 2004.

[25] Benôıt Libert and Jean-Jacques Quisquater. Identity based encryption without redundancy.
In John Ioannidis, Angelos Keromytis, and Moti Yung, editors, ACNS 05, volume 3531 of
LNCS, pages 285–300. Springer-Verlag, Berlin, Germany, June 2005.

[26] Ueli M. Maurer and Stefan Wolf. Diffie-Hellman oracles. In Neal Koblitz, editor, CRYPTO’96,
volume 1109 of LNCS, pages 268–282. Springer-Verlag, Berlin, Germany, August 1996.

[27] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryp-
tography. The CRC Press series on discrete mathematics and its applications. CRC Press,
2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1997.

[28] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In Kwangjo Kim, editor, PKC 2001, volume 1992 of
LNCS, pages 104–118. Springer-Verlag, Berlin, Germany, February 2001.

[29] Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS,
pages 159–175. Springer-Verlag, Berlin, Germany, April 2001.

[30] Duong Hieu Phan and David Pointcheval. About the security of ciphers (semantic security and
pseudo-random permutations). In Helena Handschuh and Anwar Hasan, editors, SAC 2004,
volume 3357 of LNCS, pages 182–197. Springer-Verlag, Berlin, Germany, August 2004.

[31] Ryuichi Sakai and Masao Kasahara. ID based cryptosystems with pairing on elliptic curve.
Cryptology ePrint Archive, Report 2003/054, 2003. http://eprint.iacr.org/.

[32] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer-Verlag, Berlin, Ger-
many, May 1997.

[33] R. Steinfeld, J. Baek, and Y. Zheng. On the necessity of strong assumptions for the security
of a class of asymmetric encryption schemes. In ACISP 2002, volume 2384 of LNCS, pages
241–256. Springer-Verlag, Berlin, Germany, 2002.

A The proof of security for PKEcs

In this section we show how the proof of the original analysis of PKEcs can be viewed in terminology.
We first recall the original scheme given by Cramer and Shoup, which we will denote PKEcs. The

schemes uses a hash function T : G → Zq and a symmetric cipher SE = (E,D). For simplicity we
assume that the cipher’s secret key consists of a random group member in G, but this assumption
can be removed using standard techniques, c.f. [11].

31

http://eprint.iacr.org/

A secret key consists of four random elements of Zq, denoted x1, x2, x̃2, x3, and the corresponding
public key consists of four group elements X1 = gx1 , X2 = gx2 , X̃2 = gex2 , X3 = gx3 . To encrypt a
message m, one chooses y at random from Zq, and computes

Y := gy, Z1 := Xy
1 , t := T(Y, Z1), Z2 := (Xt

2X̃2)y, k := Xy
3 , c := Ek(m).

The ciphertext is (Y, Z1, Z2, c). To decrypt (Ŷ , Ẑ1, Ẑ2, ĉ), one computes t̂ := T(Ŷ , Ẑ1) and tests if

Ŷ x1 ?= Ẑ1 and Ŷ t̂x2+ex2 ?= Ẑ2.

If not, reject. Otherwise, compute k̂ := Y x3 and output Dk̂(ĉ).

Theorem 13 (Cramer-Shoup). Suppose T is a target collision resistant hash function. Further,
suppose the DDH assumption holds, and that the symmetric cipher SE = (E,D) is secure against
chosen ciphertext attack. Then PKEcs is secure against chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext attack against
PKEcs and that A runs in time τ , and makes at most Qd decryption queries. Then there exists a
DDH adversary Bddh, an adversary Bsym that carries out a chosen ciphertext attack against SE,
and a TCR adversary Btcr such that Bddh, Bsym and Btcr run in time at most τ , plus the time to
perform O(Qd log q) group operations; moreover,

AdvCCAA,PKE ecs ≤ AdvDDHBddh,G + AdvCCABsym,SE + AdvTCRBtcr,T +
Qd

q
.

Proof. As usual, our proof consists of a sequence of games. For each i, let Si be the event that
b̂ = b in Game i.

Game 0. Let Game 0 be the chosen ciphertext game played by A against PKEcs. Then

AdvCCAA,PKEcs = |Pr[S0]− 1/2|. (37)

Game 1. Game 1 is like Game 0, except that if the adversary issues a decryption query containing
(Ŷ , Ẑ1) 6= (Y, Z1) such that T(Ŷ , Ẑ1) = t, then the game aborts. It is standard to show (since
Y and Z1 can be chosen ahead of time) that there exists an adversary Btcr such that

|Pr[S1]− Pr[S0]| ≤ AdvTCRBtcr,T. (38)

Game 2. Let Game 2 is like Game 1, except that now the challenger sets up some values ahead
of time and uses them during the game, but does not change the distribution of the game at
all. At the start of the game, the challenger chooses y, x1 ←R Zq and computes

Y := gy, X1 := gx1 , Z1 := Xy
1 , t := T(Y, Z1).

It then chooses x2, r ←R Zq and computes

X2 := gx2 , X̃2 := grX−t
2 .

It chooses x3 ←R Zq and computes X3 := gx3 normally, and sets the public key to
(X1, X2, X̃2, X3). To compute the challenge ciphertext, the challenger sets

Z2 := Y r, k := Y x3 c := Ek(mb)

32

and returns (Y, Z1, Z2, c).

We also change the way the challenger performs the consistency check in the decryption oracle.
On input (Ŷ , Ẑ1, Ẑ2, ĉ), if (Ŷ , Ẑ1) = (Y, Z1), then the challenger further checks if Ẑ2 = Z2.
If so, it uses k to decrypt ĉ; otherwise it rejects the query. If (Ŷ , Ẑ1) 6= (Y, Z1), it computes

t̂ := T(Ŷ , Ẑ1) and Z̄2 := (Ẑ2/gr)
1

t̂−t . Then it tests if

Ẑ1
?= Ŷ x1 and Z̄2

?= Ŷ x2 . (39)

If this does not hold, it rejects. Otherwise it computes k̂ := Ŷ x3 and outputs Dk̂(ĉ).

We claim that the distribution of Game 2 is exactly the same as the distribution of Game 1.
This follows by observing that the public key and challenge ciphertext are computed correctly,
and that the decryption consistency check works as before. Then we have that

Pr[S2] = Pr[S1]. (40)

Game 3. Let Game 3 is like Game 2, except we change how the challenger computes X3 and the
values that depend on X3. The challenger now picks x3, u3 ←R Zq and sets X3 := gx3Xu3

1 .
In the challenge ciphertext it computes k := Y x3Zu3

1 , and in decryption queries it computes
k̂ := Ŷ x3Ẑu3

1 . These changes do not affect the distribution of the game because X3 is still
independent of X1, and the rest of the values are computed correctly.

Pr[S3] = Pr[S2]. (41)

Game 4. Let Game 4 be exactly like Game 3, except that Z1 is set to a random element other
than X1. We claim that there exists an efficient adversary B2ddh such that

|Pr[S4]− Pr[S3]| ≤ Adv2DDHB2ddh,G + Qd/q. (42)

B2ddh gets (X1, X2, Y, Z1) as input and simply simulates Game 3 for A. It selects x3, u3 itself,
but the rest of the discrete logs are not necessary for the experiment. For the consistency
check in equation (39), B2ddh uses its 2dhp oracle. The claim follows by observing that B2ddh

exactly simulates Game 3 if Z1 = dh(X1, Y) or Game 4 if Z1 is random.

Game 5. Let Game 5 be exactly like Game 4, except that k is set to a random group element.
We claim that

Pr[S5] = Pr[S4]. (43)

To prove this, it is sufficient to show that in Game 3 k is uniform when conditioned on the
the values in the the public key and the challenge ciphertext, which determine behavior of
the decryption oracle. This argument is exactly as in the original proof.

In Game 5, A is playing a chosen-ciphertext game against SE, and hence there exists an
adversary Bsym such that

|Pr[S5]− 1/2| ≤ AdvCCABsym,SE. (44)

The theorem follows by collecting equations (37), (38), (40), (41), (42), (43), and (44).

33

	1 Introduction
	1.1 Hashed ElGamal Encryption and its relation to the Diffie-Hellman problem
	1.2 The Twin Diffie-Hellman Assumptions
	1.3 Applications and Results
	1.3.1 The twin ElGamal encryption scheme
	1.3.2 The twin DH key-exchange protocol
	1.3.3 A variant of Cramer-Shoup encryption
	1.3.4 Identity-based encryption
	1.3.5 Other applications

	2 A trapdoor test and a proof of Theorem 1
	3 Definitions
	3.1 Public key encryption
	3.2 Symmetric encryption
	3.3 Identity-based encryption
	3.4 Target collision-resistant hash functions

	4 Twin ElGamal encryption
	5 Non-interactive key exchange
	5.1 Model and security
	5.2 Security of the twin DH protocol

	6 A variant of the Cramer-Shoup encryption scheme
	6.1 The (twin) DDH assumption
	6.2 A variant of the Cramer-Shoup scheme
	6.3 A variant with shorter ciphertexts
	6.4 A variant with security from the DH assumption

	7 Identity-based encryption
	7.1 The (twin) BDH assumption
	7.2 Twin Boneh-Franklin

	8 Relation to Shoup's DH self-corrector
	9 Password authenticated Key Exchange
	References
	A The proof of security for PKEcs

