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The Two-Armed-Bandit Problem With 
Time-Invariant Finite Memory 

THOMAS M. COVER AND MARTIN E. HELLMAN 

Absfracf-This paper solves the classical two-armed-bandit 
problem under the finite-memory constraint described below. 

Given are probability densities p0 and p,, and two experiments 
A and B. It is not known which density is associated with which 
experiment. Thus the experimental outcome Y of experiment A 
is as likely to be distributed according to p0 as it is to be distributed 
according to p,. It is desired to sequentially choose an experiment 
to be performed on the basis of past observations according to 
the algorithm !I’, = f(Tn-l, en, Y,), e,, = e(T&, where T,, E 

II, 2, a**> m) is the state of memory at time n, e, E (A, B ] is the 
choice of experiment, and Y, is the random variable observation. 
The goal is to maximize the asymptotic proportion T of uses of the 
experiment associated with density PO. 

Let l(y) = po(y)/pr(y), and let i and ?denote the almost every- 
where greatest lower bound and least upper bound on Z(y). Let 
1 = max (7, l/i). Then the optimal value of r, over all m-state 
algorithms Cf, e), will be shown to be Zm-r/(lm-r + 1). An e-optimal 
family of m-state algorithms will be demonstrated. In general, 
optimal algorithms do not exist, and e-optimal algorithms require 
artiticial randomization. 

I. INTRODUCTION 

s 

UPPOSE one is given two coins, labeled A and B. 
Suppose also that it is known that one of the coins 
has bias p, towards heads and the other has bias 

p, towards heads, but it is not known which coin has 
which bias. At each trial a coin is to be selected and tossed, 
and it is desired to maximize the proportion of heads 
(successes) achieved in the limit as the number of trials 
tends to infinity. An equivalent objective is to maximize 
the proportion of tosses using the coin with the larger 
bias. How should the choice of coin at trial n depend on 
the previous outcomes, in order to achieve this goal? 
This problem is commonly referred to as the sequential 
design of experiments or the two-armed-bandit problem 
(TABP) [l]-[3]. 

Note that this problem combines hypothesis testing 
(which coin has which bias?) with the added degree of 
freedom that the experimenter may select his experiment 
(A or B) at each toss. The experimenter must utilize 
his information to maximize the proportion of successes. 

This paper will be concerned with a generalized TABP 
in which the “coins” may have an infinite number of 
sides. A further generalization of the TABP to an infinite 
number of coins will be provided in Section VI. These 
problems will be solved under a finite-memory constraint, 

Manuscript received May 19, 1969; revised September 29, 1969. 
This work was supported in part under Contract AF 49(638) 1517 
and under the NSF Cradaate Fellowship Program. 

T. M. Cover is with the Department of Electrical Engineering, 
Starlford University, Stanford, Calif. 94305. 

M. E. Hellman was with the Watson IBM Research Center, 
Yorktown Heights, N. Y. He is now with the Massachusetts Institute 
of Technology, Cambridge, Mass. 02139. 

i.e., the experimenter is not allowed to remember the 
outcomes of all previous trials, but only a finite-valued 
statistic. On the basis of this statistic, the next coin must 
be chosen. 

Stated more precisely, the experimenter is provided 
two experiments, A and B. Also given are two probability 
measures p0 and 6, defined on the arbitrary probability 
space (3, a3), where y is the experimental outcome space 
and @ is a u-field of subsets over y. There are two hy- 
potheses concerning the probability distribution of the 
experimental outcome Y: 

H, : 

i 

Y N p0 under experiment A 

Y N 6, under experiment B 
(1) 

H, : 

i 

Y N @I under experiment A 

Y N p0 under experiment B. 

Let the a priori probabilities of H, and H, be p0 and ul 
respectively, where ?ro + rrl = 1. This seemingly Bayesian 
formulation, in which the priors are specified, is not 
restrictive since the set of all admissible algorithms (or 
the set of all optimal algorithms with respect to the 
Neyman-Pearson formulation) may be generated by 
letting r. take on all values in the unit interval. 

Let ei E {A, B} denote the ith experiment performed 
and Y, E y denote the ith experimental outcome. It 
is assumed that the experimental outcomes are inde- 
pendent in the sense that 

P(Y,, Yj 1 ej, ej, H) = P(Y, 1 ei, H)P(Yj 1 ej, H) i # j, 

where H is the true hypothesis. 
A success is said to occur if the experiment associated 

with 6, is performed. At times n = 1, 2, 3, * * . a choice 
of experiment e, is made. Letting 

I 
1, if success occurs at time n, 

s, = 

1 
(2) 

0, if failure occurs at time n, 

the objective is to maximize 

where the expectation is taken with respect to the distri- 
bution on the two hypotheses and the distribution on 
(si) induced by the experiment selection algorithm. 
Therefore, r is the expected long run proportion of suc- 
cesses. 

Let the data be summarized by an m-valued statistic 
T that is updated according to the rule 

Tn = On-1, XJ T, E (1, 2, -a - , ml (4) 
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The idea of adding a finite-memory constraint is due 
to Robbins [5]. Robbins defines memory to be of length k 
if the choice of coin at each trial is allowed to depend 
only on the outcomes of the k previous trials. Letting 
X = (A, BJ X ‘y denote the observation space, the prob- 
lem becomes one of determining the function e: Xk ---) 
{A, B) for which the algorithm 

en+l = 4X,, JL, --- , X-k+d (6) 

Xn = (en, Y,) (7) 

maximizes r. Since X has but four members in Robbins’s 
problem, memory is still finite according to the definition 
of Section I, with m = 4k. However, if the experimental 
outcome space y is infinite, an infinite-state memory is 
needed to recall the last k experimental outcomes. 

Although Robbins’s original algorithm has been succes- 
sively improved by Isbell [6], Smith and Pyke [7], and 
Samuels [8], an optimal scheme has not been established. 
However, if the choice of coin may also depend on time, 
the problem has been solved by Cover [9]. A memory 
k = 2 is sufficient, i.e., there exists an algorithm e for 
which the scheme 

’ where T,, is the value of T after n observations, X,, = 
(e,, Y,,) is the nth observation (note the difference between 
an observation X = (e, Y) and an experimental out- 
come Y) and f is a stochastic function. Further, let e,, 
be constrained to depend on the past outcomes X,, 
x,, * * * , X,-, only through T,,-,, according to the function 

e, = 4T.d n = 1,2, se- (5) 

where e: (1, 2, . * + , m 1 --f (A, B ) is again allowed to be 
a stochastic function. (The randomization in the functions 
f and e must, to avoid cheating, be independent of the 
data.) The size of memory is defined to be m. 

The objective is now to find the pair (f, e) that max- 
imizes r for given m, ?rO, pO, and &. For a reformulation in 
terms of optimal finite-state machines see Section III. 

As was previously mentioned, it is not only necessary 
to test H, versus HI, but also to use the result of the 
test in an attempt to obtain successes. This produces a 
conflict. The experimenter may believe HO (in which 
case he should perform A) and yet he may wish to perform 
B if it would yield more information, thereby increasing 
the probability of success on ‘future trials. The conflict 
is between a desire for immediate success and a desire 
to gather information. 

Another conflict exists. A good test requires large 
memory, but, as mentioned, hypothesis testing may not 
yield a high proportion of successes. Thus, once the test 
is completed, a large number of experiments that use 
the result of the test is desired. However, an m-valued 
statistic can only “count to m.” There is a problem in 
deciding how much memory to allocate to testing and 
how much to allocate to using the information gathered 
by testing. Fortunately, the optimal solution that we 
shall present suggests an interpretation answering this 
question. The surprising answer is that all of the states 
of memory may be devoted to hypothesis testing, and 
the information so gathered may be used to gain successes 
in a manner that does not interfere with the hypothesis 
testing. 

II. HISTORYOBTHEPROBLEM 

The TABP was introduced by Robbins [l] in 1952. 
In that paper there was no constraint on memory and 
the experiments were restricted to be binary-valued 
(coin tosses). Robbins argued that a scheme that sampled 
the “inferior” coin infinitely often, but with density of 
sampling tending to zero, yielded r = 1. Here, at a par- 
ticular time, the “inferior” coin is defined to be the coin 
yielding the lower cumulative proportion of heads. Sub- 
sequently, Bradt, Johnson, and Karlin [2] and Bradt 
and Karlin [3] examined generalizations of the TABP in 
which it was desired to maximize the number of successes 
in a finite number of trials. This problem remains open 
in the case where the coin biases (pl, pz) have an arbitrary 
known joint distribution. However, Feldman [4] has 
solved the generalized version of the TABP corresponding 
to (1) (with known a priori probabilities) in the infinite- 
memory case. 

en+, = eGK, JLl, n> (8) 

achieves an asymptotic proportion of successes T = 1. The 
algorithm is independent of the biases p1 and pz on the 
two coins, and thus is ,optimal (achieves T = 1) for the 
more general problem of maximizing the asymptotic pro- 
portion of heads with two coins having arbitrary unknown 
biases. This work also implies that, with the definition of 
memory given in Section I, a memory of m = 4 states is 
sufficient [lo] for a time-varying algorithm to achieve 
T = 1. 

A series of publications following the work of Tsetlin 
has appeared in the Russian literature [ll]-[21] on the 
behavior of automata in random media in an attempt to 
model adaptive or learning systems. In many cases the 
algorithms considered are similar to the TABP with finite 
memory of the type defined in Section I. A series of ad hoc 
“expedient” automata (i.e., automata that perform better 
than simply alternating coins at each trial) is examined, 
but no optimal automata are found. Subsequent work by 
Fu and Li [22], [23] and Chandrasekaran and Shen [24]-[27] 
has enlarged the set of algorithms for which the asymptotic 
behavior has been found. The fundamental problem 
implicit in [ll]-[27] is presented in Section I and solved 
in this paper. It should, be mentioned that the motivation 
of the previous papers is different from ours in the respect 
that previous work centered on modeling learning proc- 
esses by finite-state automata. For this reason, the 
number of states m was frequently allowed to tend to 
infinity in the analysis, and the emphasis on optimal 
m-state automata was lost. 

Note this one word of caution. Memory size has been 
defined to be the number of states of the automaton. This 
seems to us to be natural. However, we have not included 
any measure of the complexity of the computation of the 
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state transition function f and the choice of experiment 
function e. Fortunately, the optimal function f is rather 

X,=(e,,Yn) 7=Wi-,d -jy---+“+, 

simple to implement, as can be seen from the example at Fig. 1. Decision process viewed as a finite state automaton. 

the end of Section IV. Moreover, if an auxiliary stream of 
random variables is available, the calculation of f and e The state transition matrices conditioned on Ho and H, 

may be performed by “hard-wired” circuitry without are given by 
memorv elements. 

III. FINITE-STATE MACHINES 
P!i = E (Pij(X) [ Ho} 

z 
(16) 

The two-armed-bandit problem that will be solved in and 
this section has the form 

experiment A experiment B 
pij = f {pii 1 HI) * (17) 

H, : Y - (Pi Y - CPl 
As will be shown in the proof of Theorem 1, these expecta- 

(9) tions may be explicitly expressed as follows: 

H, : Y - @I Y - 80 

where 6,, and (?I are arbitrary known probability measures. 
Pti = 1 bii(A, Ybifo(Y) 

Thus Y is not restricted to be a binary-valued random 
variable as in previous work [l], [5]. In Section VI, the 

+ pi,@, Y)U - w)fl(~N dv (Y> (18) 

solution will be generalized to the form 1 
Pii = s CP&, y)aifl(d 

A B 

H, : Y - p. Y - 61 
f Pi,@, ~10 - dfo(~I) dv (Y) (19) 

00) 
H, : Y-u’, Y - cP3. 

where f. and fl are the Radon-Nikodym derivatives 
(densities) of p0 and @I with respect to some dominating 

Attention will be restricted to the algorithm measure v. Define the m X m matrices P” = [p:,.] and 

Tn = f(Tn-1, XJ T, E 11,% a-- , ml (11) 
P’ = [pii] and let go and p1 be the stationary probability 
distributions on the state space 3 under Ho and H,. The 

es = e(Tn-d e, E IA, Bj (12) stationary probability distributions are solutions of the 
matrix equations 

(13) 

where T is the state of memory, e the choice of experiment, 
bnd Y the resulting observation. A reformulation of this 
algorithm in the terminology of finite-state machines will 
ae convenient. X and Y will denote random variables, 
and x and y their outcomes. 

Consider a finite-state stochastic sequential machine 
with state space ‘3 = (1, 2, * 9 * , m), input space X = 
(A, Bj X y and output space {A, B1. Let the state 
transition behavior of this machine be specified by a 
family of m X m stochastic matrices [pii(x defined for 
x= (e,y>,eE iA,BJ,yEy,andi,iE iL%--*,ml. 
Then 

p& Y> = Pr 1 T, = i I T,-l = i, -G = (e, Y> I (14) 

is the conditional probability of transition from memory 
state i to j under the observation of experiment e with 
outcome y. 

Let the output function be described by the sequence 
LYE, 0 5 ai 5 1, i = 1, 2, . * . , m, with the interpretation 
that 

ai = Pr (e,,, = A j T, = i]. (15) 

Thus, the next experiment chosen is a random variable 
depending solely on the past experience as summarized in 
the current state of memory T,,. The automaton is depicted 
in Fig. 1. 

(20) 

p1 = VIP’. (21) 

Note that if P” is irreducible, & is the asymptotic propor- 
tion of time spent in state i, conditioned on Hk. Parallel 
work on hypothesis testing with finite memory [28] 
establishes that irreducible automata are at least “one 
state better” than reducible automata. The same argument 
applies to the current formulation of the TABP so that, 
here too, attention will be restricted to irreducible auto- 
mata. 

Letting r. and r1 be the asymptotic proportion of 
successes under Ho and H,, it is seen that 

(22) 

(23) 
i=l 

where the LY( are defined by (15). 
If a Bayesian approach is taken and a priori probabil- 

ities ?rO and ?rl (p. + 7rl = 1) are assigned to Ho and HI then 

r = ?roro + n-l?“l. (24) 

Although the Bayesian approach will be taken, the results 
will apply to the Neyman-Pearson formulation as well. 
In the Neyman-Pearson formulation the problem is to 
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maximize r1 subject to the constraint r. 2 IX, for a given 
level 0. 

Returning to the Bayesian formulation, the goal is to 
maximize r over all P,~(x), and cr<; i, j = 1, 2, * * . , m. 
Designate this maximum value of r by r*. 

(334 

WW 

In order to place an upper bound on r it is necessary to 
relate the parameters of the automaton to the statistics 
of the problem. The following definitions and theorems 
will prove useful. 

7 = wax {$, #} = 3; (33c) 

Since la(T) = 7 = 2; Z,(T) = i = $, the maximum and 
minimum likelihood ratio events are given by “tails on 
coin A” and “tails on coin B,” respectively. 

Dejkitions Theorem 1 
Let the measure v = p. + pl. Thus (Pi and @I are both 

absolutely continuous with respect to Y. Define f,(y) and 
fl(y) to be the Radon-Nikodym derivatives of PO and &,I 
with respect to v (f. and fl are the probability density 
functions of 6, and 61 with respect to v). Let 

For alli, j E (1, 2, ... , m], 

l/‘i < ppi/p:j < 5. 

Proof: From (16) it is seen that 

ppj = Pr (T,, = j 1 T,,-, = i, Ho}. 

(34) 

(35) 
L(Y) = fO(Y)lfl(Y) 

(25) 
MY) = f,(Yllfo(Y) = WA(Y). 

It is seen that IA and 1, are the likelihood ratios for an 
experimental outcome y that results from experiments A 
and B, respectively. 

Further define (for C C y) 

iA = inf - c 1 @o(C) v(C)>0 @l(C) (26) 

II 1 @l(C) & = inf ___ . v(C)>0 @o(C) (27) 

Thus ?A is the almost everywhere (a.e.) maximum likeli- 
hood ratio (1.r.) for experiment A; and iA is the a.e. 
minimum 1.r. for experiment A. Similarly, TB and iB are 
the a.e. maximum and minimum l.r.‘s for experiment B. 
Clearly, from the definitions, 7, = l/G and iA = l/t,. 
Thus defining 

7 = max IA, lip] 

i = min {iA, LB) 

it is seen that 

(28) 

and 

Dejinition 

7 = max {TAa, i/C) 

i = min (iA, l/TA] 

T = i/i. 

(29) 

(30) 

(31) 

The likelihood ratio Z(X) of an observation z = (e, y), 
e E {A, B} , is defined to be 

J(x) = L(Y) - (32) 

Obviously, i < Z(X) 5 f. 
For example, if two unlabeled coins of biases p, = 0.7 

and p, = 0.8 are given, the possible events C are heads 
and tails, and 

Equivalently 

ppi = Pr {T, = j 1 T,,-l = i, Ho, e, = A] 

.Pr (e, = A 1 T,-, = i, Ho} 

+ Pr {T, = j I T,,-, = i, Ho, e,, = B) 

.Pr (e, = B I T,,-l = i, Ho). (36) 

But, since the choice of e, is a (randomized) function of 
T,,-, alone, 

Pr (en = A I T,,-l = i, Ho} 

= Pr {en = A I T,,-, = i) 

Similarly 

= Cfi* (37) 

Pr (e,, = B 1 T,,-, = i, Ho) = 1 - LY+ (38) 

From (14), 

Pr IT,, = j I T,,-, = i, Ho, e, = A) 

= s pi,@, Y)~o(Y) dv (Y), (39) 

since under Ho the experimental outcome Y has f. as its 
density function when A is performed. Similarly, 

Pr {T, = j I Tnml = i, Ho, em = B} 

= s Pii@, YIfl(YI dV(Y)* 

Then (36) becomes 

POi = ai J Pij(A, Y)fo(Y) WY) 

By definition 

(40) 

(41) 

(42) 

(43) 
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so that 

0 pij = ffi 
J Pi,@, YL(Y)fl(Y) WY) 

+ (1 - 4 1 Pi@, YMY)fo(Y) MY). (44) 

Furthermore, Z,(y) < j* and Z,(y) < ?, a.e. Y, and by (29) 
7 = max {lA, EB). Hence 

p:i I 7 ai 
[S 

Pi,(A, Y)fl(Y) dV(Y) 

+ 0 - 4 j- Pi,@, Y)fo(Y) MY) * 1 (45) 

Proceeding similarly it is found that 

Pii = ai s Pi,@, Y)flM f-WY) 

+ (1 - 4 /- Pi,@, Y)fo(Y) WY). (46) 

Combining (45) and (46) yields 

pyi/p:i 5 7 (47) 

thus proving half of the theorem. The other half follows in 
an analogous manner. 

DeJinition 

The state likelihood ratio vector a = (X1, * * * , X,) is 
defined by 

xi = pq/pt i = 1,2, -. . , m. (48) 

Theorem d 

Before proceeding with the proof of the theorem, an 
example will be given. Consider the coin-flipping TABP 

A B 

7ro = 4 Ho : p, = 0.9 p, = 0.8 

n-1 = 3 H, : pl = 0.8 p, = 0.9 

where p. and p, are the probabilities of the event heads 
(H) under the appropriate conditions. Thus, for example, 
if coin A is flipped and Ho is true, then Pr( heads] = 
p, = 0.9. Calculation shows that 

7 = max jA, ?B] = max (g, 8, 3, +) = 2. (52) 

Thus, for an m-state memory the best possible limiting 
proportion of uses of the “best” coin (in this case, coin A) 

is given by 

r* = 2”-’ 
2*-’ + 1. (53) 

In the next section an automaton will be exhibited that 
achieves r* arbitrarily closely. 

For an irreducible automaton in which the Xi’s are 
arranged in nondecreasing order the following relation 
holds: 

Example 

If p. = 0.5, p1 = 0.501, the situation is quite different. 
Here 7 E 1.002 and 

Remark 

Xi,l/Xd 5 (7)“. (49) 

Since it has been noted that irreducible automata can 
do at least as well as reducible ones, the irreducibility 
restriction is of no consequence. 

Proof: The proof of this theorem follows from Theorem 
1 using arguments contained in Lemma 2 of [28]. The 
reader is referred there for details. 

r* Z (l.002)m-‘/((1.002)m-1 + 1). (54) 

Thus, even m = 500 states yields only a proportion of 
successes r* NN e/(e + 1). No 500-state machine can do 
better. 

Proof: By Theorem 2, Xz 5 X1(?)“, X3 5 X1(?)‘, * 1 . , 
x, 5 x1(~)2’“-1). Thus, for all i E 3 = (1, 2, * . . , m) 

Theorem S Hence 

For an m-state automaton r is bounded above by T" 

where 

But 
r* = max 

{ 

(ym-I) = 2(rn-1) 
- 2(~0~,(0 

(~)zcm-l) _ 1 ) 

l/2 
7 TO$Tl 

) 
. (50) 

In the special case r0 = r1 = 4, 

r* = p-l)/(tbn-l) + 1). 
(51) 

Remark 1 

If r* = no (or rl), a degenerate situation exists in which 
the machine that always chooses experiment A (or B) is 
optimal. In this case memory is not large enough to gather 
sufficient information to offset the a priori bias [28]. 

Remark 2 

The larger the value of :,-the larger the resultant propor- 
tion of successes r*. Thus, 1 is a measure of the separation 
between Ho and HI. 

Example 

so 

(55) 

(56) 

(57) 

r. 5 X1(l)““-“(l - 7-J. (5% 
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Similarly 

TI 5 (l/h)(l - To). (59) 

Since r. and r1 are nonnegative, multiplying (58) and (59) 
yields the fundamental inequality 

TOT1 < (;)acm-l)(l - T,)(l - T,). 63’3 

Now 

r = 7roro + alrl (61) 

achieves its maximum value when the weak inequality in 
(56) is met with equality. Thus, 

TOT1 = (;)2(m-1,(l - ro)(l - r,) (62) 

and the problem reduces to maximizing (61) subject to 
(62)) a straightforward problem in the calculus of varia- 
tions, The end result is that the maximum allowable value 
of r is r* as given by (50)) the desired result. The same type 
of problem arises in [28] and the reader is again referred 
there for details. 

Note that the constraint equation (62) gives an upper 
bound for the operating characteristic of the automaton. 
That is, given ro, the value of rl that satisfies (62) is the 
maximum possible. Thus, a bound is placed on the 
behavior of the automaton, in the sense of Neyman and 
Pearson. 

This section has placed an upper bound on r. The next 
section will demonstrate a class of machines that can 
approach that bound. 

IV. AN E-OPTIMAL CLASS OF AUTOMATA 

An E-optimal class of automata will now be demon- 
strated. That is for any E > 0 there will exist a machine in 
this class with T 2 r* - e. Thus r* can be approached as 
closely as desired. 

Assume there exists an observation 3 = (e,, yo) such that 

L(Yo> = E = max (FA, 5,). (63) 

Thus the observation of Z yields maximum information 
favoring H,. Without loss of generality, assume ?A > 7,) 
which implies e, = A. Thus 

L(Yo) = 7 (64) 

and, from (26)) (64)) and (31) 

zB(yo) = I/L(Y,) = i/E = i. (65) 

Hence Z = (A, go) and z = (B, yo) are the maximum and 
minimum likelihood-ratio observations. The experimental 
outcome Y = y. yields maximum information for testing 
Ho versus HI, regardless of the coin flipped. 

This is in distinction to the single-coin problem in which 
the observations d and g achieving ?A and iA may be 
unrelated. The resulting “spread” is j.& for the one- 
armed bandit (see [28]) and is given by y/i = max (7:) 
l/ii) for the TABP. Thus, two coins are better than one 
unless Z = i/C. 

Returning to the TABP, if A results in y, (the maxi- 
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mum-likelihood event) hypothesis Ho is supported, 
whereas if B results in y. (the minimum-likelihood event) 
hypothesis H, is supported. For the moment assume that 
y. occurs with nonzero probability. That is, let 

Pr (X = Z [ A, H, j = p > 0. (66) 

Then, by the symmetry of the hypotheses, and the 
definition of 2, 

Pr (X = z 1 B, H,j = Pr (X = Z 1 A, Ho) 

=?Pr(X=ZIA,H,) 

= Tp. (67) 

Similarly, 

Pr (X = 3 I B, Ho} = p. 63) 

Consider the m-state machine, which, in states 2 
through m - 1, uses A and B with equal probability 

ai = $ i = 2, 3,4, -. - , m - 1 

and in states 1 and m uses A with probabilities 

(69) 

al = 6/2 and (Y, = 1 - (k 6/2), (70) 

where 6 > 0. 
Furthermore, when the machine changes state; let it 

move at most one state at a time, moving to a higher state 
(from i to i + 1) only when X = Z is observed, and to a 
lower state (from i to i - 1) only when X = f is observed. 
For all other observations let the automaton remain in the 
same state. Also, if the automaton is in state 1 (or m) and 
X = z (X = 2) is observed let the automaton stay in 
state 1 (m). 

This machine is depicted in Fig. 2, where an arrow 
indicates an allowed transition, and the event over the 
arrow indicates the observations for which that transition 
occurs. The probability of using-experiment A in state i is 
denoted by (Y~. (For clarity the events over self-loops are 
omitted.) 

To solve for v” and v*, it is easiest to use the following 
method (see [29] for details). Partition S; the set of states 
in the automaton, into C = (1, 2, * . * , i] and C’ = 
(i + 1) i + 2) * * * , m} . In the steady state, the probability 
of a transition from C to C’ must equal’the probability of 
a transition from C’ to C. But the only allowed transition 
from C to C’ is from i to i + 1 and the only allowed transi- 
tion from C’ to C is from i + 1 to i. Thus, taking the case 
where Ho is the true state of nature, 

& Pr {X = Z I automaton is in state i, Ho] 

= &+I Pr {X = 3 I automaton is in state i + 1, Ho}. 

(71) 

Now Z = (A, yo) and z = (B, yo); so for i = 
1,2, ... , m -,l, 
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STATE: I 2 3 m-2 m-l m 

Qi: S/2 l/2 l/2 112 l/2 I-(K&2) 

Fig. 2. The canonical form of the c-optimal class of automata. 
1 = (A., ye) is maximum likelihood ratio observation. 2 = 
(B, ye) IS minimum likelihood ratio observation. 

Pr (X = Z I automaton is in state i, Ho) 

= ai Pr {X = Z [ A, Ho} = (yiTp 

and 

(72) 

Pr (X = f I automaton is in state i + 1, Ho ] 

= (1 - ai+,) Pr (X = z I B, Ho) = (1 - ari+l>p. (73) 

From (71), (72), and (73) it is seen that 

Proceeding in an analogous manner 

is obtained. Using the expressions (69) and (70) for LY; and 
letting /LP = a/& PL: = b/6 results in the following table. 

State 1 2 3 ‘. . m - 2 m-l m 
-- --- 

fii’ a/8 a(T) a($ .(Q(m--3) a($m-2) (a/M) (@+) 
Pi’ b/6 b(i) b(i)2 b(i)+3) b(i)+2) (bps) (ip-1) 

The normalizing constants a and b are implicitly defined by 

c A$ = 1, c /J: = 1. 

By inspection, the steady-state probability that the 
automaton is in state 1 or m approaches 1, as 6 -+ 0, 
6 > 0. That is, as 6 -+ 0, & + E.L~ --+ 1 and p: + & -+ 1, 
and for all i # 1 or m, EL; -+ 0 and & -+ 0. Further, a1 + 0 
and ay, --+ 1. Taking the limit as 6 --+ 0, 6 > 0, results in 

m 
r, = C /L&i = /.lO, 

i-l 
, 

and 

Therefore 

and 

rl = 2 &l - ai) = ,LL:. 
i=1 

(73) 

0 1 
TOT1 = hJ4 

= L!$ (ly-1 
(79) 

To){1 - rl> = I.&.& = f$ (i)“-1. (80) 

Combining these last two equations and recalling that 
7 = l/i yields 

Tori = (1 - ro)(l - rJ(~)2(m-1,. w 

But (81) is just the constraint equation (62), which placed 
an upper bound on the values of r. and rl. .Thus the values 
of r. and r1 achieved (in the limit as 6 -+ 0) by this class of 
machines are the largest possible, and hence define the 
optimal operating characteristic. Any point on the optimal 
operating characteristic can be reached in the limit as 
6 --+ 0 for suitable choice of Ic. (The constraint that 6 be 
nonzero is crucial; letting 6 = 0 results in vastly inferior 
performance.) 

In the Neyman-Pearson formulation, k is set to that 
value for which r. equals its desired value. In the Bayesian 
formulation k is set to that value k* that maximizes r. 
This is accomplished by minimizing 

r = T~ELZL + vi 

subject to (79), (SO), and 

CL: + /iI = 1 

PL: + IL; = 1 

yielding 

k* = (y-’ dTO7rl - To 
(0”-‘7ro - v5G 

as the optimum value of 7c, under the 
condition r* > max { 7ro, ?rl) . 

Remark 

(82) 

(33) 

(34) 

(35) 

nondegeneracy 

The standard case 7ro = ?rl = 3 results in k* = 1. Also 
note that this analysis was done under the assumption 
7, > 7.. If TB > td, merely exchange the roles of A and 
B as well as the roles of Ho and H, to reduce to the pre- 
vious case. 

Thus, under the assumption that Z and Z occur with 
nonzero probability, an E-optimal class of automata has 
been shown to exist. Now examine the case where 5 occurs 
with probability zero. By the definition of 1, for (7 < 0~ ), for 
any E > 0, there must exist a set of observations %(a) C X 
such that X1(e) has nonzero probability measure and 

@y&)] = pr (Xl(E) I HoI 
Pr (X,(E) IH,) “- ‘* w 

Similarly, if z occurs with zero probability, for any 
8 > 0, there exists a set X2(e) C X such that X2(r) has 
nonzero probability measure and 

w2(41 2 i + 6. (37) 

Now replacing 5 with X1(e) and f with X2(e) in the pre- 
ceding development it is easily shown that the resultant 
r. and rl satisfy 

where 

TOT1 2 kd41m-*(l - To)(l - Td (fW 
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Again, by varying k, the entire operating characteristic 
determined by (88) is generated. Furthermore as e ap- 
proaches zero, y(e) approaches (E)‘. Therefore, for k = k*, 
by letting both 6 > 0 and E > 0 approach zero, r ap- 
proaches T*. Thus an r-optimal class of automata has been 
demonstrated for the general problem. 

Example 

Let 6,, and @I be univariate normal distributions with 
variance ua = 1 and means p,, = +l and p1 = - 1, 
respectively. We wish to maximize lim,, (l/n) c;31 Y,. 
This is equivalent to maximizing the limiting proportion 
of uses of the experiment corresponding to 6,,. We find that 
Z,(y) = e4’. Thus 7 = CD and r* = 1, for all m 2 2. A 
two-state memory E-achieving r* = 1 can be defined as 
follows. 

Move to state 2, under (B, y) if y < -R, and move to 
state 1, under (A, y) if y < -R. In state 1 use experiment 
B; in state 2 use experiment A. No randomization is 
required in this example. Here the proportion of successes 
can be made arbitrarily close to 1 by choosing R suffi- 
ciently large. 

V. COMPOSITE HYPOTHESES 

In this section it will be shown that the E-optimal 
m-state machine, for the problem in which two coins of 
unknown bias are presented, is almost independent of the 
exact biases of the coins. 

Consider the problem in which two coins A and B are 
available. In this case Y assumes one of only two values: 
H(heads) and T(tails). Two hypotheses exist concerning 
pd and pB, the respective biases of the coins toward heads: 

coin A coinB 

n-0 = Q H,: PA = pl PB = pz 
(90) 

7rl = 3 H,: PA = p2 PB = PI* 

It is desired to maximize the long-run proportion of heads 
achieved. This is equivalent to the compound hypothesis 
test 

Hi :pA > PB (91) 
H: :pA < PB 

followed by the utilization of the coin deemed to have the 
highest probability of heads. The m-state machine 
achieving the highest limiting proportion of heads will be 
designated as the optimal machine. Let (pl, pJ be con- 
strained to be in the region Q1 depicted in Fig. 3(a). Under 
this constraint, H, and H, are composite hypotheses. 
However, since ?rO = gl = 4, the optimum value of k is 
k* = 1 for all (p,, pZ) E !&. Furthermore, since in this 
region pl > pa 

l,(H) = p,/p2 = 7, k4(T) = da2 = t 
(92) 

b(H) = P2/Pl = iB lB(T) = qZ/ql = b 

and since in Q1 it is also true that p,g, > p2q2, it follows 
that 7, > 7,. Therefore, 7 = 2. Thus Z = (A, H) and 

(a) (b) 
Fig. 3. Equivalence regions for the compound problem. 

(B,T) 
aI335J 

(A,T) (A.T) 

STATE: I 2...m-l m 

Qi:6 l/2 ..I l/2 i-6 

(a) 

STATE: I 2...m-l m 

Ui:S i/2..’ i/2 I-S 

(b) 

Fig. 4. (a) e-optimal autom&on for PI + PZ > 1. (b) e-optimal 
automaton for pl + p2 5 1. 

5 = (B, H) are the maximum-information events. This is 
true for all (pl, p2) E a,. The e-optimal m-state machine 
flips coin A with probability a1 = 6 in state 1, with 
probability LY, = 1 - 6 in state m, and with probability 
a!i = 6 in states i = 2, 3, * . * , m - 1, where 6 is a small 
positive real number. 

It can also be shown that the regions 3,, 52,, and !& of 
Fig. 3(a) each have but one class of E-optimal machines. 
Thus, it is only necessary to know in which region (pl, p2) 
lies to design an e-optimal class of machines. The values 
of 5, Z, CY,, and am for each region are summarized below. 

3,: Z = (A, H) 3 = (B, H), CY~ = 6, QI?n =1--b 

!&: Z = (B, T) f= (A, T),cr, = 6, ci, = 1 - 6 

&,:Z= (A, T) Z = (B, T), czI = 1 - 6, a, = 6 

524: 52 = (B, H) z = (A, H), ccl = 1 - 6, a!,,, = 6. 

(93) 

It is readily verified by indexing the states in reverse 
order that the e-optimal m-state machine for (pl, p2) E Q., 
is identical to that for (pl, p2) E %. Similarly, the e- 
optimal machine for Q2 and Q3 are identical. These equi- 
valence regions are shown in Fig. 3(b). 

Therefore, only two machines are needed for all (pl, pa). 
Equivalently, it is only necessary to know whether 
pl + p2 > 1 or pl + p2 < 1 in order to design an e-optimal 
machine for this problem. 

The design of the optimal machine does not depend on 
exact knowledge of pl and p,. It is only necessary to know 
whether heads (H) or tails (T) is the maximal-information 
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observation. If pl + p, > 1, then tails yields maximum 
information; if p, + p, < 1, then heads yields maximum 
information. The corresponding optimal machines are 
shown in Fig. 4. Note that if p, = 1 - p2, i.e., the bias of 
one coin is the complement of the bias of the other, then 
either machine is optimal. 

VI. GENERALIZATION TO AN INFINITE FAMILY OF 
EXPERIMENTS 

In the foregoing, the experimenter had two experiments 
(coins A and B) and two hypotheses concerning the distri- 
butions governing the outcome Y under each experiment. 
In this section an outline will be provided of an e-optimal 
m-state memory solution under the generalization that the 
experimenter has at his command an arbitrary known 
class of experiments 9. 

Let {cP:“)), {@l’) b e a collection of probability measures 
indexed by i3 E 8. 

Consider the two hypotheses 

H, : Y - (~j”), if 0 is the experiment performed 
(94) 

H, : Y - @:I’, if 0 is the experiment performed 

where the experiment 0 E 6 may be freely chosen. Suppose 
that it is desired to maximize 

E 
{ 
$+: + $ J(YJ 

z 1 > 
, (95) 

where the expectation is taken over H, and HI (with 
probabilities a,, and rl), where Y, - @by) and J is a real 
valued function. The two-coin problem of Section I, for 
example, is a special case of this problem, obtained by 
setting J(Y,) = 1 or 0 accordingly as Yi = H or T, and 
letting 8 = (A, B}, p,” = p$ = po, p,O = pi = pl. 
The finite-memory algorithms to be considered are of the 
form 

Tn = f(T,z-1, X,) 

4 = Ku 

x, = (em, y,) 

(96) 

where T,, E (1, 2, *** , m) is the state of the m-state 
memory at time n; 0: (1, 2, . . . , m) --+ 0 is the choice of 
experiment as a function of the state, and X, = (e,, Y,) 
is the observation at time n. As before, the transition 
function / and decision function 0 may be stochastic. 

The usual conflict exists-the best experiments for the 
resolution of the hypotheses may not be the best for the 
maximization of E[J(Y)]. However, the form of the 
E-optimal algorithm derived in Section IV suggests that 
the conflicting problems may be treated separately. 

Let a0 denote the collection of subsets A C 3 for which 
cP:‘) (A) + Cpj” (A) > 0. Define 

(97) 

(9% 

and y = l/i. As a consequence of the work in [28], it can be 
shown that the probabilities of error (a and 0) under each 
hypothesis (H, and H,, respectively) must satisfy 

y”-lap 2 (1 - Lu)(l - 0) (99) 

for any m-state algorithm. 
Let e’* and S* be experiments that E-achieve 7 and i, 

respectively. That is (in the case 7 < a), 

(100) 

(101) 

Now define 

Jo(e) = 1 J(Y) Q@“(Y) W2) 

J,(e) = 1 J(Y) dd%) (103) 

as the expected payoffs under each hypothesis for the 
experiment 8. 

If Pr {H,) = t, the use of experiment 0 would incur 
expected payoff tJo(o) + (1 - t)Jl(0). Let the maximum 
expected payoff over 8 be defined by 

J(t) = ;-g t tJo(e> + (1 - OJl(@ 1 oj t< 1. (104) 

(Note that J(t), being the supremum of a collection of 
convex functions of t, is therefore a convex function of t.) 
Let 0*(t) denote an experiment c-achieving J(t). That is, 

tJc,(e*(t)) + (1 - t)Jl(e*(t)) 2 J(t) - c. (105) 

Suppose next that an automaton with &traps is used in 
which all but E of the probability is concentrated in states 
1 and m. Since the probabilities of error of each kind are 
LY and /?, 

Pr (Ho Istate = aa! +ylyl _ p) = tl (106), 
0 

Pr {H, 1 state m) = ~ (lrO” $ T)r,B = t,. (107) 
0 

Using the optimal experiments 8; = O*(t,) and 0: = 0*(&J 
in states 1 and m results in an expected payoff 

Jb, P) = b-0(1 - 4 + 4) 

3 JMl - 4/hd1 - 4 + adW ww 

+ (w + ?(l - mJh~l(~o~ + Tl(l - P>>. 

Finally, let 

J* = ?$I J”b, P> (log), 
OL, 

where the supremum is taken over all (L, p satisfying (99) 
and a, P E LO, 11. 

We now establish that J” is the least upper bound on 
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memory version of the TABP, with the exception of the 
symmetric version considered by Feldman [4]. 

4) Two coins are better than one. If the experimenter 
has in his possession two coins (with scrambled labels), he 
can always achieve a lower probability of error of deter- 
mining which coin is which (with finite memory) than if 
he were provided only one of the coins. The probabilities 
of error are equal only if the coin biases are complementary. 

5) The interior states can be considered to be allotted 
to hypothesis testing-the terminal states to utilizing this 
information to maximize the probability of success. 

6) Transitions up and down are made only on maximal 
information events, and then only one step at a time. This 
is the conservatism that the finite-memory constraint 
demands. The price is the long waiting times between 
transitions. The TABP with finite memory given a finite 
sequence of observations has not been solved. 

STATE I 2 3 . . . . . m-2 m-l n-l 

Pr{F]i} 812 l/2 l/2 l/2 l/2 0 

Pr{J*ii} 0 I/2 l/2 112 l/2 K*S/2 

P@li} (l-8/2) 0 0 0 0 0 

Pr@Ji} 0 0 0 0 0 I-(K”8/2) 

ii E-ACHIEVES j ; ii =(i:Y,) 

si E-ACHIEVES 2 i ii = (8; Y2) 

Fig. 5. The.automaton that e-achieves J*. 

achievable by an m-state automaton. An automaton that 
e-achieves J* (for 6 NN 0) is specified in Fig. 5, where le” is 
chosen to yield the CY, fl achieving J* in (109). Again, the 
self-loop events have been deleted. Note that only four 
experiments in 6 need be utilized: the experiments ij* and 
e’*, which yield most efficient resolution of the hypotheses; 
and @ and ez, which yield optimal payoffs. States 2, 
3, *** ) m - 1 are the bookkeeping states in which 8* is 
used with probability one half and e’” is used with prob- 
ability one half. For 6 M 0, the automaton is in states 
1 or m with probability M 1. Thus the maximal payoff 
experiments 0: and e$ are performed with probability 
arbitrarily close to one. 

Note that if 8 = {A, B), the problem specified by (10) 
is solved. The generalization to more than two hypotheses 
does not appear easy. 

VII. CONCLUSIONS 

Inspection of the solution of the TABP indicates that 
optimal finite-memory learning is reasonably far from 
human intuition and practice. However, the heuristics 
garnered from inspection of the solution are easily assimi- 
lated for future application. Some interesting properties 
of the solution are the following. 

1) The solution is only e-optimal. In general, optimal 
solutions do not exist. 

2) Artificial randomization is required in order to select 
the experiment to be performed at each stage. The state 
transition function f is deterministic. This differs from 
what we might call the one-armed-bandit problem [29] in 
which the experiment to be performed at each stage is 
unchanged, but for which the e-optimal state transition 
function f involves randomization. 

3) The conflict between data gathering and success 
gathering factors out. If we were given two experiments 
and were interested solely in hypothesis testing, and 
ignored the goal of using the best experiment a large 
proportion of the time, we could do no better than the 
probability of error currently obtained as reflected in r*. 
This conflict does not generally disappear in the infinite- 
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Signals That Can Be Calculated 
from Their Ambiguity Function 

RUDOLF DE BUDA 

Absfracf-A new lemma relates the analytic extensions of two 
time functions u(t) and v(f) to the Laplace transform of their am- 
biguity function &,. This lemma is used to derive necessary con- 
ditions for u and v from two bounds on the behavior of $1121 at infinity. 
In particular, if the first bound is fulfilled, then u(z) and V(Z) must 
be integral analytic functions. If both bounds are fulfilled, then 
u and v are each equal to exp ( -ad] times a polynomial in t, and 
the two polynomials can be found from &y by comparing coefficients. 

LTHOUGH one can easily calculate an ambiguity 
function from two given time functions, the con- 
verse problem of finding the time functions from 

the given ambiguity function remains as yet unsolved. 
This paper will study a class of ambiguity functions that 
fulfill certain bounds. From these bounds, some important 
properties of the corresponding time functions will be 
derived. 

DEFINITION OF THE AMBIGUITY FUNCTION $J,,(T,+) 

For the Fourier pair and for the time-frequency cor- 
relation function ~(7, 4), we follow Woodward’s notation 
[l]. We define the ambiguity function as the squared 
magnitude of x, and introduce for it the symbol &*(T, 4). 
T and 4 are the time- and frequency-shift variables, and 
the subscripts u and v indicate the complex signal and 
filter functions u(t) and v(t), which we assume to be square 
integrable and normalized to unit energy: 
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The author is with the Canadian General Electric Co., Ltd., 
Toronto, Ont., Canada. 

(1) 
u and v combine to form the ambiguity function 1cI,,(r, 4) 

by 

#a’,,(~, 6) = /s- u(t)v*(t + T) exp (-2a$t] dt 2. (2) 
-@a 

When we want to distinguish specifically between $UU 
and L u # v [2], we shall use “auto” or “cross” as a 
prefix to the ambiguity function. 

RESULTS 

If we bound the ambiguity function qUe(r, 4) by 

L(T, 4) 5 exp I- W72 + 4”) I, O<k<l, (3) 

then the time functions u(t) and v(t) 

1) are bounded by 

lu(t)12 < A exp (-&!2), 

Iv(t)/’ < A exp (-At’), 

2) are differentiable infinitely often, 
3) have analytic extensions that are integral analytic 

functions. 

If we further bound the ambiguity function by 

(4) 

where P2, is a polynomial of order 2n, then u and v have 
the form exp (--?rt’) times a polynomial of t. The poly- 
nomials for u and v have combined degree n; they can 


