The Twist-AUgmented Technique
for Key Exchange

Olivier Chevassut!, Pierre-Alain Fouque?, Pierrick Gaudry?, and David
Pointcheval®

! Lawrence Berkeley National Lab. — Berkeley, CA, USA — OChevassut®@Ibl.gov
2 CNRS-Ecole normale supérieure — Paris, France —
{Pierre-Alain.Fouque,David.Pointcheval }@ens.fr
3 CNRS-LORIA - Nancy, France — Pierrick.Gaudry@loria.fr

Abstract. Key derivation refers to the process by which an agreed upon
large random number, often named master secret, is used to derive keys
to encrypt and authenticate data. Practitioners and standardization bod-
ies have usually used the random oracle model to get key material from
a Diffie-Hellman key exchange. However, formal proofs in the standard
model require randomness extractors to formally extract the entropy
of the random master secret into a seed prior to deriving other keys.
Whereas this is a quite simple tool, it is not easy to use in practice —or
it is easy to misuse it—.

In addition, in many standards, the acronym PRF (Pseudo-Random
Functions) is used for several tasks, and namely the randomness ex-
traction. While randomness extractors and pseudo-random functions are
a priori distinct tools, we first study whether such an application is cor-
rect or not. We thereafter study the case of Z; where p is a safe-prime
and the case of elliptic curve since in [PSec for example, only these two
groups are considered. We present very efficient and provable random-
ness extraction techniques for these groups under the DDH assumption.
In the special case of elliptic curves, we present a new technique —the so-
called "Twist-AUgmented’ technique— which exploits specific properties
of some elliptic curves, and avoids the need of any randomness extractor.
We finally compare the efficiency of this method with other solutions.

1 Introduction

Key exchange is an important problem in practice and several schemes have been
designed to solve it since the seminal work of Diffie and Hellman [13]. Recently,
different works have been published in order to analyze the security of those
schemes in various settings (password, public-key, hybrid setting) and security
models (random oracle, common reference string, standard model). But for sev-
eral years, efficiency and security in the standard model have become the main
goals to achieve in cryptography. The most widely used network security pro-
tocols nowadays are TLS [34], a.k.a SSL, SSH, and the Internet Key Exchange
(IKE) protocols [18, 24] from the IPSec standard of the IETF. In all the descrip-
tions, the extraction of the master-key from a common (random) secret element

is performed using a PRF, which is often instantiated by HMAC [5] (this is for
example the case in IKE). However, it is well-known that such a primitive is not
a priori well-suited for such a task [15], and the formal analysis requires unusual
assumptions.

1.1 The Key Derivation Problem.

Diffie-Hellman (DH) based key exchanges establish a secure communication
channel between two parties by securely negotiating a large random element in
a given cyclic group, called pre-master secret. Then, this secret is used to derive
keys for encrypting and authenticating data. These keys must be bit-strings of
some specific length uniformly distributed and used as input parameters to sym-
metric ciphers (for privacy), message authentication codes (for authentication),
and pseudo-random functions (for expansion of a seed into a longer bit-string).
However, they cannot be initialized with the simple bit-string encoding of the
pre-master secret. Even though this secret is indistinguishable from a random el-
ement in the cyclic group under some classical computational assumptions, such
as the Decisional Diffie-Hellman assumption (DDH), its encoding is not indis-
tinguishable from a random bit-string with a uniform distribution. The entropy
of the bit-string encoded secret is indeed high but not high enough to immedi-
ately obtain an almost uniformly distributed random bit-string: pseudo-entropy
generators are not pseudo-random generators even when only considering the
property of computational indistinguishability [19].

Most of the cryptographic protocols do not take into account this practi-
cal problem since it only appears during the implementation. Cryptographers
indeed use “elements in sets” when designing their algorithms while standard-
ization bodies represent and encode these elements. Engineers are left clueless
when elements in a given set do not necessarily admit a compact encoding —in
bijection with a set of ¢-bit strings— even for a well-chosen ¢. Practitioners have
no choice but to make educated guesses on which encoding to use and so, may
introduce security breaches. This is the case of the Diffie-Hellman version of the
SSL protocol [34] where the binary encoding of the random element is used as
it. IKE raises this problem too. It explicitly deals with the extraction issue via a
mechanism analyzed in [15], and follows the general framework described below.

1.2 Randomness Extraction and Key Derivation

In order to correctly derive several keys from a common (random) secret element
—the so-called pre-master key—, two steps are required, with two different tools:

Randomness Extraction — in a first stage, one uses a family of functions F
keyed by random and public nonces and applies it to the pre-master secret,
to get the master key;

Key Derivation — in the second stage, the output is used as a key to a family
of functions G, with known inputs in order to derive further key material to
create a secure channel.

This two-phase protocol also appears in the random generator architecture of
Barak and Halevi [2]. The aim of the randomness extractor phase is to generate a
short seed concentrating the entropy of the source and then in the key derivation,
this seed will be used to generate keys. It is important to separate these stages,
since different cryptographic primitives are needed. However, in many specifi-
cations, F and G are asked to be Pseudo-Random Function Families (with the
same notation prf, such as in IKE [18,24]).

Before going into more details, let us review informally the main difference
between randomness extractors and PRF. A PRF is a family of functions, from
a set D on a set R, such that it is computationally hard to distinguish the
inputs/outputs of a function taken at random from the set of all functions from
D to R and of a function taken at random in the PRF family. It is important
to note that the key, or the index of the function taken in the PRF family, must
be kept secret, otherwise the distinction becomes easy. A randomness extractor
has the property that the output distribution is close to the uniform one, if the
input distribution has enough entropy. If the index is known, the randomness
extractor is called a strong randomness extractor. Hereafter, we only look at
strong randomness extractors, where the index is implicitly made public, and we
thus simply call them randomness extractors.

As a consequence, one can easily note that the notation prf has two different
purposes: (1) first stage, prf is used as a randomness extractor, with a public
and random key and a high-entropy input (but not as a PRF); (2) second stage,
prf is used as a PRF, to build a PRG. The HMAC function [5], designed and
analyzed as a secure MAC, is furthermore the default prf in several standards.

In this article, we primarily focus on the randomness extraction phases for
DH-based protocol and we show efficient and provable techniques for this task.
The key derivation phases can be solved by using techniques coming from the
random oracle methodology (see the recently proposed internet draft by Dang
and Polk in [12]) or by using a PRP in the counter mode.

1.3 HMAC as a Randomness Extractor

HMAC, as well as some other constructions, have been recently studied as ran-
domness extractors by Dodis et al. in [15]. This is the first formal analysis of
practical randomness extractors. They namely prove that variants of these con-
structions are almost universal hash functions under various assumptions. They
basically show how to construct a variable-input length almost universal hash
function family from a fixed-input length almost universal hash function family
(or even random functions/permutations). Thereafter, a little modification of
the Leftover Hash Lemma (LHL) [20] with a randomly chosen function from a
family of (almost) universal hash functions can be used to extract the entropy
of a random source.

Therefore, if the key of the (almost) universal hash function is correctly
chosen (not biased by the adversary), the whole construction is correct. But
the latter remark is important and not trivial in practice, since this key is not

always (cannot always be) authenticated [10]. Finally, although this solution can
be proven in the standard model, it is overkill compared with our solutions.

1.4 Randomness Extractors

The notion of a randomness extractor is thus very important from a practical
point of view and is often ignored or misused by cryptographers, since solutions
are quite theoretical and requirements are strong.

In complexity theory, randomness extraction from a distribution has been
extensively studied (see [28] for a survey). For certain random sources, it has
been shown that it is impossible to extract even one bit of randomness [26]. One
way to solve this last problem is to use a small number of uniformly random
bits as a catalyst in addition to the bits from the weak random source as in the
LHL as said in [23]. However, in some cases, we can eliminate the need for the
random catalyst by restricting the class of weak random sources. Trevisan and
Vadhan and later Dodis [35, 14] have called such functions deterministic extrac-
tors. In cryptography, randomness extractors have been studied under different
adversaries to construct truly random generators [3], and deterministic extrac-
tors have been used to built All-Or-Nothing-Transforms (AONTS) schemes and
Exposure-Resilient Functions (ERF) [9, 16].

In the key exchange setting, the problem is to transform the random common
secret of small entropy rate into a common secret of entropy rate 1, where the
entropy rate is the ratio k/n of a random source of block-length n and of min-
entropy k (basically the number of random bits). For example, under the DDH
assumption in a 160-bit prime order g subgroup in Zj, we know that the input
random source (in a DH-based key exchange protocol) has 160 bits of min-
entropy. So, for a 1024-bit prime p, the entropy rate of the initial source is
160/1024. Because of the specific structure of the source, deterministic extractors
(which exploit the algebraic structure) may be used to derive cryptographic
keys. They would avoid problems with probabilistic randomness extractors if
the key of a universal hash function can be controlled by the adversary. On the
other hand, as we will see, large groups may be required, which would make the
overall protocol too inefficient. We will thus introduce a new technique to avoid
extractors, which takes advantage of the specific structure of elliptic curves.

1.5 Contribution and Organization

In this paper, we first focus on various techniques to derive a uniformly dis-
tributed bit-string from a high-entropy bit-string source. We explain their ad-
vantages and drawbacks. Then, we apply Kaliski’s technique [22], with quadratic
twists of elliptic curves, to avoid them. It is quite well-suited to authenticated
key exchange, since it already works on cyclic groups. Therefore, it is more effi-
cient than the Leftover Hash Lemma while retaining the same security attributes
(and namely, no additional assumption).

The basic idea is to run twice in parallel, an authenticated Diffie-Hellman
protocol on an elliptic curve E and on the quadratic twist E of E. This produces

two points K and K uniformly distributed on E and E respectively. With well-
chosen elliptic curves, the random choice of the abscissa of either K or K is an
£-bit long random string. Randomness extractors are thus not needed anymore.

This “Twist AUgmented” (TAU) technique is provably secure assuming only
the intractability of the decisional Diffie-Hellman problem on elliptic curves.

Even though quadratic twists were previously introduced in the literature [7,
8] in other contexts or with binary curves, we also show here that appropriate
prime order curves can be efficiently generated.

2 The Leftover Hash Lemma

In this section, we focus on the most well-known randomness extractor, which
makes use of the Leftover Hash Lemma [21,20]. It provides a probabilistic ex-
tractor, which is optimal in general. Whereas in theory, (almost) universal hash
functions (AUH) should be used, in practice, one often asks for pseudo-random
functions (PRF). Let us see whether the practical way to do it is correct or not,
from a theoretical point of view. The definitions are given in the full version [11].

Lemma 1 (LHL [21]). Let D be a probabilistic distribution over {0,1}"™ with
min-entropy at least o. Let e be an integer and m = o — 2e. Let H = {hi}k,
with hy € Fp.m for any k € {0,1}*, be an almost universal hash function family.
Let H be a random variable uniformly distributed on H, X denotes a random
variable taking value in {0,1}", and H, X are independent. Then, (H, H(X)) is
2~ (D) yniform on H x {0,1}™.

Impagliazzo and Zuckerman in [21] prove the lemma with an almost universal
hash function where ¢ = 1/2". In [15], it is proved for any e-almost universal
hash function family for £ < 1/2™. See also [31] for a proof. Therefore, combined
with the analysis of NMAC as an e-AUH function, this may justify the design of
IKE when HMAC is used under a specific assumption on the independence of
the two keys in NMAC. We show in the following that the same result holds for
some PRFs provided € be taken into account to estimate the size of the output.
However, we begin to prove a slight generalization of the LHL, similar to [15].

Lemma 2 (LHL with e-AUH). Let D be a probabilistic distribution over
{0, 1}™ with min-entropy at least o. Let e be an integer and m < «a — 2e where
a = min(o, logy(1/€)). Let H = {hi}x, with hy, € Fpm for any k € {0,1}¢, be a
e-almost universal hash function family. Let H be a random variable uniformly
distributed on H, X denotes a random variable taking value in {0,1}"™, and H, X
are independent. Then, (H, H(X)) is 2~ ¢-uniform on H x {0, 1}™.

Proof. The proof relies on two claims. The first one comes from [31]. It applies
to a random variable X distributed according to a distribution D, taking values
on the finite set S and of collision probability x = x(X). If X is d-uniform on
S, then k > (1 +462)/|S).

The second claim studies the collision probability k = x(H, H(X)) where H
denotes a random variable with uniform probability on H, X denotes a random

variable on the set {0,1}", and H and X are independent. We can easily adapt
the proof of [31] to prove that the statistical distance between the distribution
of (H, H(X)) and the uniform distribution on H x {0, 1} is ¢, which is at most
(1/2) - /2™ - (k +€). So it can be upper-bounded by (1/2) - /2™ - (277 +¢),
since the collision probability & is less than the guessing probability v as noted
in [11]. If we denote by o = min(o,log,(1/¢)), then we can upper-bound ¢ by

(1/2) - v2m - 2.2 and so if we want a bias of 27¢ we need m < a — 2e. O

Remark 3. This requires € < 1/2™ as it is observed in [15], but ¢ < 1/2m+2¢ g
enough. Anyway, this definitely excludes function families where the key-length
is the same as the output-length (as compression functions), unless they are
completely balanced, with e = 0, which is quite a strong assumption.

2.1 Pseudo-Random Functions vs. Almost Universal Hash
Functions

We have already discussed the practical meaning of the universal hashing prop-
erty for compression functions. However, many standards (such as IKE [18, 24])
use the acronym prf at several places, for different purposes: randomness extrac-
tors and actual PRF. Let us recall here the crucial difference between pseudo-
random functions and randomness extractors: the former use random secret keys,
while the latter use random but known keys. We thus show below that the strong
assumption of PRF implies the almost universal hashing property. Therefore, the
Leftover Hash Lemma 2 applied with some PRF (namely keyed with uniform
random bit-strings and with advantage sufficiently small) provides a good ran-
domness extractor.

Theorem 4. If a family of functions F is a (2,¢,2T%)-PRF in Fp ., then it is
an e-AUH function family, where Ty denotes the mazimal time to evaluate an
instance of F for all x € {0,1}".

Proof. We want to show that if the hash function family F is not e — AUH, i.e.
there exist ,y such that Pri[fi(z) = fr(y)] > 1/2™ + ¢, then there exists an
adversary against the PRF property with advantage at least ¢.

Let us consider the following family of distinguishers, D, ,, for each pair (z,y)
of elements in {0,1}". The distinguisher D, , queries the oracle (either fj for
a random k or a random function) to get X = f(x) and Y = f(y), and simply
answers 1 if X =Y and 0 otherwise.

Suppose that F is not an e-AUH function family. It means there exists a pair
(x,y) for which Prg[fe(z) = fe(y)] > 1/2™ + ¢. Let us consider the advantage
of the corresponding distinguisher D, ,: if f is a truly random function in F, ,,
the set of all functions from {0,1}" to {0,1}™, then Pr[D, , = 1] = 1/2™; if f
is a randomly chosen fj, in F, then Pr[D,, = 1] > 1/2™ + €. As a consequence,
the advantage of D, , is not less than €, which is in contradiction with the above
PRF property. a

Therefore, we have the following corollary by combining lemma 2 with the
previous theorem.

Corollary 5. Let F be a family of functions in F, n, and Ty denote the maxi-
mal time to evaluate an instance of F on any x € {0,1}". If F is a (2,¢,2Ty)-
PRF, when applied on a random source with min-entropy at least o, then it is a
good randomness extractor, of bias bounded by 1/2¢, as soon as

m < min(o,log,(1/¢)) — 2e.

Remark 6. This result is not in contradiction with the example described in [15],
since if € = 1/2™ with m bits of output, then clearly min(o,log,(1/€)) < m. The
above corollary just claims that the bias is less than 1. As a consequence, we
cannot extract m bits.

2.2 The Leftover Hash Lemma in Practice

Even if there exist efficient universal hash functions, practitioners and designers
usually apply pseudo-random functions, or HMAC, which are clearly less efficient
than a simple linear operation. Anyway, a correct application would be valid in
both cases (according to the analysis for HMAC [15] — incomplete because of the
above problem with compression functions). However, the Leftover Hash Lemma
requires the key of the function family to be uniformly distributed, which is not
an easy task, since it may be (partly) chosen by a malicious user. This is the
case in IKEv1 [18], for compatibility reasons, and thus nothing can be formally
proved.

A simple way to guarantee such a uniform distribution is for the users to sign
this key (as done in IKEv2). However, such a signature is not always possible,
or available, according to the context such as in password-based authenticated
key exchange.

Another solution to cope with the randomness extraction error is, as noticed
by Shoup [31] and also by Barak et al. in [3], to use the same “certified key” or
the same hard-coded key in the software. Indeed, they suggest an extension of
the LHL which allows the derivation of many random bit-strings with a unique
random key, and thus a public and fired hash function. However, the quality of
the extracted randomness decreases linearly with the number of extractions —
due to the hybrid technique. Nevertheless, this is often the unique solution.

3 Deterministic Randomness Extractors

Other alternatives to the LHL are also available, namely when no certification is
available, as in the password-based setting, by using deterministic randomness
extractors. Several of them exist in the literature and have already been employed
by standardization bodies to convert a random element of a group into a random
bit-string as in [29].

3.1 Hash-Diffie-Hellman

The simplest one, and perfectly reasonable in practice, is the use of a cryp-
tographic hash function. In the random oracle model [6], this gives a perfect

random bit-string, under the so-called computational Diffie-Hellman assump-
tion. In the standard model, a weaker assumption has been defined, the Hash
Diffie-Hellman assumption [1,17]. But this assumption is, in some sense, the
assumption that a hash function is perfectly suited to this goal, while this is
not the applications that designers of hash functions have in mind. Everybody
may agree on the practical validity of such a construction, but it definitely re-
quires non-standard assumptions, from a theoretical point of view. We would
thus prefer to avoid this solution.

3.2 A Simple Deterministic Extractor

Basically, when we want an extractor of the entropy from a random (uniformly
distributed) element in a cyclic group G of order ¢, a bijection from G to Z,
would do the job, since it would transfer the uniform distribution G into a
uniform distribution in Z, (an appropriate choice for ¢ thereafter allows the
truncation to the log g-rightmost bits to get an almost uniformly distributed
bit-string). Let us briefly review such a well-known bijection in the specific case
where G is the group of the quadratic residues modulo p, for a safe prime p,
close enough to a power of 2. This result is in the folklore, but some lemmas are
useful for the following, we thus briefly review the whole technique.

Theorem 7. There is an efficient bijection from a subgroup G of prime order
q in Zy, to Lq, when p=2q+ 1.

Proof. Let us use a finite field Z,,, with p = 2¢+1 (a safe prime) and work in the
cyclic group of order g: the group G of the quadratic residues modulo p. Since
p = 3 mod 4, this is a Blum prime, and thus —1 does not lie in G.

We can define the following extractor, for any y € G: if y < ¢, then f(y) =
fiy) =y, else f(y) = fa(y) = p —y. Since —1is not in G, and p —y = —y =
(—1) xy mod p, f1 maps G to G (the identity function) and fo maps G to Z,\G.
Therefore, f is an injective mapping and for y € G, fi(y), f2(y) are in Z,. A
simple counting argument proves that this is a bijection. O

The following lemma analyzes the security when truncation is used in order
to get ¢ bits uniformly distributed. The proof of the lemma is done in the full
version [11].

Lemma 8. Let us denote by U, the uniform distribution on the space Z, and
by Uye the uniform distribution on the space {0,1}¢ ~ {0,...,2* —1}. If |q| = ¢
and |q — 2¢| < 2Y/2, then the statistical distance is bounded by 1/v/2¢.

Therefore, the truncation of f gives a deterministic randomness extractor
from G onto Z,. However, this requires the use of a safe prime, and thus quite
large groups, which make DH-protocols quite inefficient.

4 The “Twist-AUgmented” Technique

In this section, we describe a new mechanism which excludes all the above draw-
backs: it does not require any authenticated random value (needed for proba-
bilistic extractors); it is provably secure in the standard model, under classical
assumptions; it works in small groups (contrary to the above deterministic ex-
ample.)

In the early 90’s, Kaliski [22] used elliptic curves and their twists for making
a random permutation from a random function. This construction can be used to
make a uniform distribution in Zy, from points uniformly distributed on a curve
or its quadratic twist, both on the finite field FF,. More recently, quadratic twists
have also been used in the context of password-authenticated key exchange [8].
The goal was to make the Bellovin et al.’s encrypted key exchange protocol [4]
immune to partition attacks but did not explain how to specify the key-derivation
function. It has also been applied to the context of public-key encryption [7].

We can take advantage of elliptic curves and their quadratic twists, as done
by Kaliski [22], to come up with a technique that does not require stronger
assumptions. This technique, called “Twist-AUgmented” (TAU), uses the fact
that a random point on a curve over F, has an abscissa uniformly distributed
in a set F and that a random point over its twist has an abscissa uniformly
distributed in the set E as well, i.e. it is the complementary set of E in F,.
Therefore by choosing one of the two abscissae at random, we will get an element
almost uniformly distributed in F,. For well-chosen fields, we thus efficiently
get an almost uniformly distributed bit-string, which may be 256 bits long: it
is enough to derive two keys (for privacy and for authentication) without any
pseudo-random function by simply splitting this bit-string. As a consequence,
it avoids the requirement of randomness extractors, and even pseudo-random
functions, since we directly get a uniformly distributed bit-string, large enough.

4.1 Quadratic Twist of an Elliptic Curve

Let p > 3 be a prime number. An elliptic curve is a set of points E = E,;, =
{(z,y) : y* = 2 + ax + b} U{oog}, where a and b are elements of F,, and oo, is a
symbol for the point at infinity. It is well known that an elliptic curve E can be
equipped with a group law —the so-called chord and tangent group law— such
that the computational and decisional Diffie-Hellman problems are believed to
be hard problems in general.

Let ¢ be a quadratic non-residue in F,, and define the quadratic twist of
Eq» to be the curve given by the following equation: Ea,b = {(z,y) : cy? =
23 + ax + b} U {ooz}.

The change of variables ' = cx and ¢y’ = c?y transforms the equation of
Emb into 2 = 23 + ac®z’ + bc3. This demonstrates that Emb is isomorphic to
an elliptic curve and can therefore be equipped with a group law. The main
interest of the introduction of the quadratic twist here follows directly from the
definition: if = is not the abscissa of a point of E,p, then 3 + az + b is not

a square in F,, and therefore (2 + azx + b)/c is a square in F,. Then it is the
abscissa of a point of E, ;. The converse is also true.

Note 9. In the cryptographic application we have in mind, this is crucial to keep
the equation of E in the non-Weierstrass form. For the internal computations,
of course, we apply the above-mentioned transformation so that we can use the
classical algorithms, but the result of any computation should be transformed
back to the previous representation before usage in cryptographic primitives.

Cardinalities. Hasse-Weil’s theorem gives a good bound on the group order of
an elliptic curve [33]. Let us write ¢ = #E = p + 1 — ¢, then we have [t| < 2,/p.
We could apply the same result to E, but in fact the number of points of a curve
and its twist are far from being independent. Starting with the fact that a scalar
is either a point on I or a point on E, it is easy to derive that § = #E = p+1+t.
For maximal security, it is desirable that the group orders are prime numbers.
Hence, since p is odd, this implies that ¢ is odd. Then both ¢ and § are odd.

Choice of the Prime Field. We have restricted ourselves to curves defined
over prime fields. The notion of a quadratic twist of an elliptic curve also exists for
more general finite fields and in particular for fields of characteristic 2. However,
they are of less interest in our context where we want to use the property that
the abscissae of the points of the groups we are dealing with cover the whole
finite field. In characteristic 2, all the non-super-singular curves have a group
order that is divisible by (at least) 2. Hence keeping the covering property would
imply to work with non-prime order groups. Even if it looks feasible to patch the
protocol for that situation, it is certainly less elegant than using a prime-order
group with curves over prime fields.

To achieve our goal, we need that the abscissa of a point taken randomly in
E or in E behaves like a random bit-string of length ¢. Since all the elements of
F, are obtainable as abscissae of points of E and I~E, we will be able to show that
the random abscissa in E or E gives a random element in F, (see Lemma 10, the
proof appears in the full version [11].) To convert this element to a bit-string of
length ¢ without any further device and keeping the randomness unbiased, it is
necessary to have p very close to 2¢. Hence we propose to use a prime p which
can be written p = 2¢ — ¢, where ¢ is an integer less than 2¢/2 (see previous
Lemma 8, which proof appears in the full version [11].)

This extra-condition on p is not a practical inconvenience. In fact, the primes
that are used in practice are almost always of this form, because they allow a
faster arithmetic than more general primes. For instance, the curves proposed
by the NIST are defined over a finite field with primes which are often suitable
to our case (the prime field, not the curves!).

Finding a Suitable Elliptic Curve and Twist. The basic approach for con-
structing a curve E over [F), such that both ¢ and ¢ are primes is to pick random

curves, count their cardinalities with the SEA algorithm, and keep only the good
ones. With this strategy, if numbers of points were completely independent and
behaved like random numbers in the Hasse-Weil interval, we would expect to
have to have to build 0(10g2 p) curves before finding a good one. If log p ~ 200,
it means that we have to run the SEA algorithm about 20000 times to construct
a good curve, which is prohibitive.

Fortunately, the SEA algorithm [27] is suited for this kind of search, since it
computes the order of E modulo small primes and recombines the group order by
Chinese Remaindering. Hence as soon as we know the order of E modulo a small
prime ¢, we abort the computation if this is zero. Furthermore, the group order
of E modulo ¢ is readily deduced from #E mod ¢, and similar abortion can be
played also with the twist. As a consequence, most of the curves are very quickly
detected as bad curves, because either the curve or its twist has a non-prime
group order.

In fact, the situation is more tricky, since the order of the curve and of its twist
are not independent. For instance, imagine that p = 2 mod 3, then the condition
#E = 0 mod 3 is equivalent to ¢t = 0 mod 3, which in turn is equivalent to
#E = 0 mod 3. A rigorous estimation of the running time of the SEA algorithm
equipped with the early-abort strategy is out of the scope of this work. We just
propose some numerical experiments to justify the claim that the construction
of secure pairs of curve and twist is easily feasible on a reasonable computer.

We picked randomly about 30000 200-bit primes, and for each of them we
picked a random curve and computed its cardinality and the cardinality of its
twist. In the following table, we summarize the percentage of the curves for which
both number of points are not divisible by all primes up to Ppqz-

Pros 1 2 3 5 7 11 13 17 19
remaining curves|100 %(33 %|12 %|7.2 %|4.9 %|3.9 %|3.3 %|3.0 %|2.7 %

From this data, we see that for 97.3 % of the curves, the SEA algorithm
will be stopped at a very early stage, thus spending only a tiny fraction of the
running time of the whole computation. With usual reasonable heuristics, it is
expected that about 500 full computations are required on average before finding
a good pair of curve and twist. A single full SEA computation takes about 20
seconds for this size on a personal computer, hence in about 3 hours, we expect
to build good parameters for a key-size of 200 bits. An example curve is given
in Appendix A.

If there is a need to construct the curves in a constraint environment, then it
is probably a better idea to use the theory of Complex Multiplication. We will
not give the details here, since the construction is well described both in the
literature and in the standards. For our purpose, it suffices to choose a group
order and a twisted group order which are both primes.

4.2 TAU Distribution

Now, we show that the distribution of the master secret key K, if we take it at
random either on the curve E or E, is uniformly distributed on {0,1}¢, in a sta-

tistical way. On the one hand, we prove that it is statistically indistinguishable
from the uniform distribution on {0,...,p — 1} and then that the latter distri-
bution is statistically indistinguishable from the uniform distribution on {0, 1}
by using lemma 8 by replacing ¢ by p. The proofs of the following lemmas are
done in the full version [11]. Let us denote by D the distribution of K:

D = {K = [Rylaws|b & {0,1}, Ry & B, Ry £ B}
= (K = 2|0 & (0,1}, 20 & [Elapss 21 2 [E]as).

Lemma 10. The distribution D is statistically close to the uniform distribution
Uy in Ty~ Zy:

1 1
0=-X E Pr [K=z]- Pr [K=1z] < .
2 & Ik Ey, K&D 271

i

Corollary 11. The statistical distance between the uniform distribution on U,
and the TAU technique if |p — 2¢| < 2¢/2, is upper bounded by (1 + \/i)/\/Z_Z
according to Lemmas 10 and 8.

Note 12. However, in an actual scheme, the bit b many not be perfectly uni-
formly distributed, but biased in a negligible way. Anyway, it will be important
to show that such a bias will not impact much the distribution of the key (see
the proof of Theorem 13.)

4.3 Working using Abscissae Only

In the basic description, even if only the abscissa of a point is used at the end
to derive the key, we worked all along with points on the elliptic curves. In fact,
this is not necessary. Let P be a point on an elliptic curve, then to compute the
abscissa of a multiple of P, only the abscissa of P is required. This is a very
classical result, that is used for instance in fast versions of the ECM factoring
algorithm [25].

As a consequence, it is possible to improve the TAU protocol as follows (see
figure 1): each time there is a point on a curve, we replace it by just its abscissa.
In particular, now Xg, X1, ¥y and Y7 are just elements of I, which are abscissae
of points on the curve or on the twist. We then denote by x o X the abscissa of
the point Y which is x times a point X whose abscissa is X. The space saving is
tiny (namely just the one bit that was used to code the ordinate), but this has
the advantage to put in light the fact that ordinate’s role is irrelevant in the TAU
protocol. Furthermore, this improves the time complexity by more than 30%, at
least from Bob’s view point. Indeed, while in the basic Diffie-Hellman protocol
both Alice and Bob have to compute 2 exponentiations, in the TAU version, Alice
has to compute 3.5 on average (an additional cost of 75%), and Bob still 2 only
(just a negligible additional cost due to the computation with abscissae only.)
The use of the 2 coordinates of the points would require an additional square

root computation, and thus an exponentiation in the field. Such an operation
is much less expensive than the computation of the multiple of a point in the
curve, but its cost is not negligible.

Note that not all EC-based protocols can be transformed to work only with
abscissae. For instance, El-Gamal signatures involve additions in the elliptic
curve, and this cannot be done only with the input of abscissae of the points;
only an exponentiation is feasible. TAU can use this improved technique.

4.4 Efficient and Unconditionally Secure Pseudo-random Functions

Roughly, our TAU technique runs twice the basic scheme (but with an actual cost
of only 37% more), and provides a long bit-string which is uniformly distributed,
under the Elliptic Curve Decisional Diffie-Hellman assumption. Such a long bit-
string K allows an efficient and secure key re-generation, to get both a key
confirmation k,, and a session/master key sk, without any additional assumption
about pseudo-random functions: K can be simply split into k,, and sk, with
convenient sizes.

For the same security level, the LHL would require a group of order around
¢, and thus with a complexity exactly twice as much as the basic scheme. With
the above improved technique using abscissae, our technique does not double
the whole basic scheme, but the complexity is just increased by a factor 1.38.
We thus get an average improvement of 30% if we compare to the LHL.

5 The “Twist-AUgmented” Authenticated Diffie-Hellman
Protocol

5.1 Description

Using the properties of “Twist-AUgmented” deterministic randomness extrac-
tor, we then convert any Diffie-Hellman-like protocol, which provides a random
element in a cyclic group, into a protocol which provides a random bit-string,
without any additional assumptions. See figure 1 for the description, which im-
plements the above improvement using abscissae only.

5.2 Semantic Security

On Figure 1, we present the TAU-enhancement of a classical authenticated Diffie-
Hellman key exchange: basically, some flows are doubled, on each curve. However,
Bob randomly chooses the curve which will be used for the Diffie-Hellman com-
putation, and compute correct values on this curve only. For the other part, he
plays randomly. This protocol achieves the property of semantic security under
the elliptic-curve decisional Diffie-Hellman assumption and does not use ideal-
hash functions. In order to prove this claim (the full proof is postponed to the
the full version [11]) we consider games that have distances that can be measured
easily. We use Shoup’s lemma to bound the probability of events in successive

Alice

Bob

Common twisted curves Eo, E1 over the finite field F,
of respective prime orders qo, q1
Xi = [E; = (Pi)]abs = (Pi)abs, where P; = [P]aps, for i = 0,1

Signing Key : ska
Verification Key : vk4
accept « false
terminate « false

S £ {0, 1}*,1'0 £ ZqO,XO = X0 © Po
1 <£Zq1,X1 =x10P
o4 = AUTH.Sign(ska; (s, Xo, X1))

Check op

d<E {O,l},K:deYd

km = MacKey(K)

Try to check pp : in case of failure
dzl—d,K:.TdOYd

km = MacKey(K)

Check up

ua = MAC.Sign(kn, (0", s, Alice))

accept < true

terminate < true

sk = SessionKey(K)

Alice, s

Xo0,X1,04

Bob, s
Pt R

Yo,Y1,08, 1B

A, LA

Signing Key : skp
Verification Key : vkp
accept — false
terminate « false

Check o4
B & 40,1}
Ys ¢ Ly, Y5 =13 0 Py

Vieg & X

Kp =yso Xg,

km = MacKey(Kpg)

OB = AUTHSlgn(skB, (57X07X17Y07 Yl))

up = MAC.Sign(km; (“1", s, Bob))

Check pa
accept < true

terminate < true

sid = s, Alice, Bob, Xo, X1,Y0,Y1,04,0B, pta, LB

where

SessionKey(K) = PRFk(0), MacKey(K) = PRFx (1)

[R]abs is the abscissa of the point R in F,

x o P is the abscissa of x times a point P whose abscissa is P
and when a check fails whithout being caught, one stops the
execution: terminate « true

Fig. 1. An honest execution of the “Twist-AUgmented” Authenticated Diffie-Hellman

protocol.

games [30,32]. The first game G goes back to the less efficient, but equivalent,
protocol using abscissae and ordinates, and the second game Go allows us to
avoid active attacks, granted signatures, so that in the following games we only
have to worry about replay attacks. Proving the claim boils down to coming
up with the appropriate games Ggs through Gg, in which we obtain a random
master key K uniformly distributed in {0, ...,2¢ — 1}. The game Gy, providing
random session keys, is then easy to come up with and therefore the proof of the
claim easily follows. In the last game Gg, the adversary has indeed clearly no
means to get any information about the random bit involved in the Test-query
except to flip a coin.

Theorem 13. For any adversary A running within time bound t, with less than
qs different sessions

AdviRy(A) < 4 - Succalri™ (21, g5, ¢s) + 10 - Succiiac ™ (2¢,1,0)
+2- AdVESR, (1) + 2 AdvEYG) (1)
20 + 5¢,
Vo

where t' <t + 8 x q;T},, and T, is an upper-bound on the time to compute the
multiplication of a point by a scalar.

+2q AdVE (,2) + 20AdVET (26, 1) +

Conclusion

This paper presents a new technique in order to get an appropriate session key
with Diffie-Hellman key exchanges. It provides the best efficiency, since it is more
than 30% more efficient than using the Leftover Hash Lemma, while it does not
require any authenticated randomness.

Acknowledgement

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. The first author is supported by the Director, Office of Science, Of-
fice of Advanced Scientific Computing Research, Mathematical Information and
Computing Sciences Division, of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098. This document is report LBNL-54709. Disclaimer
available at http://www-1library.1lbl.gov/disclaimer.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In CT - RSA ’01, LNCS 2020, pages 143-158. Springer-
Verlag, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

. B. Barak and S. Halevi. An architecture for robust pseudo-random generation and

applications to /dev/random. In Proc. of ACM CCS, ACM, 2005.

B. Barak, R. Shaltiel and E. Tromer. True Random Number Generators Secure in
a Changing Environment. In CHES ’03, pages 166-180. LNCS 2779, 2003.

S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Pro-
tocols Secure against Dictionary Attacks. In Proc. of the Symposium on Security
and Privacy, pages 72-84. IEEE, 1992.

M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions for Message
Authentication. In Crypto ’96, LNCS 1109, pages 1-15. Springer-Verlag, 1996.
M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for De-
signing Efficient Protocols. In Proc. of ACM CCS, pages 62-73. ACM Press, 1993.
B. Méller. A Public-Key Encryption Scheme with Pseudo-Random Ciphertexts.
In ESORICS 04, LNCS 3193, pages 335-351. Springer-Verlag, Berlin, 2004.

C. Boyd, P. Montague, and K. Nguyen. Elliptic Curve Based Password Authen-
ticated Key Exchange Protocols. In ACISP ’01, LNCS 2119, pages 487-501.
Springer-Verlag, 2001.

R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz and A. Sahai. Exposure-Resilient
Functions and All-Or-Nothing Transforms. In Eurocrypt 00, LNCS 1807, pages
453-469. Springer-Verlag, 2000.

O. Chevassut, P. A. Fouque, P. Gaudry, and D. Pointcheval. Key Derivation and
Randomness Extraction. ePrint Report 2005/061. Available at http://eprint.
iacr.org/.

O. Chevassut, P. A. Fouque, P. Gaudry, and D. Pointcheval. The Twist-Augmented
Technique for Key Exchange. Full version available at http://www.di.ens.fr/
users/pointche/pub. php.

Q. Dang and T. Polk. Hash-Based Key Derivation. draft-dang-nistkdf-00.txt.
Available at http://www.ietf.org/internet-drafts/.

W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT-22(6):644-654, November 1976.

Y. Dodis. Exposure-Resilient Cryptography. PhD Thesis, MIT, August 2000.

Y. Dodis, R. Gennaro, J. Hastad, H. Krawczyk, and T. Rabin. Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes. In Crypto
’04, LNCS, pages 494-510. Springer-Verlag, 2004.

Y. Dodis, A. Sahai, A. Smith. On perfect and adaptive security in exposure-resilient
cryptography. In Furocrypt ‘01, LNCS 2405, pages 301-324. Springer-Verlag, 2001.
R. Gennaro, H. Krawczyk, and T. Rabin. Secure Hashed Diffie-Hellman over Non-
DDH Groups. In Eurocrypt ’04, LNCS 3027, pages 361-381. Springer-Verlag, 2004.
D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409, 1998.
J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudorandom Generator
from any One-Way Function. STAM Journal of Computing, 28(4):1364-1396, 1999.
I. Impagliazzo, L. Levin, and M. Luby. Pseudo-Random Generation from One-Way
Functions. In Proc. of the 21st STOC, pages 12-24. ACM Press, New York, 1989.
I. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In Proc. of the
30th Annual IEEE FOCS, pages 248-253, 1989.

B. Kaliski. One-Way Permutations on Elliptic Curves. Journal of Cryptology,
3(3):187-199, 1991.

J. Kamp and D. Zuckerman. Deterministic Extractors for Bit-Fixing Sources and
Exposure-Resilient Cryptography. In Proc. of the 44th Annual IEEE Symposium
on Foundations of Computer Science, 2003.

24. C. Kaufman. The Internet Key Exchange (IKEv2) Protocol. INTERNET-DRAFT
draft-ietf-ipsec-ikev2-17.txt, September 23, 2004. Available at http://www.ietf.
org/internet-drafts/draft-ietf-ipsec-ikev2-17.txt

25. P. L. Montgomery. An FFT Extension of the Elliptic Curve Method of Factoriza-
tion. PhD thesis, University of California — Los Angeles, 1992.

26. M. Santha and U. V. Vazirani. Generating quasi-random sequences from semi-
random sources. In J. of Computer and System Sciences, 63:612—-626, 1986.

27. R. Schoof. Counting Points on Elliptic Curves over Finite Fields. In J. Théor.
Nombres Bordeaux, 7:219-254, 1995.

28. R. Shaltiel. Recent developments in Extractors. In Bulletin of the Furopean Associ-
ation for Theoretical Computer Science, Volume 77, June 2002, pages 67-95. Avail-
able at http://www.wisdom.weizmann.ac.il/~ronens/papers/survey.ps, 2002.

29. V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption, december
2001. ISO/IEC JTC 1/SC27.

30. V. Shoup. OAEP Reconsidered. In Crypto ’01, LNCS 2139, pages 239-259.
Springer-Verlag, Berlin, 2001.

31. V. Shoup. A Computational Introduction to Number Theory Algebra. In Cam-
bridge University Press, 2005. Freely available at http://www.shoup.net/ntb/.

32. V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs.
Available at http://www.shoup.net/papers/, 2004.

33. J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts
in Mathematics. Springer-Verlag, 1986.

34. T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246, January 1999.
OpenSSL. version 0.9.7e

35. L. Trevisan and S. Vadhan. Extracting Randomness from Samplable Distributions.
In Proc. of the 41st Annual IEEE FOCS, 2000.

A An Example 200-bit Pair of Curve and Twist

We give a pair of curve and twist suitable for implementing the TAU protocol.
This curve was produced using the method sketched in Section 4.1. We choose
a curve with a = —3, to allow the use of the fast projective group law.

Let ¢ = 200, and let p = 2¢ — 978579. Let b in F,, be given by

b = 386119362724722930774569388602676779780560253666503462427823.
The trace of the curve E of equation y? = 23 — 3z + b, is
tg = —1864972684066157296039917581949.

Hence, the group orders of E and of its twist E are p + 1 + tg, which are both
prime numbers.

