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A B S T R A C T

Degenerate atomic gases are a versatile tool to study many-body physics. They
offer the possibility to explore low-dimension physics, which strongly differs
from the three dimensional (3D) case due to the enhanced role of fluctuations.
In this work, we study degenerate 2D Bose gases whose original in-plane confi-
nement is uniform and of arbitrary shape. These 2D uniform traps, which we
first developed on an existing set-up, were subsequently implemented on a new
set-up using versatile optical potentials.

We present a series of experiments that take advantage of this flexible geo-
metry. First, we study the static and dynamic behaviours of a uniform gas at
the transition between a 3D normal and a 2D superfluid state. We observe the
establishement of extended phase coherence, followed, as the gas is quench
cooled, by the apparition of topological defects whose scaling is compared to
the Kibble-Zurek prediction. Second, we present the first results of the new
set-up : we investigate collective effects in light-matter interactions, where the
resonance properties of a dense ensemble of atoms are strongly modified with
respect to the single atom ones.

Last, we develop two experimental proposals for the new set-up. The first
one studies how a 2D gas can be uniformly evaporated using the tilted lattice
providing the 2D confinement. In the second one, we propose to produce su-
percurrents in a deterministic way in ring-shaped traps either by condensing in
an artificial gauge field or by implementing a topological vortex pump.

R É S U M É

Les gaz quantiques atomiques constituent un outil de choix pour étudier la
physique à N corps grâce à leurs nombreux paramètres de contrôle. Ils offrent
la possibilité d’explorer la physique en basse dimension, modifiée par rapport
au cas à trois dimensions (3D) à cause du rôle accru des fluctuations. Dans ce
travail, nous étudions le gaz de Bose à deux dimensions (2D) avec un confine-
ment original dans le plan atomique, uniforme et de motif arbitraire. Ces gaz
2D et uniformes, développés sur un montage existant, ont été installés sur un
nouveau montage grâce à des potentiels optiques polyvalents.

Nous présentons une série d’expériences exploitant cette géométrie flexible.
D’abord, nous étudions le comportement statique et dynamique d’un gaz uni-
forme lors de la transition d’un état 3D normal vers un état 2D superfluide.
Nous observons l’établissement de la cohérence de phase dans un gaz à l’équi-
libre puis nous montrons l’apparition après une trempe de défauts topolo-
giques dont le nombre est comparé à la prédiction de Kibble-Zurek. Ensuite,
nous étudions grâce au nouveau montage les effets collectifs dans l’interaction
lumière-matière, où les propriétés de résonance d’un nuage d’atomes dense
sont fortement modifiées par rapport à celles d’un atome unique.

iii



Enfin, nous proposons deux protocoles pour le nouveau montage. Le premier
permet d’évaporer de manière uniforme un gaz 2D grâce au réseau incliné
du confinement à 2D. Le second propose de produire des supercourants de
manière déterministe dans des pièges en anneaux, soit par condensation dans
un champ de jauge, soit en réalisant une pompe à vortex topologique.
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I N T R O D U C T I O N

The first experimental demonstration of Bose-Einstein condensation in weakly
interacting, dilute gases of alkali atoms [1–3] has represented an important mile-
stone, confirming a seventy-year old theoretical prediction [4, 5]. It is achieved
by cooling down atoms to the quantum degenerate regime, where the inter-
particle distance is on the order of the extent of the wavepacket of each atom.
Liquid helium has enabled the first studies of Bose-Einstein condensation [6–8];
yet, the strength of the interactions in liquid helium is very large, which does
not correspond to the description of the phenomenon by Bose and Einstein,
based solely on the quantum statistics of the particles. However, far from only
implementing a long-standing theoretical proposal, the ability to cool down
atomic species to the quantum degenerate regime, combined with the tools to
manipulate the degenerate gases (optically, magnetically, etc.) has provided
the atomic physics community with a platform to study macroscopic quantum
objects and many-body problems.

The first reason that makes Bose-Einstein condensates interesting objects to
study is linked to their intrisic properties — this state of matter has also been
obtained in a variety of other physical systems like cavity photons [9], polari-
tons [10–12] and magnons [13]. They are produced in clean and controlled
environment, such that their behaviour can be accurately compared to theor-
etical predictions. For example, in an atomic Bose-Einstein Condensate (BEC),
interactions are usually small and the behaviour of the gas can be predicted
using the mean-field Gross-Pitaevskii [14, 15] equation. Precise measurements
also allow to verify beyond mean-field predictions [16]. The properties of de-
generate gases were therefore extensively studied, revealing phase coherence
through the interference of independent condensates [17] or of atoms from dif-
ferent part of the same condensate [18], the apparition of vortices organized in
an Abrikosov lattice in a rotating cloud [19–21] as well as superfluid behaviour
[22, 23].

The strong interest in studying BEC and degenerate Fermi gases, which were
produced shortly after the first atomic BEC [24–26], mainly comes from the
variety of parameters that can be tuned and controlled — quantum statistics,
interactions, confining potential, etc. — which allows to produce clean systems
where the measurements can be compared to theoretical predictions [27]. These
systems therefore realize Feynman’s idea of the “quantum simulator” [28].

Choosing the atomic species and isotope enables to pick a quantum statistics,
boson or fermions, as well as a type of interaction: while alkali atoms interact
via contact interactions [29], species such as chromium [30], dysprosium [31] or
erbium [32] have a large magnetic moment leading to strong dipole interactions.
Some “infinite range” interactions have also been realized using light-induced
interaction between the atoms of a BEC in an optical resonator [33]. Some spe-
cies also allow to tune the strength of the contact interactions when varying
a magnetic field, using a so-called Feshbach resonance [34, 35]. This prop-
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2 introduction

erty has been especially important to the study of fermions, where different
regimes exist: the weakly repulsive regime, where a BEC of molecules forms
at low temperatures, the weakly attractive regime, described by the Bardeen-
Cooper-Schrieffer theory of superconductivity where weakly bound pairs form
a superfluid, and the unitarity regime where the particles interact strongly [24,
36]. The choice of the atomic species also fixes the availability of different in-
ternal states for the atoms. This is important in the study of spinor physics
[37, 38] or in exploring geometrical and topological properties of atoms whose
internal states have been astutely coupled [39].

Magnetic and radio-frequency fields or light are commonly used to confine
the atoms [1, 40, 41]. The most common trap is harmonic, since the atoms
are usually trapped in a local extremum of the potential landscape; increas-
ing the trapping strength in one or two directions has enable the study of
low-dimensional systems by freezing one to two motional degrees of freedom.
These systems of reduced dimensionality are especially interesting for the study
of quantum and thermal beyond mean-field models since in one [42, 43] or two
dimensions [44, 45], the fluctuations are very important and destroy long-range
order [46–48].

Further engineering of light beams interacting with degenerate quantum
gases have given access to new phenomena. The interaction between light and
matter can be studied in two different regimes: (i) when the light is far from
any atomic resonances, which allows to produce potential landscapes for the
atoms and (ii) when the light is close to an atomic resonance.

Far-detuned beams create attractive or repulsive potentials for the atoms;
they can be easily shaped to investigate different geometries. The paradig-
matic example of this type of study is the realization of optical lattices, where
interfering light beams create a periodic potential on the atoms analogue to the
periodic potential of ions in solids. Ultracold atoms allow to implement the
Hubbard model, which is a simple model believed to contain many features
of complex materials. This was demonstrated by revealing experimentally the
transition from a superfluid to a Mott insulator state in a cloud of atoms [49,
50]. Using optical potentials has also allowed to produce many other rich geo-
metries: rings of atoms in which the decay of a supercurrent was studied [51–
53], the textbook box potential for quantum particles [54, 55], or disordered
potentials leading for example to the demonstration of Anderson localization
[56].

Close to resonance beams can be used to manipulate the internal state of the
atoms, for example create artificial magnetic fields on the atoms thanks to laser-
assisted internal state transfer [39], as was recently demonstrated [57]. Their
interaction with dense samples of atoms coupled by dipole-dipole interactions
also reveals interesting many-body effects, as was recently demonstrated in
small dense clouds [58, 59].

In addition to having a large number of tunable parameters, degenerate
quantum gases are very appropriate systems to study dynamical effects. All
their energy scales are low, meaning that their evolution is slow, on the order
of milliseconds to seconds, which is easily tractable in an experiment. Fur-
thermore, they are well isolated from perturbations from the environment and



introduction 3

the quantum macroscopic states that are created have long life times (up to
tens seconds). Dynamical phenomena which were observed in ultracold atoms
include the study of prethermalization of elongated condensates [60], of super-
currents in rings in the presence of a defect [52], transport experiments both
with fermions [61–63] and bosons [64, 65], the study of turbulences [66] as
well as critical dynamics when quench cooling a gas through a phase transition
point [67, 68].

In many respects, degenerate quantum gases provide a great degree of con-
trol over all experimental parameters. The same level of control is difficult to
achieve in condensed matter, whose most pristine system, the two-dimensional
electron gas, has led to the observation of many novel phenomena [69] such as
the quantum Hall effect (QHE) [70], the fractional quantum Hall effect (FQHE)
[71, 72] and the quantized conductance through a quantum point contact [73].
On the one hand, the QHE and the FHQE analogues in atomic physics still
remain a challenge for the community, since they require large artificial mag-
netic fields to be produced on the atoms, which has not been realized so far
in experiments. On the other hand, the observation of quantized conductance
only requires the ability to shape the two-dimensional electron gas (using gate
potentials for instance), which is an available technique for cold atoms using
for instance light potentials. This has led to the development of a new set of
experiments studying the evolution of atoms in tailored optical potential, called
“atomtronics”.

In this work, I describe the experimental techniques used on an existing set-
up to produce bosonic gases which are two-dimensional (2D) and where an
in-plane flexible and uniform confinement was developped, in contrast to the
previous studies of 2D atomic gases. Building a new quantum gas experiment
where an improved version of the 2D box potentials was implemented has
been part of my thesis work. I also present a series of results taking advant-
age of this geometry: I will first study experimentally the static and dynamical
properties of phase transitions in a uniform system. I will then explore the scat-
tering of light in a complex medium, last describing two possible experiments
for the new set-up, taking advantage of the confinement techniques that were
developed during my thesis.

detailed outline

Chapter 1 gives an overview of the ins and outs of producing 2D gases whose
motion is frozen in one direction using a tightly confining harmonic trap. In
particular, starting from a three dimensional gas, we show that bosonic ampli-
fication tends to accelerate the accumulation of atoms in the ground state of the
tight harmonic trap, which corresponds to transverse condensation. Last, the
rich physics of 2D systems is briefly described.

In chapter 2, we present the main theoretical concepts necessary to describe
the static and dynamic properties of systems close to a phase transition, such
as scaling and universality. The main results relevant for Bose gases close to
degeneracy are recalled. These concepts are then used to explain the Kibble-
Zurek mechanism, which predicts the formation of topological defects in a
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system which is quenched cooled through a phase transition point. The density
of defects can be related to a characteristic length deduced from the universality
class of the transition.

The experimental observations of the theoretical predictions of chapter 1 and
chapter 2 are presented in chapter 3. After describing the first generation of the
experimental set-up used to produce 2D uniform gases, we explain the appear-
ance of coherence in the samples through the transverse condensation mechan-
ism. Then, we study the dynamical aspect of this phase transition by quench
cooling a non-degenerate gas to the deeply degenerate regime and compare
the production of topological defects to the prediction by Kibble and Zurek. In
these experiments, having a uniform confinement helps us reveal the physical
phenomena because the in-plane trap does not introduce a length scale (or only
a large one, on the order of the size of the trap).

In chapter 4, we describe the characteristics of the new experimental set-
up aimed at studying 2D physics in tailored optical potentials built as part
of my thesis work. After presenting the technical choices made in order to
obtain a quantum degenerate gas of rubidium 87, we give a more detailed
explanation of the apparatus used to produce uniform traps, using a digital
micromirror device, and to confine them to 2D, using an “accordion lattice”
(originally proposed in [74]) whose spacing can be dynamically changed.

The first results obtained with this new set-up are presented in chapter 5.
Using our ability to produce a uniform slab of atoms of controlled thickness and
density, we show that the collective response to the atoms to a near resonant
probe is different from that of a single atom: the resonance frequency is shifted
to higher frequencies and the response of the atoms is broadened with respect
to the natural linewidth of the transition.

The last two chapters are dedicated to the description of two experiment
proposals which are easily accessible on the new experimental set-up.

In chapter 6, we study how the accordion lattice can be used in combination
with a tilted potential to evaporate a 2D cloud in a uniform manner, without re-
lying on the fact that the most energetic particles reach the edges of the uniform
trap. After applying the calculations of [75] to our case, we perform molecular
dynamic simulations on a thermal gas and show that some collision-assisted
processes lead to cooling and increased degeneracy of the atoms.

Last, in chapter 7, we study the possibility of creating topologically non-
trivial states by combining a 2D ring-shaped gas with the magnetic field gen-
erated by a quadrupole trap. We show that it is possible (i) to demonstrate
condensation in the presence of an artificial magnetic field, where the lowest
energy state has a non zero permanent current (ii) to create a “vortex pump”
equivalent to the Thouless pump [76, 77] that produces large supercurrents in
an atomic ring.



1
T H E B O S E G A S F R O M T H R E E T O T W O D I M E N S I O N S

This chapter aims at introducing some relevant concepts concerning Bose gases,
which are necessary to understand the context of the experiments and calcula-
tions of the following chapters. The main results on Bose gases can be found
in textbooks and reviews [27, 29, 78] and the specificities of 2D atomic systems
have been detailed in [79].

First, the basics of Bose-Einstein statistics will be used in order to explain
why, in some configurations, a macroscopic occupation of the lowest energy
state available, called a BEC, can appear thanks to bosonic amplification at the
thermodynamic limit. Then, the aim of both experimental set-ups described in
this thesis is to produce 2D Bose gases; the meaning of which will be detailed in
the chapter. These gases are usually produced using a combination of a strong
harmonic confinement in one direction and a weak in-plane confinement. In
order to macroscopically populate the ground state of the former confinement,
there are two possibilities:

1. All the relevant energy scales of the gas (temperature, chemical potential)
are small compared to the energy spacing between the ground state and
the first excited state of the harmonic oscillator.

2. Thanks to Bose enhancement, the atoms macroscopically occupate the
ground state of the harmonic oscillator even though the energy scale given
by the temperature is larger than the level spacing.

Several experimental studies have been carried out as close as possible to the
first regime [45, 80, 81]. In the case of the experiments described in [82], we
explore a range of parameters that additionally covers the second regime, also
called transverse condensation [83]. The study of the transverse condensation
transition will be done in section 1.2. In particular, the variation of the cor-
relation length across the transverse condensation transition will be evaluated.
Last, having a plane of atoms realized by either one of the two methods (usu-
ally with some additional, in-plane confinement), we will briefly recall the be-
haviour of a non-interacting and interacting gas in 2D. In particular, we will
detail the experimental range in which the two possible transitions that lead to
a superfluid can be observed, namely the Bose-Einstein condensation and the
Berezinskii-Kosterlitz-Thouless (BKT) transition [79, 84, 85]. We will focus on
the case where the in-plane confinement is a box potential, whose flatness is
particularly suited for the study of critical phenomena.

5



6 the bose gas from three to two dimensions

1.1 statistics and bose gases

1.1.1 Non-interacting bosons in the grand-canonical ensemble

Let us consider a system of bosonic particles of mass M whose dynamics is
given by the single-particle Hamiltonian Ĥ. If the bosons are spin-less particles
in a d-dimension space, the eigenfunctions solutions of Ĥ are going to be char-
acterized by a set of d good quantum numbers m. If the Hamiltonian of the
system can be written as a sum of Hamiltonian for each quantum number, the
energy of one particle with quantum numbers m is

εm =
d

∑
i=1

εmi
(1.1)

Let us now consider an ensemble of such quantum particles in contact with
a heat reservoir characterized by a temperature T = 1/(kBβ) and a particle
reservoir of chemical potential µ, whose fugacity is defined as z = eβµ. The
partition function in the grand-canonical description is

Z = Tr
(

e−β(Ĥ−µN̂)
)

(1.2)

= ∏
m

∑
nm

(

ze−βεm
)nm

(1.3)

= ∏
m

1
1 − ze−βεm

(1.4)

with nm the number of particles with quantum numbers m. The second line
uses the fact that the quantum particles are indistinguishable and the third
line uses the fact that for bosons, nm is an integer. The value of the chemical
potential has to stay below the ground state energy of the system to avoid
any divergence of the partition function in the non-interacting case. We will
always redefine the energy scale by adding a constant such that the energy of
the ground state is 0. In that case, µ < 0 and z < 1.

From the partition function, the total atom number N can be computed

N = ∑
m

n̄m = ∑
m

1
z−1eβεm − 1

(1.5)

where n̄m is the mean occupation number of the state with quantum number
n̄. The average value of any one-body observable Â for the ideal gas can also
be calculated:

〈
Â
〉
=

1
N ∑

m

n̄m

〈
ψm

∣
∣Â
∣
∣ψm

〉
(1.6)

where |ψm〉 is the wavefunction of an atom with quantum numbers m.
From equation 1.5, the atom number can be approximated by an integral:

N =
∫ 1

z−1 exp
(

β ∑
d
i=1 εmi

)

− 1

d

∏
i=1

dmi

αi
(1.7)

where 1/αi denotes the number of states per unit of mi, also called the density
of states. The condition for the approximation of the sum by an integral to
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be valid depends on the specific form of the energy εmi
. It requires that the

thermodynamic limit can be taken simultaneously for all quantum numbers,
i. e. the parameters are such that β (εmi+1 − εmi

) → 0.
In the following, the fugacity expansion of N will be important to us

N =
∞

∑
n=1

zn
∫

exp

(

−nβ
d

∑
j=1

εmj

)
d

∏
i=1

dmi

αi
(1.8)

=
∞

∑
n=1

zn
d

∏
i=1

[∫

exp (−nβεmi
)

dmi

αi

]

(1.9)

=
∞

∑
n=1

zn
d

∏
i=1

I(mi, n) (1.10)

Let us now treat two forms of interest for the energy ε i: the case of a free gas
and the case of a harmonic oscillator.

1.1.1.1 Free gas

In this case, we consider that the bosons can move freely in a one-dimensional
box of size L, where the coordinate x is such that 0 6 x 6 L. We consider hard
wall boundary conditions for this calculation. The single-particle Hamiltonian
only contains a kinetic term

Ĥ =
p̂2

2M
(1.11)

where M is the mass of one particle and p̂ its momentum along the direction of
interest. The eigenfunctions are plane waves labelled by an integer j1 ∈ Z such
that we can define a wave vector k1 = π j1/L:

ψj1(x1) =
sin (k1 · x1)√

L/2
(1.12)

with an energy ε j1 =
h̄2k2

1
2M .

We compute the integral I(j1, n):

I(j1, n) =
L

2π

∫

exp

(

−nβ
h̄2k2

1
2M

)

dk1 =
L

λdB
n−1/2 (1.13)

with λdB = h/
√

2πMkBT the thermal wavelength. In this case, the condition
for the discrete sum of equation 1.5 to be approximated by an integral reads

β
(
ε j1+1 − ε j1

)
=

π

2
λ2

dB

L2

(

j +
1
2

)

→ 0 (1.14)

which is fulfilled for L/λdB → ∞.

1.1.1.2 Harmonic oscillator

In this case, we consider a one-dimensional harmonic oscillator characterized
by the angular frequency ω such that the single-particle Hamiltonian reads

Ĥ =
p̂2

2M
+

1
2

Mω2 x̂2
1 (1.15)
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The eigenstates are characterized by a non-negative integer j1 and are the
product of a Gaussian and the j1th Hermite polynomial Hj1 . They can be ex-
pressed using the length scale associated to the problem aho =

√

h̄/(Mω)

χj1(x1) =
1

√

2j1 j1! ahoπ1/4
Hj1

(
x1

aho

)

e−x2
1/(2a2

ho) (1.16)

with an energy ε j1 = h̄ωj1 (here we redefine the zero of energy at h̄ω/2).
We compute the integral I(j1, n):

I(j1, n) =
∫

exp (−nβh̄ωj1)dj1 = ζn−1 (1.17)

with

ζ =
kBT

h̄ω
= 2π

a2
ho

λ2
dB

In this case, the condition for the discrete sum of equation 1.5 to be approxim-
ated by an integral reads

β
(
ε j1+1 − ε j1

)
=

1
ζ
→ 0 (1.18)

which is fulfilled for ζ → ∞, i. e. aho/λdB → ∞.

1.1.2 Bose-Einstein condensation

Assuming that the gas of bosons is confined in the first d1 dimensions in har-
monic oscillators of angular frequency ωi and in the remaining d − d1 dimen-
sions in boxes of size Li, the total atom number at the thermodynamic limit
is

N =

(
d1

∏
i=1

ζi

d

∏
j=d1+1

Lj

λdB

)
∞

∑
n=1

zn

nd/2+d1/2 (1.19)

=

(
d1

∏
i=1

ζi

d

∏
j=d1+1

Lj

λdB

)

gd/2+d1/2(z) (1.20)

where gα(z) = ∑
∞
i=1 zn/nα which is defined for all allowed values of z < 1.

Here we distinguish two cases:

• If α 6 1, gα(z) → ∞ as z → 1. Hence for a given atom number and
temperature, it is always possible to find a chemical potential µ < 0 such
that equation 1.20 is fulfilled.

• If α > 1, gα converges as z → 1. For a given temperature, the atom
number cannot exceed

Nc =

(
d1

∏
i=1

ζi

d

∏
j=d1+1

Lj

λdB

)

gα(1) (1.21)

This apparently paradoxical result actually comes from the substitution
of the discrete sum by an integral in equation 1.7. The population of the
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ground state is not correctly accounted for and the total atom number
should be written

N = N0 +

(
d1

∏
i=1

ζi

d

∏
i=d1+1

Li

λdB

)

gα(z) (1.22)

The second case corresponds to the well-known Bose-Einstein condensation [4,
5]. For example, for a three-dimension Bose gas in a box, d = 3 and d1 = 0 so
α = 3/2. There is a Bose-Einstein condensation and for a given temperature,
the chemical potential and population of the ground state are chosen to fulfil
the following equations:

N =







L3

λ3
dB

g3/2(z) if N < Nc =
L3

λ3
dB

g3/2(1)

Nc + N0 if N > Nc

(1.23)

For a three-dimension Bose gas trapped in a harmonic potential with frequen-
cies

(
ωx, ωy, ωz

)
, d = 3 and d1 = 3 so α = 3: there is a Bose-Einstein condensa-

tion .
A 2D Bose gas with harmonic confinement will also undergo a Bose-Eintein

condensation (α = 2), while a 2D Bose gas in a box of size L yields d = 2 and
d1 = 0 so α = 1: the function g1 diverges in 1 so there is no accumulation of
atoms in the ground state. Calling the 2D atomic density n(2D) = N/L2, it is
always possible to find a fugacity z such that

D = n(2D)λ2
dB = g1(z) = − ln (1 − z) (1.24)

where D is the phase-space density, a dimensionless quantity that quantifies
the degeneracy of the gas. The fact that a uniform 2D Bose gas cannot undergo
Bose-Einstein condensation is actually a special case of the Mermin-Wagner-
Hohenberg theorem [46–48] that states that in a 2D system with contact inter-
action, it is not possible to have long-range order provided by the breaking of
a continuous symmetry with a second-order phase transition at the thermody-
namic limit. However, the case α = 1 is only weakly, logarithmically divergent,
which can lead to interesting behaviours as will be studied later.

1.1.3 Validity of the derivation of Bose-Einstein condensation

The previous subsection has showed that, under the assumption that the sum
over all possible states can be replaced by an integral using the density of states
in equations 1.5 and 1.7 and with some conditions on the degrees of freedom
the atoms have, there can be a Bose-Einstein condensation, that is a saturation
of the excited states of the gas that leads to an accumulation of atoms in the
ground state. However, if the the atoms have d degrees of freedom, going from
equation 1.5 to equation 1.7 requires making the density of state approximation
d times successively. It turns out that depending on the order in which the
sums are turned into integrals, the physical interpretation of the situation can
be different.
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This phenomena was first pointed out in the case of a highly elongated har-
monic trap [83]. In this situation, a three-dimensional harmonic oscillator is
characterized by three quantum numbers

(
jx, jy, jz

)
and frequencies

(
ωx, ωy, ωz

)

such that ωx ≪ ωy = ωz; this corresponds to the case of a cigar-shaped gas.
For a given temperature, ζx ≫ ζy = ζz so it is justified to first carry out the
approximation on the discrete sum first for the x direction then for the y and z

directions. The outcome of this calculation is that for a given atom number, as
the temperature is lowered, the population of the jy = 0, jz = 0 becomes first
macroscopically occupied (independent of the quantum number jz); then the
population of the true ground state jx = 0, jy = 0, jz = 0 becomes macroscopic-
ally occupied, which is a two-step condensation.

In the following we will focus on the case of a tight vertical harmonic confine-
ment and a box-like in-plane confinement. In this case, the in-plane sums are
first replaced by integrals, because the thermodynamic condition β

(
ε j1+1 − ε j1

)
→

0 is more easily respected. Then, as the remaining sum is turned into an integ-
ral, we will see that there will be an accumulation of particle in the ground
state of the harmonic oscillator, though not in the overall ground state of the
gas: this is the phenomenon called transverse condensation.

1.2 dimensional crossover from two to three dimensions

1.2.1 Experimental realization of a 2D Bose gas

In the previous subsection, we stressed the difference of behaviour between 2D
and 3D Bose gases with respect to Bose-Einstein condensation. Experimental
investigation of the specificities of the 2D regime has attracted a lot of interest
after the production of Bose-Einstein condensates in dilute atomic gases [44, 45,
80, 86–89]. In order to perform these experiments, a gas of bosonic atoms is
trapped with a strong confinement in one direction and with a weak confine-
ment in the two other directions of space. The state of an atom in the weak
confinement is characterized by the two quantum numbers jx and jy. Weak
harmonic confinement has traditionally been used for early studies of the prop-
erties of 2D Bose gases. One of the realizations of this thesis work has been to
implement box-like confinement for this weak confinement [82, 90]. The strong
confinement is usually provided by a harmonic trap of frequency ωz; the state
of an atom is then characterized by an integer jz. With these two confinements,
the gas is said to be motionally 2D if

• the motion along the tightly confined direction is frozen, allowing only
for jz = 0; for a harmonic confinement of frequency ωz, this means that
the relevant energy scales of the gas are small compared to the typical
energy spacing between two levels of the harmonic oscillator. In the case
of a thermal, non-interacting gas, this reads kBT ≪ h̄ωz, i. e. ζ ≪ 1.

• the two remaining weakly confined directions are allowing many signific-
ant values for jx and jy.

The first condition ensures that the number of atoms in the jz = 0 states Njz=0

is much higher than those in the jz > 0 states, i. e. that Njz=0/N ≫ 1. However,
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Figure 1.1: Phase-space density of the excited states Dexc renormalized by its maximum
value Dc = π2

6 ζ as a function of total phase-space density D and of the
ratio ζ = kBT/(h̄ωz). The computation is the sum of the 500 first terms in
equation 1.28. The red solid line represents the D = Dc line. For total phase-
space densities higher than Dc, the population of the excited states saturates.
The dotted lines represent values of (ζ ,D) such that D0 = constant.

the condition ζ ≪ 1 is not necessary as we will see in subsection 1.2.2. We will
focus on the case where the confinement in the xy plane is provided by a box
potential of characteristic size L and show that a macroscopic occupation of the
jz = 0 states can appear even if ζ > 1.

1.2.2 Transverse condensation

According to the previous subsection, having a box potential in two directions
and a harmonic confinement for the last direction yields d = 3 and d1 = 1
so α = 2: the gas should undergo a Bose-Einstein condensation transition.
However, as stressed in the case of a three-dimensional harmonic oscillator
in [83], this line of reasoning is not always valid since the approximations of
the d sums by integrals have to be performed successively. In our case, we have
L ≫ aho such that the continuum limit for the sum has to be taken first for the
x and y directions, then in the z direction according to the conditions which
were derived in section 1.1.1.1 and 1.1.1.2 for a given temperature. Thus the
atom number reads:

N = ∑
j

1
z−1eβεj − 1

(1.25)

= ∑
jz

∑
jx , jy

1
z−1eβεj − 1

(1.26)

= −∑
jz

L2

λ2
dB

ln
(

1 − ze−jz/ζ
)

(1.27)
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and the 2D phase-space density reads:

D = −∑
jz

ln
(

1 − ze−jz/ζ
)

= ∑
jz

Djz (1.28)

where Djz is the 2D phase-space density associated with the atoms in the jzth
state of the harmonic oscillator:

Djz =
λ2

dB

L2 ∑
jx , jy

1
z−1eβεj − 1

(1.29)

As explained in the previous section, even if only the jz = 0 states are con-
sidered and for a given atom density and temperature, a value of z < 1 such
that

n(2D)λ2
dB = ln (1 − z) (1.30)

always exists. When trying to compute the total phase-space density for a given
fugacity, we turn the discrete sum of equation 1.29 into an integral

D ≃ −
∫

ln
(

1 − ze−j/ζ
)

dj = ζg2(z) (1.31)

As in the derivation of Bose-Einstein condensation, the value of the phase-
space density is apparently bounded due to the convergence g2(z) → π2/6 as
z → 1. This is due to the fact that the phase-space density in the jz = 0 states,
D0, is not well accounted for. Hence we define a critical phase-space density

Dc =
π2

6
ζ (1.32)

and write the total phase-space density as

D = D0 +Dexc (1.33)

The value of D0, Dexc and z are determined from the value of D according to:

Dexc = ∑
jz>1

Djz ≃







ζg2(z) and D0 = 0 if D < Dc

Dc and z = 1 if D > Dc

(1.34)

The occupation of the jz = 0 state thus becomes macroscopic as soon as
D > Dc, which does not require ζ ≪ 1. This can be considered as a phase
transition: if we call x = D/Dc and x0 = D0/Dc, we have

x0 = 0 if x < 1, x0 = x − 1 if x > 1 (1.35)

We call this accumulation of atoms in the lowest energy state of the vertical
degree of freedom transverse condensation. It is physically relevant for our
experimental situation because it describes the fact that, owing bosonic amp-
lification, the occupation of the ground state of the z axis harmonic oscillator
becomes dominant even if the vertical degree of freedom is not frozen in the
sense that ζ ≪ 1. This can be seen in figure 1.1 and 1.2. In figure 1.1 and 1.2(a)
we see that Dexc saturates as D approaches Dc. Actually, the expression 1.32 is
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Figure 1.2: (a) Renormalized phase-space density in the excited states as a function
of the renormalized total phase-space density. Solid colour lines represent
different values of ζ; the saturation of Dexc is seen for all curves. The solid
black curve represents the thermodynamic limit with ζ → ∞. The dotted
lines represent the concatenation of two linear fits, one fitting the initial
slope and the other fitting the final asymptote. The intersection of the two
fits gives the critical phase-space density for a given ζ, with Dc(ζ)/ζ →
π2/6 as ζ → ∞. (b) Phase-space density in the jz = 0 states computed at
Dc(ζ) (dark blue dots, see text for the derivation). The light blue solid line is
a fit of the data with ζ 7→ ln (1 + ζ)p + c. The values of the fitted parameters
are (with a 95% confidence bound) p = 1.093 ± 0.003 and c = 1.00 ± 0.01.
The black solid line represents the estimate of equation 1.39.

only valid when replacing a discrete sum by an integral, that is when ζ → ∞.
More accurate values of Dc(ζ) are computed in figure 1.2(a).

Note that the line of reasoning of section 1.1.2 would give α = 2, meaning that
a gas in a 2D box and a one dimensional harmonic oscillator in the remaining
direction can undergo Bose-Einstein condensation if the thermodynamic limit
can be taken for all directions. Here, the fact that the integrals were first taken
for the box directions leads to an accumulation of the atoms in the jz = 0 states
and not in the overall ground state of the system.

In order to study the properties of the 2D Bose gas, we want to know what
is the value of D0 at the critical point. Indeed, when ζ → ∞, D0/D = 0 for
D < Dc but at finite ζ, the value of D0 at Dc is not necessarily 0. The value
of D0 at the critical total phase-space densities Dc(ζ) is shown on figure 1.2(b).
For a given value of ζ, the fugacity z is varied until the correponding total
phase-space density D reaches its critical value Dc(ζ) = ζπ2/6 for z = zc. The
phase-space density corresponding to the atoms in the jz = 0 states is then
recorded as D0, c. It is well approximated by the following formula:

D0, c ≃ ln (1 + ζ)1.1 + 1.0 (1.36)

This value can also be evaluated analytically. From equation 1.28, we obtain

D =
∞

∑
n=1

zn

n

1
1 − e−n/ζ

=
∞

∑
n=1

αnzn (1.37)
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If n ≪ ζ, then αn ≃ ζ/n2. If n ≫ ζ, then αn ≃ 1/n. Thus we can approximately
write

D ≃ ζ
ζ

∑
n=1

zn

n2 +
∞

∑
n=ζ+1

zn

n
= ζ

ζ

∑
n=1

zn

n2 +D0 −
ζ

∑
n=1

zn

n
(1.38)

If z → 1 and D takes the critical value Dc = ζπ2/6

D0 ≃ ζ
∞

∑
n=ζ+1

zn

n2 +
ζ

∑
n=1

zn

n
≃ ln ζ + 1 + γ (1.39)

where γ ≃ 0.577 is the Euler-Mascheroni constant. This approximated value
of the phase-space density at the transition point is shown in black solid line
in figure 1.2(b). This means that close to the transition point, the phase-space
density associated to the atoms in the jz = 0 states is logarithmically large at
large values of ζ.

1.2.3 Coherence length at the transverse condensation point

In order to characterize the behaviour of a gas of atoms, it is interesting to look
into its coherence length. Let us consider the value of the wavefunction of one
atom at two points with a distance r. This lengthscale, ℓc, distinguishes the
distances for which the values of the wavefunction are correlated (r < ℓc) and
the distances for which the values of the wavefunction are uncorrelated (r > ℓc).
This length scale is computed by finding the typical length scale over which the
one-body correlation G1 decreases. This correlation function is defined as [91]

G1(r) =
〈

ψ̂†(r)ψ̂(0)
〉

(1.40)

where ψ̂†(r) is the operator that creates a particle at the position r. It can
equivalently be defined as the Fourier transform of the occupation in reciprocal
space (that is for the momentum distribution)

G1(r) = ∑
k

〈

ψ̂†(k)ψ̂(k)
〉

eik·r (1.41)

In the case of transverse condensation, we will be interested in the first-order
correlation function at z = 0, where z is the direction of the harmonic confine-
ment. This function is the sum of all the correlation functions corresponding to
each state of the strongly confining harmonic oscillator jz

G1(r) = ∑
jz

G1,jz(r) (1.42)

=
1

4π2aho
∑
jz

∣
∣χjz(0)

∣
∣2
∫

nk,jz eik·rd2k (1.43)

=
1

4π2aho
∑
jz

∣
∣χjz(0)

∣
∣2
∫

eik·r

z−1ejz/ζeλ2
dBk2/4π − 1

d2k (1.44)

using the solutions of the harmonic oscillator of equation 1.16.
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Figure 1.3: Coherence length in units of the harmonic oscillator length computed from
equation 1.50 for ζ = 1, 2.5, 5, 10, 15, 20, 30, 40, 50 (from yellow to dark
blue) as the total phase-space density is increased. The horizontal black
dotted line represents the value of ℓ at the transition point according to
equation 1.48. The vertical dotted lines represent the phase-space density at
which the transverse condensation should appear. The equality of equation
1.48 is fulfilled at large ζ. The dashed lines represent the limit of equation
1.49.

In the case of a weakly degenerated gas (z ≪ 1):

G1(r) =
1

4π2aho

(

∑
jz

∣
∣χjz(0)

∣
∣2 z e−jz/ζ

)

e−πr2/λ2
dB (1.45)

The first order correlation function is thus a Gaussian with a typical length
scale of λdB/

√
π, giving the value of ℓc ≃ λdB/

√
π in the weakly degenerate

regime (using the length at which the correlation function has been decreased
by a factor 1/e). Note that due to the rotational symmetry of the system G1

depends only on r.
In the case of a strongly degenerated gas, i. e. z ≃ 1, the first order correlation

function at large r function will be a sum of exponentials [79]

G1,jz(r) ∝ exp
(
−r/ℓjz

)
, with ℓjz =

λdB√
4π

exp
(
Djz /2

)
(1.46)

The dominant contribution of the sum is that of the jz = 0 state, such that

ℓc ≃ ℓ0 =
λdB√

4π
exp (D0/2) =

λdB
√

4π(1 − z)
(1.47)

derived in the z ≃ 1 case, but which is also a good approximation in the weakly
degenerate regime z ≪ 1.
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Figure 1.4: Coherence length in units of the thermal wave length computed from equa-
tion 1.50 for ζ = 1, 2.5, 5, 10, 15, 20, 30, 40, 50 (from yellow to dark blue) as
the fugacity z = eβµ is varied. The dotted black line represent the estimate
of equation 1.47 renormalized by 1/

√
ln 6 to account for the fact that ℓ was

computed at r6. All the data collapses onto the same curve, showing the
validity of equation 1.47 over a broad range of fugacities.

At the transverse condensation point, D0 ∼ ln ζ such that

ℓc ≃
aho√

2
(1.48)

In the regime where D > Dc,

ℓc ≃
λdB√

4π
exp [(D −Dc) /2] (1.49)

We numerically check these equations by computing an estimate of the correl-
ation length. We determine the distance r6 such that the value of G1 is divided
by 6 with respect to its value at r = 0 (there is no strong constraint on the choice
of the factor of 6, which can be picked according to the ease of its computation).
We define the length ℓ as

1
ℓ
= − d ln [G1(r)]

dr

∣
∣
∣
∣
r=r6

(1.50)

and compare it to the previous formulas in figures 1.3 and 1.4.
As shown both by the numerical simulation and by the calculation, the in-

plane coherence length increases as the degeneracy increases, but it does not
diverge at the transverse condensation point. Rather, its value is bounded by
the natural length scale of the vertical harmonic oscillator. It is remarkable
that the in-plane coherence properties are controlled by the typical length scale
in the vertical direction. This is a consequence of the dimensional crossover
that happens at the transverse condensation point. The fact that the atoms
in the jz = 0 states become dominant indicates that the chemical potential is
on the order of −h̄ωz, which is also the quantity that determines the in-plane
coherence properties.
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1.3 behaviour of a 2d plane of atoms

In section 1.2, we have seen that in order to have macroscopic occupation of
the ground state of the harmonic oscillator in the vertical direction, we can
either rely on having the chemical potential and temperature smaller than the
typical energy scale set by the harmonic oscillator µ, kBT < h̄ωz or, if ζ =

kBT/h̄ωz > 1, on having a total phase-space density which is high enough
such that the phenomenon of transverse condensation takes place, leading to a
macroscopic occupation of the ground state of the harmonic oscillator as soon
as D > Dc = ζπ2/6. In the former case, the phase-space density associated to
the atoms in the ground state of the harmonic oscillator D0 can take any value.
In the latter case, as soon as D > Dc, i. e. D0/D > 0, the phase-space density
associated to the atoms in the ground state of the harmonic oscillator takes a
non zero value

D0 ≃ D0, c + (D −Dc) (1.51)

where D0, c is given by equation 1.36 or 1.39. In the experiments described in
[82], we will investigate the coherence properties of the atoms confined in the
jz = 0 states. These coherence properties depend on the degree of degener-
acy of the atoms with that quantum number: they depend on the phase-space
density D0. This section is therefore dedicated to describing the properties of
a 2D Bose gas as its phase-space density D0 is varied, in the interacting and
non-interacting case.

1.3.1 Non-interacting Bose gas

The behaviour of a non-interacting Bose gas in 2D can be deduced from the
calculation of the previous section by restricting the sums to the jz = 0 states.

Using the expression of the one-body correlation function defined in section
1.2.3, we find that for a non-degenerate gas with z ≪ 1, the correlations are
Gaussian with a characteristic length scale λdB/

√
2π, which corresponds to

low phase-space densities.
Then, the behaviour of the one-body correlation function changes as the value

of the fugacity is increased; while it remains Gaussian at short distances, it
becomes exponential at large distances (compared to λdB) with a correlation
length given by

ℓc ≃
λdB√

4π
eD0/2 (1.52)

This regime becomes relevant when ℓc & λdB, that is for a phase-space density
D0 & 1. According to the Mermin-Wagner theorem, here in a case with no
interactions, there is no long-range order in the 2D Bose gas since G1(r) → 0
as r → ∞. However, as the phase-space density is increased, the typical length
over which the correlations decay increases exponentially.

This exponential increase of the coherence length is important in the experi-
mental situations which deal with finite systems. There, the gas is constrained
to a box of size L. As soon as the correlation length reaches the size of the
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sample, the one body correlation function takes a finite value for all available
distances in the cloud

∀r 6
√

2L, G1(r) > C > 0 (1.53)

which corresponds to the appearance of a Bose-Einstein condensate [92] at a
phase-space density of

D0, BEC ∝ ln

(

4π
L2

λ2
dB

)

(1.54)

A detailed calculation for the phase-space density at which a Bose-Einstein
condensate appears for a square and disk box is found in [93]. For the range
of values that can be taken by L/λdB in the relevant experimental range that
will be presented in [82], the phase-space density at which full Bose-Einstein
condensation is reached is on the order of D0, BEC = 8 to 10.

In the case of a gas trapped in a 2D box and in a harmonic potential along
the third direction, transverse condensation will happen before Bose-Einstein
condensation if

D0, c ∼ ln ζ < D0, BEC ≈ ln

(

4π
L2

λ2
dB

)

(1.55)

i. e. if
2L2

a2
ho

> 1 (1.56)

meaning that the box containing the gas has to be flat.

1.3.2 The interacting 2D Bose gas

So far, we have only considered Bose gases without interactions, where the
phase transitions are driven by the bosonic statistics. However, degenerate
gases of ultra cold atoms do interact. At low enough temperatures, the interac-
tions can be characterized by a contact potential in three dimensions [94]:

V(ri − rj) =
4πh̄2

M
ascδ(ri − rj) (1.57)

where M is the mass of the particles and asc is the scattering length which is
the only parameter needed to describe low-energy collisions. For rubidium 87,
asc = 5.3 nm [95]. The simplicity of the expression of the interactions in three
dimensions comes from the fact that the scattering amplitude f3D(k) charac-
terizing the scattering state for two particles with relative wave vector k tends
towards a constant for low-energy collisions

f3D(k) −−→
k→0

asc (1.58)

When treating the scattering problem in a 2D geometry, this last equation
does not hold anymore in the general case [96, 97]; the scattering amplitude
f2D keeps a dependence in k at small wave vectors. However, the experiments
that were achieved so far with ultra cold atoms never entered the collisional 2D
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regime for which aho ≪ Rs, where Rs is the range of the scattering potential, on
the order of asc for rubidium 87. They were done in the regime where aho ≫
Rs, meaning that although the motion along the vertical direction is frozen,
the collisions can still be treated as almost three-dimensional. In fact, in that
case, the momentum-dependence of the scattering amplitude is logarithmically
weak, and for the range of momenta relevant to the experiment, the scattering
amplitude can be approximated by a dimensionless number:

f2D(k) ≃
√

8π
asc

aho
= g̃ (1.59)

Degenerate, quasi-2D Bose gases have been realized experimentally with values
of g̃ ranging from 0.01 to 3 [44, 45, 80, 86–89].

If we consider the 2D density of the gas n(2D)(r) as a classical function, the
interaction energy of the gas can then be written as

Eint =
h̄2

2M
g̃
∫ [

n(2D)(r)
]2

d2r (1.60)

We will now briefly describe the behaviour of the equilibrium interacting
2D gas; this is most conveniently done by finding the equation of state of the
system — that is the relation between D0 and µ/kBT. Beyond the two limits that
are discussed below, both numerical calculations and experimental studies have
been performed [80, 88, 98, 99]. Building on density measurements performed
in a 2D harmonic trap, an experimental, fit-free determination of the equation
of state of the 2D Bose gas has been realized as can be seen in Appendix A.

Weakly degenerate regime

In the non-interacting regime, the equation of state is given by the relation

D0 = − ln
(

1 − eµ/kBT
)

(1.61)

In order to know the modification of this equation of state with interactions, the
mean-field Hartree-Fock approximation is used [29, 78]. If the gas is weakly
degenerate, a trial many-body wave function where all single-particle states
factorize can be used to minimize the total energy of the system. The result of
this minimization is that the chemical potential is replaced by µ − 2g̃h̄2n(2D)/M

(where n(2D) is the 2D atomic density) in the previous equation:

D0 = − ln
(

1 − eµ/kBT−g̃D0/π
)

(1.62)

This self-consistent equation can be solved for any value of µ.

Strongly degenerate regime

As the phase-space density of the gas is increased, it is possible to show by a
Bogoliubov analysis that the density fluctuations are reduced. The mean-field
value for the interaction energy of N atoms then yields:

EMF
int =

h̄2

2M
g̃

N2

L2 (1.63)
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and the gas can be described locally by a complex field obeying the Gross-
Pitaevskii equation. In this regime, the Thomas-Fermi approximation will be
used, which neglects the kinetic energy to get

D0 ≃ 2π

g̃

µ

kBT
(1.64)

1.3.3 Superfluid regime: Berezinskii-Kosterlitz-Thouless transition versus Bose-Einstein

condensation

In a finite-size 2D system, according to equation 1.54, a Bose-Einstein condens-
ate appears for high enough phase-space densities. In an interacting, Bose-
Einstein condensed system, the analysis of the excitations using Bogoliubov
techniques leads to the conclusion that there exist sound waves with a linear
dispersion relation ω = csk (cs is the sound velocity). According to Landau’s
criterion, this means that the gas is superfluid, that is that a point-like impurity
can move in the gas without creating any excitations in a frictionless manner
[29, 78]. This “flow without friction” exists as long as the speed of the impurity
is below a critical value given by cs.

For an infinite 2D gas with local interactions, the Mermin-Wagner theorem
states that there cannot be any long-range order: Bose-Einstein condensation is
not allowed for an infinite system. However, this does not necessarily prevent
a superfluid behaviour to exist. Some local coherence exists in a 2D gas: it
can thus be described by a complex field. As mentioned in the previous para-
graph, the amplitude fluctuations of this field are reduced because of repulsive
interaction, while the phase fluctuations still exist. The question which arises
then is whether this system exhibits phase rigidity or, equivalently, a superfluid
behaviour.

The answer was provided in the case of zero amplitude fluctuations by Berez-
inskii, Kosterlitz and Thouless [84, 85]: at high temperature, the existence of
free vortices, that is of phase defects where the phase winds around a point by
an integer multiple of 2π, prevents phase rigidity to appear and leads to vanish-
ingly small correlation lengths. At low temperatures, those vortices only exist
in tightly bound pairs, and they have little influence on the coherence properties
of the gas. The coherence in this cold regime is only determined by phonons,
which leads to an algebraic decay of the correlations and to the appearance
of superfluidity. This change represent an infinite-order phase transition (all
thermodynamic quantities and derivatives are smooth), the BKT transition.

This reasoning has been adapted to the case of quasi-2D ultra cold atoms [79]
and numerical simulations have been performed by Prokof’ev and Svistunov
[98, 99]. For weakly interacting gases, this transition happens at the critical
point

D0, BKT = ln
(

380(3)
g̃

)

(1.65)

(µ/kBT)BKT =
g̃

π
ln
(

13.2(4)
g̃

)

(1.66)
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The superfluid behaviour of a 2D gas has been demonstrated experimentally
and the critical parameters were shown to be consistent with the simulated
values [89, 100]. With a value for g̃ ranging from 0.01 to 0.1, the critical phase-
space density at which the BKT transition happens ranges from 8 to 10.

In finite-size, interacting gases, Bose-Einstein condensation and the BKT trans-
ition can take place. For experimental parameters which will be relevant for the
following chapters, the phase-space densities at which they happen are approx-
imately the same, meaning that it is difficult to distinguish between the two.

1.4 conclusion

As the temperature of a Bose gas is decreased, depending on its dimension and
trapping geometry, it can undergo a Bose-Einstein condensation at the thermo-
dynamic limit where a macroscopic fraction of the atoms occupies the overall
ground state of the system. This is the case for a three-dimension harmonically
trapped or free gas or for a two-dimensional harmonically trapped gas, but not
for a two-dimension free gas.

However, if the thermodynamic limit cannot be taken at the same time for
all degrees of freedom, a mixed situation can appear. This is the case for a gas
which is free in two directions and harmonically confined in the third direction.
There, as the degeneracy of the gas is increased, the lowest state of the harmonic
oscillator becomes macroscopically occupied (while excitations in the two other
directions still exist): this phenomenon is called transverse condensation.

At the thermodynamic limit (i. e. as ζ = kBT/h̄ωz → ∞), as the transition
point, given for a total 2D phase-space density D of π2ζ/6, is approached,
the correlation length increases to reach its critical value of aho/

√
2 and the

phase-space density associated to the atoms in the ground state of the harmonic
oscillator becomes on the order of ln ζ + 1.6. Beyond the transition point, a large
fraction of the atoms accumulate in the ground state of the harmonic oscillator,
allowing to study the properties of a motionaly 2D Bose gas. This technique
is complementary to the regime one usually tends to reach to obtain quasi-2D
Bose gases, which consists in ensuring that the energy spacing between two
levels of the harmonic oscillator is much larger than all the other energy scales,
i. e. ζ → 0.

As soon as the gas can be considered in the quasi-2D regime, the specificities
of low dimensional physics can be studied. In two dimensions, three regimes
can be distinguished: (i) at low degeneracies, i. e. D0 ≪ 1 the gas is in the
normal phase with correlations decaying exponentially fast on length scales
ℓ ∼ λdB; (ii) at phase-space densities on the order of 1, the gas enters the
presuperfluid regime where the length scale over which the correlations expo-
nentially decay becomes larger ℓ ≫ λdB, that is the decay is slower than in the
normal phase. With the presence of interactions, in this regime, density fluc-
tuations start to be reduced. (iii) Last, in the presence of interactions, the gas
undergoes a normal-to-superfluid transition. If finite-size effects are import-
ant, this transition will be the Bose-Einstein condensation. If the box in which
the 2D gas is constrained is arbitrarily large, the transition leading to a su-
perfluid behaviour will be the Berezinskii-Kosterlitz-Thouless transition, where
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phase fluctuations, though large enough to destroy long-range order, are suf-
ficiently small to allow for local phase rigidity, that is a superfluid behaviour.
For typical experimental parameters, these two transitions will appear when
the phase-space density is on the order of 8 to 10.



2
T H E K I B B L E - Z U R E K M E C H A N I S M

Thanks to the development of many theoretical and experimental tools, the
physics of phase transitions is now well understood [101]. It is very interesting
in many aspects:

• A continuous change of parameters leads to a discontinuous or non-
analytic change in the state of the system. In a second order phase
transition, the system goes from a disordered phase where its states re-
spect the symmetries of the underlying Hamiltonian to an ordered phase
which breaks one of the symmetries of the Hamiltonian as a parameter —
for instance temperature — is varied. The ordered phase is characterized
by an order parameter which becomes non-zero as the transition point is
crossed.

• The ordered phase can exhibit interesting properties (such as magnetiza-
tion or superconductivity).

• The behaviour of the properties of a system close to the phase transition
point (correlation length, amplitude of the order parameter, etc.) falls into
a small number of well-identified universality classes, depending only on
general parameters. The properties of the system close to the transition
point are therefore independent of its microscopic details.

These aspects have been extensively studied, in particular using the scaling
assumption and the renormalization group technique for second-order phase
transitions [102, 103]. The variation of many quantities close to the transition
point can often be described by power laws, and the set of critical exponents
that characterizes those variations defines the universality class of a system.

Dynamic properties, i. e. the properties of excitations, have also been stud-
ied close to transition points [104]. There, some dynamical processes become
slower and slower: this is called critical slowing down, and has also received a
lot of attention in the frame of the theory of dynamical critical phenomena [101,
105]. Critical slowing down is characterized by the dynamic critical exponent
z.

The experimental determination of critical exponents has been a long-standing
effort in a variety of systems [102] and usually requires that the system is at
equilibrium.

In this context, a mechanism brought forward by Kibble first in the cosmo-
logical context [106] and then extended by Zurek to condensed matter sys-
tems [107] can help measuring some critical exponents by studying a non-
equilibrium situation. The Kibble-Zurek mechanism describes a quench cool-
ing of the system through a phase transition point; this represents an out-
of-equilibrium situation. Due to the critical slowing down of the dynamics,

23
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the system cannot follow adiabatically the thermal equilibrium state associated
with the time-varying temperature. As a result, defects appear, whose scaling
with the temperature quench slope is predicted to depend only on equilibrium
critical exponents.

In this chapter, I will first describe the relevant critical exponents which are
used for the derivation of the Kibble-Zurek scaling, looking into static and
dynamics of phase transitions. Some systems will be particularly relevant to
the experimental study of chapter 3:

• The mean-field model, which helps to illustrate the concepts of critical
and dynamical scaling.

• The ideal Bose gas close to the BEC transition.

• The ideal Bose gas close to the transverse condensation as described in
chapter 1.

• The 3D-XY model, which describes the properties of interacting Bose
gases.

Then, I will briefly state Zurek’s argument for the scaling law that governs
the density of defects as a function of the temperature quench duration. Last,
typical limitations preventing the observation of the Kibble-Zurek scaling will
be discussed.

2.1 phase transitions and critical slowing down

The aim of this section is to recall the main outcomes of the studies of static
and dynamical aspects of second-order phase transitions.

2.1.1 Static critical exponents

2.1.1.1 Definitions

Let us define the most important static critical exponents. In the following, we
will call ε the distance to the transition point. If the temperature T is varied
close to the critical value Tc, we define

ε =
T − Tc

Tc
(2.1)

Let ψ(r) be the function that characterizes the physical system; it can be a
complex field in the case of Bose-Einstein condensation, the complex gap for
a superconductor, magnetization, etc.; it can be either a scalar or a vectorial
function. We assume that the system is described by its free energy F[ψ]1. The
order parameter is defined as the average value over the thermal fluctuations

1 Actually we need a thermodynamic potential that describes the system and that can be chosen
according to the situation (canonical, grand-canonical ensemble, etc.).
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(see equation 2.3) of ψ(r). At a phase transition, it will increase from zero to
finite values. The exponent that characterizes this evolution is β:

〈ψ(r)〉 =







0 if ε > 0

A |ε|β if ε < 0
(2.2)

where A is a proportionality constant and where the average is:

〈ψ(r)〉 =

∫
Dψ ψ(r) exp (−F[ψ]/kBT)
∫
Dψ exp (−F[ψ]/kBT)

(2.3)

= Z−1
∫

Dψ ψ(r) exp (−F[ψ]/kBT) (2.4)

Here the notation
∫
Dψ represents the sum over all possible configurations of

ψ and Z is the partition function of the system.
A quantity of interest for us is the correlation function G1 which describes

how much the change of the order parameter in r from its mean value affects
its value at position r′:

G1(r, r′) =
〈
ψ(r)ψ(r′)

〉
− 〈ψ(r)〉2 (2.5)

Note that the definition differs from the one provided in chapter 1 (where the
mean squared is not removed). With this definition, G1(r, r′) measures the
correlation length of perturbations with respect to the value of the order para-
meter, rather than correlations in the value of the order parameter. According
to the theory of scaling of phase transition, at the transition point (i. e. ε = 0),
the correlation function decays algebraically

G1(r, r′) ∼
∣
∣r− r′

∣
∣−d+2−η (2.6)

where d is the dimension of r and η is an exponent called “anomalous dimen-
sion”. Away from the transition (i. e. ε 6= 0), the correlation function has an
exponential cut-off at a length ξ

G1(r, r′) ∼ f (r, r′) exp
(
−
∣
∣r− r′

∣
∣ /ξ

)
(2.7)

with f an algebraic function.
The length scale ξ is called the correlation length and also depends on ε with

a power-law

ξ ∝







|ε|−ν if ε > 0

|ε|−ν′ if ε < 0
(2.8)

The various exponents which have been defined so far are summed up in
Table 2.1.

Many other exponents can be defined [101–103] — though they are not inde-
pendent. However, they are not relevant for the discussion of the Kibble-Zurek
mechanism that will follow.
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Quantity Behaviour Exponent

〈ψ(r)〉 = 0 if ε > 0
β

∝ |ε|β if ε < 0

G1(r, r′) ∼ |r− r′|−d+2−η at ε = 0 η

ξ
|ε|ν if ε > 0 ν > 0

|ε|ν′ if ε < 0 ν′ > 0

Table 2.1: Definition of the critical exponents

2.1.1.2 Mean-field approximation

In this section, we will briefly comment on the mean-field approximation, since
it illustrates the concept of scaling. This approximation consists in neglecting
the fluctuations.

Though the mean-field description can describe some properties of the thermal
or of the ordered phase, its validity breaks down close to the critical point; it
is not quantitatively correct very close to a phase transition point in d = 2 or
d = 3, for which more refined analyses based on the renormalization group
approach are needed.

Neglecting fluctuations of the order parameter means taking the saddle point
approximation in equation 2.3. This consist in approximating the weight func-
tion by a Dirac function in ψ0 such that F [ψ] is minimum for ψ = ψ0 or, since
F is a functional in ψ, such that

δF

δψ

∣
∣
∣
∣
ψ0

= 0 (2.9)

Thus, 〈ψ〉 = ψ0.
In order to compute the exponent β in the mean-field picture, one considers

the Ginzburg-Landau functional for the free energy:

F [ψ] = aεψ2 + cψ4 (2.10)

where a and c are posotive constants. It is a free energy for a space-independent
field. The first term has an ε dependence which causes a phase transition to
happen at ε = 0 (ψ acquires a finite value for ε < 0). The second term, with
c > 0, ensures that an arbitrarily large value of ψ always has a large energy cost.
This gives (see for example [101])

β = 1/2 (2.11)

In order to compute ν the mean-field exponent for the correlation length ξ,
let us take the simplest form of free energy that allows for a phase transition
and for spatial fluctuations of the order parameter

F [ψ] =
∫ [

aε |ψ(r)|2 + b |∇ψ(r)|2
]

ddr (2.12)

with a and b two constants. The first term is similar to that of the Ginzburg-
Landau free energy 2.10. The second term represents an energy cost for having
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large spatial fluctuations. The last term of the Ginzburg-Landau functional is
not included. This can be understood by the fact that, close to the transition
point, the order parameter is small such that ψ(r)2 ≫ ψ(r)4. Neglecting this
term means that only configurations where ε > 0 (i. e. T > Tc) will be con-
sidered. For this simple functional, also called the Gaussian model, the critical
exponents can be calculated (see for example [101]) and yield

ν = 1/2 (2.13)

η = 0 (2.14)

In order to compute the critical exponent ν′ which corresponds to the ordered
phase, one needs to allow for some spatial fluctuations in equation 2.3 beyond
the mean-field approximation. This gives ν = ν′ = 1/2 [103, 108].

2.1.1.3 Ideal Bose gas

For the ideal Bose gas approaching the Bose-Einstein condensation transition
point [109], the correlation length can be computed (with a method similar to
that of Chapter 1, subsection 1.2.3):

ξBEC =
λdB

√

2π [−µ/ (kBT)]
=

λdB√
2πα

(2.15)

where α = −µβ. From the expression of the phase-space density for the ideal
Bose gas in three dimensions

DBEC = g3/2(z) (2.16)

one can compute DBEC −Dcritical
BEC in two different ways, one using the approx-

imation [109]

g3/2
(
e−α
)
≈ g3/2(1)−

∣
∣
∣
∣
Γ

(

−1
2

)∣
∣
∣
∣

α1/2 (2.17)

and the other computing (at fixed density) nλ3
dB − nλ3

dB, critical which yields

α ∝ ε2 (2.18)

Hence for the ideal Bose gas
ν = 1 (2.19)

2.1.1.4 Transverse condensation

In the case of the ideal gas phase transition described in chapter 1, the correla-
tion length does not diverge as the system approaches the transverse condensa-
tion transition point; still, its variation depends on the chemical potential of the
gas and diverges as µ → 0. The behaviour of the various quantities (correlation
length, susceptibility, etc.) can be expressed using µ rather than T − Tc. Starting
from Equation 1.47, the correlation length reads:

ξ = ℓc ≃
λdB

√

4π(1 − z)
(2.20)
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For a gas with increasing degeneracy, z → 1 so z = exp (βµ) ≃ 1 + βµ, such
that

ξ ≃ λdB√
4πα

≃ h̄
√

2M (−µ)
∝ |µ|−1/2 (2.21)

where α = −µβ. The exponent ν for the ideal gas close to the transverse
condensation transition point is the same as the mean-field exponent.

If one wants to know the critical exponent associated to the temperature, one
can use the same line of reasoning as in subsection 2.1.1.3 to link the variation
of µ with that of T; knowing that D = ζg2(z) 6 Dc = ζg2(1), one gets (for a
fixed 2D density):

Dc −D = n
[(

λcrit
dB

)2 − λ2
dB

]

≈ 2Dcε ≈ ζε
π2

3
(2.22)

and using[109]
g2(e

−α) ≈ g2(1)− (ln(1/α) + 1) α (2.23)

we find

Dc −D ≈ ζ

[

ln
(

1
α

)

+ 1
]

α (2.24)

such that

ε ∝

[

ln
(

1
α

)

+ 1
]

α (2.25)

Neglecting the logarithmic divergence (dans la limite α → 0), we therefore find

ν = 1/2 (2.26)

(as in the mean-field model). However, the correlation length does not grow
indefinitely. At the transition point (see Chapter 1 subsection 1.2.3):

ξc =
aho√

2
(2.27)

where aho is the harmonic oscillator length associated with the frequency ωz.

2.1.1.5 Interacting Bose gas

For our study, there is a universality class which is of particular interest, which
is that of the interacting Bose gas. This class describes a phase transition of
a three-dimensional system (i. e. r ∈ R3) with a two-dimensional order para-
meter, i. e. ψ is a two-component vector, at some critical temperature Tc. For an
interacting Bose-Einstein condensate, the order parameter is a complex num-
ber (representing the eigenvalue of the particle annihilation operator [29, 78]).
This is also the universality class of liquid helium and may be relevant to trans-
itions in liquid crystals [110]. It is usually named 3D-XY model, reflecting the
dimensionality of the space (r ∈ R3) and of the order parameter (ψ ∈ R2).

This transition is characterized by the appearance of a superfluid density ρs

below the transition point (also called phase stiffness in the context of magnets).
Josephson showed [103, 111] that the superfluid density has a power-law beha-
viour close to the phase transition. Using some measurements on helium, he
states that

ρs ∝ |ε|2/3 (2.28)
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The correlation length close to the transition point is related to ρs (see [105]
section IV.A):

ξ ∝ ρ−1
s (2.29)

Hence
ξ ∝ |ε|−2/3 (2.30)

and
ν′ =

2
3

(2.31)

For the behaviour at ε > 0, it was measured in ultracold atomic gases [112] and
calculated by Monte-Carlo simulations [110, 113–115] and is found to be on the
order of

ν ≈ 2
3

(2.32)

For a review on the various estimates of ν, see for example [110].

2.1.2 Dynamical exponent

2.1.2.1 Definition

In the previous subsection, we have seen how static properties behave close to
the transition point. Experimental studies have shown that dynamic phenom-
ena — for example response to small perturbations — also exhibit a general
behaviour that does not depend on the microscopic details of the system close
to a transition point.

If the system departs from equilibrium, its equilibrium state will be restored
on a certain time-scale τ. The typical time for an excitation with wavevector k

to relax is assumed to follow the general form [101, 105]

τk ∝ k−z A(kξ) = ξz A′(kξ) (2.33)

which is called the scaling hypothesis. Here, ξ is the (static) correlation length
defined in equation 2.7, and A and A′ are functions such that A(x) = xz A′(x) .
This form postulates that the only relevant length scale is the correlation length.
From equation 2.33, one can define a characteristic dissipative frequency ω(k)

[105]
ω(k) ∝ kzΩ(kξ) ∝ ξ−zΩ′(kξ) (2.34)

with Ω(kξ) = 1/A(kξ). This characteristic dissipative frequency has a beha-
viour similar to the dispersion relation of the excitations of the system ̟(k) (if
such a relation exists) in the case where the dynamics has the following form:

Ci
∂ψ(r, t)

∂t
= − δF

δψ(r, t)
(2.35)

as in the Schrödinger equation (C is a constant, h̄ in the case of the Schrödinger
equation).

The equation 2.34 does not mean that the dissipative frequency or dispersion
relation is of the form ω(k) ∝ kz (with no k dependence in the proportionality
coefficient). It means that, in addition to the natural expectation that ω(k) has



30 the kibble-zurek mechanism

to be expressed in terms of the dimensionless quantity kξ, there is an extra
dependence on the correlation length.

The value of z depends on two issues:

• the universality class to which the underlying model belongs, and the
value of its parameters close to the transition point.

• the assumptions made on how a perturbation will relax toward equilib-
rium, as will be illustrated in the following paragraph.

Therefore, the universality classes described in the static case are split up in sev-
eral behaviours according to the relaxation mechanism. The various behaviours
have been gathered in the review by Hohenberg and Halperin [105].

In the following, we will discuss the mean-field case as an illustration of the
previous definitions. We will compute the value of z for the F model, corres-
ponding to the behaviour of interacting Bose gas. Finally, we will propose a
possible mechanism for transverse condensation.

2.1.2.2 Illustration: mean-field theory

The mean-field solution ψ0 for a free energy F is such that

δF

δψ

∣
∣
∣
∣
ψ0

= 0 (2.36)

Now if the state of the system is ψ 6= ψ0, we have to postulate a relaxa-
tion mechanism towards equilibrium. We will consider two cases: (i) a non-
conserved order parameter and (ii) a conserved order parameter.

In the first case, neglecting all fluctuations, we can assume that the state will
relax to the initial state according to the following equation:

∂ψ(r, t)

∂t
= −Γ

δF

δψ(r, t)
(2.37)

The coefficient Γ is a transport — or kinetic — coefficient which we assume to
be constant. The integral of ψ over space is not conserved by this relaxation
mechanism.

We use the free energy of the Gaussian model (equation 2.12):

δF

δψ(r, t)
= 2aεψ(r, t)− b∇2ψ(r, t) (2.38)

Replacing in the Fourier-transformed equation 2.37:

∂ψ(k, t)

∂t
= Γ

(
2aε + bk2)ψ(k, t) (2.39)

A perturbation with wavevector k will thus decay exponentially fast as exp (−t/τk)
with

τk =
1

Γ (2aε + bk2)
(2.40)
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In the small wavelength limit k → 0, we get

τk ∼ 1
2Γaε

∝ ε−1 ∝ ξ2 (2.41)

since ξ ∝ ε−1/2 in the mean-field model. Comparing this to the scaling law of
equation 2.33, we find

z = 2 (2.42)

for the mean-field model with this type of relaxation.
Let us now consider the “conserved order parameter” case. If ψ represents

a particle density, relaxation toward equilibrium cannot happen as in equation
2.37 because this would imply destroying particles. The coefficient Γ is replaced
by a coefficient λ times the laplacian operator, such as in a diffusion equation:

∂ψ(r, t)

∂t
= −λ ∇

2 δF

δψ(r, t)

The same reasoning can be applied to this case and yields

τk =
1

λk2 (2aε + bk2)
=

ξ4

λ
[

a′ (kξ)2 + b (kξ)4
] = ξ4 A(kξ) (2.43)

(using the fact that ε ∝ ξ−2) thus giving z = 4. Here, the characteristic frequency
(equivalent of the dispersion relation obtained for equations of motion such as
equation 2.35) at small k is not ω(k) ∝ kz, but ω(k) ∝ ξ−z (ξk)2.

2.1.2.3 Interacting Bose gas

The dynamic behaviour of the weakly interacting Bose gas follows that of model
F [105]. This takes into account the fact that the order parameter, the eigenvalue
of the annihilation operator, is not conserved. However, the order parameter is
coupled to a conserved quantity, the atom number, via the chemical potential.

In order to discuss the value of the dynamic critical exponent z for the model
F, we consider the excitations of a superfluid below its critical temperature.
These excitations are sound waves, as can be shown by a Bogoliubov analysis
[29, 78]

̟(k) = c̃sk (2.44)

where cs is the speed of sound. As explained in 2.1.2.1, the behaviour of the
characteristic dissipative frequency ω is similar to that of the dispersion rela-
tion ̟. This comes from the similarity between the equation used to derive
the dispersion relation 2.35 and the equation used for the relaxation of a non-
conserved order parameter 2.37. Hence:

ω(k) = csk (2.45)

The velocity cs has actually a very general form, being the square root of a ratio
between a stiffness term and a susceptibility

cs ∝

√
ρs

χ
(2.46)
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In the case of a superfluid, ρs is the superfluid density, which has been showed
to behave as ρs ∝ ξ−1 close to the transition point (see equation 2.29), and χ

corresponds to the specific heat, which has been measured to vary weakly close
to the transition point in liquid helium. This yields the following variation for
the speed of sound close to the critical point:

cs ∝ ξ−1/2 (2.47)

giving for the dispersion relation

ω(k) ∝ ξ−1/2k ∝ k3/2 (kξ)−1/2 (2.48)

Hence
z =

3
2

(2.49)

for the model F. This derivation, using properties of the ε < 0 phase, can be
extended to the ε > 0 phase since the dynamical critical exponent z does not
depend on which side of the transition the system is [105].

2.1.2.4 Ideal gas and transverse condensation

In the case of an ideal gas being cooled, in 3D or in a mixed geometry (trans-
verse condensation), we will make the simple assumption — similar to what
was described in the mean-field case — that a perturbation with wavevector k

will decay with a characteristic time

τk =
1

K
(

−µ + h̄2k2

2M

) (2.50)

This is the non-conserved order parameter case. In the non-degenerate phase,
large fluctuations exists for k ≪ ξ−1 since the value of the order parameter is
not correlated between two points with distance r ≫ ξ; hence this equation is
only interesting for k > ξ−1:

τk < τξ−1 =
1

K (−µ + kBT)
(2.51)

Since we are close to degeneracy, β (−µ) ≪ 1 such that for all relevant k (k >

ξ−1)

τk ≃ 1

K
(

h̄2k2

2M

) = ξ2 2M

Kh̄2 (kξ)2 (2.52)

which yields
z = 2 (2.53)

The dynamical exponent z for the ideal gas close to the transverse condensation
transition point or close to the 3D Bose-Einstein condensation transition is the
same as the mean-field exponent, under this approximation for the relaxation
mechanism.

To summarize, from the static and dynamic analysis of critical phenomena,
the behaviour of various quantities close to a phase transition point can be
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Quantity Exponent Mean-Field Model F
Tranverse Ideal

condensation BEC

ξ ν 1/2 ≈ 2/3 1/2 1

τk z 2 3/2 2 2

Table 2.2: Critical exponent relevant to the Kibble-Zurek prediction for the mean-field
model, for the model F, for the transverse condensation and for BEC in an
ideal gas. In the case of transverse condensation, the quantities ξ and τk
follow a power-law but they do not diverge at the transition point.

described by critical exponents. The two exponents which are going to be im-
portant in the derivation of the Kibble-Zurek scaling are ν, which characterizes
the divergence of the correlation length, and z, which characterizes the critical
slowing down of dynamics close to the transition point, that is, the slowing
down of information propagation. The values of these exponents are summed
up in table 2.2.

2.2 the kibble-zurek prediction

2.2.1 Correlation length and thermalization time

Suppose that we have a system undergoing a second-order phase transition.
At a temperature T close to the transition temperature Tc, we have defined
ε = (T − Tc) /Tc; the correlation length grows as

ξ = ξ0 |ε|−ν (2.54)

where ξ0 depends on the short length scale details of the system; the relaxation
time for a perturbation of wavevector k varies as

τk = ξz A′(kξ) (2.55)

We will consider now the case where the temperature — or equivalently ε —
is varied, and look at the condition under which the system can adiabatically
follow the change in temperature. In order for the system to follow the change
of temperature, any excitation that has been created due to the temperature
variation must have the time to decay. In a rough approximation, the order
parameter will stay constant over a distance of ξ, forming “patches” of size
ξ with constant value. The main wave vectors contributing to excitations that
have to relax in order to follow the dynamics of the quench are those such that

|k| ∼ ξ−1 (2.56)

Indeed, as the temperature is decreased, the equilibrium correlation length in-
creases from ξ to ξ ′. In order to consider that the state follows adiabatically
the varying temperature, the correlations have to change such that the correl-
ation length goes from ξ to ξ ′. Initially, all fluctuations with k < ξ−1 were
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already damped out. The only fluctuations which have to relax to allow adia-
batic following are thus those such that k < ξ ′−1. We can therefore define the
thermalization time τ as the relaxation time for an excitation with a wave vector
of modulus ξ−1:

τ = τξ−1 = ξz A′(1) ∝ ξz (2.57)

We get a temperature variation for the thermalization time which is

τ = τ0 |ε|−νz (2.58)

The exact value of τ0 depends on the details of the system.

2.2.2 Freezing out of the system

The Kibble-Zurek scaling prediction assumes that the size of the “order para-
meter patches” will stop growing as soon as there is not enough time for the
system to thermalize before it reaches the critical temperature. At this time, the
value of the order parameter — for example, the phase of the complex number
describing the order parameter for a weakly interacting condensate — will be
frozen within one “patch”. We assume that ε goes from a positive to a negative
value with ε = 0 at t = 0 and we call t̂ the time at which the dynamics will be
frozen. According to the previous description:

τ
(
ε
(
−t̂
))

≃ t̂ (2.59)

For a given temperature ramp, this equation along with equation 2.58 allows to
find the value of t̂. The typical size over which the order parameter is constant,
that is the typical size of the “patches”, is then ξ̂ = ξ(t̂).

If we consider the case of a linear temperature ramp

ε = − t

τQ
(2.60)

and use the scaling of equation 2.58, the freezing out time is given by

t̂ =
(

τ0τνz
Q

) 1
1+νz

(2.61)

and the size of the “patches” at the freezing out time is

ξ̂ = ξ0

(
τQ

τ0

) ν
1+νz

(2.62)

The size of the phase domains in a quench cooled Bose gas will therefore de-
pend with a power-law scaling on the quench duration.

Some phase transitions are not second-order phase transitions: this is the case
for example of the BKT transition which explains the appearance of a superfluid
behaviour for a 2D system. Close to the transition point, the correlation length
and the thermalization time can still be defined, but their variation as the sys-
tem approaches the transition does not have a power-law behaviour. For the
BKT transition, the coherence length has an exponential divergence close to the
transition point [116]. The value of the coherence length at the time where the
dynamic is frozen will then still depend on τQ, though not with a power-law
scaling [117].
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Figure 2.1: Illustration of the Kibble-Zurek mechanism. Top: Divergence of the correl-
ation length ξ̂ as a function of the distance to the phase transition point
ε. Bottom: Divergence of the thermalization time τ̂ as a function of the
distance to the phase transition point ε (blue) and time remaining until the
phase transition point is crossed t assuming a linear temperature ramp (red).
As τ̂ = t, the system is assumed to be frozen at the correlation length ξ̂. The
distribution of “phase patches” in a ring is illustrated in the top picture, the
grey shaded area represents the correlation lengths that are inaccessible due
to the freezing out of the dynamics.
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2.2.3 Detection of the order parameter variation: topological defects

In this section, we will focus on the case of the order parameter of a Bose-
Einstein condensate; in particular, since this order parameter is a complex
number, we will be interested in its phase, which is the symmetry-breaking
parameter.

After a temperature quench, the distribution of the phase of the condensate is
not uniform as it would be after an infinitely slow cooling procedure: it consists
of areas of typical size ξ̂ where the phase of two points is correlated, while the
phase of points whose distance is larger than ξ̂ is uncorrelated. In a simplified
picture, we can picture the phase distribution consisting of “patches” of size ξ̂.

If we can measure directly the phase of the system, we can access the freezing-
out size ξ̂. A recent experiment using ultracold atoms has been probing directly
the first-order correlation function after a quench cooling [68]. However, this is
usually difficult to do, which is why the Kibble-Zurek prediction was originally
based on the observation of topological defects in the phase. A topological
defect is a perturbation of the phase from the uniform distribution that cannot
be transformed continuously back into a uniform phase distribution. A typical
example of a topological phase defect is a vortex, that is a phase winding of 2π

around a point in a 2D system. Other examples of topological defects include
vortex lines in 3D systems or solitons, i. e. a phase change of π between two
parts of the system. One advantage of topological defects is that they can have
stronger signatures than phase domains. For example, in a 2D degenerate gas,
a vortex can be detected in Time-of-Flight (ToF) experiment as an expanding
density hole. Another advantage is that topological defects do not disappear
easily, so they might live for a long time after the quench has been performed.

Zurek used the prediction on the typical domain size ξ̂ to predict the density
of topological defects [107, 118]. In the naive phase patch picture for a system in
d dimensions, a patch has a volume V ∝ ξ̂d. Depending on the dimension D of
the defect (a point vortex has D = 0, a vortex line D = 1, a soliton D = d − 1),
the scaling of the density of defects can be computed. We will consider two
cases: the case of a vortex in a ring (1D system) and the case of a vortex in a 2D
system.

2.2.3.1 Phase winding in a ring

In this section, we are interested in a narrow ring undergoing a quench cooling.
This is the original situation considered by Zurek [107]. The ring has a circum-
ference of C, and assuming that its width ∆r ≪ ξ̂, the number of “patches”
is

N ∝
C
ξ̂

(2.63)

We will first consider the case where N ≫ 1. In this case, the phase along the
ring is a random walk with N steps such that the average phase between the
first and the last patch while going around the ring is on average

〈|∆ϕ|〉 ∝
√

N (2.64)
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The ring will exhibit a phase winding of W such that the closest multiple of 2π

to ∆ϕ is 2πW . Thus the mean average phase winding in the ring is

〈|W|〉 ∝
√

N ∝ ξ̂−1/2 (2.65)

that is

〈|W|〉 ∝ τ
− ν

2(1+νz)

Q (2.66)

In the opposite case Nd ≪ 1, the scaling can be shown to become [118, 119]:

〈|W|〉 ∝ ξ̂−2 ∝ τ
− 2ν

1+νz

Q (2.67)

2.2.3.2 Vortices in a plane

We are now interested in the density of (point-like) vortices that appear in a
plane of area A undergoing a quench cooling. In this case, the number of
defect is proportional to the number of phase patches [118]:

Nv ∝
A
ξ̂2

(2.68)

To justify this form, let us imagine that the “phase patches” are small squares
of typical length ξ̂ tiling a large square of area A = L2. Calling N = L/ξ̂, there
are (N − 1)2 intersections of four patches. At a given vertex, considering the
phases of the patches as uncorrelated, the probability to have a phase winding
is on the order of 0.33. Thus, the number of vortices should be

N
patches
v = 0.33

(
L

ξ̂
− 1
)2

∼ 0.33
(

L

ξ̂

)2

(2.69)

for ξ̂ ≪ L. The scaling of this equation is in agreement with equation 2.68. Of
course, even in the phase patch picture, the approximation of having a large
square tiled with small squares of size ξ̂ is very crude; with arbitrary patch
shapes, it is more likely to have intersections with three patches (where the
probability of having a phase winding is 0.25), though this does not modify the
(L/ξ̂)2 scaling.

It turns out that this kind of very rough approximate overestimates the num-
ber of vortices with respect to the values which are obtained via numerical sim-
ulations (for example solving the stochastic Gross-Pitaevskii equation). This is
accounted for by using a so-called “fudge factor” f , usually on the order of 10
[118, 120]:

Nv ∼ N
patches
v

f
(2.70)

This factor can come from the fact that the decay of the correlation function is
not abrupt but has an exponential form. Hence, some phase rigidity persists
even for r > ξ̂, making the effective size of the “patches” larger. When perform-
ing a quench, it also is possible that some of the created topological defects
disappear during the end of the quench (for example, annihilation of vortices
of opposite charge), leading to a smaller number of defects than expected in
the “patch” picture.
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Using the scaling of ξ̂, this yields that the number of vortices follows the
scaling law:

Nv ∝ τ
− 2ν

1+νz

Q (2.71)

2.3 limitations to the observation of the kibble-zurek predic-
tion

Let us now state some of the obstacles that must be overcome when trying to
verify experimentally the Kibble-Zurek scaling.

First, experimental verification of a power-law scaling requires in principle
to probe several orders of magnitude in the different parameters, that is in the
topological defect density and in the quench duration, which is a challenging
experimental task. In the case of the BKT transition, the orders of magnitude
that have to be spanned for an accurate determination of the scaling behaviour
are for the moment far out of reach of atomic physics experiments [117]. In
addition, in the case of a power-law behaviour, the values of the exponents to
be measured are small: 1/8 or 1/6 for the phase winding in the ring, depending
on the model (mean-field or model F), and 1/2 to 2/3 in the case of vortices in
a plane, also depending on the model; this makes their accurate determination
more difficult.

Second, the finite size L of the experimental systems can also limit the range
of quench durations to be tested. The scaling behaviour is indeed valid only in
the limits L ≫ ξ̂ or L ≪ ξ̂: the intermediate regime L ∼ ξ̂ does not follow such
simple laws [118].

Last, the picture of two extremely well separated regimes t < t̂ where the sys-
tem follows adiabatically the parameter ε and t > t̂ where the order parameter
is completely frozen is not completely valid [120–122]. Even if the dynamic is
slow below the transition point ε > 0, the system can still evolve. This was
important in the demonstration of Kibble-Zurek scaling in the experiments per-
formed in [68]. Even the density of topological defects, which cannot easily
decay and whose lifetime is therefore long, can evolve during the quench, for
example in the case of annihilation of vortices with opposite charge in a 2D
system [90].

2.4 conclusion

In this chapter, we have recalled the result that, close to phase transition points,
quantities such as the correlation length have a universal behaviour that only de-
pends on some very general parameters of the system (dimensionality, number
of degrees of freedom). In the case of second-order phase transitions, this be-
haviour follows a power-law characterized by critical exponents. For example,
the correlation length ξ diverges a |ε|−ν (where ε is the distance to the trans-
ition point in dimensionless units). Dynamic quantities, such as the time for a
perturbation to relax, also follow a scaling form close to the phase transition,
characterized by the critical exponent z. In particular, a thermalization time τ

can be defined, which varies as |ε|−νz close to the transition.
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Since the thermalization time diverges close to the transition, a system which
is cooled at a finite speed through the transition point cannot stay at equilib-
rium during the whole cooling procedure. Rather, at some point, the system
will be frozen because its dynamics will have become too slow, showing correla-
tions of the order parameter on length scales up to ξ̂. The Kibble-Zurek scaling
[106, 107, 118] predicts the variation of ξ̂ with the duration of the quench using
the exponents ν and z.

This freezing out of the system is most “easily” seen with the formation of to-
pological defects, which are robust features of the order parameter distribution.
As a consequence of the power-law variation of ξ̂, the density of topological
defects can also be shown to vary with a power-law of the quench duration.
This exponent depends on ν, z, the dimension of the system and the type of the
defect.

As a consequence, by varying the quench duration of a system undergoing
a phase transition and measuring the resulting density of topological defects,
one can access the equilibrium critical exponents ν and z that characterize the
transition — although measuring a power-law scaling can be challenging exper-
imentally.
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Q U E N C H I N G T H E B O S E G A S B E T W E E N T H R E E A N D T W O
D I M E N S I O N S

In this chapter, I present the experiments on the crossover between three and
two dimensions due to transverse condensation presented in chapter 1 as well
as quench-cooling experiments whose results were compared to the Kibble-
Zurek mechanism described in chapter 2. These experiments were performed
on an experimental setup stopped in 2014.

First, the main features of the experimental setup (already described in pre-
vious thesis [90, 93, 123, 124]) as well as the preparation of 2D Bose gases
in uniform traps are presented. Then, the appearance of phase coherence in
the cloud is studied by analyzing (i) bimodality in ToF profiles and (ii) inter-
ference fringes when two atomic clouds overlap after expansion. The results
are compared to the predictions for transverse condensation. Last, we observe
topological defects when quench-cooling the gas in two different geometries:
first, point vortices are observed in square clouds; second, supercurrents com-
ing from a phase winding of the wavefunction of the atomic gas in a ring are
detected interferometrically.

3.1 experimental set-up

The experimental set-up used to perform the experiments of sections 3.2 and
3.3 has been extensively described by the previous students working on the
experiment [90, 93, 123, 124]. Therefore, this section will be devoted to recall-
ing and justifying the main technical choices which led to the production of
uniform Bose gases in a tightly confined vertical trap.

3.1.1 Laser set-up

3.1.1.1 Cooling lasers

In order to improve the stability of the laser part of the experiment, I designed
and built a renovated laser table in order to provide nearly resonant light for
the laser-cooling stages, for imaging the atomic cloud as well as for the single-
atom imaging scheme which was planned to be installed on the experiment
[93]. The red-detuned light with respect to the cycling transition of rubidium
87 was provided by a 2.5 W Toptica TA pro laser. The repumping light was
provided by a Radiant Dyes interference filter stabilized external cavity laser
diode (providing 40 mW of light) combined with a Sacher Lasertechnik tapered
amplifier. Laser light of the Toptica TA pro laser was used for

• locking the laser

41
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• producing the Magneto-Optical Trap (MOT) and optical molasses beams

• optical pumping of the cloud to the right magnetic state for loading a
quadrupole trap

• imaging the cloud at the end of the experimental sequence

The light shaping for each of these functionalities was done on different, fiber-
coupled breadboards. In this configuration, the laser set-up can be easily up-
graded, at the cost of a slight power loss due to extra fiber coupling.

3.1.1.2 Dipole trap laser

The far red-detuned light producing the conservative potential for atom trap-
ping and evaporation to degeneracy was provided by a fiber 8.4 W laser at
1064 nm from Azurlight technologies. This laser integrates an analog input that
controls its power. The bandwidth of this analog modulation input was tested
to be 1 kHz. It allows to tune the power of the laser between it maximum power
(8.4 W) to the power of the seed laser (40 mW), providing an extinction ratio of
200. The lowest powers are nevertheless not perfectly suited to trapping of
ultracold atoms due to the important intensity noise.

3.1.1.3 Blue-detuned laser for 2D and box confinement

2D vertical confinement as well as in-plane, horizontal, uniform trapping is
provided by a 10 W laser at 532 nm, a Verdi V10. The light is brought to the
experiment via optical fibers with length up to 4 m, which limits the maximum
power available due to Brillouin scattering. The maximum power of 1 W at the
output of the fibers is obtained using the laser at a restrained operating point
of 4 W and coupling the light into end-capped fibers from Schäfter-Kirchhoff.

3.1.2 Production of degenerate gases

The production of a three dimensional BEC requires an experimental sequence
of 46 s:

Laser cooling and magnetic trap

For 8.5 s, a MOT of several 1010 rubidium 87 atoms is loaded from the back-
ground pressure of a vacuum chamber, then, the atomic cloud is further com-
pressed and cooled during an optical molasses stage. After optical pumping
to the |F = 2, mF = 2〉 state, a first magnetic trap with a vertical gradient of
b′z = 140 G/cm is switched on, trapping 5 · 109 atoms with a temperature of
450 µK.

Magnetic transport

During 6 s, the atoms are transported from the vacuum chamber to a glass cell
through a differential pumping stage by continuous displacement of a quadru-
pole trap with a vertical gradient of 90 G/cm [125]. Back and forth transport of
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1 2 3 4 5 6 7

Figure 3.1: Main experimental steps for creating a 2D uniform Bose gas after the atoms
have been transported to the glass cell. The various steps are (1) radio
frequency evaporation, (2) loading of the optical dipole trap, (3) evaporation
in the dipole trap, (4) loading of the 2D plane and of the box potential, (5)
removal of the atoms not in the central plane, (6) evaporation in the box
potential during a time tevap, (7) hold time during thold.
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Figure 3.2: Schematic view of the two blue-detuned traps providing the 2D box poten-
tial for the atoms. In (a) (1) is the Hermite-Gauss beam providing the 2D,
vertical confinement; (2) is the box potential whose production is explained
in 3.1.3; the atoms are located in (3). The optical system used to produce
the 2D confinement and the box potential is shown in (b).

the cloud leads to the estimation of a one-way loss percentage on the order of
50 %.

Radio-frequency evaporation

After the atoms have been transported in the science cell, the quadrupole trap
is compressed to b′z = 180 G/cm. During 16 s, the atoms are evaporated using
a swept radio-frequency pulse from 30 MHz to 5 MHz that selectively transfers
the most energetic atoms from a trapped to an untrapped state (see step 1 of
figure 3.1). For a detailed analysis of this evaporation procedure and of the
collisional properties of the gas, see [126]. At the end of this stage, there are
∼ 2 · 108 atoms at a temperature of 30 µK.

Loading and evaporation in the hybrid trap

In 2.5 s, the cold cloud of atoms is then transferred in into a far-red detuned
optical dipole trap (step 4 of figure 3.1). The laser beam focus with waists of
50 µm is located 100 µm below the zero of the quadrupole field and has an
initial power on the atoms of 6.7 W. Loading the cloud in the optical dipole
trap is done by reducing the magnetic field gradient to b′z = 12.5 G/cm (this
slightly under compensates gravity). This trap configuration, also called hybrid
trap, was first proposed in [127] and its implementation on our experimental
setup was described in [90, 93]. After decreasing the power of the optical dipole
trap from 6.7 W on the atoms to 40 mW in 13 s, we obtain an almost pure Bose-
Einstein condensate of 105 atoms (step 3 of figure 3.1). The degeneracy of the
atomic cloud is controlled by the end power of the optical dipole trap.

Preparation of a flat atomic gas in a box potential

First, the 2D-confining beam is ramped up (see figure 3.2 and step 4 of figure
3.1); it is a laser beam at 532 nm with a power of 300 mW, shaped into a first
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order Hermite-Gauss mode. This is obtained by inserting in the beam path a
phase plate that imprints a π phase shift to its upper half. The intensity profile
of the blue-detuned light vanishes along the y axis, so that it creates a repulsive
dipole potential on the atoms with a minimum in the z = 0 plane around which
the atoms are confined (see figure 3.2 for a definition of the axes). The waists
on the atoms (without phase plate) are wz = 11 µm and wy = 50 µm. The
frequency of the harmonic potential along the vertical direction z ranges from
ωz/2π = 370 Hz to 1500 Hz. This is achieved either by changing the power of
the laser beam or by changing the position of the Hermite-Gauss focal point
with respect to the atoms. Putting the atoms closer to the focal point increases
the confinement frequency at the expense of an increased potential roughness;
the 2D confinement beam has some defects which are stronger close to its focal
point. The difference of laser power between the center and the outer part
of the Hermite-Gauss beam leads to some anticonfinement in the y direction
(orthogonal to the propagation axis); it is equivalent to an inverted harmonic
potential with frequency ωanti/2π = 4.2 Hz for the largest trapping frequency
considered in the following of ωz/2π = 1.5 kHz.

We then ramp up the box-potential beam (step 5 of figure 3.1, see 3.1.3 for
more details about its production) in 0.1 s to its maximal power (500 mW) as
shown on figure 3.2.

Most of the atoms are loaded in the box potential and into the z = 0 plane.
To remove the atoms which were not trapped in the correct plane or which are
outside the box potential, the magnetic field gradient is quickly varied to let
them escape the trap (step 5 of figure 3.1). After this procedure, the magnetic
field gradient is tuned to a value of 15 G/cm in order to levitate the atoms.

The power of the box-potential beam is then lowered within a time tevap to
its final value (step 6 of figure 3.1) corresponding to a typical barrier height of
45 nK, and kept constant for a time thold (step 7 of figure 3.1). The production of
3D uniform gases in similar “optical box potentials” has recently been reported
in [55].

With the available vertical confinement, the size of the ground state of the ver-
tical confining potential aho ranges from 0.3 to 0.6 µm. This is small compared
to the typical size of the box potentials we imprint in the horizontal plane, from
15 to 30 µm. The atoms number in this type of traps ranges from 1000 to 100 000,
and the temperatures T from 10 to 250 nK. We are able to study the transverse
condensation (see chapter 1) because the parameter ζ = kBT/h̄ωz can span a
large range of values (from 0.2 to 15). Examples of in situ images of 2D gases
with various areas A are shown in figure 3.3.

Expansion and imaging of the atoms

After the preparation of the cloud in a 2D uniform trap, the atoms can be
imaged:

1. in-situ

2. after ToF: all traps are turned off and the atoms are let to fall for durations
up to 12 ms.
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Figure 3.3: (a-d) Examples of in-situ density distributions of uniform gases for different
intensity masks. (a) is a disk of radius 12 µm, (b) a square of length 30 µm,
(c) two rectangular boxes of size 24 µm× 12 µm separated by 4.5 µm, (d) the
so-called “target” potential consisting in a disk of radius 4.5 µm surrounded
by a ring of inner radius 9 µm and of external radius of 15 µm. The scale
bars indicate a length of 10 µm.

3. after a hydrodynamic expansion, also called 2D time-of-flight. In that
case, the box-potential trap is switched off for durations up to 10 ms while
maintaining the vertical confinement. The atoms expand in the horizontal
plane, the density stays important and so do the interactions.

The resolution of the imaging system is on the order of 1 µm. It is provided by
a custom-made microscope objective from Nachet with a focal length of 10 mm,
optimized for a numerical aperture of 0.45 at a wavelength of 780 nm while
imaging through a glass slab of 5 mm.

We measure the atomic density distribution in the xy plane using resonant
absorption imaging along z. We use two complementary values for the probe
beam intensity I. First we use a conventional low intensity technique with
I/Isat ≈ 0.7, where Isat is the saturation intensity of the Rb resonance line, with
a probe pulse duration of 20 µs. This procedure enables a reliable detection
of low density atomic clouds, but it is unfaithful for high density ones, espe-
cially in the 2D geometry due to multiple scattering effects between neighbor-
ing atoms [128]. We thus complement it by a high intensity technique inspired
from [129], in which we apply a short pulse of 4 µs of an intense probe beam
with I/Isat ≈ 401.

In ToF measurements (case 2), the cloud is essentially three-dimensional at
the moment of the detection, hence they are performed using the low-intensity
procedure. For in-situ or after hydrodynamic expansion measurements, the
high-intensity procedure is preferable.

1 This paragraph was originally published in [82]
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3.1.3 Parameter estimation of Bose gases in box potentials

3.1.3.1 Method for producing a hollow beam

Some tests to produce a hollow beam were performed using a phase-plate
producing a Laguerre-Gauss beam of order six [90, 123]. The quality of the
potential was not sufficient for our applications, since the light potential has
defects whose peak intensity can reach 40 % of the maximum intensity. We
therefore turned to direct imaging of a mask onto the atoms to produced dark
regions in the blue-detuned box potential beam with sufficient quality. How-
ever, note that a Laguerre-Gauss beam has been successfully used to produced
three-dimensional box potentials for ultracold atoms [55, 130].

We create the box-like potential in the xy plane using a laser beam that is
blue-detuned with respect to the 87Rb resonance. At the position of the atomic
sample, we image a dark mask placed on the path of the laser beam. This mask
is realized by a metallic deposit on a wedged, anti-reflective coated glass plate2.
The xy confinement of the atoms is provided by a hollow, blue-detuned beam
trapping the atoms in its dark regions. We characterize the box-like character of
the resulting trap in two ways. (i) The flatness of the domain where the atoms
are confined is characterized by the root mean square intensity fluctuations of
the inner dark region of the beam profile. The resulting variations of the dipolar
potential are δU/Ubox ∼ 3%, where Ubox is the potential height on the edges
of the box. The ratio δU/kBT varies from ∼ 40 % at the loading temperature to
∼ 10 % at the end of the evaporative cooling. In particular, it is of ∼ 20 % at
the transverse condensation point for the largest square pattern. (ii) The sharp
spatial variation of the potential at the edges of the box-like trapping region is
characterized by the exponent α of a power-law fit U(r) ∝ rα along a radial cut.
We restrict the fitting domain to the central region where U(r) < Ubox/4 and
find α ∼ 10–15, depending on the size and the shape of the box.1

3.1.3.2 Temperature measurement in the box potentials

Due to the spatial extension of the condensate in a box potential, it is necessary
to perform long ToF in order to separate the thermal from the degenerate part
in very cold samples. Therefore another method for thermometry has been
developed.

All temperatures indicated in this chapter are deduced from the value of the
box potential, assuming that the evaporation barrier provided by Ubox sets the
thermal equilibrium state of the gas. This hypothesis was tested, and the rela-
tion between T and Ubox calibrated, using atomic assemblies with a negligible
interaction energy. For these assemblies, we compared the variance of their ve-
locity distribution ∆v2 obtained from a ToF measurement to the prediction for
the ideal gas description of trapped atomic samples as in Equation 1.6.

The calibration obtained from this set of measurements can be empirically
written as

T(Ubox) = T0

(

1 − e−Ubox/(η kBT0)
)

, (3.1)

2 We thank José Palomo of the ENS clean room for fabricating the masks.
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where the values of the dimensionless parameter η and of the reference tem-
perature T0 slightly depend on the precise shape of the trap. For the square
trap of side 24 µm we obtain T0 = 191 (6) nK and η = 3.5 (3). The reason for
which T saturates when the box potential increases to infinity is due to the re-
sidual evaporation along the vertical direction, above the barrier created by the
horizontal Hermite–Gauss beam.1

3.1.3.3 Estimation of the interaction energy for weakly interacting gases

We estimate the local value of the interaction energy per particle

ǫint = (2πh̄2asc/m)n(3D)(r) (3.2)

where asc = 5.1 nm is the 3D scattering length or 87Rb and n(3D)(r) the spatial
3D density estimated using the ideal gas description. It is maximal at trap
center r = 0 (i. e. z = 0). For example, using a typical experimental condition
with N = 40 000 atoms in a square box of size L = 24 µm at T = 200 nK, we
find a maximal 3D density of n(3D)(0) = 13.8 µm−3.

The mean-field interaction energy for an atom localized at the center of cloud
is then ǫint = kB × 2.1 nK. We note that ǫint is negligible compared to kBT and
h̄ωz for all atomic configurations corresponding to the onset of an extended
phase coherence. In this case the interactions play a negligible role in the 2D
ToF expansion that we use to reveal matter-wave interferences.1

3.1.3.4 Chemical potential in the degenerate interacting regime

To compute the chemical potential µ of highly degenerate interacting gases,
we perform a T = 0 mean-field analysis. We solve numerically the 3D Gross–
Pitaevskii equation in imaginary time using a split–step method, and we obtain
the macroscopic ground state wave-function ψ(r). Then we calculate the dif-
ferent energy contributions at T = 0 for N atoms with mass M – namely the
potential energy Epot, the kinetic energy Ekin and interaction energy Eint – by
integrating over space:

Epot =
N

2
Mω2

z

∫

z2 |ψ (r)|2 d3r (3.3)

Ekin =
Nh̄2

2M

∫

|∇ψ (r)|2 d3r (3.4)

Eint = N2 2πh̄2asc

M

∫

|ψ (r)|4 d3r (3.5)

We obtain the value of the chemical potential µ by taking the derivative of
the total energy with respect to N and subtracting the single-particle ground
state energy:

µ =
1
N

(
Epot + Ekin + 2Eint

)
− h2

4mL2 − 1
2

hνz. (3.6)

In the numerical calculation, we typically use time steps of 10−4 ms and com-
pute the evolution for 10 ms. The 3D grid contains 152 × 152 × 32 voxels3, with
a voxel size 0.52 × 0.52 × 0.26 µm3.

3 Elementary volume cell.
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3.2 experimental evidence for the dimensional crossover

In this section, we use the combination of vertical harmonic and in-plane uni-
form trapping to study the tranverse condensation phenomenon described in
chapter 1. We use two tools to measure the appearance of coherence in the
cloud: (i) the appearance of a bimodal distribution in ToF measurements, in-
dicating an important population of the low in-plane momentum states; (ii) the
study of matter-wave interference fringes. These two methods enable us to find
a critical phase-space density for which, at a given ζ, extended phase coherence
appears in the gas. This critical value is then compared to the predicted values
for the expected transitions in a uniform gas between three and two dimen-
sions: the BEC transition, the BKT transition [44, 45, 86, 100, 131–133] and the
transverse condensation [83, 134, 135]. The results show that the appearance
of in-plane coherence is consistent with the latter mechanism. When the atoms
starts accumulating in the ground state of the vertical harmonic oscillator, they
already have a non-negligible in-plane coherence length (on the order of the
harmonic oscillator length of the vertical confinement, i. e. from 0.28 to 0.55 µm
for the available vertical confinement frequencies).

The rest of the text of this section was originally published in [82].

3.2.1 Phase coherence revealed by velocity distribution measurements

3.2.1.1 Time-of-flight measurements of gases in a box potential

To characterize the coherence of the gas, we study the velocity distribution,
i. e., the Fourier transform of the G1(r) function. We approach this velocity
distribution in the xy plane by performing a 3D ToF: we suddenly switch off
the trapping potentials along the three directions of space, let the gas expand
for a duration τ, and finally image the gas along the z axis. In such a 3D ToF,
the gas first expands very fast along the initially strongly confined direction
z. Thanks to this fast density drop, the interparticle interactions play nearly
no role during the ToF and the slower evolution in the xy plane is governed
essentially by the initial velocity distribution of the atoms. The ToF duration τ

is chosen so that the size expected for a Boltzmann distribution τ
√

kBT/m is
at least twice the initial extent of the cloud. Typical examples of ToF images
are given in figure 3.4. Whereas for the hottest and less dense configurations,
the spatial distribution after ToF has a quasi-pure Gaussian shape, a clear non-
Gaussian structure appears for larger N or smaller T. A sharp peak emerges at
the center of the cloud of the ToF picture, signaling an increased occupation of
the low-momentum states with respect to Boltzmann statistics, or equivalently
a coherence length significantly larger than λdB the thermal wavelength (λdB =

h/
√

2πMkBT).

3.2.1.2 Measuring the bimodality

In order to analyze this velocity distribution, we chose as a fit function the sum
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Figure 3.4: Surface density distribution ρ(x, y) (first row) and corresponding radial dis-
tributions (green symbols) obtained by azimuthal average (second row).
The distribution is measured after a 12 ms time-of-flight for a gas ini-
tially confined in a square of size L = 24 µm, with a trapping frequency
ωz/2π = 365 Hz along the z direction. The temperatures T and atom num-
bers N for these three realizations are (a) and (d): (155 nK, 28 000), (b) and
(e): (155 nK, 38 000), (c) and (f): (31 nK, 19 000). The continuous red lines
are fits to the data by a function consisting in the sum of two Gaussians
corresponding to N1 and N2 atoms (N = N1 + N2). The Gaussian of largest
width (N2 atoms) is plotted as a blue dashed line. The bimodal parameter
∆ = N1/N equals (a) and (d): 0.01, (b) and (e): 0.12 and (c) and (f): 0.60.

Figure 3.5: Variation of ∆ with N for a gas in the same initial trapping configuration as
figure 3.4 (a) and (d) and for T = 155 nK (red symbols). Error bars are the
standard errors of the mean of the binned data set (with 4 images per point
on average). The solid line is a fit to the data by the function f (N) = (1 −
(Nc/N)0.6) forN > Nc, and f (N) = 0 for N 6 Nc, from which we deduce
Nc(T). Here Nc = 3.2 (1) × 104, where the uncertainty range is obtained
by a jackknife resampling method, i. e.fitting samples corresponding to a
randomly chosen fraction of the global data set.
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of two Gaussians of independent sizes and amplitudes, containing N1 and N2

atoms, respectively (see figure 3.4d–f). We consider the bimodality parameter

∆ = N1/N (3.7)

defined as the ratio of the number of atoms N1 in the sharpest Gaussian to the
total atom number

N = N1 + N2 (3.8)

A typical example for the variations of ∆ with N at a given temperature is
shown in figure 3.5 for an initial gas with a square shape (side length L =

24 µm). It shows a a sharp crossover, with essentially no bimodality (∆ ≪ 1)
below a critical atom number Nc(T) and a fast increase of ∆ for N > Nc(T). We
extract the value Nc(T) by fitting the function

∆ ∝ (1 − (Nc/N)0.6) (3.9)

to the data. We chose this function as it provides a good representation of
the predictions for an ideal Bose gas in similar conditions as explained in the
following subsection.

3.2.1.3 Choosing the fit function

We estimate the behavior of ∆(N) at fixed T using Bose law for a ideal gas. We
compute from Equation 1.6 the equilibrium velocity distribution ñ(v). Then we
estimate the spatial density after a ToF of duration τ (for a disk trap of radius
R) via

n(r) ∝ ñ(r/τ) ∗ Θ (r 6 R) (3.10)

where ∗ stands for the convolution operator and Θ for the Heaviside function.
We fit n(r) to a double Gaussian and compute the atom fraction in the sharpest
Gaussian ∆, similarly to the processing of experimental data. To simulate our
experimental results, we consider νz = 350 Hz, R = 12 µm, τ = 14 ms and T

varying from 100 to 250 nK.
For a given T, we record ∆ while varying the total atom number N from

0.06 to 4 times the theoretical critical number for the transverse condensation
Nc,th = ζ(π2/6)A/λ2

dB (see chapter 1). We fit ∆(N) between Nmin = 0.06 Nc,th

and a varying Nmax in 1.1 – 4 Nc,th, to f (N) =
(
1 − (Nc/N)α) with Nc as a

free parameter and a fixed α. For all considered T and Nmax, choosing α =

0.6 provides both a good estimate of Nc (between 0.93 and 0.99 Nc,th) and a
satisfactory fit (average coefficient of determination 0.94).

3.2.2 Phase coherence revealed by matter-wave interference

Matter-wave interferences between independent atomic or molecular clouds is
a powerful tool to monitor the emergence of extended coherence[17, 44, 55, 136,
137]. To observe these interferences in our uniform setup, we first produced two
independent gases of similar density and temperature confined in two coplanar
parallel rectangles, separated by a distance of 4.5 µm along the x direction (see
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Figure 3.6: (a) Example of a density distribution after a 16 ms in–plane expansion
of two coplanar clouds initially confined in rectangular boxes of size
24 × 12 µm2, spaced by d = 4.5 µm (νz = 365 Hz). The region of interest
considered in our analysis consists of 56 lines and 74 columns (pixel width:
0.52 µm). (b) Amplitude of the 1D Fourier transform of each line of the
density distribution. Each line y shows two characteristic side peaks at
±kp(y) above the background noise, corresponding to the fringes pattern
of (a). Here 〈kp〉 = 0.17(2) µm−1. (c) Variation of the average contrast Γ (see
text for its definition) for images of gases at T = 155 nK. Error bars show
the standard errors of the mean of the binned data set (with on average 3

images per point). The solid line is a fit to the data of the function f (N)
defined as f (N) = b for N ≤ Nc and f (N) = b + a (1 − (Nc/N)0.6) for
N > Nc. The parameter b is a constant for a data set with various T taken
in the same experimental conditions. Here we deduce Nc = 3.9 (2)× 104,
where the uncertainty range is obtained by a jackknife resampling method.
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figure 3.3c). Then we suddenly released the box potential providing confine-
ment in the xy plane, while keeping the confinement along the z direction (2D
ToF). The latter point ensures that the atoms stay in focus with our imaging
system, which allows us to observe interference fringes with a good resolution
in the region where the two clouds overlap. A typical interference pattern is
shown in figure 3.6a), where the fringes are (roughly) parallel to the y axis, and
show some waviness that is linked to the initial phase fluctuations of the two
interfering clouds.

We use these interference patterns to characterize quantitatively the level of
coherence of the gases initially confined in the rectangles. For each line y of
the pixelized image acquired on the CCD camera, we compute the x-Fourier
transform ñ(k, y) of the spatial density n(x, y) (figure 3.6b). For a given y this
function is peaked at a momentum kp(y) > 0 that may depend (weakly) on the
line index y. Then we consider the function that characterizes the correlation of
the complex fringe contrast ñ[kp(y), y] along two lines separated by a distance
d

γ(d) =
∣
∣ 〈 ρ̃[kp(y), y ] ρ̃∗[kp(y + d), y + d ] 〉

∣
∣ (3.11)

Here ∗ denotes the complex conjugation and the average is taken over the lines
y that overlap with the initial rectangles. If the initial clouds were two infinite,
parallel lines with the same G1(y), one would have γ(d) = |G1(d)|2 [138]. Here
the non-zero extension of the rectangles along x and their finite initial size along
y make it more difficult to provide an analytic relation between γ and the initial
G1(r) of the gases. However γ(d) remains a useful and quantitative tool to
characterize the fringe pattern. For a gas described by Boltzmann statistics, the
width at 1/e of G1(r) is λdB/

√
π and remains below 1 µm for the temperature

range investigated in this work. Since we are interested in the emergence of
coherence over a scale that significantly exceeds this value, we use the following
average as a diagnosis tool

Γ = 〈γ(d)〉, average taken over the range 2 µm < d < 5 µm (3.12)

For the parameter Γ to take a value significantly different from 0, one needs
a relatively large contrast on each line, and relatively straight fringes over the
relevant distances d, so that the phases of the different complex contrasts do
not average out. For a given temperature T, the variation of Γ with N shows
the same threshold-type behaviour as the bimodality parameter ∆. One ex-
ample is given in figure 3.6c), from which we infer the threshold value for the
atom number Nc(T) needed to observe interference fringes with a significant
contrast.

3.2.3 Scaling laws for the emergence of coherence

We have plotted in figure 3.7 the ensemble of our results for the threshold
value of the total 2D phase-space-density Dc ≡ Nc λ2

dB/A as a function of
ζ = kBT/hνz, determined both from the onset of bimodality as in figure 3.5
(closed symbols) or from the onset of visible interference as in figure 3.6c) (open
symbols). Two trapping configurations have been used along the z direction,
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Figure 3.7: Variation of the threshold phase-space-density Dc = Nc λ2
dB/A for ob-

serving a non-Gaussian velocity distribution (full symbols) and distinct
matter-wave interferences (open symbols), as a function of the dimension-
less parameter ζ = kBT/(h̄ωz). For velocity distribution measurements:
ωz/2π = 365 Hz: disk of radius R = 12 µm (red right triangles), disk of
R = 9 µm (light green up triangle), square of L = 24 µm (blue square),
ωz/2π = 1460 Hz: disk of R = 12 µm (orange right triangles), disk of
R = 9 µm (dark green down triangles). For interference measurements:
ωz/2π = 365 Hz: dark blue open circles, ωz/2π = 1460 Hz: violet open
diamonds. Error bars show the 95% confidence bounds on the Nc para-
meter of the threshold fits to the data sets. The black solid line shows a
linear fit to the data for ζ > 8, leading to Dc = 1.4 (3) ζ. The black dash-
dotted lines show contours of identical ratios of the coherence range to the
thermal wavelength λdB. The coherence range is evaluated by the value of r
at which G1(r) = G1(0)/20 (see text) and we plot (in increasing Dtot order)
ratios equal to 1, 1.2, 1.5, 2, 3 and 8. Boltzmann prediction corresponds to a
ratio of ∼ 0.98.
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ωz/2π = 1460 Hz and ωz/2π = 365 Hz. In the first case, the z direction is
nearly frozen for the temperatures studied here (ζ . 2). In the second one,
the z direction is thermally unfrozen (ζ & 8). All points approximately fall
on a common curve, independent of the shape and the size of the gas: Dc

varies approximately linearly with ζ with the fitted slope 1.4 (3) for ζ & 8 and
approaches a finite value ∼ 4 for ζ . 2.

In the frozen case, a majority of atoms occupy the vibrational ground state
jz = 0 of the motion along the z direction, so that D essentially represents the
2D phase-space-density associated to this single transverse quantum state (see
chapter 1). Then for D ≥ 1, we know from Equation 1.47 and the associated
discussion that a broad component arises in G1 with a characteristic length ℓ

that increases exponentially with the phase-space-density. The observed onset
of extended coherence around D ∼ 4 can be understood as the place where
ℓ starts to exceed significantly λdB. The regime around D ∼ 4 is reminiscent
of the presuperfluid state identified in [45, 86]. It is different from the truly
superfluid phase, which is expected at a higher phase-space-density (D ∼ 8) for
our parameters [99]. Therefore the threshold Dc is not associated to a true phase
transition, but to a crossover where the spatial coherence of the gas increases
rapidly with the control parameter N.

For ωz/2π = 365 Hz, the gas is in the “unfrozen regime” (ζ ≫ 1), which
could be naively thought as irrelevant for 2D physics since according to Boltzmann
statistics, many vibrational states along z should be significantly populated.
However thanks to the transverse condensation phenomenon presented in chapter 1,
a macroscopic fraction of the atoms can accumulate in the jz = 0 state. This hap-
pens when the total phase-space-density exceeds the threshold for transverse
condensation:

Dtot, c ≈
π2

6
ζ. (3.13)

In the limit ζ → ∞, the transverse condensation corresponds to a phase trans-
ition of the same nature as the ideal gas BEC in 3D. In the present context of
our work, we emphasize that although transverse condensation originates from
the saturation of the occupation of the excited states along z, it also affects the
coherence properties of the gas in the xy plane. In particular when D rises from
0 to Dc, the coherence length in xy increases from ∼ λdB (the non-degenerate
result) to ∼ aho, the size of the ground state of the z motion. This increase can
be interpreted by noting that when transverse condensation occurs (equation
3.13), the 3D spatial density in the central plane (z = 0) is equal to g3/2(1)/λ3

dB,
where gs is the polylogarithm of order s and g3/2(1) ≈ 2.612. For an infinite
uniform 3D Bose gas with this density, a true Bose-Einstein condensation oc-
curs and the coherence length diverges. Because of the confinement along the z

direction, such a divergence cannot occur in the present quasi-2D case. Instead,
the coherence length along z is by essence limited to the size aho of the jz = 0
state. When D = Dc the same limitation applies in the transverse plane, giv-
ing rise to coherence volumes that are grossly speaking isotropic. When D is
increased further, the coherence length in the xy plane increases, while remain-
ing limited to aho along the z direction. The results shown in figure 3.7 are in
line with this reasoning. For ζ ≫ 1, the emergence of coherence in the xy plane
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occurs for a total phase-space-density Dc ∝ ζ, with a proportionality coefficient
α = 1.4 (3) in good agreement with the prediction π2/6 ≈ 1.6 of equation 3.13.

We have also plotted in figure 3.7 contour lines characterizing the coherence
range in terms of ζ and D. Using ideal Bose gas theory, we calculated the one-
body coherence function G1(r) and determined the distance r f over which it
decreases by a given factor f with respect to G1(0) (see also subsection 1.2.3).
We choose the value f = 20 to explore the long tail that develops in G1 when
phase coherence emerges. The contour lines shown in figure 3.7 correspond
to given values of r20/λdB; they should not be considered as fits to the data,
but as an indication of a coherence significantly larger than the one obtained
from Boltzmann statistics (for which r20 ≈ λdB). The fact that the threshold
phase-space densities Dc follow quite accurately these contour lines validates
the choice of tools (non Gaussian velocity distributions, matter-wave interfer-
ences) to characterize the onset of coherence.

3.3 creation of topological defects by quench cooling the gas

As explained in chapter 2, for a system undergoing a phase transition, a lot of
information can be retrieved from studying the freezing out dynamics during a
quench cooling as described by the Kibble-Zurek (KZ) mechanism. The density
and scaling of topological defects with the quench duration can indicate which
transition is being crossed and leading to the appearance of phase domains.

The Kibble-Zurek mechanism has already been experimentally studied in a
variety of systems, such as liquid crystals[139], helium [140, 141], ion chains
[142, 143], superconducting loops [144], hydrodynamic systems [145] and Bose-
Einstein condensates [67, 68, 146, 147].

Here, we use the flexibility of our method to produce box potentials of dif-
ferent shapes to study this mechanism. In particular, having a uniform system
brings us closer to the original proposal and scalings by Kibble and Zurek.
However, note that recent experimental and theoretical studies have investig-
ated the influence of introducing a harmonic trap on the Kibble-Zurek scaling
[67, 142, 146, 148, 149].

We study the appearance of topological defects by quench cooling a gas of
atoms in two different configurations. First, point vortices are revealed in short
time-of-flight experiments. Second, supercurrents (i. e. phase windings) created
in a ring of atoms are studied interferometrically by using a trap potential
shaped as a “target” with a disk of atoms surrounded by a ring (see figure
3.3d). The preparation of the gas is similar for both cases and the scaling of the
number of topological defects is recorded as a function of the quench duration
to compare it to the predictions of the KZ mechanism (see chapter 2).

3.3.1 Vortices in square geometries

The text of this subsection was originally published in [82].
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3.3.1.1 Observation of topological defects

From now on we use the weak trap along z (ωz/2π = 365 Hz) so that the
onset of extended coherence is obtained thanks to the transverse condensation
phenomenon. We are interested in the regime of strongly degenerate, inter-
acting gases, which is obtained by pushing the evaporation down to a point
where the residual thermal energy kBT becomes lower than the chemical po-
tential µ (see 3.1.3.4). The final box potential is ∼ kB × 40 nK, leading to an
estimated temperature of ∼ 10 nK, whereas the final density (∼ 50 µm−2) leads
to µ ≈ kB × 14 nK. In these conditions, for most realizations of the experiment,
defects are present in the gas. They appear as randomly located density holes
after a short 3D ToF (figure 3.8), with a number fluctuating between 0 and 5. To
identify the nature of these defects, we have performed a statistical analysis of
their size and contrast, as a function of their location and of the ToF duration
τ (figure 3.8 c and d, and next subsection). For a given τ, all observed holes
have similar sizes and contrasts. The core size increases approximately linearly
with τ, with a nearly 100 % contrast. This favours the interpretation of these
density holes as single vortices, for which the 2π phase winding around the
core provides a topological protection during the ToF. This would be the case
neither for vortex–antivortex pairs nor phonons, for which one would expect
large fluctuations in the defect sizes and lower contrasts.

3.3.1.2 Analysis of the density holes created by the vortices

We first calculate the normalized density profile n/n̄ where the average n̄ is
taken over the set of images with the same ToF duration τ. Then we look for
density minima with a significant contrast and size. Finally for each significant
density hole, we select a square region centered on it with a size that is ∼ 3
times larger than the average hole size for this τ. In this region, we fit the
function

A0

[

1 − c + c tanh
(√

x2 + y2/ξ

)]

(3.14)

to the normalized density profile, where A0 accounts for density fluctuations.
We also correct for imaging imperfections (finite imaging resolution and finite
depth of field) by performing a convolution of the function defined in equation
3.14 by a Gaussian of width 1 µm, which we determined from a preliminary
analysis.

3.3.1.3 Dynamical origin of the topological defects

In principle the vortices observed in the gas could be due to steady-state
thermal fluctuations. BKT theory indeed predicts that vortices should be present
in an interacting 2D Bose gas around the superfluid transition point [85]. Such
“thermal” vortices have been observed in non-homogeneous atomic gases, either
interferometrically [44] or as density holes in the trap region corresponding to
the critical region [133]. However, for the large and uniform phase-space dens-
ities that we obtain at the end of the cooling process (nλ2

dB ≥ 100), Ref. [152]
predicts a vanishingly small probability of occurrence for such thermal excita-
tions. This supports a dynamical origin for the observed defects.
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Figure 3.8: (a) and (b): Examples of density distributions after a 3D ToF of τ = 4.5 ms
for a gas initially confined in a square of size L = 30 µm (ωz/2π = 365 Hz).
The two examples show respectively one (a) and three (b) holes of high con-
trast, corresponding to topologically protected expanding vortex cores. We
fit each density hole by a hyperbolic tangent dip convoluted by a Gaussian
of waist w = 1 µm accounting for imaging imperfections (see subsection
3.3.1.2). (c) Evolution of the average size ξ (red circles, left labels) and con-
trast c (green triangles, right labels) of density holes with the expansion
duration τ. No holes are visible for τ . 0.5 ms. Red circles and dark green
left triangles are results from a fit accounting for imaging imperfections
while light green right triangles show contrast resulting from a fit without
a convolution by a Gaussian. (d) Variation of the hole size ξ (red circles,
left labels) and contrast c (green triangles, right labels) with the distance to
the nearest edge of the box (same configuration than (a) and (b) : ToF of
τ = 4.5 ms for a gas in a square of L = 30 µm). For a distance larger than
∼ 4 µm, ξ and c are approximately independent from the vortex location.
The average values in (c) are taken over all holes independent of their po-
sitions. One point in (c) (resp. d) corresponds to 15 (resp. 70) vortex fits.
Error bars show standard deviations of the binned data set.
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Figure 3.9: (a) Circle symbols: evolution of the mean vortex number NV with the
quench time tevap (fixed thold = 500 ms) for a gas initially confined in a
square of size L = 30 µm (ωz/2π = 365 Hz) and observed after a 3D ToF of
τ = 4.5 ms. The number of images per point ranges from 37 to 233, with a
mean of 90. We restrict to tevap > 50 ms to ensure that local thermal equi-
librium is reached at any time during the evaporation ramp [150]. Red line:
fit of a power-law decay to the short time data (tevap ≤ 250 ms), giving the
exponent d = 0.69 (17). The uncertainty range on d is the 95% confidence
bounds of a linear fit to the evolution of log(NV) with log(tevap). For longer
quench times, the mean vortex numbers are compatible with a plateau at
NV = 0.35 (5). (b) Circle symbols: evolution of the mean vortex number
NV with the hold time thold (fixed tevap = 50 ms) in the same experimental
configuration as (a). The number of images per point ranges from 24 to 181,
with a mean of 59. In both figures error bars are obtained from a bootstrap-
ping approach. Red line: results from a model describing the evolution of
an initial number of vortices NV,0 = 2.5(2) in the presence of a phenomeno-
logical damping coefficient [151]. The inferred superfluid fraction is 0.94 (2).
Confidence ranges on these parameters are obtained from a χ2-analysis.
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To investigate further this interpretation, we can vary the two times that
characterize the evolution of the gas, the duration of evaporation tevap and the
hold duration after evaporation thold (see figure 3.1). For the results presented
in this section, we fixed thold = 500 ms and studied the evolution of the average
vortex number NV as a function of tevap. The corresponding data, given in
figure 3.9a), show a decrease of NV with tevap, passing from NV ≈ 1 for tevap =

50 ms to NV ≈ 0.3 for tevap = 250 ms. For longer evaporation times, NV remains
approximately constant around 0.35 (5).

The decrease of NV with tevap suggests that the observed vortices are nucle-
ated via a Kibble–Zurek (KZ) type mechanism [106, 107, 153], occurring when
the transition to the phase coherent regime is crossed. However applying the
KZ formalism to our set-up is not straightforward. In a weakly interacting, ho-
mogeneous 3D Bose gas, BEC occurs when the 3D phase-space-density reaches
the critical value g3/2(1). For our quasi-2D geometry, transverse condensation
occurs when the 3D phase-space-density in the central plane z = 0 reaches
this value. At the transition point, the KZ formalism relates the size of phase-
coherent domains to the cooling speed Ṫ. For fast cooling, KZ theory predicts
domain sizes for a 3D fluid that are smaller than or comparable to the thickness
aho of the lowest vibrational state along z; it can thus provide a good descrip-
tion of our system. For a slower cooling, coherent domains much larger than
aho would be expected in 3D at the transition point. The 2D nature of our gas
leads in this case to a reduction of the in-plane correlation length. In the slow
cooling regime, we thus expect to find an excess of topological defects with
respect to the KZ prediction for standard 3D BEC.

More explicitly we expect for fast cooling, hence short tevap, a power-law
decay NV ∝ t−d

evap with an exponent d given by the KZ formalism for 3D BEC.
The fit of this function to the measured variation of NV for tevap ≤ 250 ms
leads to d = 0.69 (17) (see figure 3.9a). This is in good agreement with the
prediction d = 2/3 obtained from the critical exponents of the so-called “F
model” (see [105], subsubsection 2.1.1.5 and subsubsection 2.1.2.3), which is
believed to describe the universality class of the 3D BEC phenomenon. For
comparison, the prediction for a pure mean-field transition, d = 1/2, is notably
lower than our result.

For longer tevap, the above described excess of vortices due to the quasi-2D
geometry should translate in a weakening of the decrease of NV with tevap.
The non-zero plateau observed in figure 3.9a) for tevap ≥ 250 ms may be the
signature of such a weakening. Other mechanisms could also play a role in the
nucleation of vortices for slow cooling. For example due to the box potential
residual rugosity, the gas could condense into several independent patches of
fixed geometry, which would merge later during the evaporation ramp and
stochastically form vortices with a constant probability.

3.3.1.4 Lifetime of the topological defects

The variation of the number of vortices NV with the hold time thold allows one
to study the fate of vortices that have been nucleated during the evaporation.
We show in figure 3.9b) the results obtained when fixing the evaporation to
a short value tevap = 50 ms. We observe a decay of NV with the hold time,
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from NV = 2.3 initially to 0.3 at long thold (2 s). To interpret this decay, we
modelled the dynamics of the vortices in the gas with two ingredients: (i) the
conservative motion of a vortex in the velocity field created by the other vortices,
including the vortex images from the boundaries of the box potential [154], (ii)
the dissipation induced by the scattering of thermal excitations by the vortices,
which we describe phenomenologically by a friction force that is proportional
to the non-superfluid fraction of atoms in the gas [151]. During this motion, a
vortex annihilates when it reaches the edge of the trap or encounters another
vortex of opposite charge. The numerical solution of this model leads to a non-
exponential decay of the average number of vortices, with details that depend
on the initial number of vortices and their locations.

Assuming a uniform random distribution of vortices at the end of the evap-
oration, we have compared the predictions of this model to our data. It gives
the following values of the two adjustable parameters of the model, the ini-
tial number of vortices NV,0 = 2.5 (2) and the superfluid fraction 0.94 (2); the
corresponding prediction is plotted as a continuous line in figure 3.9b). We
note that at short thold, the images of the clouds are quite fuzzy, probably be-
cause of non-thermal phononic excitations produced (in addition to vortices)
by the evaporation ramp. The difficulty to precisely count vortices in this case
leads to fluctuations of NV at short thold as visible in figure 3.9b). The choice
thold = 500 ms in figure 3.9a) was made accordingly.

The finite lifetime of the vortices in our sample points to a general issue that
one faces in the experimental studies on the KZ mechanism. In principle the
KZ formalism gives a prediction on the state of the system just after crossing
the critical point. Experimentally we observe the system at a later stage, at a
moment when the various domains have merged, and we detect the topological
defects formed from this merging. In spite of their robustness, the number
of vortices is not strictly conserved after the crossing of the transition and its
decrease depends on their initial positions. A precise comparison between our
results and KZ theory should take this evolution into account, for example
using stochastic mean-field methods [155–158].

3.3.2 Supercurrents in ring geometries

The text of this subsection was originally published in [159].

Fluids in annular geometry are ideally suited to investigate the role of topo-
logical numbers in quantum mechanics. The phase winding of the macroscopic
wavefunction around the annulus must be a multiple of 2π, ensuring the quant-
ization of the circulation of the fluid velocity. The resulting supercurrents have
been observed in superfluid systems such as superconductors [160], liquid he-
lium [161] and atomic gases [51, 162]. Studying these currents is crucial for the
understanding of quantum fluids, as well as for realizing sensitive detectors
like magnetometers [163] and rotation sensors [164].

Supercurrents in annular atomic Bose-Einstein condensates are usually cre-
ated in a deterministic way by using laser beams to impart angular momentum
on the atoms [51, 53, 162] or by rotating a weak link along the annulus [165].
Supercurrents can also have a stochastic origin. They may result from thermal
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fluctuations or appear as topological defects following a rapid quench of the
system. The latter mechanism was put forward by Kibble and Zurek, who
studied the phase patterns that emerge in a fluid, when it undergoes a fast
crossing of a phase transition point [106, 107].

For a superfluid confined in a ring geometry, which is the configuration ori-
ginally considered by Zurek [107], the frozen phase of the wavefunction may
lead to a supercurrent of charge q, i.e. a 2πq phase winding along the ring. In
this section, we study a setup realizing this gedanken experiment using a quasi
two-dimensional Bose gas trapped in an annular geometry. For each realization
of the experiment, we use matter-wave interference between this annulus and
a central disk acting as a phase reference, to measure the charge as well as the
direction of the random supercurrent 4.

3.3.2.1 Experimental sequence

Our experiments are performed with a Bose gas of 87Rb atoms. Along the ver-
tical z direction the gas is confined using a harmonic potential with frequency
ωz/2π = 370 Hz (see section 3.1.2). In the horizontal xy plane, the atoms are
trapped in the dark regions of a “box-potential” beam, engineered using an
intensity mask located in a plane optically conjugated to the atom cloud (see
figure 3.2 and 3.3e). We use a target-like mask, consisting of a disk of radius
R0 = 4.5 µm surrounded by a ring of inner (resp. outer) radius of Rin = 9 µm
(resp. Rout = 15 µm) (figure 3.3d).

The typical time sequence for preparing the gas starts by loading a gas with
a 3D phase-space density ≈ 2.4 slightly below the condensation threshold5

with the box-potential beam at its maximal power. Then we linearly lower
this power by a factor ∼ 50 in a time tevap to evaporatively cool the atomic
cloud and cross the superfluid transition [100]. Last we keep the atoms at
a constant box potential depth during a time thold. The final temperature is
∼ 10 nK (see subsection 3.1) with similar surface densities in the ring and the
disk: n ∼ 80 µm−2. The typical interaction energy per atom is Eint/kB ≈ 8 nK,
and the gas is marginally quasi-2D with kBT, Eint ∼ h̄ωz. These parameters
correspond to a large 2D phase-space density, D = nλ2

dB > 100, so that the gas
is deeply in the superfluid regime at the end of the evaporation ramp.

At the end of the sequence, using the technique described in subsection
3.1.3.4 the chemical potential is computed for a disk-shaped trap of R = 12 µm
with Nat = 36 000 atoms (corresponding to the same surface density as in the
experiments presented here: n(2D) = 80 µm−2). We find Eint/Nat ≈ kB × 8 nK.
We also checked that the residual anticonfinement along the y direction has
little influence on the equilibrium distribution.

The fastest ramp of the box-potential beam we use (25 ms) is still slow enough
for the evaporation process to take place and to identify this ramping down as
a quench of the temperature of the system: we calculated the typical elastic
collision time when crossing the transition to be a few milliseconds [150].

4 A similar method has recently been developed to investigate the supercurrent generated by a
rotating weak link [166]

5 The estimated total atom number 76000 and the temperature is 210 nK. With these parameters,
we never observe any interference fringes such as those of figure 3.10.
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Figure 3.10: Experimental interference patterns. Examples of interference patterns after
expansion in the 2D plane, along with constrast-amplified pictures. (a)
without phase winding, (b) with phase winding −2π, (c) with phase wind-
ing +2π, (d) with phase winding +4π.
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Figure 3.11: Study of the winding number. (a) and (b) Histograms showing the statist-
ical appearance of winding number nwind for thold = 0.5 s. (a) We show
the result of 39 realizations for tevap = 2 s. We get 〈nwind〉 = 0.03 (8).
(b) We show the result of 36 realizations for tevap = 0.025 s. We get
〈nwind〉 = 0.19 (14). (c) Mean absolute winding number 〈|nwind|〉 as a
function of hold time (tevap = 2 s). The data is fitted with an exponential
with a time constant of 7 s. (d) Mean absolute winding number 〈|nwind|〉
as a function of evaporation time (thold = 0.5 s) in log-log scale. The line is
a power-law fit to the data, 〈|nwind|〉 ∝ t−α

evap, gives α = 0.19 (6). The uncer-
tainty on 〈nwind〉 and the bars on figure (c) and (d) represent the statistical
error determined with a bootstrapping approach.

3.3.2.2 Interferometric detection of the supercurrent

We use matter-wave interference to probe the relative phase distribution between
the cloud in the central disk and the one in the ring. We abruptly switch off the
box-potential while keeping the confinement along the z direction. The clouds
experience a hydrodynamical expansion during which the initial interaction
energy is converted into kinetic energy. After 7 ms of expansion, we record
the interference pattern by imaging the atomic gas along the vertical direction.
Typical interference patterns are shown in figure 3.10. Most of them consist
in concentric rings, as expected for a quasi-uniform phase distribution in the
disk and the annulus. However we also observe a significant fraction of spiral
patterns, revealing the presence of a phase winding in the wavefunction of one
of the two clouds.

We developed an automatized procedure to analyze these patterns, which
reconstructs the phase φ(θ) of the fringes along a line of azimuthal angle θ

(see subsection 3.3.2.3). From the accumulated phase ∆φ as the angle θ varies
from 0 to 2π, we associate to each pattern a winding number nwind = ∆φ/2π,
which is a positive, null or negative integer. This number is recorded for many
realizations of the same experimental sequence. Examples of the probability
distribution of nwind are shown on figure 3.11 a and b. The measured histo-
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grams are compatible with a zero mean value. The observed asymmetry on
figure 3.11 b (mean value is 1.4 times the standard deviation) is compatible
with the number of realizations: the probability to have a standard deviation
equal or larger than this one is 17%. For example, if we use all the data presen-
ted on figure 3.11c and 3.11d we find〈nwind〉 = 0.002 (20). This confirms the
stochastic nature of the mechanism at the origin of this phase winding.

Each data point in figure 3.11 is the average of 15 to 50 realizations. Error
bars for the mean absolute winding number are obtained using a bootstrapping
approach. From the initial set of data, 10 000 draws with replacement of data-
sets with the same length as the initial sample are made. For each draw, the
mean absolute winding number is calculated. Then, using the bias corrected
and accelerated percentile method [167], the one-standard deviation confidence
interval is calculated6.

3.3.2.3 Reconstruction of the phase profile

For each picture, the center is determined manually. The shot-to-shot variation
of this center is small (≈ 0.5 µm) and comparable to the independently meas-
ured position stability of the initial cloud. We checked that such an offset on
the center does not lead to large modification of the results. Then we proceed
in two steps to reconstruct the phase profile, contrast amplification and fit. To
amplify the contrast, the pictures are first convoluted by a 2× 2 matrix with con-
stant coefficients. This filters out high frequency noise but does not blur the in-
terference pattern. Then radial cuts with angle θ ∈ {0, 2π/n, · · · , 2π(1− 1/n)}
are performed (typically n = 150), and the positions of local maxima are recor-
ded, giving the contrast amplified picture.

To retrieve the phase, we perform a convolution of the contrast amplified pic-
ture with a gaussian of width 3 pixels and we fit radial cuts of the convoluted,
contrast-amplified pictures with the following function

f (r, k, φ, A, c) = A sin (kr + φ) + c (3.15)

for points with distance to the center r ∈ [rmin, rmax]. First, the parameter k is
left as a free parameter to fit the radial cuts. Then the averaged kmean over all
fits is taken as a fixed parameter and all the radial cuts are fitted again. The
phase φ is recorded as a function of the angle θ of the radial cut.

3.3.2.4 Location of the phase winding

The first question that arises is the origin of the observed phase winding, which
can be due either to a vortex in the central disk or to a quantized persistent
current in the outer ring. We can experimentally eliminate the first possibility
by noticing that when doing a 3D ballistic expansion (by switching-off both
the box-potential beam and the confining beam in the z direction) we never
observe any vortex signature in the small disk of radius R0 = 4.5 µm. By
contrast, in larger structures such as the square represented in figure 3.3b), we
can detect deep density holes revealing the presence of vortices as presented

6 For more information about bootstrapping, see Appendix D
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in subsection 3.3.1. Hence we conclude that the spiral interference patterns of
figure 3.10 reveal the presence of a supercurrent in the annulus, whose charge
and orientation correspond to the modulus and sign of the winding number
nwind. The lifetime of this supercurrent is similar to the cloud lifetime (see
figure 3.11c).

3.3.2.5 Origin of the supercurrent

We now discuss the origin of the observed supercurrents, which can be either
thermal excitations or result from the quench cooling. If these currents had a
thermal origin, their probability of occurrence would be given by the Boltzmann
law p(nwind) ∝ exp [−E(nwind) / kBT], where the (kinetic) energy of the super-
current is

E(nwind) = n2
wind

πh̄2n(2D)

m
ln (Rout/Rin) (3.16)

This leads to
p(nwind) ∝ (Rin/Rout)

n2
windD/2 (3.17)

which is negligible for nwind 6= 0 for our large phase space densities D > 100, in
clear disagreement with the typical 20-50% of pictures showing phase winding.
Note that the probability for a vortex to appear in the central disk as a thermal
excitation is even smaller than (3.17) because Rin and Rout should be replaced
respectively by the healing length (. 0.5 µm) and R0.

To check that the quench cooling is indeed responsible for the formation of
these supercurrents, we study the variation of 〈|nwind|〉 for evaporation times
spanning two orders of magnitude. The comparison between the results for a
slow quench (figure 3.11a) and a fast quench (3.11b) show that the latter indeed
increases the probability of occurrence of a supercurrent, as expected for the
KZ mechanism [106, 107]. We summarize in figure 3.11d) the experimental
variation of 〈|nwind|〉 with tevap, and find that it increases from 0.2 (tevap = 2 s)
to 0.6 (tevap = 0.025 s). A power-law fit to the data, inspired by the prediction
for the KZ mechanism, leads to 〈|nwind|〉 ∝ t−α

evap with α = 0.19 (6).

3.3.2.6 Comparison with the Kibble-Zurek scenario

To interpret our results we have developed a simple one-dimensional (1D)
model following the KZ scenario presented in [107, 157]. We consider a 1D
ring of perimeter L and we assume that, when the normal-to-superfluid trans-
ition is crossed, N domains of uniform phase φj, j = 1, . . . , N are created. Each
run of the experiment is modeled by a set {φj}, where the phases φj are inde-
pendent random variables drawn in (−π, π] (with φ1 = 0 by convention). For
each set of {φj} we calculate the total phase variation along the ring Φ = ∑j φj

and define nwind as the nearest integer to Φ/2π. We then average over many
draws of the set {φj}.

We report on figure 3.12 the result of this calculation of the average absolute
winding number 〈|nwind|〉 obtained as a function of N the number of domains
with different phases. For large values of N we find that 〈|nwind|〉 scales like√

N as expected for a sum of a large number of independent random variables
(see subsubsection 2.2.3.1). Our experimental range 0.2 ≤ 〈|nwind|〉 ≤ 0.6 is
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Figure 3.12: Average absolute winding number as a function of the number of phase
domains in log-log scale. The points are the results of the simulation and
the line is the power-law fit to the relevant points for the experiments
described here.

obtained for 3 ≤ N ≤ 10; in this range, we do not expect to recover an exact
power-law behavior but we can still fit a power-law scaling to our data and get

〈|nwind|〉 ∝ N0.8 (3.18)

Then we use the general prediction for the KZ mechanism to relate the typical
length ξ̂ = L/N of a domain to the quench time tevap (see e.g. [157] and
Equation 2.62)

ξ̂ ∝ t
ν/(1+νz)
evap (3.19)

where ν and z define the universality class of the transition (see section 2.1): ν

is the correlation length critical exponent and z the dynamic critical exponent.
Using z = 2 and ν = 1/2 relevant for a mean-field description of a 1D ring-
shaped system [157], we get

ξ̂ =
L

N
∝ t1/4

evap (3.20)

Combining (3.19) and (3.20), we predict with this simple model

〈|nwind|〉 ∝ t−1/4×0.8
evap ≈ t−0.2

evap (3.21)

which is in agreement with the experimental result α = 0.19 (6).

3.3.2.7 Discussion

There are two main assumptions that could limit the validity of this model.
First, our system is not uni-dimensional in terms of relevant single particle
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Figure 3.13: Analysis of the phase profiles. (a) Typical phase distribution reconstruc-
ted from the phase profile φ(θ) of the interference pattern of figure 3.10b
showing a winding number of −1. (b) Real value of the angular correl-
ation function reconstructed from the phase of the interference patterns
with 18 realizations of tevap = 2 s and thold = 4 s. When nwind 6= 0 the
linear phase winding is substracted before computing g1.

eigenstates. However, we find for our parameters that ξ̂ is in the range 7–
25 µm7, 8; this is always larger than the width of our annulus and justifies the
use of a 1D model for describing the phase coherence properties of the gas.
Second, this model does not take into account beyond mean-field effects, re-
lated to either the finite size of the system or the crossover between standard
BEC and the Berezinskii–Kosterlitz–Thouless mechanism. This could change
the value of the critical exponents and even lead to deviations with respect to
the power-law scaling of (3.19) [168].

3.3.2.8 Beyond topological defects: measurement of the phase fluctuations

We show that one can extract information from the interference patterns, which
goes beyond the determination of the topological number nwind. In particular
the ripples of the fringes are related to the phase distribution of the fluids in the
central disk and the ring, which is characterized by the one-body correlation
function g1. This function plays a specially important role for low-dimensional
systems, since it indicates how long-range order is destroyed by thermal phon-
ons. To give an estimate of g1, we study the angular dependance of the phase
of the fringes φ(θ) as shown on figure 3.13a). In particular we consider the
periodic function

δφ(θ) = φ(θ)− nwind θ (3.22)

which describes the deviation of the reconstructed phase from a perfect linear
winding. We construct the angular correlation function:

g
(exp)
1 (θ) = 〈ei[δφ(θ′)−δφ(θ′+θ)]〉θ′ , realizations (3.23)

where the average is taken over all images irrespective of the value of nwind,
and which is expected to be real in the limit of a large number of realizations.

A typical example for Re[g(exp)
1 ] is given in figure 3.13b), where the minimum

7 An estimate of ξ̂ for our geometry is π (Rin + Rout)/N

8 We note that ξ̂ is then larger than the size R0 of the central disk. This confirms the fact that we
do not expect the presence of vortices in this disk
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Figure 3.14: Comparison between the phase fluctuations of an initial state in the an-
nulus (δφ̃, solid line) and the phase profile deduced with the interference
method used in the experiment (δφ, red points).

for θ = π gives an indication of the phase coherence between diametrically

opposite points. This measured angular correlation function g
(exp)
1 (θ) can be

used to reconstruct the first-order correlation function of the gas in the annulus.

To relate quantitatively g
(exp)
1 (θ) to the coherence properties of the gas in the

ring, two hypotheses are needed: (i) We suppose that the fluid in the central
disk acts as a phase reference, so that the ripples of the fringes come essentially
from the phase fluctuations in the ring. Indeed the small size of this disk guar-
antees that phonon modes are only weakly populated. (ii) We assume that the
fluctuations of the phase of the fringe pattern directly reflect the phase of the
atomic wave function along the ring. This is validated by the following numer-
ical analysis, in which we simulate numerically the hydrodynamical expansion
and calculate the wavy interference pattern originating from a given phase dis-
tribution along the ring. We use a spatial grid of size 36 µm × 36 µm with pixel
size 0.52 µm. We first compute the ground state of Nat = 5 × 104 atoms in the
target potential using the Gross-Pitaevskii equation, evolved with the split-step
method in imaginary time (time step 10 µs). A phase fluctuation δφ̃(θ) is then
added by hand to the wave function in the ring. We then simulate the hy-
drodynamical expansion by evolving the Gross-Pitaevskii equation in real time
(time step 10 µs) during 7 ms. The phase δφ(θ) of the fringe pattern is finally
obtained using the same procedure as for experimental pictures. A compar-
ison between typical phase distributions δφ̃(θ) and δφ(θ) is given in figure 3.14.
Both phase profiles are similar confirming that the phase reconstructed from
the interference pattern correspond to the in-situ phase of the gas

This correlation function could allow one to extract the evolution of the
phonon distribution during the thermalization of the fluid.
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3.3.3 Discussion on possible improvements on the measurements

We now discuss the possible extensions of this work to a more thorough test of
the KZ mechanism. As mentionned in chapter 3 section 2.3, power-law scaling
is challenging to test in our situation because of the low value of the exponent
(≈ 0.65 in the case of point vortices, ≈ 0.2 in the case of supercurrents) even if
we span two orders of magnitude for tevap. The extreme values of this range
are experimentally limited:

• The evaporation time tevap should be chosen long enough so that at any
given time a local thermal equilibrium is achieved in the cloud.

• The largest evaporation time is set mainly by the cloud lifetime. For long
evaporation times, the dynamics of the topological defects (merging of
vortices, etc.) should also be taken into account as in section 3.3.1.4. Evap-
oration ramps that accelerate past the phase transition point can also be
used to freeze the dynamics of the order parameter as was done in [68].

These two limits cannot be significantly modified, which fixes the relative range
of variation of the number of phase domains. It could nevertheless be interest-
ing to study cases where the freezing-out size ξ̂ is much smaller than the typical
size of the system L (size of the square, length of the ring). For a given density,
the local equilibrium condition limits the lowest value of ξ̂. Imprinting larger
patterns onto the atoms would increase the ratio L/ξ̂ which can be related to
the number of phase “patches” in the system. The new experimental set-up de-
scribed in chapter 4 enables us to double the area of the box potentials projected
onto the atoms while keeping a constant surface density.

Last, in ultracold atom experiments as described here or as was realized in
[67, 68], the quench cooling is usually realized by fast evaporative cooling. The
decrease of the temperature might not be linear, but as long the time derivat-
ive of the temperature does not vary too much between the freezing-out time
and the time at which the transition point is actually crossed, the Kibble-Zurek
mechanism for a linear temperature quench described in chapter 2 section 2.2
can still be applied [90]. In addition, evaporative cooling decreases both the
temperature and the atom number. As a consequence, the critical temperature
also varies with time. For example, for the typical temperatures and atom num-
bers estimated for a gas at equilibrium at different points of the quench cooling
(i. e. at different heights of the evaporation barrier) [90], the critical temperature
for transverse condensation varies by 30 % during the total quench and by 10 %
during the first third of the quench when the freezing-out should happen. Since
this does not add any divergent behaviour and since the variation of the critical
temperature with time is weak, the scaling should not be strongly affected.

3.4 conclusion

In this chapter, we have presented two sets of experiments that illustrate the
ideas described in chapter 1 and chapter 2.

The experimental set-up has been designed to produce 2D Bose gases by hav-
ing a harmonic vertical confinement of varying strength (ωz/2π ranges between
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365 Hz and 1 500 Hz). We developed a versatile technique to produce uniform
traps of arbitrary shape by imaging an intensity mask onto the atoms with a
repulsive beam.

The first experiment which was carried out was to determine the phase-space
density at which phase coherence appears in a uniform gas. It was measured
using bimodality measurements in expanding clouds and by analysing matter-
wave interference patterns. When the vertical trapping frequency is low, the
threshold for the detection of coherence is consistent with the appearance of a
large fraction of atoms in the ground state of the vertical harmonic oscillator
due to bosonic amplification leading to transverse condensation (see chapter 1).
When the vertical trapping frequency is high, coherence appears at D ∼ 3–4,
which is a lower threshold than the expected critical phase-space density for
the BEC or the BKT transitions (for which D ∼ 8–10, see chapter 1)..

The second experiment consists in observing topological defects that appear
after quench cooling the gas in two different geometries and in comparing the
scaling of the defect density with the quench duration with the Kibble-Zurek
prediction (see chapter 2). These experiments were performed by observing
the number of point vortices in squares of atoms in ToF experiments and the
average charge of stochastic supercurrents created in atomic rings whose char-
acteristics (including their direction) is revealed interferometrically. Fitting the
defect density with a power-law behaviour yields exponents which are com-
patible with theoretical values, though the accuracy on the measurement only
allows for a comparison in the critical regime at the 20% level.

The new experimental set-up presented in the next chapter could address
some of the shortcomings of those experiments in a new set of experiments.





4
A N E W E X P E R I M E N TA L S E T- U P F O R 2 D P H Y S I C S

Due to the renovation work and the moving of the group to new facilities, the
experimental set-up described in chapter 3 was dismantled and a new genera-
tion of rubidium 87 experiment has been designed and built in order to study
2D physics. In this chapter, I present the main technical choices that were made
for the construction, focusing on their specificities without giving an in depth
description of each. First, I describe the apparatus and the experimental se-
quence to obtain a Bose-Einstein condensate, to trap it in a uniform 2D trap
and to image the clouds. Second, I present how we use a Digital Micromirror
Device (DMD) to produce box potentials of arbitrary shape and an optical ac-
cordion lattice to provide strong 2D confinement of the cloud in the vertical
direction, as well as a first demonstration of dynamical compression of a cloud
in the vertical direction.

4.1 producing degenerate gases of rubidium

4.1.1 Design principle of the experiment

This experiment was designed to pursue the same scientific goals as the previ-
ous set-up while improving the system. These goals are threefold:

• study bidimensional gases.

• confine the 2D gas in box potentials of arbitrary shape.

• in the long term, implement a strong effective magnetic field to produce
strongly correlated many-body states.

To allow for those experiments, the following features have been introduced in
the design:

• medium numerical aperture aspherical lenses1 are positioned to allow
for a horizontal beam to be focused into the cell. This will be used for
the 2D confinement, produced by an angled lattice; it allows for tighter
confinement and it should create less corrugation than the phase-plate
technique used in the previous set-up. In addition, the spacing of this
“accordion lattice” can be varied to optimize the loading of the atoms.

• a DMD is used to shape the beam of blue-detuned light which produces
the box potentials. The resulting intensity mask is much more versatile
than the clean-room fabricated ones used in the previous experiments. Its
image is projected with high resolution (. 1 µm) on the atoms using a
vertical microscope objective.

1 Asphericon A50-100 LPX, numerical aperture 0.23
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• a second vertical microscope objective is used to image the atoms with
high resolution (. 1 µm).

• the orientation of the three-dimensional magneto-optical trap (3D MOT)
beams and the shape of the coils have been chosen to maximize the optical
access around the science cell, allowing for triangular and square lattices
to be installed.

The experiment was designed to be as simple as possible. A commercial two-
dimensional magneto-optical trap (2D MOT) sends a beam of atoms through
two stages of differential pumping to the science cell, where it is captured by a
3D MOT. Avoiding a transport stage, it is cooled down there and transferred to
a magnetic trap to allow for radio-frequency evaporation. The BEC is obtained
in a crossed dipole trap.

4.1.2 Laser system

The light for the laser cooling stage is provided by a 2.5 W Toptica TA pro laser
at 780 nm. It is locked using the saturated absorption spectroscopy of a rubid-
ium cell on the crossover line from the |F′ = 2〉 to the |F′ = 3〉 state. The
frequency of the laser is red-detuned with respect to the “cooling transition”
|F = 2〉 → |F′ = 3〉 line by 258 MHz. To produce light close to the cooling
frequency, we use double pass acousto-optical modulators working around the
frequency of 120 MHz. We use a double-pass AOM around −110 MHz to pro-
duce light close to the |F = 2〉 → |F′ = 2〉 transition in order to depump the
atoms between two pictures during the imaging phase.

The repumping light for the laser-cooling stages is provided by an electro-
optical modulator working around the frequency of 6.6 GHz 2. The width of its
resonance is 30 MHz, which allows to keep the relevant sideband at resonance
with the |F = 1〉 → |F′ = 2〉 transition even as the frequency of the carrier is
shifted by changing the frequency of the microwave. A maximum power of 2 W
is sent through the device. With the microwave at 6.6 GHz at maximum power,
two sidebands are produced, each one having 8 % of the total optical power.
This device is very sensitive to warming up and has to be turned on for one
hour before running in steady state.

At the end of the experiment, the atoms are usually in the |F = 1〉 state;
in order to be imaged using the |F = 2〉 → |F′ = 3〉 transition, the atoms
need to be transferred to the |F = 2〉 state. This can be done using several
techniques; one of them is to optically pump the atoms using a short pulse of
light resonant with the |F = 1〉 → |F′ = 2〉 transition just before imaging the
cloud. An interference filter stabilized diode laser3 provides 10 mW of light to
that purpose.

The laser set-up is depicted in figure 4.1.

2 visible phase modulator model 4851 from New Focus.
3 Radiant Dyes NarrowDiode
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Figure 4.1: Principle of the laser set-up for the laser cooling and imaging phases.
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Figure 4.2: Pictures of the vacuum system: (a) side view; (b) front view. The main axis
of the experimental set-up are indicated for each pictures. The following
elements can be seen on the set-up: 1) 2D MOT, 2) science glass cell, 3)
Agilent Technologies 2 L/s ion pump, 4) Agilent techologies VacIon 20 L/s,
5) SAES NEXTorr D200-5 ion getter pump.

4.1.3 Vacuum system

The vacuum system consists of two glass cells connected together by two metal-
lic crosses. The first glass cell belongs to a commercial Two-dimensional Magneto-
Optical Trap (2D MOT); its output is a hole of a diameter of 1.5 mm. It is
pumped by an Agilent Technologies 2 L/s ion pump, and has an access flange
for a turbo pump. The first cross is attached to a magnetically shielded Agi-
lent technologies VacIon 20 L/s ion pump and to a turbo pump access flange.
The second cross is separated from the first one by a differential pumping tube
with a diameter of 1.5 mm, and pumped using a SAES NEXTorr D200-5 ion get-
ter pump. The science glass cell is a parallelepipoid with external dimensions
25 × 25 × 105 mm of 5 mm thick non coated glass, manufactured by Hellma.
The distance between the output of the 2D MOT glass cell to the center of the
science glass cell is 300 mm. It corresponds to the maximum advised distance
between the 2D MOT and the MOT according to the datasheet of the commercial
2D MOT [169]. The vacuum system is shown in figure 4.2.

4.1.4 Laser cooling

4.1.4.1 2D magneto-optical trap

In order to produce a cold beam of atoms, we use a commercial 2D MOT [169–
172] from Syrte which cools the atoms in the transverse direction while pushing
them through a 1.5 mm diameter pumping tube.

A piece of solid rubidium is heated up to 65°C , corresponding to a pressure
on the order of 10−7 mBar in the rectangular 2D MOT glass cell. In order to
avoid bleaching of the windows as described in [173], the oven heating is re-
duced during the night. It turns on automatically in the morning thanks to a
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Figure 4.3: Picture of the science glass cell with the MOT beam (red), the optical dipole
beams (orange) and the various coils. The top quadrupole coil is lifted with
respect to its final position. The conical wiring allowing for the MOT beams
to go through the cell can be seen.

mbed microcontroller which heats it up for one hour and a half before starting
the experiment4.

Four coils wound around the cell provide a magnetic gradient of 25 G/cm[173].
Additional compensation coils are required to load the MOT in an efficient way.

The 2D MOT has three cooling regions where circularly polarized light cool
the transverse degrees of freedom of the atoms. We find the alignment of
the beams of the cooling region closest to the differential pumping tube to be
critical on the atom number captured later in the MOT stage. The light is red-
detuned by 14 MHz (2.5Γ) with respect to the cooling transition |F = 2〉 →
|F′ = 3〉. It comes from two elliptical beams send to the side and the top of
the 2D MOT, with a power of 60 mW for each beam. For stability purposes,
we removed the commercial fiber couplers from their original mount: a beam
pick-up was added to monitor the power of the laser beams.

An additional light beam pushes the atoms from the 2D MOT glass cell to the
main glass cell of the experiment. It is blue-detuned by 12 MHz with respect to
the cooling transition, has a power of 40 µW and a waist of 1 mm. The loading
rate of the MOT is also very sensitive to the parameters and alignment of this
beam.

4.1.4.2 Magneto-optical trap

The 2D MOT provides a cold atomic beam which is then captured by a standard
3D MOT. One pair of beams propagates along the x axis (see figure 4.2 for the
definition of the axes). The two other pairs of beams are located in the yz

plane, forming a 60° angle with the z axis (see figure 4.3). The power of the six
beams is tuned using a Schäfter Kirchhof fiber cluster. Each beam has a waist
of 7.4 mm, a diameter of 15 mm (being clipped by the MOT coil mounts) and a

4 Program available at https://github.com/lauracorman/mbedOven.

https://github.com/lauracorman/mbedOven
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power on the order of 15 mW. They are red-detuned with respect to the cooling
transition by 14 MHz.

The MOT coils are wound on a water-cooled mount that surrounds the hori-
zontal beams. They provide a gradient of 22 G/cm at 20 A in the x axis (they
are powered using a Delta Elektronika SM 7020D power supply). Large coils
(meter sized) can compensate residual magnetic fields by producing fields up
to 1 G.

With the 2D MOT switched on, the MOT loads for 7 s at a rate of ∼ 108 atoms/s,
resulting in a cloud with ∼ 8 108 atoms at a temperature of 250 µK. The lifetime
of the MOT once the 2D MOT is switched off is of several minutes.

The power of the MOT beams is locked using the photodiode embedded in
the fiber cluster. The lock is made using a mbed micro-controller5.

4.1.4.3 Compressed MOT and optical molasses phase

During 15 ms, the power of the MOT beams is decreased and their frequency
sweeped down to end 22 MHz away from resonance. The power of the re-
pumper is reduced by 30% by decreasing the power of the microwave in the
electro-optical modulator. This stage mainly cools the atoms by reducing light
scattering; up to half of the atoms are in the F = 1 state due to the decrease in
repumping light. At the end of this stage, the compressed MOT contains 6 108

atoms at a temperature of 50 µK.
After this stage, we cool further the cloud using a 4 ms optical molasses stage.

The magnetic field gradient is turned off, the repumping intensity is increased
again and the cooling light is further sweeped down to end red-detuned by
53 MHz with respect to the cooling transition. At the end of this stage, we have
6 108 atoms at a temperature of 10 to 15 µK.

4.1.5 Quadrupole trap and radio-frequency evaporation

4.1.5.1 Quadrupole and radio-frequency set-up

The quadrupole coils are conical with 14 turns of hollow copper wire (fig-
ure 4.3). They are water-cooled, and withstand a maximum current of 400 A
without heating. Two safety circuits have been added to the system to shut
down the current in the coils in case of a problem: a flow-meter stops the
power supplies in case the water stop flowing, and a temperature sensor (Tem-
peraturschalter TSM125) shuts down the power supplies in case the quadrupole
coils overheat.

The coils are powered by two Delta Elektronika SM 15-200D power supplies
in parallel. At the maximum current of 400 A, they create a gradient of bz =

240 G/cm on the atoms. The current is switched using an insulated gate bipolar
transistor. Switching on a current of 400 A takes 5 ms; switching off a current
of 400 A takes ∼ 30 µs, with a strong transient increase in current. The eddy
currents observed after switching off a current of 50 A have no significant effect
on the atoms after 2 ms.

5 Program available at https://github.com/lauracorman/mbedPIDlockLasers.

https://github.com/lauracorman/mbedPIDlockLasers
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The radio-frequency (RF) field for RF evaporation is provided by a general
purpose interface bus (GPIB) controlled generator, a Rigol DG5071. It is amp-
lified by a 4 W amplifier from HD communications (model HD19153) which
works for frequencies between 150 kHz and 230 MHz. It is brought to the atoms
by a two-turn antenna of typical radius of 7 cm.

4.1.5.2 Loading the quadrupole trap

At the end of the molasses phase, the atoms have to be transferred to the F = 1
state because we want to magnetically trap the atoms in the |F = 1, mF = −1〉
state. Therefore, during 1 ms, the microwave power for the electro-optical mod-
ulator is completely switched off, the power of the MOT beams is increased and
their detuning reaches 72 MHz with respect to the cooling transition. Detuning
the laser brings its frequency closer to the |F = 2〉 → |F′ = 2〉 transition from
which the atoms can fall to the |F = 1〉 state.

The quadrupole is then switched on at bz = 58 G/cm. This value is chosen
to minimize heating due to the sudden change in potential energy for atoms
which are far from the zero of the quadrupole trap. The mounts of the MOT
and quadrupole coils have been designed and carefully mounted to have the
zero of their gradient at the same position (distance between the two zeros
smaller than 1 mm). The cloud of 2.5 108 atoms at a temperature of 190 µK is
held for 1 s.

The quadrupole is compressed in 0.5 s to its maximum gradient to increase
the collision rate of the atoms.

4.1.5.3 RF evaporation

During 12 s, the RF field is turned on at maximum power and its frequency
is linearly swept from 34 MHz to 2.5 MHz. This evaporation ramp produces
a cloud of 2.5 107 atoms at 16 µK. At the end of the evaporation ramp, the
potential energy of an atom whose state can be flipped to a non trapped state
is U ∼ kB · 125 µK. This corresponds to a ratio η = U/kBT ∼ 8, which is typical
for such an evaporation.

4.1.6 Production of Bose-Einstein condensates in a crossed dipole trap

4.1.6.1 Optical dipole trap set-up

The optical dipole traps are provided by two lasers: (i) the 8.4 W single-mode
Azurlight system 1064 nm laser described in chapter 3 working at 5 W; (ii) a
10 W multi-mode IPG laser at 1070 nm. Both lasers are sent through an acousto-
optical modulator (AOM) to control the power sent on the atoms and fiber-
coupled to the experiment table using large core fibers from Schäfter-Kirchhoff.
The AOMs allow an extinction ratio of 100; they are also used to lock the power
of the beams. We find that it is important to keep the AOM warm before shining
the lasers at full power on the atoms. When the dipole beams are not used, the
AOM are heated up by working at full power with a 30 MHz detuning in the
incoming RF field. This deflects the laser beam to a beam dump.
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1 2 3 4 5 6 7

Figure 4.4: Main steps of the experimental sequence after the loading of the quadru-
pole. (1) RF evaporation (12 s). (2) Loading of the crossed optical dipole
trap (0.5 s). (3) Evaporation in the optical trap (3 s). (4) Ramping up of the
box potential (0.3 s). (5) Ramping up of the Azurlight dipole trap (0.125 ms).
(6) Ramping up of the 2D confinement (25 ms). (7) Switching off of the
Azurlight dipole trap (0.1 s). From there on the 2D cloud in a box potential
is ready for further experimenting.
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Figure 4.5: Pictures of the cloud during the evaporation in the crossed dipole trap after
12 ms of ToF expansion. In figure (a), the evaporation is stopped just before
the condensation threshold, the distribution of atoms indicates a thermal
cloud. In figure (b), the BEC threshold has been crossed, a condensed cloud
appears surrounded by thermal wings. At the end of the evaporation (fig-
ure c), the cloud is fully condensed. Scale bars: 50 µm.

The dipole beams are in the xy plane, are orthogonal to each other and have
a 45° angle with the x axis. They are depicted in orange in figure 4.3. They are
focused in the glass cell with a vertical waist of 30 µm and a horizontal waist of
90 µm. The focus of both beams is located 50 µm below the zero of the magnetic
gradient of the quadrupole trap.

The loaded cloud is therefore pancake-shaped, which will facilitate the 2D
confinement in the following steps of the experiment. The positions of each
beam can be finely tuned using a PicoMotor motorized mirror mount from
New Focus.

4.1.6.2 Loading the crossed optical dipole trap

Two seconds before the end of the RF evaporation, the dipole beams are turned
on at full power to ensure optimal heating of the control AOMs. At the end of
the evaporation, the magnetic gradient is decreased in 0.5 s to a value of bz =

21 G/cm. This magnetic gradient partially levitates the atoms; they experience
a force equivalent to one third of the gravity force.

The relative position of the zero of the magnetic field and of the focus of the
laser beams has to be controlled in order to load the cloud in a reliable fashion.
This is achieved by adding compensation fields that displace the zero of the
magnetic field using the pairs of coils shown in figure 4.3 which provide up to
∼ 10 G in the x and z direction (5 G in the y direction).

A cloud of ∼ 1.3 107 atoms at a temperature of ∼ 8 µK is loaded in the crossed
optical dipole trap at its maximum power (2 W in each beam).
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4.1.6.3 Evaporation in the crossed dipole trap

During 3 s, the power of the optical dipole trap beams are exponentially lowered.
The power of the beam coming from the IPG laser is divided by 10 and the one
from the Azurlight system laser is divided by 100 to reach the condensation
threshold with ∼ 3.9 106 atoms at ∼ 255 nK. At the end of the evaporation
ramp, we end up with a quasi pure BEC with 3 105 atoms (see figure 4.5).

4.1.6.4 Loading the box potential and accordion lattice

The degenerate cloud is then transferred to an all-optical, blue-detuned trap
which is the combination of:

• a box potential provided by a hollow beam projecting the image of an
intensity mask onto the atoms, confining the atoms in the xy plane

• an angled vertical optical lattice that confines the atoms in one or several
planes in the z direction.

The realization of these traps is detailed in the following paragraphs. Let us
focus here on the experimental sequence to load the whole cloud into a single
plane of the vertical optical lattice which has a spacing of 12 µm. After the
evaporation in the crossed optical dipole trap (see figure 4.4):

• the box potential beam is ramped at full power on the atoms in 300 ms.

• the dipole beam coming from the Azurlight system is ramped at its max-
imum power in 125 ms to reduce the vertical size of the cloud. The trans-
verse size is limited by the box potential trap. This procedure is only
performed with one laser because the efficiency of the acousto-optical
modulator that controls its power (from AA optoelectronics) is less de-
pendent on heating than the one of the other laser (from Crystal Tech).

• the power of the accordion lattice is ramped up to its maximum value in
25 ms.

• the power of the optical dipole traps are ramped to zero.

At this point, provided that the dark fringes of the accordion lattice stay at
the same position, we can reliably load a single plane of atoms in the vertical
direction (see figure 4.6), while having a box potential in the xy plane. This gas
can be further evaporated by lowering the power in the box potential beam.

Thus, 2D gases in arbitrary shaped traps are produced in an experimental
sequence of 30 s.

4.1.7 Imaging the cloud

4.1.7.1 Repumping the cloud

At the end of the cloud preparation, the atoms are in the |F = 1, mF = −1〉
state. Before being imaged on the cycling transition |F = 2〉 → |F′ = 3〉, they
have to be transferred in the |F = 2〉 hyperfine state. This can be done using
two methods:
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Figure 4.6: Loading of the accordion lattice for a lattice spacing of 12 µm. (a) Without
compressing the optical dipole trap again, several planes of atoms are
loaded. With the compression (b), one plane of atoms can be reliably loaded
(the remaining fringes correspond to diffraction effects). Scale bars: 50 µm.

• Optical repumping is performed using a laser beam (with a power of
∼ 8 mW) resonant with the |F = 1〉 → |F′ = 2〉 transition. An atom
absorbs few photons before being transferred in the |F = 2〉 state. De-
pending on the density and position of the cloud, the repumping time is
varied between 4 and 50 µs. The advantage of this method is that it is
robust: the atoms can be imaged in-situ in the various traps (optical and
magnetic), and the waist of the beam is large enough such that the atoms
are also repumped after being released for several milliseconds from the
traps (ToF). However, this repumping process can strongly modify the
spatial distribution for dense clouds (see chapter 5). After a long time of
flight, the cloud has to be repumped in a region where the intensity of
the laser is less important; the repumping phase lasts for several tens of
microseconds, which can also affect the shape of the cloud.

• The small displacement during the optical repumping might be a problem
in measurements where the vertical extension is critical, as is the case for
the experiment presented in chapter 5. In that case, it is preferable to use
microwave repumping. It is performed in an all-optical trap; a bias field
is ramped up to fix the quantization axis of the atoms. We choose this
quantization axis to be along the x axis to avoid the main magnetic field
perturbation which is caused by the subway (and is along the z axis). We
choose a value of 2 G for the bias field. Then, we apply a microwave field
(using a 10 W amplifier) for typical durations of a few microseconds. Its
frequency is tuned to drive the |F = 1, mF = −1〉 → |F = 2, mF = −2〉
transition; the maximum coupling efficiency results in a Rabi frequency
of 30 kHz. Although this technique can only be used after all magnetic
traps are switched off, it does not transfer momentum to the atoms and
allows for a precise control of the percentage of atoms transferred in the
detected hyperfine state.
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4.1.7.2 Imaging axes

The experimental set-up allows for several imaging axes:

• a main horizontal axis, with the imaging light propagating along the x

direction. The absorption picture can be detected on two cameras, a Lu-
menera camera LM135M with magnification 0.4, mainly used to image
the first steps of the experimental sequence (from the laser cooling to the
quadrupole trap evaporation) and a Pixelfly PF-M-QE-PIV with magnific-
ation 3 used in interframed mode. Changing from one to the other camera
is done using a flipping mirror.

• a second horizontal axis, with the imaging light copropagating with the
optical dipole trap beam from the IPG laser. The pictures are detected on
a Lumenera camera LM135M with magnification 1. This axis is mainly
used to align the beam from the IPG laser.

• a vertical axis, with the imaging light propagating in the −z (downwards)
direction, which provides a very good imaging resolution (see 4.1.7.3). In
this axis, two cameras are available: a Lumenera camera LM135M with
magnification 2.5 and a Princeton Instrument PIXIS 1024 Excelon with
a magnification of 11. The latter camera provides the highest quality
pictures for the experiment. Its calibration and properties will be detailed
in chapter 5 as they are an important part of the analysis. Changing from
one to the other camera is done using a flipping mirror.

All the cameras are controlled by a Python program that I made available6; it is
designed to work together with the experiment control software Cicero7.

4.1.7.3 Optical resolution in the vertical axis

The vertical axis for the imaging is designed to have a high resolution both to
image the cloud with light at 780 nm and to imprint light potentials with light
at 532 nm on it. We use two custom microscope objectives[124] from Nachet
with a numerical aperture of 0.45. They have been designed to work at 780 nm
with a focal length of 10 mm with a 5 mm thick glass plate between them and
their focal point.

Using a custom test target8 with stripes of width 2 µm, 1 µm, 0.8 µm and
0.5 µm and a glass plate equivalent to those used for the vacuum cell, we meas-
ured the resolution of the objectives at the two wavelengths of interest. At
780 nm, the resolution is . 1 µm (strong loss of contrast when imaging the
0.8 µm stripes with respect to the 1 µm ones). At 532 nm, the resolution is
< 0.8 µm. We were also able to measure the chromatic shift: the focal point at
780 nm is 50 µm closer to the objective than the focal point at 532 nm.
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Figure 4.7: Condensation in an all-optical 2D box potential using the vertical imaging
axis. The gas is initially trapped in a disk of radius 20 µm, and released
for 8 ms of ToF. In (a), the box potential beam is kept at full power. The
power of the box potential beam has been divided (in 0.1 s) by 2.4 in (b) and
by 24 in (c). Starting from a thermal distribution, the cloud exhibits first
a bimodal distribution then a strong occupation of low-momentum states.
Scale bar 50 µm.

Figure 4.8: Matter-wave interferences in a 2D box potential in the xy plane observed
using the vertical imaging axis. The gas is initially trapped in two rectan-
gular boxes of size 15 µm × 5 µm, spaced by 3 µm (a). After being released
for 10 ms (b) and 20 ms (c) ToF, interference fringes are clearly visible. Scale
bar 50 µm.
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Figure 4.9: Matter-wave interferences from a two ring pattern using the vertical ima-
ging axis. (a) Concentric fringes, (b) double spiral pattern. Scale bar 20 µm.

4.1.8 Obtaining degenerate gases in shaped potentials

Using the procedure and apparatus described in the previous sections, we have
been able to produce degenerate gases with extended phase coherence in a 2D
potential, as indicated by bimodal structures revealed in ToF measurements
(figure 4.7) as well as by matter-wave interference fringes appearing when two
degenerate clouds overlap (figure 4.8). We were also able to reproduce the
spiral interference patterns produced on the former set-up after rapid evap-
oration (100 ms) of a two-ring pattern, thus validating the construction of the
set-up (see figure 4.9).

4.2 shaping the cloud

The aim of the experimental set-up is to produce 2D gases in arbitrary in-plane
traps. In order to do so, two traps are projected onto the atoms:

• a hollow blue-detuned beam, the box potential beam, is shone from the
top to provide in-plane confinement.

• a blue-detuned angled lattice, the “accordion” trap, is shone along the x

axis, resulting in tight confinement along the z axis. The lattice spacing
can be dynamically decreased in order to increase the confinement.

The order in which those beams are switched on in the sequence has been
explained in paragraph 4.1.6.4. Here we detail how those traps are produced.

Both beams come from a single 10 W Verdi V10 laser. To provide a high
quality spatial mode, the beams are fiber-coupled to the experiment; in order
to limit Brillouin scattering, the fibers are kept as short as possible (50 cm for

6 https://github.com/lauracorman/cameraCicero
7 http://akeshet.github.io/Cicero-Word-Generator/
8 We thank José Palomo for the realization of the target in the clean room of the ENS.

https://github.com/lauracorman/cameraCicero
http://akeshet.github.io/Cicero-Word-Generator/
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the accordion trap and 1 m for the box potential beam) and we limit the output
power to 1 W. The power of the beams is controlled using two crystalline quartz
AOM from Gooch&Housego9; these AOM are robust against heating effects.

4.2.1 Making box potentials

We produce a box potential on the atoms by projecting the image of an intensity
mask on the atoms, similar to what was described in chapter 3 subsection 3.1.3.
Instead of using clean room fabricated intensity masks, we use a DMD (V7000

from Vialux) which acts as a programmable intensity mask.
The DMD is a micromirror array with 1024 × 784 square mirrors of size

13.8 µm. It is imaged onto the atoms with a magnification of 1/70; each mi-
cromirror has an effective size of 0.2 µm on the atoms, well below the optical
resolution of the system. The waist of the beam on the atoms when all the
micromirrors are on is 45 µm. At maximal power (300 mW on the atoms), the
maximum potential height created at the center of this beam is kB · 6 µK. For a
given laser power, the height of the potential barrier on the atoms depends on
the typical size of the pattern which is created. For example, for a pattern of
two rings with radii R = 10 µm and 20 µm (similar to the configurations pro-
posed in chapter 7 , the barrier height difference is on the order of 75%. This
has not been a problem so far in our experiments, but some theoretical invest-
igations have been done in order to study other evaporation mechanisms that
do not depend on the size of the pattern (see chapter 6).

In order to produce uniform 2D gases, it is important to measure the quality
of the hollow beam created by the DMD10 [174]. Keeping potential corrugations
small compared to the typical energy scales of the atomic cloud (chemical po-
tential, temperature) is necessary to be able to study uniform gases. The three
parameters that we want to investigate are:

• the root-mean-square deviation from the mean intensity at the center of
the hollow region, which characterizes the overall roughness of the poten-
tial.

• the peak-to-peak amplitude of the defects at the center of the hollow re-
gion, which characterizes the maximal potential defects that can affect the
atomic cloud.

• the sharpness of the edges, which characterizes on what distance the light
intensity goes from its minimal to its maximal value. It is important
to keep this distance as small as possible to investigate the physics of
uniform gases [93].

These tests are performed using large square- or disk-shaped patterns with a
length or diameter up to a size of 100 µm in the atomic plane. In order to avoid
intensity ripples due to an abrupt variation of the coherent light, we allow for
different “boundary width”. For a width of d DMD pixels, we want to have

9 I-M110-2C10B6-3-GH26 with a A35-Series 5 W amplifier.
10 These analysis have been carried out by Jean-Loup Ville.
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Figure 4.10: Characterization of the roughness and of the sharpness (defined in equa-
tion 4.1) of the potential created by the DMD as a function of the width
(measured in DMD pixels) of the boundary for the pattern. On this bound-
ary, micromirrors are randomly flipped to have an average linear increase
of the light intensity. The characterization is performed with a disk of ra-
dius 30 µm in the atomic plane. The region on which the roughness is com-
puted corresponds to a disk of radius 25 µm on the atoms. (a) Peak-to-peak
deviation to the mean value, renormalized by the maximum intensity of
the beam. (b) Root-mean-square deviation from the mean intensity, renor-
malized by the maximum intensity of the beam. Figure (c) characterizes
the sharpness (in µm) of the DMD potential as a function of the width of
the boundary characterization a square of size 50 µm in the atomic plane.
The sharpness corresponds to the mean value of the fitted width of an
error function on 80 cuts. The error bars indicate the standard deviation
of the fitted width.
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a gradual intensity increase. The DMD does not allow for analog control of
the intensity, so we use the fact that the effective size of a micromirror on the
atomic plane is much smaller than the imaging resolution. We randomly select
the micromirrors that are turned on such that the mean value of the intensity
increases linearly across the boundary.

For a sharp boundary (d = 0), the peak-to-peak variation of the intensity
inside the desired region corresponds to 5% of the maximum intensity and the
root-mean-square variation to 0.75% of the maximum intensity, which will not
degrade the uniformity of the atomic sample. As the width of the boundary
includes more and more pixels of the DMD, the coherent intensity ripples dis-
appear and the peak-to-peak (resp. root-mean-square) variation decreases to
3% (resp. 0.5%) of the maximum intensity (see figure 4.10).

The sharpness of the imprinted potential is computed by taking many cuts
perpendicular to the edges of the potential. These cuts are fitted with a Gauss
error function

I = Imaxerf
(

x − x0

δx

)

+ I0 (4.1)

with the fit parameters Imax, x0, δx and I0. The mean value of δx over 80 cuts
is the sharpness of the potential. The results reported on figure 4.10 show
that as long as the width of the boundary does not exceed 10 micromirrors
(corresponding to a size of 2 µm in the atomic plane), the sharpness is constant
and on the order of 1 µm. It increases for larger boundary widths.

The potentials created by the DMD are of sufficient quality to created uni-
form gases or arbitrary shapes in 2D (see figure 4.11), since they present small
corrugations (< 5% of the total barrier height) and sharp edges where the in-
tensity rises in 1 µm. They are very convenient to produce because the intensity
configuration can be easily changed thanks to the provided software.

We also tested that the DMD can be used to projects “movies” on the atoms
(up to 16 kHz of switching frequency), which can be interesting for future pro-
jects [175].

At an early stage of the experiment, we tried to produce degenerate rings of
atoms to implement the experiment proposal of chapter 7 by using a plugged
quadrupole configuration (this did not work due to strong heating of the cloud
in the quadrupole trap). We therefore projected DMD patterns during the quad-
rupole phase, for which it is very important that the patterns stay at the same
position from one experimental run to the other. I developed a program to
reposition the DMD pattern at the beginning of each experiment available on
Github 11.

4.2.2 Confining the gas to two dimensions

4.2.2.1 Producing a 2D gas using light potentials

There are several techniques which can be used to provide a strong vertical har-
monic confinement on the atoms and study 2D physics. Using a blue-detuned
repulsive beam, we consider two options:

11 https://github.com/lauracorman/SlowLockPosition

https://github.com/lauracorman/SlowLockPosition
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Figure 4.11: Example of a cloud of atoms trapped in (a) a potential made of three rings
of radii 5 µm − 6 µm, 10 µm − 11 µm and 15 µm − 16 µm (top view) (b) a
disk of 80 µm diameter. Scale bar 20 µm.

Figure 4.12: Working principle of the accordion lattice. A beam is sent up in two po-
larizing beam splitters. Part of the beam is reflected by the first cube. The
remaining beam is polarized along the x′ axis and is transmitted by both
cubes. Its polarization is rotated by π/2 during the retroreflection on the
top mirror thanks to the λ/4 plate; it is thus reflected by the second cube,
yielding a second beam parallel to the first one with adjustable relative
power. Depending on the input point of the beam along the x′ axis, the
reflection point of the beam of both cubes is shifted, leading to a variable
spacing between the two beams.
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Figure 4.13: Examples of vertical lattices created using the optical accordion set-up pro-
posed in [74]. Light intensities of lattices with spacing (a) 11 µm, (b) 3.6 µm
and (c) 1.2 µm. Scale bars indicate a distance of 20 µm on the atoms.

• placing the cloud in a single-minimum potential using an evanescent field
close to a surface [176] or a light sheet engineered as a Hermite-Gauss
mode [177] (technique used in chapter 3).

• producing an optical lattice which provides several minima in which the
atoms can be trapped.

The first technique easily allows to trap only one plane of atoms since the atoms
which are not trapped in the central minima can be spilled out. However,
the optical quality of the created traps contains some corrugations that are
detrimental for uniform traps [90, 123], and it is difficult to reach very high
confinements (with frequencies up to 10 kHz).

The second technique makes it possible to reach high confinements; however,
this is realized with a small spacing lattice, for which single-plane loading is
difficult. For a lattice spacing of a few µm, typically two planes can be loaded
[44, 178]. Producing a single plane of atoms can require selectively removing
all populated lattice planes but one [179].

To overcome the problem of single-plane loading, it is convenient to vary the
lattice spacing during the experimental sequence: the loading takes place with
a large lattice spacing (& 10 µm) to ensure that only a single node is populated
with atoms; the lattice spacing is then decreased, resulting in an increase of
the vertical confinement and enter the quasi-2D regime. Several techniques of
such “optical accordions” have been tested, for example using acousto-optical
deflectors to create 2D optical lattices with variable spacing [180] or using a
beam reflected on a surface [181].

4.2.2.2 Optical implementation of the accordion lattice

Here, we implement on the atoms the set-up that was proposed and whose
optical feasibility was demonstrated by the group of Raizen [74], illustrated
in figure 4.1212. A system of polarizing beam splitters and quarter waveplate
splits an incoming beam into two parallel beams. These beams are sent on an
aspherical lens of focal length f = 100 mm that focuses the interfering beams
onto the atoms.

The distance between the two beams d is controlled by the impact point of
the beam on the polarizing beam splitters, which we tune using a motorized
translation stage 13. The lattice spacing ∆z depends on the wavelength of the

12 These characterizations have been performed by Raphaël Saint-Jalm [182].
13 PI miCos LS-110 with the C6862 servo controller.



92 a new experimental set-up for 2d physics

2 4 6 8 10 12 14 16

Position de la platine (mm)

0

2

4

6

8

10

12

14

16

18

In
te

rf
ra

ng
e

(m
ic

ro
ns

)

Chameleon

Prediction theorique

Atoms on Pixelf y

Figure 4.14: Lattice spacing of the accordion 2D confinement. The solid black line
represents the theoretical prediction of equation 4.2. The blue dots rep-
resent measurements of the lattice spacing on an auxiliary camera. The
red triangles represent direct measurements on the atoms, limited by the
imaging resolution of the horizontal axis (on the order of 4 µm).

laser λ = 532 nm, on the focal length of the lens f and on the distance between
the two beams d or equivalently on the position of the translation stage x′stage
that controls the parameter d:
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(4.2)

By translating the beam on the bottom mirror by 2 cm, we can vary the lattice
spacing from 12 µm to 2 µm (see figures 4.13 and 4.14). The lattice spacing can
be checked from 12 µm to 4 µm (figure 4.14) using the horizontal imaging axis.
These lattice spacings are limited on the one hand by the minimal distance
between the two beams necessary so that none of them is clipped by one of
the polarizing beam splitters, on the order of dmin ∼ 8.5 mm (i. e. ∆z = 12 µm).
On the other hand, the maximum spacing between the beams is limited by the
numerical aperture of the imaging system. In the present configuration of the
experiment, the MOT coils are the limiting factor, leading to dmax ∼ 45 mm
(i. e. ∆z = 2 µm).

The beams are elliptical on the atoms, with waists of wz = 35 µm and wy =

100 µm. In the horizontal direction, having a large waist limits the anticonfine-
ment due to the zero point energy h̄ωz/2 (with ωz the angular frequency of the
vertical confinement) as well as the amplitude of defects due to a slight power
imbalance or to a small misalignment of both beams. The potential created by
the two beams has some remaining corrugations along the propagation axis;
most of them are removed by cleaning their polarization after the two polariz-
ing beam splitter set-up (by adding an additional polarizing beam splitter).

The polarizing beam splitters have been placed as close as possible to the
aspherical lens in order to minimize the possible phase fluctuations between
the two beams. The interference pattern indeed drifts slowly over time. When
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the optics are well isolated from temperature variations and air turbulences, the
dark fringe typically drifts by a third of the lattice spacing over one hour.

At full power (∼ 0.75 W on the atoms), the lattice created on the atoms real-
izes a potential with a height of ∼ kB · 10 µK. As explained in 4.1.6.4, a single
plane of atoms can be loaded in a dark fringe of the accordion with the largest
spacing of 12 µm, which corresponds to a trapping frequency in the vertical
direction of 2.4 kHz at full power.

4.2.2.3 Increasing the vertical confinement using the optical accordion lattice

We checked that the translation stage could be used dynamically for the com-
pression of an atomic cloud. When moving the beam to change the interference
pattern from the largest to the smallest lattice spacing, the central dark fringe
moves by 1.5 µm, due to small tilts of the beam during the displacement (within
the specifications of the translation stage). This shaking should not significantly
heat the atomic cloud. We find that the contrast of the interference patterns
changes during the displacement of the the stage because of imperfections on
the f = 100 mm lens. Slight defects with respect to the theoretical profile of
the lens indeed lead to a focal point that varies with the distance d between the
beams.

We present here the preliminary test of this set-up: we try to load only one
plane of atoms (see 4.1.6.4 and figure 4.6), then reduce the lattice spacing to
work with stronger confinement in the vertical direction.

We can compress the cloud of atoms by dividing the lattice spacing by a factor
of two. No significant heating was observed, and we loose half of the atoms.
We could measure the frequency of the harmonic confinement in the vertical
direction by measuring the breathing frequency of a thermal cloud when the
lattice power is suddenly divided by two. The oscillation frequency for this
reduced power corresponds to half of this value. The results are reported in
figure 4.15. A maximum frequency of 4.2 kHz was measured at half of the
maximum power.

We want to compare those results to the theoretical value of the oscillation
frequency: it depends on the height of the potential U0, on the mass of the atom
M and on the lattice spacing ∆z

νz =

√

U0

2M

1
∆z

(4.3)

In our case, the frequency increases faster than the 1/∆z dependence (figure
4.15) because the cloud is not loaded in the most central dark fringe of the
cloud. It is then brought to the most intense part of the accordion beam as it is
compressed, changing the effective value of U0.

4.3 conclusion

In this chapter, we have described the new experimental set-up which has been
built since June 2013. This experiment is aimed at studying the physics of 2D
gases in arbitrary potentials. Loading a 3D MOT from a 2D MOT and using
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Figure 4.15: Measured oscillation frequencies in the compressed accordion lattice at
half maximum power as a function of the lattice spacing. Crosses corres-
pond to measured values. The dashed line corresponds to the theoretical
value for a potential with a depth of U0 = kB · 9 µK. These measurements
were realized with a horizontal waist of wy = 45 µm for the accordion
beams. The discrepancy between theory and experiment can be explained
by the displacement of the dark fringe in which the atoms are trapped
from the edge to the center of the beams.

a crossed optical dipole trap, degenerate 2D gases are reliably produced every
30 s in a compact vacuum system.

The vertical confinement is provided by an angled lattice whose spacing can
be dynamically varied in the experimental sequence, allowing to load a single
plane of atoms and then accessing strong confinement. The in-plane trapping
is provided by a hollow repulsive beam shaped using a DMD which is a flexible
solution to produce arbitrary potentials. Two microscope objectives allow for
high resolution imaging and projection of optical potentials (. 1 µm).
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C O L L E C T I V E E F F E C T S I N L I G H T- M AT T E R I N T E R A C T I O N

The experimental set-up whose design has been detailed in chapter 4 enables
us to prepare dense atomic samples in 2D geometries. The typical atomic dens-
ities that are reached are on the order of 100 at/µm2; at those densities, the
mean inter-particle distance is on the order of r = 0.1 µm. If the atoms inter-
act with light with a wavelength λ = 780.24 nm (for the D2 transition that we
will consider), the distance between the particle is on the order of λ/2π = 1/k:
the dipole-dipole interactions cannot be neglected. We therefore expect strong
collective effects to take place when an atomic beam interacts with the cloud.

In this chapter, we will describe the recurrent scattering regime and the mul-

tiple scattering regime, following the nomenclature of [58]. The latter implies
processes where a photon is absorbed and reemitted several times before es-
caping the cloud of atoms, without interacting several times with the same
atom, and usually takes place in optically thick gases. The former includes
the situation where a photon can interact many times with the same atom, for
example while bouncing between the two atoms of a close pair (in addition to
the processes considered in the multiple scattering regime).

We study these collective effects in light-matter interaction by monitoring
the transmission of light through slabs of atoms of varying thicknesses and
densities. This allows us to explore both multiple and recurrent scattering
regimes.

After giving a quick overview of the problem of collective effects in light-
matter interaction, I will present the model we choose to reproduce our experi-
mental results. Then, the methods used to prepare a cloud of given density and
thickness will be described. The main experimental results consist of fits of res-
onance curves, where the width and frequency shift are studied as a function
of density and thickness. Last, we present a prospective series of experiments
aiming at tracking the propagation of an excitation when a cloud of atoms is
illuminated locally.

5.1 position of the problem

5.1.1 Importance of collective effects in atom-light interactions

Light-atom interactions represent an ideal system to study many aspects of
quantum mechanics. The interaction of one atom with the electromagnetic
field is now well understood [183]. For instance, the controlled interaction
between one atom and a mode of the electromagnetic field in the context of
cavity quantum electrodynamics has led to the observation of Schrödinger cat
states of light or to the first steps toward quantum information processing [184].

95
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However, as soon as N ≫ 1 atoms interact with the electromagnetic field, the
collective response can be very different from the sum of individual behaviours.
Let us take three examples that illustrate this.

5.1.1.1 Imaging opaque disks

First, consider the case of imaging a cloud of opaque disks of cross-section σd

in the xy plane by looking at the light they block on a beam propagating along
the z direction.

This is reminiscent of absorption imaging where atoms are considered as
small disks of area σ0, with σ0 the scattering cross-section with light, with a
value for a two-level atom at resonance of:

σ0 =
3λ2

2π
(5.1)

As long as the cloud of opaque disks is dilute enough, the different atoms
absorbing and reemitting light do not influence each other. Assuming a disk
distribution with density n (r) and light propagating along the z direction, a
cloud of disks is dilute enough when the column density nc(x, y) =

∫
n (r)dz

is always much smaller than 1/σd. Starting from a beam with uniform intensity
Iin on an area A ≫ σd, the amount of transmitted light Pout when having N

disks (nc = N/A) corresponds to [123]

Pout = IinA
(

1 − σd

A
)N

= Pin e−ncσd (5.2)

We define the optical density (OD) as

OD = − ln
(

Pout

Pin

)

(5.3)

In the case that was just described, it takes a simple value

OD = ncσd (5.4)

and equation 5.2 corresponds to the well-known Beer-Lambert law.
In atomic clouds, the Beer-Lambert law is not always valid; in particular,

since the light is not absorbed but scattered by the atoms, modification to this
behaviour are expected for optically thick gases [185, 186], for which

σ0nc ≫ 1 (5.5)

This behaviour corresponds to the multiple scattering regime, and does not
necessitate a dense cloud (where nk−3 > 1).

Note that in the case of a |F = 2〉 → |F′ = 3〉 transition as is the case for the
imaging transition of rubidium 87, the scattering cross-section is modified from
that of equation 5.1 due to the Clebsch-Gordan coefficients characterizing the
strength of the dipole transition between the various mF states. We can consider
an effective cross-section for a π polarized light considering equal populations
in all mF states [123]:

σ =
7
15

σ0 =
7
15

3λ2

2π
(5.6)
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5.1.1.2 Mean-field treatment of scattering in a dense medium

As a second example, we present the mean-field treatment of scattering in a
dense medium.

Light scattering in a dense medium has attracted a lot of interest from the
condensed-matter community [187]. Interactions between classical, coupled
dipoles are detailed in section 5.2. For an assembly of N dipoles located at
positions {ri}i∈[[1,N]], the total light field Etotal is the sum of the incoming field
Ein (with angular frequency ω) plus the field radiated Eradiated by each dipole
excited in turn by the total field

Etotal = Ein +Eradiated (5.7)

In the full treatment, the specific positions of the dipoles can strongly influence
the final result and lead to non-local correlations of the field.

In the mean field treatment, the field radiated by all the dipoles is approxim-
ated by [188]

Eradiated (r) ≃
P (r)

3ǫ0
(5.8)

where P (r) is the local polarization of the coarse-grained medium. The field
no longer depends on the polarization of the material at r 6= r′, which consti-
tutes the mean-field approximation in this context. We consider a 3D dipole
density n. These dipoles have a bare susceptibility χ0 and a single-atom polar-
izability α = χ0/n such that [188]

P = ǫ0χ0Etotal (5.9)

P = ǫ0nαEtotal (5.10)

We can also define the renormalized susceptibility χ which takes into account
the fact that the dipoles radiate a field which retroacts on them. We thus have

P = ǫ0χEin (5.11)

These equations can be combined yielding the susceptibility as a function of
the density of scatterers and of the single atom polarizability [188]

χ =
nα

1 − nα
3

(5.12)

In our case, the polarizability corresponds to the two-level atom result [189]

α = −3πΓ

k3
1

∆ + i Γ
2

(5.13)

where Γ is the natural linewidth, h̄ck = h̄ω0 the energy difference between the
two levels, and ∆ = ω − ω0 the detuning between the atomic frequency and
the frequency of the light field (the Lamb shift is included in ω0).

The new resonance frequency is defined as the value of ∆ for which the real
part of the denominator of χ vanishes

∆MF = −2π
n

k3
Γ

2
(5.14)
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This shift, also called cooperative Lamb shift, is to the red of the natural reson-
ance, and requires a dense cloud nk−3 ≫ 1 in order to be significantly larger
than Γ.

This mean-field theory can be developed further. For example, it is possible
to include the influence of the field radiated by each dipole to the total field
Etotal to the lowest non-zero order [190]. This correction can be applied to the
case of an atomic slab of width ℓ, leading to a shift

∆slab = − |∆MF|+
3
4
|∆MF|

(

1 − sin 2kℓ

2kℓ

)

(5.15)

which was measured in a hot vapour of rubidium in nanocell [191] with excel-
lent agreement with the theoretical prediction.

In the case of hot atomic vapours, it is possible that mean-field theory applies
well thanks to the inhomogeneous broadening due to the Doppler shifts [192].
Difference in resonant frequencies due to the velocities of the atoms prevents
long-range correlations to be built. In the case of cold clouds of atoms, where
the Doppler shift

∆ωDoppler =
∆vatoms

c
ω0 (5.16)

is much smaller than the natural linewith Γ, a photon can be scattered several
times by atoms which are far apart. It is thus necessary to take into account
more precisely the scattering events that are important to recurrent scattering
[58, 189, 192, 193].

5.1.1.3 A pair of interacting atoms

As a third example, consider a pair of two-level atoms interacting through the
dipole-dipole interaction. The energy between the ground state |g〉 and the
excited state with polarization ε, |e : ε〉, of each atom taken separately is h̄ω0 =

h̄ck0 (c is the speed of light), and the lifetime of the excited state is Γ−1.
We will consider a light beam with angular frequency ω = ck propagating

along z with a polarization εx incident on a pair of atoms such that r2 = r1 +

r ey. Then, there are three manifolds of states which are interesting: (i) both
atoms are in the ground state |g1, g2〉, (ii) one of the two atoms is in the excited
state, |g1, e2 : εx〉 and |e1 : εx, g2〉, (iii) both atoms are in the excited state
|e1 : εx, e2 : εx〉.

If the atoms are far apart, the two states of manifold (ii) have degenerate
energies. If they are close enough, that is if their distance r is such that k0r . 1,
the dipole-dipole interaction lifts the energy degeneracy between |g1, e2 : εx〉
and |e1 : εx, g2〉. The two new eigenstates |eg+〉 and |eg−〉 have energies E+ and
E− and decay rates Γ+and Γ− different from the single atom picture:

E± − h̄ω0 ∝ ± h̄Γ

(k0r)3 (5.17)

Γ+ −−−→
k0r→0

2Γ (5.18)

Γ− −−−→
k0r→0

0 (5.19)

These results stem from the modelling described in section 5.2.
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The equation 5.17 shows that the energies of the eigenstates are displaced. A
similar phenomenon has been illustrated in the context of Rydberg atoms [194],
which are states of atoms with a large dipole moment. In this regime, it is not
possible to promote two atoms to a Rydberg state with the same laser, that is
to go from manifold (ii) to (iii), because once one atom is promoted, the energy
needed to promote the second one is no longer the same (the energy of the
|e1 : εx, e2 : εx〉 is modified). This is called Rydberg blockade, and was observed
experimentally [195, 196].

Equations 5.18 and 5.19 in turn show another aspect of the behaviour of two
atoms interacting via the dipole-dipole interaction. Here, we see that coupling
the two atoms leads to two states with different decay rates: while one state
decays fast (corresponding to the case where the atoms oscillate in phase [197])
with a rate which is twice that of a single atom, the second state has a vanish-
ingly small decay rate. These two states are called superradiant and subradiant.
They have been observed in a variety of systems including cold ensemble of
atoms [198–200], ions [201], molecules [202] and have also acoustical analog
[203].

The two terms supperadiant and subradiant have been coined by Dicke in
his seminal paper [204] where he studies the effect of dipole-dipole coupling.
A quantum phase transition appears when this coupling is strong enough [33],
which happens when an assembly of N atoms is confined in a volume small
compared to λ3.

For a pair of atoms, we see that collective effects starts to be important (energy
shifts and modified decay rates) when the mean interparticle distance r is such
that

k0r . 1 (5.20)

This condition puts more constraints on the atomic density than the condition
to observe collective effects of a dilute but optically thick gas in equation 5.5.
Both limits are described within the same modelling in section 5.2.

5.1.2 Observation of collective effects

The relevance of the mean-field description has been verified for solid materi-
als, for hot atomic vapours and for Doppler-broadened clouds of cold atoms,
including some corrections to include relevant multiple scattering events [186,
187, 191].

We will in the following focus on light-matter interaction experiments per-
formed with cold to ultracold clouds of atoms, where experiment were per-
formed both in the multiple and in the recurrent scattering regimes.

Signatures of multiple scattering were deduced from radiation pressure force
modifications for atoms in optically thick but dilute clouds [185], and the co-
operative Lamb shift was measured for largely spaced ions [205].

Many studies were performed by looking at the amount of light absorbed
or fluoresced by an assembly of cold atoms [58, 59, 186, 206]. In this case, the
amount of transmitted or fluoresced light is recorded for various detunings of
the probe laser. As the density increases, the main effect which is seen is a
broadening of the resonance fitted by a lorentzian curve with a width of more
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Figure 5.1: Cloud of 15 µm × 30 µm at different repumping times: (a) 10 µs, (b) 25 µs,
(c) 50 µs. The atoms acquire a velocity after being repumped from one
hyperfine state to the other which is much larger than the recoil velocity.
It can be explained by large light-mediated repulsion when one atom of a
pair is in the excited F′ = 2 state. Scale bars correspond to 10 µm.

than 3Γ both for strontium [186] and rubidium atoms [59]. A small red shift
on the order of 0.2Γ has also been observed [59]. Such studies of resonance
curves were performed both in the multiple scattering regime [186, 206] and in
the recurrent scattering regime [58, 59].

Some experiments have also demonstrated the existence of sub- and superra-
diant states in atoms, molecules or ions [198–202] as predicted by Dicke [204];
decay rates up to 8Γ and down to 0.01Γ were observed.

5.1.3 Relevance of collective effects for our systems

In our system, the wavelength associated to the D2 line of rubidium 87 is λ0 =

2π/k0 ≃ 780.24 nm, so k−1
0 ≃ k−1 = 2π/λ ≃ 0.12 µm.

When loading 2D box potentials as described in chapter 4, 2D densities n(2D)

ranging from 50 to 150 atoms/µm2 are achieved for disks of diameter 40 to
50 µm. These corresponds to optically thick gases since σn(2D) ∼ 14. In addi-
tion, the mean interparticle distance r is then on the order of

r ∼ 1/
√

n(2D) ∼ 0.08 to 0.12 µm . k−1 (5.21)

Hence, we expect strong deviations from the single atom response in the inter-
action between a near-resonant probe light and our dense cloud of atoms in
the regime of recurrent scattering. Our system is also well-suited to study the
response of the cloud to a detuned probe beam: the cloud acts as a refractive
medium, but the 2D geometry prevents strong lensing effects.

We get the first sign of strong collective effects when optically transferring the
atoms from the |F = 1〉 to the |F = 2〉 state (see chapter 4 subsubsection 4.1.7.1).
In this series of experiments, the optical repumping beam was propagating
in the horizontal plane along the −y direction (see chapter 4 Figure 4.2) and
repumping the atoms that are trapped in the 2D box potential. As can be seen
in figure 5.1, the atoms are repumped over 50 µs, and the front of repumped
atoms can clearly be seen. In addition, after being repumped, the atoms travel
∼ 5 µm in ∼ 15 µs in spite of being trapped, meaning that they have a velocity
on the order of 10 cm/s. This is incompatible with the recoil velocity that the
atoms get after scattering one photon of the repumping beam, on the order of
vrecoil = 6 mm/s.
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Figure 5.2: Energy diagram for two two-level atoms (ground state |g〉, excited state |e〉)
interacting via the dipole interaction. As explained in section 5.1.1.3, the
interaction lifts the degenerescence between the |ge〉 and |eg〉 states.

This large velocity can be understood from the simple case of a pair of atoms
(see figure 5.2). The dipole-dipole interaction modifies the energies of the states
where one atom of the pair is excited. These energies now depend on the vector
r between the atoms. For two atoms separated by the distance r and excited
along a direction orthogonal to r

∆E± ∝ ∓ h̄Γ

(kr)3 (5.22)

As a consequence, the atoms experience a force while one is in the excited state

|F | ∼ −3
h̄Γ

r (kr)3 (5.23)

The atom spends a time on the order of Γ−1 in the excited state. The velocity
acquired during this time is

v ∼ |F | Γ−1

M
∼ 3vrecoil

(kr)4 (5.24)

For a density of 150 at/µm2, v ∼ 15 vrecoil ∼ 10 cm/s, which is on the order of
the velocities which are deduced from figure 5.1.

5.2 modelling multiple and recurrent scattering effects

5.2.1 Choice of the model

The interaction of an assembly of atoms with light is difficult to simulate nu-
merically; some approximations are needed, and we discuss in this section the
possible treatments of the problem [207] and the reason we choose one of them
to compare to our experimental system.
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First, we neglect the motional degrees of freedom of the atoms; their initial
velocities make their displacement short on the typical timescale of the interac-
tion (this includes neglecting the Doppler effect). However, the light-mediated
forces do induce larger velocities in the atoms as explained in 5.1.3, but it will
be neglected here.

Second, we want to describe theoretically the interaction of an assembly of
rubidium atoms that can interact with a light field close to resonance with the
|F = 2〉 → |F′ = 3〉 transitions, consisting of L = 12 states with D = 15 possible
transitions. The interaction between the N atoms at positions ri and the light
field is treated within the dipole approximation (since the typical size of the
atom is much smaller than the wavelength of the field)

Ĥint = −
N

∑
i=1

d̂i · Ê(ri) (5.25)

where d̂i is the dipole moment of the ith atom, defined as the sum of all dipole
operators for each of the D transitions

{
|gj〉 → |ej〉

}

j∈[[1,D]]

d̂ =
D

∑
j=1

〈ej|D̂|gj〉|ej〉〈gj|+ h.c. (5.26)

and D̂ is the dipole moment operator. The field Ê(r) can usually be split into
a classical and a quantum part; the classical part then describes the incoming
laser field.

The full quantum mechanical treatment of the interaction of the electromag-
netic field with the atoms can be done by considering both the field and the
atomic degrees of freedom. However, the electromagnetic field has an infinite
number of degrees of freedom, which makes it impractical. It is therefore more
convenient to consider the density matrix of the atomic states after the field de-
grees of freedom have been traced out, as is described in [208]. The derivation
of the master equation that describes the evolution of the density matrix relies
on

• the Markov approximation, which assumes that the correlation time of
the light field is much smaller than the correlation time of the atomic
states. The state of the field thus always “follows” the state of the atoms.

• eliminating all terms in the master equation that oscillates on timescales
comparable to the correlation time of the electromagnetic field. For a
light field (resp. atomic transitions) of angular frequency ω (resp. ω0),
this eliminates terms in ei(ω+ω0)t and e−i(ω+ω0)t (see [207, 208] for a full
description). Note that this kind of approximation, performed in the equa-
tion describing the evolution of the density matrix, is different from the
rotating wave approximation which is usually done at the level of the
interaction Hamiltonian Ĥint of equation 5.25.

The equation that has to be solved is therefore an equation on the density matrix
reduced to the atomic space. This density matrix is a 12N × 12N matrix: it is not
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realistic to have computer simulations of large ensembles of atoms (N > 100)
without further approximations.

These are the assumptions that are typically done in order to simplify the
problem [207]:

• We can consider two-level atoms, reducing the size of the density matrix
to a 2N × 2N matrix. This is nevertheless still too computationally costly

• We can consider the weak excitation limit and restrict ourself to a non-
degenerate ground state |g〉 for each atom. In that case, the state of the
atoms is

|ψ〉 = |gg . . . g〉+
N

∑
i=1

D

∑
j=1

βi,j|g . . . ei
j . . . g〉 (5.27)

where
∣
∣βi,j

∣
∣ ≪ 1. Under those conditions, the evolution reduces to a

Schrödinger equation for |ψ〉 with an effective Hamiltonian Heff which
is non-hermitian [128, 207, 209]. The size of the matrix that has to be
computed to solve the system is DN × DN. Choosing D = 3 leads to
systems which can be solved numerically. This choice, corresponding
to a J = 0 → J = 1 transition, actually corresponds to the situation of
classical dipoles in an electromagnetic field [128]. This can be understood
from the fact that having a weak excitation prevents any effect of bosonic
amplification of the light field or saturation of the atomic transition to
happen, hence the classical description of the field and atom is correct in
this limit. Note also that a J = 0 → J = 1 transition corresponds to a
transition which has the same dimension as R3 in which classical dipoles
exist.

In the following, we will model our system by an assembly of atoms with a
J = 0 → J = 1 transition in the weak excitation limit as was just described. We
briefly describe the system to be solved from the point of view of classically
coupled dipoles in the following subsection. Let us mention two additional
approximations that can be done to solve this problem:

• Within the weak excitation limit, we can also consider that we have only
two-level atoms, that is D = 1. This reduces the size of the matrix to be
computed to N × N.

• Last, for the weak excitation and a two-level atom system, it is possible
to develop a mean-field theory called “Timed Dicke”. The coefficient
βi corresponding to the amplitude of the excitation of the ith atom is
replaced by

βi = β̄eik·ri (5.28)

where β̄ is now the only mean-field dipole to be solved.

5.2.2 Coupled classical dipoles

In a classical description, the light field EL induces a dipole moment di on an
atom at position ri thanks to the atomic polarizability tensor α

di = α ·EL (ri) (5.29)
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which in turn produces an electromagnetic field at position r described by the
tensor g:

Eradiated(r) = g (r− ri) · di (5.30)

It is a common approximation to neglect the fact that the electromagnetic
field can have different polarizations, which is called the scalar approximation
[185, 210]. However, the anisotropy of the dipole-dipole interaction (stemming
from the vectorial character of the excitation) is important for our densities so
we will not neglect this.

The last two relations can be written in an implicit form to find either the total
light field Etot or the dipole moment of each atom dj knowing the incoming
field EL:

Etot(r) = EL(r) + ∑
i

g (r− ri) · α ·Etot(r) (5.31)

di = α ·EL (ri) + ∑
j

α · g
(
ri − rj

)
· dj (5.32)

They can be expanded to have the expression of the field Etot as an infinite sum
depending on EL

Etot(r) = EL(r) + ∑
i

g (r− ri) · α ·EL (ri)

+ ∑
i,j

g
(
r− rj

)
· α · g

(
rj − ri

)
· α ·EL (ri) + . . . (5.33)

or the expression of the dipole moment of each atom di as an infinite sum
depending on EL:

di = α ·EL (ri) + ∑
j

α · g
(
ri − rj

)
· α ·EL

(
rj

)

︸ ︷︷ ︸

two atoms interactions

+ ∑
j,k

α · g
(
ri − rj

)
· α · g

(
rj − rk

)
· α ·EL (rk)

︸ ︷︷ ︸

three atoms interactions

+ . . . (5.34)

Starting from the third term of equation 5.33 and from the second term of
equation 5.34, we see that the total electric field is different from the sum of
individual contributions of each atom, corresponding to

Etot(r) 6= Esum individual(r) = EL(r) + ∑
i

g (r− ri) · α ·EL (ri) (5.35)

In some cases, it is possible to neglect the high-order terms in equation 5.33

and 5.34, for instance if the typical value of g
(
rj − ri

)
for two atoms located at

ri and rj is vanishingly small.
Although equations 5.31 and 5.32 are equivalent, it is easier to solve numeric-

ally the second one which only implies a finite number of degrees of freedom.
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The tensor α is replaced by the atomic polarizability for an atom with a trans-
ition of energy h̄ω0 and a linewidth Γ

α = −6π

k3
Γ

2
1

∆ + i Γ
2

(5.36)

where ∆ = ω − ω0 is the detuning of the electromagnetic field (of frequency ω)
from the atomic resonance and k = ω/c. We also need to compute the tensor
[

g
(
ri − rj

)]

i,j∈[[1,N]]
, which induces correlations between the dipoles; calling

rij =
∣
∣rij

∣
∣ =

∣
∣ri − rj

∣
∣, the amplitude of the field radiated by the dipole i at the

position of dipole j is

Ej (ri) =
k3

6πǫ0
G
(
krij

)
· di (5.37)

with G
(
rij

)
= g

(
ri − rj

)
a 3 × 3 matrix equals to [128]

G
(
krij

)
= h1

(
krij

)
11 + h2

(
rij

) rij ⊗ rij

r2
ij

(5.38)

(where ⊗ is the tensor product) and

h1 (u) =
3
2

eiu

u3

(
u2 + iu − 1

)
, h2 (u) =

3
2

eiu

u3

(
−u2 − 3iu + 3

)
(5.39)

Equation 5.32 becomes
(

∆ + i
Γ

2

)

dj,α +
Γ

2 ∑
j′ 6=j

∑
α′=x,y,z

Gα,α′
(
krjj′

)
· dj′ ,α′ = dΩǫαeik·rj (5.40)

with Ω and ǫ the Rabi frequency and polarization of Ein and d is such that
Γ = d2k3

0/(3πǫ0h̄) that is

M · d
d
= a (5.41)

with d the 3N × 1 vector containing the dipole moment along each polarization
for all the atoms, M =

(
∆ + i Γ

2

)
11 + G the 3N × 3N matrix containing the

coefficients of the linear system to solve and a the excitation vector containing
the amplitude, the phase and the polarization of the incoming light field.

After solving this linear system for d, the values of the dipoles can be used
to extract the field radiated by the atoms in each direction kout and each polar-
ization ǫout; in particular, for kin = kout, this allows to compute the theoretical
value of the optical density after the assembly of atoms is imaged at the focal
point of a lens as described in [128]. The field radiated by the atoms imaged at
the focal point of a lens in the direction of the incoming field (i. e. kin = kout)
with polarization ǫout is:

Eatoms
out (ǫout) = −Ω

d

i

2
σ0nc

N

∑
j=1

∑
α=x,y,z

dj,αǫout,α (5.42)

with σ0 the on-resonance scattering cross-section and nc the column density;
the optical density is thus:

ODtheo = −2 ln
∣
∣1 +Eatoms

out (ǫin) d/Ω
∣
∣ (5.43)
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5.2.3 Programs

The programs that are used are described in Appendix C, and are available at
https://github.com/lauracorman/multipleScattering.

Computing the OD requires solving a linear system of size 3N × 3N, where
N is the number of simulated atoms whose positions are drawn in a disk of
radius R. For a given Beer-Lambert OD, ODBL = σ0N/

(
πR2

)
, we compute

ODtheo(N) for various values of N to find when finite-size effects are negligible,
and consider only values of ODtheo(N) such that ODtheo becomes independent
of N.

We are able to simulate up to 4000 atoms. This allows us to compute the
theoretical OD up to ODBL = 8 for thin gases (∆z 6 0.2 µm), and up to ODBL =

4 for thick gases (∆z ≃ 20 µm).

5.3 preparing a sample

5.3.1 Calibration of the imaging set-up

5.3.1.1 Camera properties

In order to detect the atomic absorption, we image the cloud of atoms on a back-
illuminated CCD camera from Princeton instruments, model Pixis 1024 Excelon.
It is a 16 bit camera with a 1024 × 1024 pixel chip. We use it at maximum gain,
which approximately corresponds to one count per electron.

In order to reduce the read-out noise, we cool it down to −43°C and the
analog to digital converter is set to the slowest rate of 100 kHz. At this rate,
reading the whole chip takes about 10 s.

The numerical aperture of the imaging system is relatively large (0.45). With
this numerical aperture, on the order of 5% of the light absorbed by the atoms
and reemitted in random directions is recaptured. To avoid recapturing that
light that can hinder the optical density measurement, we insert an adjustable
iris in the plane which is Fourier-conjugated to the atoms, typically limiting the
numerical aperture to 0.2 by closing to a diameter of 6 mm (see figure 5.3a).

5.3.1.2 Frame transfer mode

We want to avoid a large delay between the picture taken with atoms and
the picture taken without atoms. Since the read-out time is 10 s, we use the
camera in kinetic mode: instead of performing a single exposure which is read
at once, the camera perform a series of five exposures followed by transfer of
the accumulated charges in the vertical direction. The final picture is therefore
divided in five, each containing the light acquired at different times (figure
5.3). One fifth of the chip is exposed for 40 µs, and the charges in the wells
are transferred upwards in less that 700 µs; this is much faster that reading
them out. Four fifths of the chip are hidden from the imaging light thanks to a
razor blade located in a plane conjugate to the atoms. After five sequences of
exposure separated by charge transfer, the shutter of the camera closes and the
chip is read. This process as well as the imaging system is illustrated in figure

https://github.com/lauracorman/multipleScattering
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Figure 5.3: Sketch of the imaging system. (a) Optical system used for imaging the
cloud. A first telescope with magnification 30 creates an image of the atoms
where part of the light is blocked using a razor blade. A second telescope
with magnification 0.375 images the atoms and the razor blade on the cam-
era. (b) Schematic representation of the imaging sequence for the chip of
the camera. Step 1 corresponds to the exposure of the picture with atoms,
step 2 to the following frame transfer stage, step 3 to the exposure of the
picture without atoms, step 4 to the following frame transfer stage, step
5 to the exposure of the background frame, step 6 to the following frame
transfer stage. Each of these steps is also represented in the time sequence
for the digital variable of (c), representing the trigger signal of the camera,
the light pulses used and the frame transfer stages.



108 collective effects in light-matter interaction

5.3. The chip is divided into five parts because the pixels are not perfectly
hidden from the light sources when the shutter is opened; only three frames
are of real interest to us:

• the first frame is exposed during the end of the preparation sequence
because the shutter opens on the order of 3 s before the beginning of the
imaging procedure; it is therefore unused.

• the second frame corresponds to the picture with atoms.

• the third frame corresponds to the picture without atoms.

• the fourth frame can be used as a background picture to be subtracted to
the previous two.

• the fifth frame is exposed during several milliseconds, which correspond
to the closing time of the shutter. It is therefore unused.

An exposure phase corresponds to a time where the charges in the different
pixels are not transferred. However, during the frame transfer, one should be
careful that the chip can accumulate photoelectrons (this is important for the
depumping stage).

5.3.1.3 Choice of the pixel size

The pixel size of the camera is 13 µm × 13 µm, and the effective size of the
pixel on the atoms is 1.16 µm × 1.16 µm since the magnification of the optical
system is 11.25 (see figure 5.3). This pixel size is chosen to be small enough
to be able to check the uniformity of the cloud we prepare. It should also be
chosen to be large enough such that the amount of light detected per pixel
is much larger than the typical read-out noise (on the order of 5 counts per
pixel). We want to probe the response of the cloud to the imaging light in the
weakly saturating regime with an intensity I ≪ Isat = 1.6 mW/cm2 for the D2

transition of rubidium 87. With this pixel size, a pulse of duration 10 µs and
taking into account the non coated surfaces, an imaging beam at the saturation
intensity will generate 630 counts per pixels. In the following, we will only
consider saturation parameters s = I/Isat below 0.2, which corresponds to an
average number of counts per pixel Ncount below 120.

5.3.2 Computing the optical density of the cloud

Standard, low-intensity absorption imaging yields the OD of the cloud (linked
to the atomic density) through the formula

OD = − ln
(

Iwith − Ibgd

Iwithout − Ibgd

)

(5.44)

where Iwith is the intensity of the imaging beam going through the atoms,
Iwithout the intensity of the imaging beam when there are no atoms and Ibgd

the background intensity. For standard alignment procedure, we can use the
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Figure 5.4: Systematic effects in the background part of the frame. A picture has been
taken with a typical experimental sequence, but no atoms were captured
and the imaging pulses were not triggered (see figure 5.3). The mean num-
ber of counts per line (top graph) and its standard deviation (bottom graph)
are represented here for the relevant region of the chip: the region of the
picture with atoms, without atoms and the background picture are delim-
ited by light grey lines and are 203 pixel wide. The black dashed line of
the top graph corresponds to a linear fit, showing a background increase of
3.84 counts for 1000 pixels.

fourth part of the chip as the background (as described in section 5.3.1.2). How-
ever, for an accurate determination of the OD, this is not sufficient, since several
phenomena cause the background part of the frame to receive a different expos-
ure from the parts of the frame with or without atoms:

• Using the kinetics mode that transfers the charges between each exposure
sequence means that the frame with atoms (resp. without atoms) is ex-
posed 1.5 ms (resp. 740 µs) longer than the background frame to the light
that reaches the camera in spite of the razor blade, leading to an excess of
counts for the frames that are exposed first.

• Reading out the chip with the slow, low-noise analog-to-digital converter
takes up to 10 s. The frame with atoms is read several seconds before
the background frame; during this time, dark counts can accumulate on
the part of the chip which has not yet been read, leading to a systematic-
ally increased number of counts for the background frame. This effect is
lowered when operating the CCD camera at low temperature.

Although these two causes have opposite effects, they do not compensate ex-
actly, as seen on figure 5.4 representing an image without atoms and without
imaging pulse, where only those systematic effects are seen. There is on average
1.56 counts (resp. 0.78 counts) more on a line of the background picture than
on the corresponding line of the picture with (resp. without) atoms. For the
evaluation of large OD, this represent an error which is too large. Therefore, in
order to have an accurate determination of the OD, a background picture Mbgd
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— that is a full picture without atoms and without imaging pulses — is taken
at the end of each series of experiment. It is subtracted to the full data of the
chip Mdata (Mbgd and Mdata are 1024 × 1024 matrices), which is then divided
into two 1024 × 203 frames, Mwith and Mwithout.

To compute the OD, the formula 5.44 can be used pixel by pixel and the
mean OD can then be taken as the average value over all the relevant pixels,
i. e. over the pixels that correspond to the position of the box potential 11box.
The maximum OD that can be measured depends on the number of counts per
pixels Ncount:

ODmax = ln (Ncount) (5.45)

and varies between 3 and 4.8 for the imaging pulse and pixel size that are used.
The error on the low values of the optical density is on the order of d OD ≃ 0.37
– 0.09 for Ncount = 30 – 120 considering the read-out noise of dNread−out

count ≃ 5 (see
figure 5.4). This readout noise has to be considered twice, one for the image
which is taken and the other for the background picture : dN =

√
2 dNread−out

count .
For high values of OD, d OD ≃ eODdN/Ncount ∼ 1.

This large error can be avoided by computing the OD by summing the data
beforehand. We therefore compute

Nwith = ∑
i,j

11box (i, j) Mwith (i, j) (5.46)

Nwithout = ∑
i,j

11box (i, j) Mwithout (i, j) (5.47)

where 11box is a 1024 × 203 matrix with ones at the location of pixels that are
inside the box potential and zeros elsewhere. The number of pixels to be taken
into account is Npix = ∑i,j 11box (i, j), typically on the order of 200. The relative
error on Nwith = Npix 〈Ncount〉 (and Nwithout) is reduced by a factor

√
Npix ≃ 14

from the single pixel picture:

dNwith

Nwith
=

dN

〈Ncount〉
1

√
Npix

=

√
NpixdN

Nwith
(5.48)

Decreasing the magnification to have all the atoms imaged on a single pixel
would further decrease the relative error by a factor

√
Npix, but we choose

not to pursue this direction because this would prevent us from checking the
uniformity of the cloud that is prepared.

The optical density is thus

OD = − ln

(

∑i,j 11box (i, j) Mwith (i, j)

∑i,j 11box (i, j) Mwithout (i, j)

)

= − ln
(

Nwith

Nwithout

)

(5.49)

and the statistical error on the optical density is

d OD =
dN

〈Ncount〉
1

√
Npix

√

e2OD + 1 ∼ 0.004
√

e2OD + 1 to 0.015
√

e2OD + 1

(5.50)
for a mean number of counts per pixel 〈Ncount〉 between 30 and 120 and a read-
out noise of dNread−out

count = 5, i. e. dN = 7. For the largest OD = 3 that will be
considered in the experimental analysis, the error is on the order of 0.12 (with
a mean number of counts of 80).
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5.3.3 Preparation and properties of the atomic sample

Using the experimental set-up described in chapter 4, we are able to produce
clouds of atoms whose parameters are well suited to study collective scattering
of light. The process starts by loading the same cloud of atoms in a 2D uniform
trap. Then, we vary three parameters:

• the density of atoms interacting with the light by partially transferring
them to an imaged state.

• the vertical extension of the cloud, which changes the mean interparticle
distance without changing the column density.

• the frequency of the probe light with respect to the single atom resonance
frequency.

5.3.3.1 Preparation of the cloud

The cloud is prepared using the sequence described in chapter 4. The atoms
are trapped in a disk of 40 µm diameter and in a single fringe of the 12 µm
accordion lattice. After loading the 2D uniform trap, the power of the box
potential beam can be divided by 2.4 in 0.1 s; the power of the accordion can
also be reduced during this timestep to change the vertical extension of the
cloud. The powers of the beams are held constant for 0.5 s to allow for the
thermalization of the cloud.

Then, a microwave pulse of variable duration (see 5.3.3.2) is applied in a bias
field of 2 G to transfer part of the atoms to a detected state. The magnetic fields
are then switched off, the atoms expand for a given time-of-flight period and
a picture is taken. There a few milliseconds (from 0.7 to 10 ms) between the
moment the current generating the bias magnetic field is switched off and the
moment the picture is taken, to allow the eddy currents to decay to a level that
does not influence the atoms. This is further confirmed by the fact that at low
atomic densities, no inhomogeneous broadening has been seen.

5.3.3.2 Repumping the atoms

In order to avoid a large momentum kick to the atoms while transferring them
from the F = 1 to the F = 2 state, we use a resonant microwave field in
order to coherently transfer the atoms to the desired hyperfine state from the
|F = 1, mF = −1〉 to the |F = 2, mF = −2〉 state. We choose this transition
because it yields the highest Rabi frequency in our configuration. We choose
the orientation of the magnetic bias field to minimize the residual gradient on
the atoms. This leads to a Rabi frequency of 20.7(2) kHz.

We control the density of atoms that interact with the light by varying the
duration of the microwave repumping pulse. The minimum duration access-
ible with the current status of the experiment control is 3 µs, corresponding to
a transfer of 4% of the atoms to an imaged state. The mean interparticle dis-
tance between the atoms r̄ is then on the order of ∼ 0.5 µm, such that coherent
collective effects should not play a too strong role for this small density.
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Figure 5.5: Rabi oscillation measurements. (a): Measurement of the Rabi oscillation fre-
quency. The fitted frequency is 20.70 kHz with a 95% confidence interval of
(20.52, 20.87) kHz. (b) Extrapolation of the maximum OD for two configur-
ation of in-situ gases (dark blue dots: accordion lattice at maximum power;
light blue stars: accordion lattice at 23% of the maximum power), fixing the
frequency and restricting the points to be fitted to those such that OD < 1.

The accuracy in the repumping is determined by the accuracy in the Rabi
frequency of the microwave and the duration of the pulse. For a fluctuating
magnetic field of order of magnitude 50 mG perpendicular to the direction of
the bias field of 2 G (due to the fluctuating field generated by the subway), the
Rabi frequency fluctuates around its mean value 20.7(2) kHz by 2%. This error
leads to an error below 5% on the atom number in the range of repumping
durations which are considered here.

The stability of the atom number is periodically checked using another ima-
ging axis. It is stable at the 15% level. In order to determine accurately the
atom number, we perform Rabi oscillations of the cloud. Knowing the Rabi fre-
quency of the oscillation (see figure 5.5a) and limiting ourselves to OD smaller
than 1 to avoid collective scattering effects, we extrapolate the maximum Beer-
Lambert OD (equation 5.4 and figure 5.5b) for a π pulse. Over the different
realizations, we find the maximum Beer-Lambert OD to be 14(2), correspond-
ing to a maximum 2D density of 100(15) atoms/µm2, i. e. an atom number of
1.3(2) · 105. Therefore, using microwave repumping, the 2D density of the cloud
can be tuned from 4 to 100 atoms/µm2.

5.3.3.3 Temperature of the atomic cloud

We perform thermometry on the cloud of atoms with a technique similar to
that described in [211]. Just after loading the 2D box trap, a small fraction of
the atoms (between 10% and 18%) is transferred to the F = 2 hyperfine state
using a short microwave pulse. The gas is then evaporated as usual, and finally
released using a ToF of 5 ms. Only the atoms in F = 2 are being imaged.

The atoms in the F = 2 hyperfine state have had time to thermalize with
the majority F = 1 atoms, but their density is too low to reach fugacities
close to one, where quantum effects start to be important; it is a cold but non-
degenerate sample. Their velocity distribution can therefore be approximated
by a Maxwell-Boltzmann distribution.

In order to find the temperature of the atoms, we have to take into account
the fact that the initial size of the cloud is not negligibly small compared to its
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Figure 5.6: Example of temperature determination. The experimental curve (red dots)
correspond to the radial average of the mean of ten pictures where 10%
of the atoms were transferred to the F = 2 state before evaporation in the
box potential, hold time for thermalization and time of flight of 5 ms. The
dashed blue curves correspond to the same radial average of 100 simulated
Maxwell-Boltzmann distribution after a ToF of 5 ms. The corresponding
temperature from the light blue curve to the dark blue curve are 10, 100,
200, 300, 400, 500 and 600 nK. Here the experimental data follows the T =
300 nK curve best. More precise simulated curves lead to an estimate of
T = 310(10) nK.

size after a 5 ms ToF. In order to find the temperature of the cloud, we simulate
the time-of-flight of a classical 2D gas of atoms whose initial spatial distribu-
tion corresponds to the trap in which the atoms are, a disk of radius R. The
experimental atomic distribution and the simulated ones are radially averaged,
and the experimental curve is compared to the simulated one to determine
the temperature. The simulated curves are normalized such that they take the
same value as the experimental curve for r = 2R. This corresponds to fixing
the atom number. The simulated curve that matches best the experimental one
for r > 2R gives the temperature of the sample.

With this technique, as shown in figure 5.6, we estimate a temperature of
310(10) nK for the samples evaporated by dividing the power of the box poten-
tial beam by 2.4.

With an atom number of 105, this corresponds to a 2D phase-space density
of D = n(2D)λ2

dB ≃ 9.4, meaning that the gas is in the degenerate regime. The
repumped fraction of atoms used for thermometry therefore has a fugacity z ∼
0.6; the velocities for which the kinetic energy is on the order of the chemical
potential correspond to v ∼ 5.5 µm/ms. Hence, looking at atoms 20 µm away
from the edge of the disk and 40 µm away from the center of the disk after
a 5 ms ToF means considering mainly atoms for which the kinetic energy is
larger than the chemical potential, for which the Boltzmann weight is a valid
approximation.
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We also perform this analysis for a cloud where the power of the DMD is
held constant for 0.5 s (without forced evaporation), for which the temperature
is 450 nK.

5.3.3.4 Extension along the vertical direction

The spatial extension can be controlled using two techniques:

• by lowering the power of the accordion lattice before the microwave pulse,
the vertical confinement decreases, allowing to tune the vertical extension
of the cloud from a fraction of a micrometer to a few micrometers (trapped
gas).

• by allowing the gas to expand for a time between 1 and 8 ms in ToF, al-
lowing to tune the vertical extension of the cloud from a few micrometers
to a few tens of micrometers (untrapped gas).

In this paragraph, we estimate the vertical extension of the cloud as a function
of the power in the accordion lattice and of the ToF.

First, for the in-situ configuration, we want to check that having all atoms
in the ground state of the vertical harmonic oscillator leads to a chemical po-
tential µ which is smaller than the typical trapping frequency ωz/2π. There
are three contributions to the energy for a cloud of atoms with the macroscopic
wavefunction ψ(r):

Epot =
N

2
Mω2

z

∫

z2 |ψ (r)|2 d3r (5.51)

Ekin =
Nh̄2

2M

∫

|∇ψ (r)|2 d3r (5.52)

Eint = N2 2πh̄2asc

M

∫

|ψ (r)|4 d3r (5.53)

where M is the mass of one atom, N the atom number and asc ≃ 5.3 nm the
scattering length of rubidium 87. We consider the ground state wavefunction
of a particle in a harmonic oscillator for ψ:

ψ (r) =
1

π1/4
√Aaho

11box(x, y) exp

(

− z2

2a2
ho

)

(5.54)

where A is the area of the box potential (a disk of radius 20 µm), aho =
√

h̄/(Mωz)

the natural length scale of the harmonic oscillator and 11box a function such that
11box(x, y) = 1 if (x, y) is a point inside the box potential, and 0 elsewhere. The
chemical potential corresponds to the derivative of the energy with respect to
the atom number:

µ =
1
N

(
Epot + Ekin + 2Eint

)
=

h̄ωz

2
+ 2

√
2πN

h̄2

MA
asc

aho
(5.55)

For ωz/2π = 2.4 kHz (resp. 1.2 kHz), the interaction energy needed to add a
particle in the ground state is h · 1.0 kHz (resp h · 0.7 kHz) which is inferior to
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Figure 5.7: Vertical extension of an ideal Bose gas at a temperature of 200 nK (solid
dark blue curve), 300 nK (dashed blue curve) and 500 nK (dotted light blue
curve) as a function of the vertical confinement frequency ωz/2π. The two
black dashed lines represent the extreme values of the in-situ confinement
which were used: maximum at full power of the accordion lattice (ωz/2π =
2.4 kHz), minimum at 23% of the maximum power (ωz/2π = 1.2 kHz).

the energy spacing between the levels of the harmonic oscillator. Therefore, the
broadening due to the interactions can be neglected.

For computing the in-situ vertical extension of the cloud, we thus only take
into account the statistics of the ideal Bose gas, since the finite temperature
will lead to some population of the excited states of the harmonic oscillator
(ζ = kBT/h̄ωz ranges from 2.6 to 5.2) as in chapter 1. This consists in finding
for a given value of ζ the fugacity z such that the total atom number

Ntheo =
∞

∑
j=0

Nj =
∞

∑
j=0

−λdB

A ln
(

1 − ze−j/ζ
)

(5.56)

is equal to the measured atom number N. Here, Nj represents the population
of the jth state of the vertical harmonic oscillator. Then, knowing the spatial
extension of the states of the harmonic oscillator ∆zj, the width of the cloud is
given by

∆z = ∆z0

√
√
√
√

∞

∑
j=0

Nj

N

∆z2
j

∆z2
0
=

aho√
2

√
√
√
√

∞

∑
j=0

Nj

N
2
(

j +
1
2

)

(5.57)

The results in figure 5.7 show that for a power of the accordion lattice between
23% and 100% of its maximum value, the frequencies along the vertical direc-
tion vary between 1.2 kHz and 2.4 kHz and the spatial extension of an ideal
Bose gas at 300 nK varies between 0.25 and 0.62 µm.

Then, we also want to compute the vertical extension of the cloud when
suddenly released from the accordion lattice at full power. Knowing the ini-
tial trapping frequency, the initial spatial extension of the cloud ∆z0 and the
duration of the ToF t, the spatial extension along z is given by [212]

∆z = ∆z0

√

1 + (ωzt)2 (5.58)
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Figure 5.8: Vertical extension of an ideal Bose gas after time of flight. The initial con-
ditions are those af a gas confined with the accordion lattice at maximum
power, i. e. ∆z0 = 0.36 µm and ωz/2π = 2.4 kHz. The two dashed lines
represent the time of flight of 0.7 ms and 4.7 ms.

The results of figure 5.8 show that the cloud rapidly reaches the far-field re-
gime, i. e. the regime where ∆z ≃ ∆z0 ωzt. This is already valid for the shortest
time of flight which is used on the experiment, 0.7 ms. When the atoms are
imaged, they are not at rest, and have a typical velocity of a few centimeters
per second, owing both to the release of kinetic energy from the initial 2D con-
finement and to the fact that they are under free fall for a few milliseconds.
The Doppler shift associated to such velocities is on the order of 100 kHz, and
is therefore neglected.

5.4 resonances

We now turn to the experimental results, which consist in measuring the op-
tical density of clouds varying their 2D atomic density, their thickness and the
frequency of the probe beam.

5.4.1 Resonance curves for dilute clouds

First, we find the position of the resonance for a weakly repumped cloud of
atoms, in a regime where collective effects in the light-matter interaction should
be small. The experimental results which are presented in this section indeed
require taking data for approximately ten hours, and it is necessary to regularly
check that the characteristic properties of the low-density resonance curves are
left unchanged. Six low-density resonances curves taken at several hours of
interval have been analysed to that purpose.

Using a 3 µs microwave pulse, we transfer 4% of the atoms to the imaged
state. The frequency of the probe laser ν = ω/2π is varied on a 70 MHz range
around the resonance of the atoms. Each of the six resonance curves is fitted by
a lorentzian

ν 7→ OD0

1 + 4
(

ν−ν0
γ

)2 (5.59)
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Figure 5.9: Resonance curve for weakly repumped clouds. The dark blue dots rep-
resent the data of the six resonance curves. The light blue dashed curve
represents the lorentzian curve obtained from the averaged results of the
fits.

Averaging over all the realizations we find a mean optical maximum density
OD0 = 0.72(4), a mean width γ = 6.1(3)MHz which is compatible with the
natural linewidth of rubidium 87 Γ = 6.06 MHz and we use the fitted value of
ν0 to define the origin of all graphs in the rest of the analysis. The value of ν0 is
determined with an accuracy of 0.12 MHz. The results are presented in figure
5.9.

5.4.2 Lorentzian fits

We now prepare a cloud of atoms in the 2D box trap with maximum confine-
ment in the vertical direction. The spatial extension of the cloud is 0.3 µm. We
perform resonances by varying the duration of the microwave pulse, transfer-
ring ∼ 4%, 25%, 50%, 80% and 100% of the total atom number. The various
resonances are shown on figure 5.10.

They are fitted using the equation 5.59. We limit ourselves to points with
OD< 3 where technical errors are not too important. The fit results are gathered
in figure 5.11, whose main features we will now describe. First, the maximum
OD which is fitted (5.11a) does not correspond to the Beer-Lambert law (see
equation 5.4), represented with a dashed grey line, because of dipole interac-
tions. The second observation is a strong broadening of the resonance. The
fitted width follows the phenomenological law

γ ≃ Γ

√

1 +
(
αn(2D)

)2 (5.60)

with α = 0.044(8) µm2, as can be seen on figure 5.11b. Last, at high densities, a
blue shift is seen from the low-density resonance center (5.11c). This shift can be
treated as a linear function in which case ν0 = βn(2D) with β = 0.013(3)MHz ·
µm2. This contrasts with the previous studies of dense clouds where either
nothing or a slight red shift was observed [59, 186]. When letting the densest
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Figure 5.10: Resonance curve for in situ clouds. The various symbols correspond
to varying densities: dots 4.0(6) at/µm2, plus signs 25(4) at/µm2, stars
50(7) at/µm2, crosses 75(11) at/µm2, diamonds 100(15) at/µm2. Dashed
lines correspond to the lorentzian fit of the curve with the corresponding
colour.

Figure 5.11: Fitted parameters of the lorentzian curves of figure 5.10 as a function of the
atomic density (blue dots). Vertical error bars are found from a bootstrap-
ping approach with 100 iterations (see Appendix D for more information
on that technique). The horizontal error bars correspond to the uncer-
tainty on the atom number. The dashed curve in a) corresponds to the
Beer-Lambert prediction. The dashed curves in b) and c) correspond to
phenomenological fits (see text).
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Figure 5.12: Resonance curve for a cloud at maximum column density. The various
symbols in d) correspond to varying thicknesses: dots 0.3 µm, plus signs
3 µm, stars 30 µm. Dashed lines correspond to the lorentzian fit of the
curve with the corresponding colour. The lorentzian fit was performed
for all point with OD < 3 and for detunings |ν − ν0| 6 30 MHz. The
parameters of the lorentzian fits are gathered in a-c.

cloud expand (figure 5.12), the blue shift vanishes and the resonance width
becomes thinner. We also note that the optical density for the thickest cloud
is reduced. This is mainly due to the fact that this thickness is obtained after
a 4.7 ms of time-of-flight expansion, during which the cloud at 450 nK slightly
expands in the xy plane1.

We can compare this set of results to the simulations realized using the model
described in 5.2. We simulate clouds of 3000 atoms with an effective Beer-
Lambert OD OD0 = σ0n(2D) ranging from 0.1 to 8. We compute an “effective
atom density” corresponding to the atomic density needed to have the same
OD with the effective cross-section σ = 7σ0/15. The positions of the atoms
are drawn in a disk of appropriate radius to yield the expected density, and
the vertical position is a random Gaussian number with a standard deviation
of ∆z. We fit the resulting curves using the exact same procedure as for the
experimental data; in particular, we do not consider the points where OD > 3.

The results are shown in figure 5.13. Figure 5.13a-c corresponds to a gas with
a thickness of ∆z = 0.2 µm and various values of ODBL, translated in effective

1 In order to avoid computing the optical density in the lower-density wings, the region in which
it is computed (corresponding to the function 11box described in 5.3.2) is reduced compared to
that for thinner gases.
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Figure 5.13: Fit results of the simulated resonance curves, corresponding to 9 repe-
titions with 3000 atoms. The error bars correspond to the statistical er-
ror. Figures (a)-(c) correspond to a cloud of thickness ∆z = 0.2 µm,
with ODBL = 0.1, 2, 4 and 8, corresponding to effective atomic densit-
ies n(2D) = 15 ODBL/(7σ0) = 0.7, 15, 30 and 60 at/µm2. The dashed line
in (a) corresponds to the Beer-Lambert prediction; the dashed lines in fig-
ure (b) and (c) correspond to phenomenological curves (see text). Figures
(d)-(f) correspond to a cloud of density 30 at/µm2 (ODBL = 4) with a vary-
ing thickness: ∆z = 0.2, 0.4, 0.8 and 20 µm. As in figure 5.12, the width
of the lorentzian curve decreases and the shift in frequency decreases as
the thickness increases (and goes from a large value to the blue of the
resonance to a small value to the red of the resonance).

atom density. The grey dashed line in figure 5.13a also corresponds to the
Beer-Lambert law, and those in figure 5.13b-c to the same phenomenological
fits as in figure 5.11b-c. The fitted parameters αsim = 0.03(3) µm2 and βsim =

0.03(1)MHz · µm2 are of the same order of magnitude than the experimental
values. We indeed do not expect perfect agreement between the simulation and
the experiment since (i) the transition which is modelled is a J = 0 → J = 1
transition, while our transition is an F = 2 → F′ = 3 transition, whose effect
has only been modelled by a reduction of the scattering cross-section; also, (ii)
the motion of the atoms has been neglected, which might be true on the scale
of the lifetime of one photon in the cloud but not necessarily on the scale of the
imaging pulse. We also study the change of the shape of the lorentzian curve at
a constant ODBL = 4 (i. e. an effective density of 30 at/µm2) as the thickness of
the cloud is increased from ∆z = 0.2 µm to 20 µm. We are limited to this value
of optical density for the reason exposed in section 5.2.3. The results of the fits
are shown in figure 5.13d-f, which also reproduces the qualitative features of
figure 5.11.

The experimental measurements are limited by the fact that while most atoms
stay in the trap, some atoms acquire a large velocity during the 10 µs imaging
pulse. A small fraction of the atoms can therefore be expulsed from the plane
at a distance of 1 µm during the imaging process. However, the cloud initially
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Figure 5.14: Resonance curve for a cloud at maximum column density in log-log scale.
Only the negative detunings are shown. The various symbols correspond
to varying thicknesses: dots 0.3 µm, plus signs 0.8 µm, stars 3 µm. Dashed
lines correspond to the power-law fit of the curve with the corresponding
colour; the fitted exponents are−1.39(2) for the gas of thickness 0.3 µm,
−1.43(5) for the gas of thickness 0.8 µm, −1.95(7) for the gas of thickness
3.5 µm.

has the predicted thickness, and the comparison with the simulations shows
that the qualitative behaviour is still correct. The increasing width of the cloud
can therefore have a systematic effect on the measurements that still has to be
investigated, but the main features of figures 5.11 and 5.12 should be robust to
that effect.

5.4.3 Wing fits

Some further information can be extracted by looking at the decay of the
atomic response as the detuning of the probe laser is varied. For the densest
cloud (n(2D) = 100 at/µm2), the optical density for negative detunings between
−15 MHz and −100 MHz are fitted by a power-law. As can be seen from figure
5.14, the exponent that is fitted is close to the expected value of −2 for a pure
lorentzian behaviour for the gas of thickness 3.5 µm. However, for the clouds of
thicknesses 0.3 µm and 0.8 µm, the exponents are incompatible with the value
of −2. This deviation from the lorentzian behaviour can be explained by the
presence of close pairs whose resonance frequency is strongly shifted due to
dipole-dipole interactions [128].

5.5 local excitation of a cloud of atom

In this series of experiment, we prepare a disk of atoms with a diameter of
60 µm. Instead of using an imaging beam that covers the whole cloud, we



122 collective effects in light-matter interaction

Figure 5.15: Simulation of the propagation of a single excitation along the x direction
initially on the atom with a red dot for a dense cloud with nc = 50 at/µm2

(a)-(c) and for a dilute cloud with nc = 5 · 10−3 at/µm2(d)-(f). In each case,
the cloud has a thickness of 0.2 µm. Each dot is located at the position of
an atom, and the area of the disk represent the amplitude of the dipole in
the x, |di,x|(a and c), y,

∣
∣di,y

∣
∣ (b and e) and z, |di,z| (c and f) directions. The

amplitude of the dipole of the central atom excited without interaction
with the other atoms is almost the same as in the dilute case, and is repres-
ented by the grey disk. In the dilute case, the patterns are characteristic of
the dipolar scattering diagram. Scale bar 1 µm for pictures (a)-(c), 100 µm
for pictures (d)-(f).

image a pinhole on the atoms, illuminating a small disk of atoms of diameter
17 µm with an intensity I = 0.2Isat. All the photons are then collected on the
camera during an exposure time of 100 µs.

The light intensity collected on each pixel is the sum of the incoming light
field and of the field radiated by each atom. Here, we create a situation where
the incoming field is zero on some atoms; detecting some photons coming from
these atoms means that they have been excited by the field radiated by other
atoms, that is that the excitation has propagated in the cloud.

This situation can be simulated using the model described in section 5.2. In
figure 5.15, we simulate an assembly of 1000 atoms where only the central one
is excited (in red on the picture). The cloud has a thickness of 0.2 µm, and
the column density of atoms is 50 at/µm2 for pictures a-c, and 5 · 10−3 at/µm2

for pictures d-f. We represent the modulus of each component of the dipole
moment di of each atom at the position of the atoms ri. Figures 5.15a-d (resp
b-e, c-f) are made of disks of area |di,x| (resp.

∣
∣di,y

∣
∣, |di,z|) at positions ri. In

figure 5.15d, the amplitude of the central, initially excited atom is not repres-
ented in blue but with a grey disk which is almost equal to the amplitude it
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Figure 5.16: Local excitation experiment (averages over 104 realizations). Figure (a) cor-
responds to the light transmitted through the cloud (unit: camera counts)
Iwith. Figure (b) corresponds to the light transmitted to the camera without
atoms Iwithout. Figure (c) (resp. d) correspond to figure (a) and (resp. b)
where all the pixels such that Iwithout > 4 are removed. The halo visible
on the picture with atoms shows some propagation of the excitation in the
cloud. Scale bars 20 µm.

would have without any dipole-dipole interactions. For the low atomic density,
dipole-dipole interactions have only a small effect and the emission diagram
of a single dipole excited along the x direction can be recognized in the excita-
tion amplitude of the other atoms. For the high atomic density, the excitation
initially located on the central atom is spread on the whole cloud. The cloud
has a radius of 2.5 µm, meaning that the excitation can spread on more than a
micrometer away from the location of the excitation.

The preliminary results of the local excitation of a thin dense cloud are
presented in figures 5.16 and 5.17, where 104 realizations are averaged. As
expected, the light passing through the pinhole is absorbed by the cloud (5.16a
and b). We call Iwithout(i, j) (resp. Iwith(i, j)) the amount of light on pixel (i, j) in
the pictures where the atoms are removed (resp. where the atoms are present).
In order to see whether the light excitation can propagate through the cloud, we
look at all the pixels where Iwithout(i, j) < 4. On pixels such that Iwithout(i, j) > 4,
the signal is difficult to interpret, since it is the sum of the incoming light and of
the light radiated by the atoms, and we want to isolate the second contribution.
This is represented on figure 5.16c and d. On the pictures with atoms, a clear
halo is visible, which is absent from the picture without atoms.

Although some atoms can gain high velocities when absorbing a photon (see
section 5.1.3), these velocities on the order of ten centimeters per second cannot
explain this halo. When a photon excites the cloud of atoms, it can decay on
timescales which are much larger than the single atom decay rate according
to Dicke’s description [204]. However, it is unlikely that the a group of atoms
stays in a subradiant subradiant mode while moving. It is therefore unrealistic
that an excited atom acquiring some velocity and being deexcited outside of
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Figure 5.17: Local excitation experiment (averages over 104 realizations). Figure (a)
corresponds to radial averages of the figure 5.16c) 〈Iwith(r)〉 (with atoms,
dark blue dots) and 5.16c) 〈Iwithout(r)〉 (without atoms, light blue crosses).
The error bars on the number of camera counts correspond to the detec-
tion noise. The mean number of camera counts is plotted against the
distance to the center of the pinhole. The edge of the pinhole is located
at r = 8.5 µm. Figure (b) corresponds to the difference in counts between
the pictures with and without atoms 〈Iwith(r)〉 − 〈Iwithout(r)〉 (light blue
dot). The dashed black line represents an exponential fit to the data
r 7→ A exp(−r/r0). Here, r0 = 3.1(2) µm.

the illuminated region can explain the halo of figure 5.16c, the positions of the
atoms can be considered to be frozen on the timescales of the light-interaction
processes as assumed in section 5.2. However, the movement of the atoms dur-
ing the imaging time (100 µs for this experiment) might have to be considered.

We represent the excess of count on the camera in the picture with atoms
with respect to the picture without atoms in figure 5.17. When fitted by an
exponential decay, the typical length on which the halo decays is 3.1(2) µm.2

5.6 conclusion

The experimental set-up presented in chapter 4 constitutes an excellent plat-
form to test collective effects in light-matter interaction. We are able to produce
dense gases in which the mean interparticle distance is smaller than λ/2π (λ
is the imaging wavelength), where the atoms interact strongly via resonant
dipole-dipole interactions.

We study the response of a slab of atom with a varying thickness and density
as a function of the probe beam detuning in the weakly saturating regime. We
observe a blue shift of the resonance on the order of Γ/4 for the densest cloud,
scaling linearly with the atom density. The width of the resonance is strongly
increased up to 5Γ, and the maximum optical density saturates to ∼ 4 although

2 Measurements performed after the writing of this work have showed that most of the halo is
due to geometrical abberations of our imaging system. Nevertheless, taking them into account,
we were still able to observe the decay of the excitation in the cloud for certain densities (article
in preparation).
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we estimate a density of 100 at/µm2, which should give a Beer-Lambert optical
density of 14. As the thickness of the cloud is increased, the blue shift decreases
to zero and the broadening is less important; the gas of atoms goes from the
recurrent scattering regime (kr . 1) to the multiple scattering regime (kr >

1 but n(2D)σ > 1). Strong deviations from a lorentzian behaviour were also
seen by looking at the power-law decay of the optical density for large probe
detuning. While for a gas with a thickness of several micrometers, the fitted
power-law is compatible with the lorentzian value of −2, it has a value of
−1.39(2) for the thinnest gas.

We also performed some preliminary work to study the propagation of the
excitation in the atoms by locally illuminating the cloud and studying the fluor-
escence of atoms who have not been exposed to the probe beam. We observe a
halo of fluorescence photons with a typical extension of 3.1(2) µm beyond the
illuminated region.

These experiments could be improved by reducing the imaging pulse dur-
ation, which would limit the extension of the cloud due to large velocities
acquired via dipole-dipole interactions. This would nevertheless reduce the
amount of signal on the camera, whose magnification might have to be mod-
ified. Last, an important part of the study of dipole-dipole interactions ad-
dresses the observation of sub- or superradiant states. These states are not
detected on our set-up, and might require time-resolved detector.





6
P R O S P E C T I V E E X P E R I M E N T: E VA P O R AT I O N I N A T I LT E D
L AT T I C E

Experiments using cold atoms have entered the quantum degenerate regime
thanks to the experimental technique of evaporative cooling [213]. This tech-
nique allows one to lower the temperature of the gas by loosing the most en-
ergetic particles followed by a thermalization of the remaining atoms through
collisions [213]. When the resulting decrease in temperature is more important
than the loss of atoms, this leads to an increase in phase-space density. This
technique has proved to be very successful in a variety of experimental set-ups,
including quadrupole traps, other magnetic traps, dipole traps or hybrid dipole
and magnetic traps. In most set-ups, a particle will be evaporated if its energy
is larger than some threshold and if it crosses a region in space whose geometry
is defined by the type of trap which is used. This region can be the ellipsoid
in space at which the magnetic state of the atom is flipped for radio-frequency
evaporation, the edge of the dipole potential for an optical dipole trap, etc.

The fact that a particle is ejected not only because of its energy but also
because of its position limits the efficiency of the evaporation. The energy is
removed at specific positions in the atomic cloud, and this “information” has to
spread to the inner parts of the cloud to allow full thermalization. This is not
much of an issue in many experiments; for example, when studying the equi-
librium properties of a cloud of ultra cold atoms, an appropriate waiting time
can be added to allow the gas to reach thermal equilibrium before performing
any measurements. However, when studying out-of-equilibrium phenomena,
the additional thermalization time coming from the inhomogeneous condition
for evaporation can prevent the experiment to access short timescales. This
can be problematic for example in the case of the experimental study of the
Kibble-Zurek mechanism as described in chapter 2 and chapter 3, which relies
on having a uniform gas of atoms with a uniform temperature.

Having an evaporation scheme where any particle whose energy is higher
than a fixed threshold could be evaporated, independent of its position, would
allow for better controlled studies of non-equilibrium phenomena and would
also lead to more efficient evaporation with the removal of the constraints on
the position of the particle.

In the experimental set-up described in chapter 4, 2D gases of atoms are pro-
duced in an optical trap combining a box potential and a lattice in the vertical
direction produced by the optical accordion detailed in subsection 4.2.2. In
addition to this optical confinement, gravity or a quadrupole magnetic field
provide a linear potential, leading to a tilted lattice potential in the vertical dir-
ection. This set-up has already been studied in cold atom experiments, though
not in the perspective of evaporating a gas towards degeneracy [214]. In this
chapter, we study how we can evaporate the atoms in the tilted lattice poten-
tial. First, we concentrate in section 6.1 on solving the quantum mechanical
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problem of an atom in a tilted lattice following the approach of [75], finding
the scattering states and their associated lifetime. The aim here is to find a suit-
able set of parameters (lattice spacing, lattice depth, tilt) such that there is one
long-lived state localized in a given well, while the other states have a much
smaller lifetime. This calculation aims at computing how fast an atom initially
in the first excited state of the vertical potential well escapes. However, after
some standard evaporation (in our case usually provided by the lowering of
the box potential), the atoms hardly ever have enough energy to reach that first
excited state in the well of the cloud. Collision-assisted tunnelling can never-
theless allow for some evaporation. When two particles collide, the result of
the collision can yield one particle in the initial well in the ground state of the
vertical motion and one particle in the first excited state of the neighbouring
well. This process is studied in section 6.2 using collision simulations based on
the Bird method [215].

6.1 solving the scattering problem of an atom in a tilted lat-
tice

6.1.1 Position of the problem — Outline of the resolution

We follow the line of reasoning of [75], but writing the calculations in dimension
full units such that they are easily applicable to the experiment. We consider the
single-particle one-dimensional problem of a particle in a tilted lattice potential

Ĥ =
p̂2

2M
+ V0 (1 − cos(k0ẑ))− bẑ =

p̂2

2M
+ Vlaser sin2(klaserẑ)− bẑ (6.1)

where 2V0 is the potential depth, k0 = 2π/d with d the distance between two
wells of the lattice and b > 0 characterizes the strength of the tilt. Note that the
recoil energy of a lattice is usually defined using the parameters klaser and Vlaser.

These are related to k0 and V0 by Er =
h̄k2

laser
2M with klaser = k0/2, and Vlaser = 2V0.

In this part, we will consider the tilt Hamiltonian

Ĥ0 =
p̂2

2M
− bẑ (6.2)

as the unperturbed Hamiltonian, and regard the lattice potential as a perturb-
ation. The solutions to the Hamiltonian 6.2 are well known. They can be
expressed as translated Airy functions in real space or, as will be more relevant
in our case, have the following expression in reciprocal space:

ψ0(k, E) = exp

(

−i

(

h̄2k3

6bM
− Ek

b

))

(6.3)

Our aim is to find relatively stable states that appear when the lattice poten-
tial is added, meaning functions of space ψS(z, E) whose time evolution will be
characterized by the complex number E = E − iΓ/2. These stable states can be
detected via a scattering experiment; if a particle is injected from z > 0 onto the
potential with an energy E, it will resonate with the state ψS leading to a high
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scattering cross-section. The resonant complex energies can thus be detected as
the pole of the scattering matrix.

The procedure will thus be the following:

• Define the scattering matrix in real space, and find its expression in mo-
mentum space.

• Define the Bloch-Stark states as the solutions of the evolution over a Bloch
period τB = h̄k0/b.

• Compute the scattering matrix using the Fourier decomposition of the
Bloch-Stark states.

• Find the poles of the scattering matrix and record the corresponding com-
plex energies and wave function.

6.1.2 Scattering matrix in real and reciprocal space

In order to define the scattering matrix, we define the incoming and outgo-
ing wave functions for the perturbed (indicated by the subscript S) and unper-
turbed (indicated by the subscript 0) cases:

ψin
0,S(z, E) ∝

∫ 0

−∞
e−ikzψ0,S(k, E)dk (6.4)

ψout
0,S (z, E) ∝

∫ ∞

0
e−ikzψ0,S(k, E)dk (6.5)

We are only interested in the bound states that appear as the lattice potential
is added; hence the scattering matrix is defined as the asymptotic ratio of the
outgoing and incoming wave function normalized by the unperturbed case:

S(E) = lim
z→∞

ψout
S (z, E)

ψout
0 (z, E)

ψin
0 (z, E)

ψin
S (z, E)

(6.6)

The scattering matrix characterizes the output state, result of the scattering of
an incoming wavefunction on a potential. Here, since the potential goes to
infinity when z → −∞, the incoming waves are necessarily those with k < 0
and the outgoing waves those with k > 0, and the scattering matrix is a ratio of
outgoing over incoming waves. In addition, the incoming and outgoing states
are normalized by their unperturbed form in order to isolate the contribution
of the lattice to the scattering properties.

The solutions of the unperturbed potential have a very simple expression in
reciprocal space as shown in equation 6.3, which is why we will try to express
the scattering matrix in the reciprocal space too. First, we need to express ψS as
a function of ψ0. Let us define ϕ and ϑ by

ψS(k, E) = eiϕ(k,E)ψ0(k, E) (6.7)

ψ
out (in)
S (z, E) = eiϑout (in)(z,E)ψ0(z, E) (6.8)



130 prospective experiment : evaporation in a tilted lattice

Note that ϕ(k) and ϑ(x) are a priori complex numbers. However, at large
distance z ≫ 0 the effect of the scattering lattice potential can be reduced to
that of a pure dephasing of the perturbed wave functions with respect to the
unperturbed ones:

ϑout (in)(z, E) −−→
z→∞

ϑout (in)(E) ∈ R (6.9)

We can relate this asymptotic behaviour to that of ϕ:

ψout
S (z, E) =

∫ ∞

0
exp

[

i

(

k

(

z +
E

b

)

− h̄2k3

6bM
+ ϕ(k)

)]

dk

=
∫ ∞

0
exp [i (Θ0(z, k) + ϕ(k))]dk (6.10)

so subtracting equation 6.8 to equation 6.10

I(z, E) =
∫ ∞

0
exp (iΘ0(z, k))
︸ ︷︷ ︸

oscillating term

[

eiϑout(z) − eiϕ(k)
]

︸ ︷︷ ︸

phase term

dk ≡ 0 (6.11)

For a given large z, k 7→ exp (iΘ0(z, k)) is an oscillating function. The integral
can thus be approximated using a saddle-point technique; let k̃ be the point
such that dΘ0

dk (k̃) = Θ′
0(k̃) = 0. Then, calling d2Θ0

dk2 (k̃) = Θ′′
0 (k̃),

I(z, E) ≃ exp
(
iΘ0(z, k̃)

)

√

Θ′′
0 (z, k̃)

[

eiϑout(z) − eiϕ(k̃)
]

(6.12)

and

k̃ =

√

2 (E + bz) M

h̄
(6.13)

Hence asymptotically the function ϕ tends toward a constant:

ϕ(k, E) −−−→
k→+∞

ϕ+(E) ∈ R (6.14)

and similar reasoning on ψin
S yields

ϕ(k, E) −−−→
k→−∞

ϕ−(E) ∈ R (6.15)

Using the saddle point approximation on the scattered function ψS(z, E) =
∫ ∞

−∞
exp [iΘ(z, k)]dk on large positive z (neglecting the derivative of ϕ for large

k),

ψin
S (z, E) ∝

exp
(
iΘ(z,−k̃)

)

√

Θ′′(z,−k̃)
(6.16)

ψout
S (z, E) ∝

exp
(
iΘ(z, k̃)

)

√

Θ′′(z, k̃)
(6.17)
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Taking the z → ∞ limit in the definition of the scattering matrix 6.6 is thus
equivalent to taking the k → ±∞ limit

S(E) = lim
k→∞

ψS(k, E)

ψ0(k, E)

ψ0(−k, E)

ψS(−k, E)
(6.18)

The fact that the real-space coordinate can be “replaced” by the momentum-
space coordinate is not surprising if one considers that (i) the result of the
unperturbed Hamiltonian is an Airy function which oscillates faster the further
away from the origin (ii) the lattice potential has little influence at sufficiently
large z (typically for (z − E/b) ≫ d) such that the substitution can still be done.

The expression for the scattering matrix 6.18 is especially convenient in the
case when ψS and ψ0 are periodic functions of z; in this case, using the Fourier
coefficients

{
cS

n

}

n∈Z
(resp.

{
c0

n

}

n∈Z
) of ψS (resp. ψ0), we obtain

S(E) = lim
n→∞

cS
n c0

−n

c0
n cS

−n

(6.19)

6.1.3 Definition of the Bloch-Stark states

In this section, we aim at finding periodic solutions of the scattering problem
in order to be able to use the simple expression of the scattering matrix 6.19.
We will proceed in the following way:

• First we will perform a gauge transform on the Hamiltonian to a space-
periodic time-dependent Hamiltonian.

• Then we will construct a family of functions being the product of a plane
wave and a periodic function that are eigenfunctions of the evolution op-
erator at a certain time.

• Last we will write the equation system obeyed by the Fourier coefficients
of the periodic function for further replacement in equation 6.19.

The family of functions which is going to be constructed is called the Bloch-
Stark states. It relates to the Wannier-Stark states the same way that Bloch states
in lattices relate to Wannier states. The Wannier-Stark ladder are translated
from the Wannier states of the lattice in energy (by an energy proportional to
one over the Bloch period) and space (by the lattice spacing). The Bloch states
will be constructed using the same procedure.

6.1.3.1 Gauge transformation

Let Â be a unitary transformation (which can depend on time, space, mo-
mentum. . . ); it is equivalent to consider the evolution of the wave function
ψ under the Hamiltonian Ĥ or to consider the evolution of the wave function
Âψ under the Hamiltonian ˆ̃H:

ˆ̃H = ÂHÂ† + ih̄
dÂ

dt
Â† (6.20)
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The evolution operator ˆ̃U associated to ˆ̃H can also be related to the evolution
operator Û associated to Ĥ:

Û(t) = Â†(t) ˆ̃U(t)Â(0) (6.21)

We now want to transform the Hamiltonian Ĥ of equation 6.1 to a space-
periodic time-dependent Hamiltonian. The unitary operator that we consider
is the following:

Â(t) = exp
(

−i
bt

h̄
ẑ

)

(6.22)

The new Hamiltonian now reads

ˆ̃H =
( p̂ + bt)2

2M
+ V0 (1 − cos(k0ẑ)) (6.23)

and the evolution operators read

ˆ̃U(t) = ˆexp

[

− i

h̄

∫ t

0

(

( p̂ + bt′)2

2M
+ V0 (1 − cos(k0ẑ))

)

dt′
]

(6.24)

Û(t) = ˆexp
(

−i
bt

h̄
ẑ

)

ˆ̃U(t) (6.25)

Here the notation ˆexp stands for the time ordered operator, i. e.

ˆ̃U(t) = lim
δt→0

n=t/δt

∏
n=0

[

11 − i

h̄
ˆ̃H(n δt)δt

]

(6.26)

6.1.3.2 Construction of the Bloch-Stark states

Consider ψ an eigenfunction of the Hamiltonian Ĥ with eigenvalue E. We
call τB = h̄k0/b = h/(bd) the Bloch period corresponding to the time-scale
associated with the energy offset between two neighbouring sites and define

λ = e−iEτB/h̄ = e−iEk0/b (6.27)

We can then define the Bloch-Stark function associated to ψ with quasi-momentum
κ as

φκ(z) = ∑
ℓ∈Z

exp(iℓdκ)ψ(z − ℓd) (6.28)

The function κ 7→ φκ(z) is k0-periodic and the function z 7→ e−ixκφκ(z) is d-
periodic, justifying the name of quasi-momentum for κ given usually in the
context of Bloch eigenfunction in lattices. This transformation corresponds to
the relation between Bloch states and Wannier states in lattices.

The starting wave function can be recovered by the standard transformation
that turns Bloch functions into Wannier functions for space-periodic potentials

ψ(z) =

√

2π

d

∫ k0/2

−k0/2
φκ(z)dκ (6.29)
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We now look at the action of the evolution operator on the Bloch-Stark func-
tion:

Û(t)φκ(z) = ∑
ℓ∈Z

eiℓdκe−iEt/h̄+ibdℓt/h̄ψ(z − ℓd)

= e−iEt/h̄ ∑
ℓ∈Z

eiℓd(κ+bt/h̄)ψ(z − ℓd)

= e−iEt/h̄φκ+bt/h̄(z) (6.30)

which is consistent with the evolution of the quasi-momentum in Bloch oscil-
lations. In particular, for t = τB, we call Û(τB) = ÛB (and ˆ̃U(τB) = ˆ̃UB) and
get

ÛBφκ(z) = λφκ(z) (6.31)

This equation shows that the Bloch-Stark wave functions are eigenfunctions
of the operator ÛB with an eigenvalue λ which does not depend on the quasi-
momentum (which will be important in the numerical simulation).

6.1.3.3 Fourier decomposition of the Bloch-Stark states

Using standard Bloch decomposition, the Bloch-Stark states can be expressed
as such

φκ(z) = ∑
n∈Z

cκ
nei(nk0+κ)z (6.32)

and this line of reasoning holds for both the perturbed and the unperturbed
cases:

φ0
κ(z) = ∑

n∈Z

cκ,0
n ei(nk0+κ)z = ∑

n∈Z

cκ,0
n |nk0 + κ〉 (6.33)

φS
κ (z) = ∑

n∈Z

cκ,S
n ei(nk0+κ)z = ∑

n∈Z

cκ,S
n |nk0 + κ〉 (6.34)

We now consider the matrix elements of the evolution operators over a Bloch
period for a given quasi momentum:

ˆ̃Um,n
B,κ = 〈mk0 + κ| ˆ̃UB|nk0 + κ〉 (6.35)

Ûm,n
B,κ = 〈mk0 + κ|ÛB|nk0 + κ〉 = ˆ̃Um+1,n

B,κ (6.36)

where the last line uses the result of equation 6.25. The Fourier coefficients of
the Bloch-Stark equations thus obey the following linear system:

∑
n∈Z

Ûm,n
B,κ cκ,S

n = λcκ,S
m (6.37)

For numerical simulations, it turns out to be easier to work with the operator
ˆ̃UB which can be expressed in momentum space alone:

∑
n∈Z

ˆ̃Um+1,n
B,κ cκ,S

n = λcκ,S
m (6.38)
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6.1.4 Expression of the scattering matrix

Now we have all the elements to find the poles of the scattering matrix. First, for
a given quasi-momentum κ we numerically compute the matrix elements of the
evolution operator at the Bloch period, ˆ̃UB,κ, using the formula 6.26 and using
a truncation in momentum space n ∈ [[−N, N]]. Then, using equation 6.38, the
eigenvalues of ÛB,κ — or equivalently of the shifted operator ˆ̃UB,κ — can be
found and Fourier coefficients of the Bloch-Stark functions calculated. These
can be inserted in the definition of the scattering matrix 6.19, whose poles are
then computed.

The scattering matrix reads in the Bloch-Stark basis

S(E) = lim
n→∞

cκ,S
n cκ,0

−n

cκ,0
n cκ,S

−n

(6.39)

and the result must be independent of κ as was seen in equation 6.31. The
unperturbed Fourier coefficients are easily computed using the equation 6.3

cκ,0
n = exp

[

−i

(

h̄2 (nk0 + κ)3

6bM
− E (nk0 + κ)

b

)]

(6.40)

and the ratio of coefficients appearing in the scattering matrix is:

cκ,0
N

cκ,0
−N

= α(N, E, κ) =
exp

[

−i
(

h̄2(Nk0+κ)3

6bM − E(Nk0+κ)
b

)]

exp
[

−i
(

h̄2(−Nk0+κ)3

6bM − E(−Nk0+κ)
b

)] (6.41)

We now turn to the computation of the Fourier coefficient in the perturbed
case. The matrix elements of the operator ˆ̃UB,κ form a (2N + 1) × (2N + 1)
matrix that we call W; we also define the following vectors (S exponents are
momentarily omitted):

cκ =















0

cκ
N

cκ
N−1
...

cκ
−N+1

cκ
−N















, e1 =










0
...

0

1










, e2 =












0

1

0
...

0












(6.42)

The central equation 6.38 now reads

B · cκ =







0
...

W

0 · · · 0







· cκ = λcκ − λcκ
−Ne1 (6.43)

Calling 11 the identity matrix of size (2N + 2)× (2N + 2):
(

B − λ11
)
· cκ = −λcκ

−Ne1 (6.44)
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If the matrix B − λ11 can be inverted, the ratio of coefficients appearing in the
expression of the scattering matrix is:

cκ,S
N

cκ,S
−N

= −λ e2 ·
(

B − λ11
)−1 · e1 (6.45)

Bringing together equations 6.41 and 6.45 yields the following expression of the
scattering matrix:

S(E) = lim
N→∞

−λ [α(N, E, κ)]−1 e2 ·
(

B − λ11
)−1 · e1 (6.46)

As mentioned in 6.1.1, the poles of the scattering matrix are of interest because
they indicate resonances. These poles are located in the complex plane at E =

E − iΓ/2. In the expression of S(E), divergences appear at points where the
matrix B − λ11 cannot be inverted, i. e. when λ is an eigenvalue of B. Finding
the resonances of the scattering matrix thus amounts to finding the eigenvalues
of B. The energies and decay rates of the corresponding eigenstates are related
to the eigenvalue by

λ = exp
(

−ΓτB

2h̄

)

exp
(

−i
EτB

h̄

)

(6.47)

The steps of the simulation are the following:

• Pick a quasi-momentum κ.

• Construct the Hamiltonian of the system ˆ̃H which has diagonal coeffi-
cients of h̄ (nk0 + κ + bt)2 /(2M), and where the first terms above and
under the diagonal are −V0/2 to account for the lattice potential.

• Compute the evolution operator ˆ̃UB,κ using 6.26 in the truncated mo-
mentum space, thus yielding the matrices W and B.

• Find the eigenvalues and eigenvectors of B. The eigenvectors correspond
to the scattering states which are rather stable states, i. e. one can define
an energy and lifetime for those states thanks to the corresponding eigen-
value.

According to the definition of the scattering matrix, the truncation in momentum
space should be made larger and larger in order to see which eigenvalues actu-
ally correspond to resonances of the full problem. However, this rapidly leads
to handle impractically large matrices. In order to distinguish real resonances
from numerical artefacts owing to the finite size of the Hilbert space we are
considering, we use the fact that the eigenvalues are independent of the quasi-
momentum κ chosen (according to equation 6.31). For a given truncation in
momentum space, the calculation is repeated for several quasi-momenta and
only the eigenvalues which are common to all calculations are kept. Only a
finite number of scattering states can be found using this procedure due to the
finite size of the matrices which are considered.
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a)

b)

c)

Figure 6.1: Lifetimes of the various scattering states in the tilted lattice, as a function of
tilt (expressed in units of gravity) with (a) Vlaser = 20 Er, (b) Vlaser = 24 Er,
(c) Vlaser = 32 Er. For all graphs, d = 1.2 µm. The dotted line represents the
longest lifetime allowed for the first excited state taken to be 25 ms, while
the dashed line represents the shortest lifetime allowed for the ground state,
taken to be 10 s.
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a)

b)

c)

Figure 6.2: Lifetimes of the various scattering states in the tilted lattice, as a function of
the depth of the lattice with a tilt of (a) b = Mg, (b) b = 2Mg, (c) b = 3Mg.
For all graphs, d = 1.2 µm. The dotted line represents the longest lifetime
allowed for the first excited state taken to be 25 ms, while the dashed line
represents the shortest lifetime allowed for the ground state, taken to be
10 s.
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6.1.5 Results

In the simulations, the parameters that can be varied are the lattice depth V0,
the lattice spacing d and the tilt of the lattice b. We check the validity of our
results by reproducing the results of [75].

In order to estimate if evaporation is possible in the new experimental set-up
described in chapter 4, we will restrict the values of the simulation to experi-
mentally achievable ones. We will concentrate on the smallest lattice spacing
d = 1.2 µm. The maximum depth of the lattice that we can obtain with our
current laser set-up is

Vmax
0 = kB 18µK = 950 Er (6.48)

where Er =
h̄2k2

0
8M ≃ h 410 Hz. The tilt provided by gravity is

bgravity = Mg ≃ 6.2
Er

d
(6.49)

and tuning the position of the zero and the magnitude of the magnetic gradient
provided by the quadrupole coils allow to vary b from 0 to bmax = 9 Mg =

56 Er/d.
Our aim is to find a regime of parameters where the lifetime τ1 of the longest-

lived state is on the order of seconds or more – we choose τ1 = 10 s – while
that of the second longest-lived state τ2 is short compared to the time-scales
of the experiment, i. e. on the order of one to tens of milliseconds– we choose
τ2 = 25 ms.

Figure 6.1 shows the lifetimes as a function of the tilt of the lattice and figure
6.2 shows the lifetimes as a function of the depth of the lattice. For all cases
considered, it is possible to find a range of parameter where the lifetimes of
the scattering states are within the desired range. For example, with the tilt
provided by gravity, a lattice with a depth 60 times smaller than its maximal
value provides a lifetime of the ground state on the order of 107 s while that of
the first excited state is 15 ms. For a tilt three times larger than gravity, accept-
able lifetimes can be obtained at a power 30 times lower than the maximum
power of the lattice, which corresponds to a typical power decrease during
evaporation.

6.2 evaporation using particle interactions

6.2.1 Principle

The previous studies have shown how atoms in the excited vibrational states of
the vertical lattice can be removed by tuning the tilt to out-couple them much
faster than the ground state. This procedure removes atoms whose energy is
higher than that associated to a vibration quantum. For the case of a lattice
with a spacing of 1.2 µm and a depth of Vlaser = 20Er, this corresponds to an
energy of h̄ω = h̄ · 2π · 3.6 kHz = kB · 180 nK. For a cloud whose temperature
and chemical potential are much below this energy scale, the probability that
an atom reaches the first excited state becomes exponentially small because the
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Figure 6.3: Two adjacent potential wells with almost-matching energy levels.

gas is in the deeply 2D regime. The evaporation is efficient as long as the gas
does not enter this regime.

However, we would like to be able to evaporate the atomic cloud even when
its vertical degree of motion is frozen. To this purpose, we consider atoms
localized in the potential well centred on z = 0, thermalizing via collisions. We
also include the closest level in energy, which is the nth excited level of the well
centred on z = 1. The energy difference between the two levels is

∆E = nh̄ω − bd (6.50)

Both levels have a finite lifetime which is γ0 (resp. γ1) for the localized state of
lowest energy (resp. for the localized state in the neighbouring well which is
the closest in energy). Those parameters are illustrated in figure 6.3.

In this configuration, it becomes possible for two colliding particles to end
up in a situation with one atom in the initial state for the vertical degrees of
freedom and the other one in the closest state in the neighbouring well. If the
energy difference is negative ∆E < 0, this is always possible. If ∆E > 0, the
initial kinetic energy associated to the relative velocity of the two particles has
to be larger than ∆E for this type of collision to be possible. Given that the well-
changing collision is possible, it happens with a probability p 6=. The precise
value of this parameter will be discussed in section 6.2.3. Each of these colli-
sions reduces the total energy by a quantity ǫ related to the energy difference
between the two levels and to the kinetic energy of the particle. We assume the
particle that has changed well is lost, that is γ1 ≫ γ0. For the atoms remaining
in the initial well, the energy as well as the atom number has decreased, which
can lead to an increase in phase-space density.

Let us present a simplification of the problem using classical particles before
presenting the numerical simulations which were performed.

We consider a gas of N classical particles confined in the lowest level of a
potential well of the tilted lattice and in a box potential of area A in the two
other directions x and y. They are at thermal equilibrium with a temperature
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T, and are thus uniformly distributed in the xy plane with a density n. The
probability distribution of atoms in phase-space is

f (r,p) =
1

2πAMkBT
exp

(

− p2

2MkBT

)

(6.51)

f (v,p) =
M

2πAkBT
exp

(

− Mv2

2kBT

)

(6.52)

and the mean energy
〈E〉 = NkBT (6.53)

In the following, we will assume that p 6= 6 1/4 such that there are at least
on average three non lattice-site-changing collisions between two lattice-site-
changing collisions. In typical evaporation processes, it was measured that
a gas typically thermalizes after three collisions [216]. Thus, we can assume
that the lattice-site-changing collisions are rare enough such that position and
momentum distribution is always at thermal equilibrium. We call the collision
probability per unit time per particle γcoll and the probability that two colliding
particles have a relative kinetic energy larger that ∆E, p∆E. For a Maxwell-
Boltzmann distribution,

p∆E =







1 if ∆E < 0

exp
(

− ∆E
kBT

)

if ∆E > 0
(6.54)

The calculation is explicitly done in Appendix B, yielding the result in Equa-
tion B.6. During a time δt, the number of lattice-site-changing collisions is

#collisions = p 6= γcollδt p∆E
N

2
= p

N

2
δt (6.55)

The probability of having a lattice-site-changing collision per particle has been
aggregated to a single number γp. This number depends on the temperature
of the gas, on the relative velocity of the atoms, etc. We neglect the dependence
with the relative velocity and assume that it stays constant over the time interval
δt that we consider. The atom number has changed by

δN = −γp
N

2
δt (6.56)

since one particle is lost for each collision and the energy has changed by

δE = −γp
N

2
ǫδt (6.57)

where ǫ is the mean energy which is carried away by an atom. For two colliding
particles with initial velocities v1 and v2, the center-of-mass velocity is defined
as vCoM = (v1 + v2)/2 and the relative velocity as vrel = (v1 − v2). The initial
energy (considering the two particles in the initial trap) is

Ei = Mv2
CoM +

M

4
v2

rel (6.58)
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The center-of-mass velocity is left unchanged to ensure conservation of mo-
mentum. The norm of the relative velocity is changed to ensure energy conser-
vation. If vrel, f is the relative velocity after the collision,

Erel
kin, f =

M

4
v2

rel, f =
M

4
v2

rel − ∆E (6.59)

The final energy of the single particle remaining in the initial potential well
reads

Ef =
1
2

Mv2
CoM +

1
8

Mv2
rel, f =

1
2

Mv2
CoM +

1
8

Mv2
rel −

∆E

2
(6.60)

hence

ǫ = −
(

Ef − Ei
)

=
∆E

2
+

1
2

Mv2
CoM +

1
8

Mv2
rel (6.61)

The average of the square of the center-of-mass velocity is calculated using the
fact that

〈
v2〉 = 2kBT/M (6.62)

and that
〈
v2

CoM
〉
=
〈
v2〉 /2 = kBT/M (6.63)

The expectation value
〈
v2

rel

〉
has to be calculated taking into account the fact

that if the collision takes place. The explicit calculation is done in Appendix B.
Plugging the results of Equation B.11 and Equation B.12 into equation 6.61

yields:

〈ǫ〉 =







∆E
2 + kBT if ∆E < 0

∆E + kBT if ∆E > 0
(6.64)

In the following, we will only consider average values and write ǫ instead of
〈ǫ〉.

Assuming that equation 6.53 always holds (since the gas is always at thermal
equilibrium), differentiating it and using equations 6.56 and 6.57 we obtain

kBδT = −γp

2
(ǫ − kBT) δt (6.65)

Hence, the temperature will decrease if

ǫ > kBT (6.66)

which is natural because it means that the mean energy carried away by an
escaping particle has to be larger than the mean energy per particle, meaning
for the energy difference between the two levels

∆E > 0 (6.67)

However, we are not interested in just cooling the gas but in increasing its
degeneracy, that is increasing its 2D phase-space density

D = nλ2
dB =

N

A
h2

2πMkBT
(6.68)
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where A is the area of the box potential in which the atoms are confined and
λdB the de Broglie wavelength associated to the temperature of the atoms. Dif-
ferentiating the above equation yields

δD
D =

δN

N
− δkBT

kBT

= γp

(
ǫ

2kBT
− 1
)

δt (6.69)

=
γp

2

[
∆E

kBT
− 1
]

δt (6.70)

As expected, a decrease in temperature does not necessarily lead to an increase
in phase-space density because the atom number decreases too. The phase-
space density will increase if

ǫ > 2 kBT (6.71)

or equivalently
∆E > kBT (6.72)

Moreover, the relative increase in phase-space density can be expressed as a
function of the ratio ∆E/kBT:

δD
D =

1
2

(
∆E

kBT
− 1
)

e
− ∆E

kBT γcoll p 6=δt (6.73)

For a given collision rate, it is maximum at ∆E/kBT = 2 with a value of
e−2γcoll p 6= ≃ 0.13 for a collision rate of 8 s−1. A lattice-site-changing collision
probability of p 6= = 0.25 gives a relative increase of 13 % per unit time.

In case the vertical confinement (a harmonic oscillator of characteristic fre-
quency ω) is not very large compared to the typical energy of the atoms, a
second mechanism of collision-induced evaporation has to be considered. If
two particles collide with a large enough relative kinetic energy, the particles
can end up in different vibrational states of the vertical harmonic oscillator.
Owing to the short lifetime of the particles in these states, they will be quickly
lost (see6.1).

For symmetry reasons, calling n1 and n2 the two vibrational states of the
products of the collisions, n1 + n2 has to be an even number. In the following,
we will restrict ourselves to two cases:

process 1 : (n1 = 0, n2 = 0) → (n1 = 1, n2 = 1) (6.74)

process 2 : (n1 = 0, n2 = 0) → (n1 = 0, n2 = 2) (6.75)

meaning that the two particles must have a relative kinetic energy larger than
2h̄ω for this process to be allowed. We call ψn(z) the wavefunction of the
harmonic oscillator along the z axis, and define the (non normalized) collision
coefficients:

c0 =
∫

|ψ0 (z)|4 dz (6.76)

c1 =
∫

(ψ0 (z))
2 (ψ1 (z))

2 dz (6.77)

c2 =
∫

(ψ0 (z))
3 ψ2 (z)dz (6.78)
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Knowing that the particles have enough energy (and assuming that there are no
well-changing collisions, p 6= = 0), the first process happens with a probability

p1 =
c1

c0 + c1 + c2
=

1/2

1 + 1/2 + 1/
√

8
(6.79)

and the second with probability

p2 =
c2

c0 + c1 + c2
=

1/
√

8

1 + 1/2 + 1/
√

8
(6.80)

With the same line of reasoning as for the previous evaporation mechanism,
the gain of phase space density during a time δt is

δD
D =

(√
2

h̄ω

kBT
− 1
)

γp√
2

δt (6.81)

where γp = (p1 + p2)γcoll p
(
Erel

kin > 2h̄ω
)
.

6.2.2 Simulations

To simulate the problem, we use molecular dynamics techniques which have
already been successfully describing evaporation for cold atom experiments
[217, 218]. This technique alternates between collision-less evolution of the
trajectories of a given number of particles and random collision events between
close-by particles.

We start with N atoms whose positions are drawn uniformly in a square box
with size L and whose velocities are drawn following the Maxwell-Boltzmann
distribution. The walls of the box in the xy plane have a finite height Ubox,
allowing for standard evaporation. The scattering cross-section for the atoms
reads

σ = 2 · 4πa2
scatt (6.82)

with ascatt the s-wave scattering length, which is the only channel in which
the atoms can collide owing to their low temperatures. The factor of two ac-
counts for the scattering enhancement due to the fact that our atoms are non-
condensed bosons (the phase-space distribution is considered to be classical).

We assume that the confinement provided by the lattice is harmonic with an
angular frequency ω and a characteristic extension of the ground state aho =
√

h̄/(Mω).
We also use the length scale δℓ which defines a two-dimensional grid onto

the atoms. It is chosen such that the probability of having two atoms in the
same box is small:

N ≪
(

L

δℓ

)2

(6.83)

Time evolves in discrete steps of duration δt. This duration is chosen such that
the probability of having a collision when two particles are in the same cell of
the grid is small

pcoll =
σ |vrel|

(

aho/
√

2
)

δℓ2
δt ≪ 1 (6.84)
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Figure 6.4: Process used to decide for collision events.

This probability expresses the fact that, in the frame of one particle, a second
particle spans the volume Vscatt = σ |vrel| δt during one time step; hence the
probability to hit the first particle corresponds to the ratio of the volume Vscatt

over the volume of the cell
(

aho/
√

2
)

δℓ2.
From this the simulation goes as follow. For each time step:

• Let the particles evolve freely during δt. In our case, having only a box
potential to confine the atoms makes the evolution rather simple; only the
reflections on the walls have to be accounted for. In case a particle with a
kinetic energy larger than Ubox crosses the boundary of the box, remove
it.

• Compute the outcome of collisions according to the flow chart in figure
6.4. According to the previous section, the velocity of the center-of-mass
is left unchanged; the norm of the relative velocity is changed if there is a
lattice-site-changing collision according to equation 6.59, and its angle is
drawn randomly.

• Remove particles with probability γ0δt to account for the finite lifetime,
for example due to imperfect vacuum.

• Compute the interesting quantities: atom number, energy, temperature
(computed either by a fit of the velocity distribution or, assuming the gas
is at thermal equilibrium, using equation 6.53), phase-space density, mean
energy lost per lattice-site-changing collision, etc.
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Figure 6.5: Results of the molecular dynamics simulations. Various energy offsets
between the neighbouring sites ∆E = kB[−50, 25, 75, 150] nK are represen-
ted by dark to light blue dots. Standard evaporation with an energy height
of the box potential of kB200 nK is in light red (plus signs); results of the
evaporation using the different vibrational states in the vertical direction
are represented with dark red crosses. Dashed lines represent the linear
fits to the simulation data. Shaded areas correspond to the standard error
on the results (averaged over 50 measurements for the dark red curves, 100
measurements for the others). (a) Phase-space density, (b) Temperature, (c)
Atom number, (d) Mean energy removed by a particle which is lost.

6.2.3 Results

In the simulation, we consider a gas of 1000 atoms in a square box of length
30 µm. The initial temperature of the gas is taken to be 50 nK, the confinement
frequency in the vertical direction is taken to be 2 kHz and the probability to
have a lattice-site-changing collision is p 6= = 0.25.

In a first series of simulations, the height of the barrier potential at the edge
of the box is taken to be much larger than the typical kinetic energy of an
atom. This prevents standard evaporation to take place. The energy differ-
ence between the two closest levels in energy ∆E is varied between −50 nK
and 150 nK. The results of the molecular dynamics simulation are presented in
figure 6.5 and follow the results derived in section 6.2.1. The average energy
removed per particle is slightly larger than the one which was calculated in
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Figure 6.6: Results of the fits of the molecular dynamics simulations for various energy
offsets between the neighbouring sites (dark blue curve), for evaporation
using the different vibrational state (dark red line) for standard evaporation
with an energy height of the box potential of kB200 nK (light red line). (a)
Variation of phase-space density. (b) Variation of temperature. (c) Variation
of atom number; there are two possible way of computing the atom number
variation for the standard evaporation. The coefficient of the linear fit of
6.5c is represented as a dotted line. The atom loss during the first 0.1 s
is represented as a solid line.(d) Probability that a collision is lattice-site-
changing, knowing that there is a collision. In the program, p 6= = 0.25.
Dark blue dots represent the results of the simulation, light blue crosses
represent theoretical values computed from equation 6.54.
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equation 6.64 as seen from figure 6.5d. This is due to the fact that the collision
probability is not independent of the relative velocity between the particles, as
shown in equation 6.84. The larger the relative velocity, the higher the probab-
ility to collide so the mean of v2

rel knowing that there is a collision is different
from what is calculated for equation 6.64.

We perform linear fits of the various curves (the atom number is fitted during
the first 10 % of the total simulation time), whose values are reported in figure
6.6. As expected, the evaporation mechanism can lead to an increase in phase-
space density for an energy difference of ∆E & kBT.

In figures 6.5 and 6.6, the light red curves represent a simulation of “standard
evaporation” with no possibility to have lattice-site-changing collisions. The
evaporation is provided by the finite height of the in-plane box potential which
allows particles whose kinetic energy is higher than Ulim = kB · 200 nK to be
lost. This corresponds to a ratio between the height of the barrier and the
temperature of the gas of η = 4, which is reasonable for this type of evaporative
cooling. The loss of atom is less important but the decrease in temperature too,
so that the increase of phase-space density is smaller than the one due to lattice-
site-changing collisions for some values of ∆E.

The second evaporation process of evaporation relying on atoms changing
of vibrational state after a collision has also been simulated. The vertical con-
finement has been chosen such that h̄ωevap = h̄ · 2π · 2 kHz. The results of this
simulation is represented by the dark red curves in figures 6.5 and 6.6.

We can also define the efficiency of the evaporation as

e =
dD
D

N

dN
(6.85)

which indicates the increase in phase-space density (in orders of magnitude)
when one order of magnitude is lost in atom number. The results are presented
in figure 6.7. For the standard evaporation, computing the quantity δN/N can
be performed using two methods. This is due to the fact that at the beginning
of the simulation, many particles are lost at once (about 2 %). It is therefore
different (i) to fit the decay of the atom number or (ii) to compute the percent
of atoms lost after 0.1 s: [N(t = 0.1 s)− N(0)] /N(0). The first method seems to
indicate that standard evaporation is always more efficient than the two other
collision-assisted processes. However, it does not take into account the initial
atom loss. According to the results for (ii), it is possible to reach similar or
higher efficiencies with either of the two collision-assisted evaporation methods.

Last, we discuss the probability of having a lattice-site-changing collision
knowing that there is a collision with high enough energy p 6=; it was taken
to be p 6= = 0.25 in the simulation, taking the highest possible value such that
the reasoning of section 6.2.1 holds. This probability actually depends on the
overlap of the wave functions localized in two different potential wells. We
give a rough estimate of this probability by assuming that the lattice is deep
enough to support several bound states; we can then approximate the wave
functions in the vertical direction by eigenfunctions of the harmonic oscillator
instead of taking into account the full Wannier functions. Calling ψ0 (resp. ψ1)
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Figure 6.7: Efficiency of the evaporation for the collision-assisted evaporation (blue
dots) as a function of the energy difference between the two levels, com-
pared with that of standard evaporation with η = Ulim/kBT = 4 (light
red line) and with collision-assisted evaporation using the different vibra-
tional states of the lattice well. The dotted and solid lines for the standard
evaporation correspond to the two possible way to compute the atom loss:
coefficient of the linear fit of 6.5c (dotted line) and atom loss during the first
0.1 s (solid line).

the wave function of the ground state (resp. of the first excited state), we get an
approximate value of p 6= by computing

p 6= ≃ p1

p0 + p1
(6.86)

with

p0 =
∫

ψ4
0(z)dz =

1

aho
√

2π
(6.87)

p1 =
∫

ψ3
0(z)ψ1(z − d)dz =

d

a2
ho

√
2π

e−d2/2a2
ho (6.88)

where aho =
√

h̄/(Mω), ω =
√

2Vlaserk
2
laser/M and d is the lattice spacing. This

gives

p 6= ≃ de−d2/2a2
ho

aho + de−d2/2a2
ho

(6.89)

The approximate value of p 6= is shown in figure 6.8. For lattice depths on the
order of 10 Er (computed with a lattice spacing of 1.2 µm), we have p 6= ≃ 10−4

if d = 1.2 µm or p 6= ≃ 10−7 if d = 2 µm. The relative variations of atom num-
ber, temperature and phase-space density are all proportional to p 6=, meaning
that unless the tunnelling is important and the lattice shallow, the first collision-
assisted evaporation scheme will not be practical. Tilting the lattice in the re-
gime defined thanks to 6.1 can therefore lead to efficient evaporation at reason-
able lattice depths via collision-assisted evaporation where the particles change
their vibrational state within a lattice well.
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Figure 6.8: Estimated value of p 6= for overlapping eigenfunctions of the harmonic os-
cillator as a function of the lattice depth. The lattice depth is depicted in
units of Er for a lattice spacing of d = 1.2 µm. The overlap p 6= is shown
for a lattice spacing of d = 1.2 µm (dark blue solid curve) and of d = 2 µm
(light blue dotted curve). The dashed line represents the value which mas
used in the simulations p 6= = 0.25.

6.3 conclusion

In this chapter, we have studied how the tilted lattice can lead to new evapora-
tion mechanisms.

First, we looked at the influence of having a lattice potential and a linear
potential on the poles of the scattering matrix. We saw that it is possible to find
a combination of lattice depth and tilt with realistic values for our experimental
set-up such that the lowest energy localized state is long-lived (τ0 > 10 s) and
the first excited and localized state is short-lived (τ1 < 25 ms). Going into this
regime means that atoms whose vertical degree of freedom is not frozen are
quickly lost. This can help to maintain a two-dimensional gas by removing
vibration excitations in the vertical direction.

Then, we studied two ways of evaporating the atomic cloud using collisions.
We start with all the atoms in the localized ground state of one well and con-
sider the possibility of two atoms to collide and to end up either with one
particle in the initial state while the other particle has been transferred to an-
other localized in a neighbouring well or with one or two particles in a different
vibrational state of the same lattice well.

For the first mechanism, the ability of the atoms to be cooled or their phase-
space density to be increased by this mechanism depends on the energy differ-
ence between the initial state and the state in the neighbouring well ∆E. As is
seen from approximate calculations as well as from molecular dynamics sim-
ulation, the temperature of the gas decreases if ∆E & 0 and the phase-space
density increases if ∆E & kBT. While the increase in phase-space density can
be greater with this type of evaporation than with a standard evaporation using
finite-height potentials, the dynamics of this evaporation relies on the overlap
between the two possible states of the atoms in the two different potential wells.
For the deep lattices, this overlap becomes exponentially small, which hinders
this mechanism.
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For the second mechanism, with a vertical confinement induced by the lattice
of h · 2 kHz (within experimental reach), the evaporation is shown to be as
efficient as the standard evaporation technique. Therefore, tilting the lattice
can provide additional and uniform evaporation of the atomic cloud.

This uniform evaporation can be very interesting in the context of the Kibble-
Zurek mechanism described in 2 and experimentally investigated in 3: if we
want to investigate large clouds of atoms, standard evaporation could lead to
a non-uniform temperature due to the fact that particles only escape at the
edges of the trap. Having a uniform evaporation that makes the system cross
the phase transition temperature would lead to a more controlled test of this
mechanism.
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P R O S P E C T I V E E X P E R I M E N T: U S I N G M A G N E T I C T E X T U R E
T O P R O D U C E S U P E R C U R R E N T S

The experimental set-up which has been developed and described in chapter 4

enables us to produce planar gases of degenerate atoms with various shapes.
In that respect, ring geometries are very interesting because they support super-
currents, i. e. states of the macroscopic matter wave with a quantized angular
momentum that are metastable owing to the superfluid character of the gas.
These supercurrents have already been produced and studied in various ul-
tracold atom experiments [51, 53] using several techniques:

• In chapter 3, we saw that they can be created stochastically by quench
cooling ultracold atoms.

• They can also be optically generated as a metastable state by imprinting
a phase winding on a ring-shaped cloud of atoms using Laguerre-Gauss
beams [53, 162].

• They can also be created as the ground state in the rotating frame of a
stirred torus of atoms [51].

• Those supercurrents could also be generated as the ground state of the
Hamiltonian written in the laboratory frame, when applying on the neut-
ral atoms a potential equivalent to a magnetic field for charged particles
– named “artificial gauge field” – the amplitude of which corresponds to
several flux quanta for the ring, as was done for mesoscopic rings of metal
or of semiconductor material [219–221].

However, although ultracold atoms have been the subject of intense research
for the past twenty years due to the high degree of control they offer on many
experimental parameters, there is still a parameter which the ultracold atom
community is trying to implement in a reliable fashion: gauge fields of large
amplitude [39]. Schemes to produce an artificial magnetic field have received
a lot of theoretical and experimental interest in order to address some of the
most intriguing puzzles of condensed matter physics. While obtaining gauge
field amplitudes high enough to reach regimes analogous to the quantum Hall
effect [222, 223] has remained out of reach for the moment, implementations in
bulk [57] or lattice systems [224–227] have been demonstrated.

In this chapter, we will describe how we can produce an artificial magnetic
field on the atoms using the quadrupole coils available in our experiment and
discuss possible experiments that follow on from that set-up. In this geometry,
the strength of the gauge field is characterized equivalently by its amplitude
or by its flux through the ring. Using a static magnetic field configuration will
allow to produce artificial gauge fields with an amplitude of a few flux quanta.
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Among the many techniques which have been developed to produce artifi-
cial gauge fields [39], we will take advantage of the magnetic moment of the
atoms which gives them an internal degree of freedom, and describe the artifi-
cial gauge potential that is obtained in Section 7.1. As a result of the presence
of the gauge field, the atoms can condense in different states of angular mo-
mentum depending on the parameters of the ring potential; ground states of
the system as well as possible detection scheme for the supercurrents are dis-
cussed in Section 7.2. Having an artificial gauge field can also be phrased in the
framework of the Berry phase (generalization of the Aharonov-Bohm phase), as
will be done in Section 7.3. Then, the case of a time-periodic magnetic field will
be considered in Section 7.4; we will show that the periodic magnetic field
can be engineered such that the charge of the supercurrent increases by two at
each period, implementing a “vortex pump”. The topological aspects of this
time-periodic Hamiltonian will also be discussed.

7.1 a ring of atoms in a quadrupole field

7.1.1 A neutral atom in a real magnetic field interpreted as a charge in an artificial

magnetic field

Let us assume we have a neutral atom in an external potential V(r̂) and a
magnetic field that depends on position B(r):

Ĥ =
p̂2

2M
+ V(r̂)− gµBF̂ · B(r) (7.1)

where p̂ is the momentum of the atom, M its mass, F̂ its spin associated to the
gyromagnetic ratio g, and µB is the Bohr magneton.

An atom localized in r minimizes its energy by aligning its spin with the local
magnetic field (for a positive g). The internal state minimizing the energy thus
depends on position |m+ [B(r)]〉 = |m+〉B. We will assume in the following
that the atom stays in this “local ground state” during its evolution, since the
time-scale of the evolution of the spin (on the order of 1/νLarmor ∼ 1.4 µs for
a magnetic field of 1 G) is much smaller than the time-scale of the evolution
of the motional degrees of freedom of the atom (on the order of 125 µs for the
highest trapping frequencies we can produce). This assumption thus relies on
the adiabatic approximation, similar to the Born-Oppenheimer approximation
of quantum chemistry where the time-scales for the evolution of the electrons
are much shorter than the time-scales for the evolution of the nuclei. We will
come back in the following on the validity of this approximation in our experi-
ment.

The internal degree of freedom has a dimension 2F + 1 where F is the integer
or half-integer labelling the spin manifold in which the atom is, and the local
eigenstates for the magnetic Hamiltonian are

{|m−F〉B, |m−F+1〉B, · · · , |mF〉B = |m+〉B} (7.2)



7.1 a ring of atoms in a quadrupole field 153

A spinor wave function Ψ (r, t) can be decomposed on this basis

Ψ (r, t) =
F

∑
i=−F

ϕi(r, t) |mi〉B (7.3)

The adiabatic approximation consists in considering that an atom initially pre-
pared in the internal state |mF〉B will remain there; we therefore only consider
the evolution of ϕF. By applying the Hamiltonian 7.1 on the wave function 7.3
and then projecting on |m+〉B, we obtain the evolution equation for ϕF [39]

ih̄
∂ϕF

∂t
=

[
(p − A)2

2M
+ V(r) + W(r)

]

ϕF (7.4)

which involves the vector potential

A(r) = ih̄〈mF|B∇|mF〉B (7.5)

and the scalar potential

W(r) =
h̄2

2M

F−1

∑
i=−F

|〈mi|∇mF〉|2 (7.6)

The neutral atom thus behaves as a charged particle in the artificial magnetic
field B obtained from the vector potential A(r):

B(r) = ∇×A(r) (7.7)

The idea to use a real magnetic field on neutral atoms to simulate an artificial
magnetic field on them has been experimentally demonstrated previously: the
zero of a magnetic trap was moved completely through the cloud of atom,
leading to the production of vortices of charge two at MIT as described in
[228]. In Amherst as described in [229, 230], the zero of a quadrupole field was
placed in a BEC and interpreted as a magnetic monopole. In Seoul, the zero of
a quadrupole field was moved in an atomic cloud and described as a skyrmion
texture [231].

7.1.2 Case of a spin 1 atom

In our experiment, we prepare a degenerate cloud of rubidium 87 atoms in the
lower hyperfine state, so we will consider the F = 1 manifold in the following
unless mentioned. In order to give literal expressions for A and W, the local
eigenstates {|mi〉B}i∈{+,0,−} have to be computed.

The magnetic field B(r) can be parametrized in the following way

B(r) = B







sin ϑ cos ϕ

sin ϑ sin ϕ

cos ϑ







(7.8)

Here, ϕ and ϑ are position-dependent, they can be expressed using the angles
of the spherical coordinates φ and θ without being equal to them as depicted
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Figure 7.1: Parametrization of the magnetic field B (r) by the angles ϑ and ϕ, along
with the angles of the spherical coordinates θ and φ.

in figure 7.1. In this situation, the local eigenstates for the internal degree of
freedom in the mz = −1, 0,+1 basis (corresponding to a quantization axis of
the magnetic moment along the z-axis) read

|m+〉B =
1
2







1 + cos ϑ√
2eiϕ sin ϑ

e2iϕ (1 − cos ϑ)







(7.9)

|m0〉B =
1
2







−
√

2e−iϕ sin ϑ

2 cos ϑ√
2eiϕ sin ϑ







(7.10)

|m−〉B =
1
2







e−2iϕ (1 − cos ϑ)

−
√

2e−iϕ sin ϑ

1 + cos ϑ







(7.11)

Replacing 7.9 in 7.5 we obtain the expression for the vector potential

A(r) = h̄ (cos ϑ − 1)∇ϕ (7.12)

Note that this quantity is gauge dependent. If all the local eigenstates are
multiplied by a space-dependent phase e−i f (r) (where r is the position of the
atom), the vector potential becomes:

A = h̄∇ f + ih̄〈mF|B∇|mF〉B (7.13)

This does not change the physical observables of the system, which depend
only on the effective magnetic field B. For instance, taking f (r) = −ϕ(r), the
vector potential becomes in this gauge

A(r) = h̄ cos ϑ∇ϕ (7.14)

The scalar potential reads (using 7.6)

W(r) =
h̄2

4M

(

|∇ϑ|2 + sin2 ϑ |∇ϕ|2
)

(7.15)
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7.1.3 Higher order spins

The effective vector potential for an atom in a manifold which is different from
F = 1 is actually similar to 7.12. The local eigenstate of the system is indeed
obtained starting from an eigenvector of the magnetic Hamiltonian for B = Bez,
|mz〉, rotated first around the axis y by an angle ϑ then around the axis z with
an angle ϕ

|mi〉B = R̂ez(ϕ)R̂ey(ϑ)|mz〉 (7.16)

Using the standard expression for the rotation matrices

R̂u(α) = e−
i
h̄ αF̂·u (7.17)

we obtain for the gradient:

∇|m+〉B = −∇ϕ
i

h̄

[
F̂ · ez

]
R̂ez(ϕ)R̂ey(ϑ)|mz〉

−∇ϑ
i

h̄
R̂ez(ϕ)

[
F̂ · ey

]
R̂ey(ϑ)|mz〉 (7.18)

After the first rotation around the y-axis, the spin vector is still orthogonal to
ey so the second term in 7.18 vanishes, and the scalar product with the vector
ez yields mzh̄ cos ϑ after the two rotations. Hence, the vector potential for the
wave function projected on the local eigenstate |mi〉B is

A = mh̄ cos ϑ∇ϕ (7.19)

with m ∈ [[−F, F]], which is equivalent to 7.14. By working in the F = 2 man-
ifold or by considering another atomic species whose hyperfine manifold are
characterized by a higher number (for example F = 8 for dysprosium 164 [31]),
the amplitude of the vector potential can be enhanced.

7.1.4 Case of the quadrupole field

The magnetic field created by two opposing coils with current flowing in op-
posite directions is called a quadrupole field. Due to the symmetry of the sys-
tem, there is a zero of the magnetic field on the central symmetry point of the
current distribution. This type of magnetic field is very important from an ex-
perimental point of view since the MOT stage and the magnetic trapping stage
use this current configuration. Hence, such coils are readily available on our ex-
perimental set-up, which makes it especially relevant for direct implementation
of an experimental scheme using a quadrupole configuration.

The atoms are located close to the zero of the magnetic field where this field
can be expanded to the first order as

B(r) = b′







−x/2

−y/2

z







(7.20)
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where b′ is the value of the magnetic field gradient (up to 240 G/cm on our
new set-up) and where the factors 1/2 ensure that the divergence of B is zero.
Calling R =

√

x2 + y2, we get the following expression to define B, ϑ and ϕ:

B = b′
√

z2 + R2/4 (7.21)

cos ϑ =
z√

z2 + R2/4
, sin ϑ =

−R/2√
z2 + R2/4

(7.22)

x = −R cos ϕ, y = −R sin ϕ (7.23)

We can relate the angles ϑ and ϕ to the angles of the spherical coordinates θ

and φ:

ϕ = φ + π (7.24)

cos ϑ =
2 cos θ√

1 + 3 cos2 θ
(7.25)

Using the expression of the gradient and the standard basis vectors in spherical
coordinates, we obtain

∇ϑ =
2 sin θ

R (1 + 3 cos2 θ)
eθ (7.26)

∇ϕ =
1
R

eφ (7.27)

The vector potential of 7.12 now reads:

A =
h̄ (cos ϑ − 1)

R
eφ (7.28)

and the scalar potential

W =
h̄2

4MR2 sin2 ϑ
(
2 + 3 sin2 ϑ

)
(7.29)

In the case of a ring of atoms centred on the revolution axis of the quadru-
pole field at the height zr and of radius R, the vector and scalar potentials are
constant in modulus and the vector potential is oriented along the azimuthal
direction.

7.1.5 Higher order fields

The quadrupole field is readily available on an experiment, which makes it
natural to use it for further experiments. However, it is also possible to consider
other magnetic field configurations. A family of magnetic fields of interest
are the multipolar fields. These configurations use the fact that a field B =

(Bx, By, Bz) with equation

Bz = constant (7.30)

Bx + iBy = b(n) (x + iy)n (7.31)
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is a solution of the Maxwell equations for n ∈ N. Similarly to what has been
done in 7.1.4, the field can be parametrized by two angles ϑ and ϕ and a scalar
B as in 7.8. These two angles can in turn be expressed as a function of the
spherical coordinates r, θ and φ :

ϕ = nφ (7.32)

cos ϑ =
Bz

√

B2
z +

(
b(n)

)2
r2n sin2n θ

(7.33)

Replacing the expression 7.32 in 7.12, we obtain

A =
h̄n (cos ϑ − 1)

R
eφ (7.34)

where the amplitude of the vector potential has been enhanced by a factor n.

7.1.6 Artificial magnetic field

It is interesting to compute the effective magnetic field generated by the gauge
potential 7.28. For this, we use the expression of the rotational operator in the
spherical basis

(
eρ, eϑ, eϕ

)
such that eρ = B/ |B|, eϕ = − sin ϕ ex + cos ϕ ey

and eϑ = eϕ × eρ and find

B = ∇×A = − h̄

ρ2eρ (7.35)

where ρ =
√

z2 + R2/4. This effective magnetic field is close to the Dirac mag-
netic monopole where B = α/r2er; this mapping has been studied recently in
a cloud of ultracold atoms in [229, 230]. However, the coordinate system used
in 7.35 is not that of the spherical coordinates of r.

7.2 condensation in presence of an artificial gauge field

7.2.1 Computing the ground state

Similarly to what has been done in mesoscopic physics [219–221], it would
be interesting to probe the change of the ground state of the system as the
magnitude of the artificial magnetic field is increased, leading to ground states
bearing a non-zero supercurrent. Knowing the expression of the artificial gauge
potential 7.28, we will now compute the ground state of an atom in a ring to
look for configurations where it has a non zero angular momentum.

Consider a particle in a ring potential centred on the z axis characterized by
its size (R) and height (given by the angle θ). We consider in the following
only the azimuthal degree of freedom φ (which would be exact for a strongly
confining ring potential). The momentum operator of the particle is

p̂φ =
h̄

i

1
R

∂φ (7.36)
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so the Hamiltonian describing the motion of the particle that adiabatically fol-
lows the local ground state for the spin state is

Ĥ =
h̄2

2MR2

(
i∂φ + cos ϑ − 1

)2 (7.37)

The eigenfunctions of this Hamiltonian are scalar functions ψ of the azimuthal
coordinate φ with periodic boundary conditions ψ(φ + 2π) = ψ(φ). They have
the following form:

ψ(φ) =
1√
2π

eiℓφ, ℓ ∈ Z (7.38)

The corresponding energies are

Eℓ =
h̄2

2MR2 (ℓ− cos ϑ + 1)2 (7.39)

which are depicted in figure 7.2.
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Figure 7.2: Energies of the eigenfunctions with ℓ = −3,−2,−1, 0 and 1 as a function
of the height characterized by cos ϑ. The dotted lines represent the critical
height at which the angular momentum of the ground state changes.

The number of angular momentum quanta (corresponding to the charge of
the supercurrent) of the ground state wave function depends on the height of
the ring:

1. if cos ϑ < −1/2, the ground state is in the ℓ = −2 state

2. if |cos ϑ| < 1/2, the ground state is in the ℓ = −1 state

3. if cos ϑ > 1/2, the ground state is in the ℓ = 0 state

The presence of a gauge field can thus lead atoms in a ring to condense in a state
of non zero angular momentum. Unlike experiments which were performed in
solid-state systems [219–221], the magnitude of the artificial magnetic field is
limited; hence we cannot access high number of angular momentum quanta.
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The angular momentum state in which the atoms condense depends on the
height of the ring on the rotation symmetry axis of the magnetic field. The
derivative of the energy of the ground state with respect to the height of the
ring is discontinuous for cos ϑ = ±1/2 i. e.

zc = ± R

2
√

3
(7.40)

According to Ehrenfest’s classification of phase transitions, since the derivative
of the energy is discontinuous at ±zc, this could be considered as a first-order
phase transition.

7.2.2 Higher order spins or multipolar fields

As was shown in 7.19 and 7.34, the vector potential can be enhanced by con-
sidering a particle with a high spin F and using a multipolar field of order n

instead of a quadrupole field. The Hamiltonian 7.37 thus becomes

Ĥ =
h̄2

2MR2

(
i∂φ + nF (cos ϑ − 1)

)2 (7.41)

and the corresponding energies

Eℓ =
h̄2

2MR2 (ℓ− nF (cos ϑ − 1))2 (7.42)

The state in which the atoms can condense thus range from ℓ = −2nF to ℓ = 0,
with a transition for each height such that

cos ϑ = −1 − 1
2nF

+
k

nF
, k ∈ [[1, 2nF]] (7.43)

7.2.3 Spinor and choice of gauge

The total wave function of the atom in the ground state of the Hamiltonian 7.37

is obtained by reintroducing the spinor wave functions of section 7.1.2.

1. In case cos ϑ < −1/2:

Ψ(φ) =
1√
8π







(1 + cos ϑ) e−2iφ

−
√

2 sin ϑ e−iφ

(1 − cos ϑ)







(7.44)

2. In case |cos ϑ| < 1/2:

Ψ(φ) =
1√
8π







(1 + cos ϑ) e−iφ

−
√

2 sin ϑ

(1 − cos ϑ) eiφ







(7.45)
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3. In case cos ϑ > 1/2:

Ψ(φ) =
1√
8π







1 + cos ϑ

−
√

2 sin ϑ eiφ

(1 − cos ϑ) e2iφ







(7.46)

These expression are independent of the gauge choice (up to a phase factor
that is independent of the position); a different gauge would have changed the
expression of the spinor 7.9, which would have in turn modified the vector
potential 7.28, leading to the same spinor wavefunctions as here.

7.2.4 Detecting the angular momentum

After having cooled down a ring of atoms through the BEC transition at a
given height given by the parameter cos ϑ, we would like to detect the height-
dependent angular momentum.

7.2.4.1 Projection of the spin on the |mz = +1〉 state

A first way to detect the phase winding picked up by the wavefunction is to
perform a fast rotation of the spin. The spinor wavefunction can be rotated to
be aligned with the z-axis.

1. In the case cos ϑ > 1/2:

Ψf(φ) = R̂eϕ (−ϑ)Ψ(φ) =
1√
2π







1

0

0







(7.47)

2. In the case |cos ϑ| < 1/2:

Ψf(φ) = R̂eϕ (−ϑ)Ψ(φ) =
eiφ

√
2π







1

0

0







(7.48)

3. In the case cos ϑ < −1/2:

Ψf(φ) = R̂eϕ (−ϑ)Ψ(φ) =
e2iφ

√
2π







1

0

0







(7.49)

After having performed the spin rotation, the angular momentum can be de-
tected using standard techniques for rings of atoms. For instance, it is possible
to lower the depth of the trap potential and to observe a hole in a ToF meas-
urement whose width indicates the magnitude of the angular momentum ([51,
162, 232]).
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The experimental feasability of condensing atoms in a ring will be discussed
in 7.2.4.3. Let us here consider the feasability of the projection of the spin. It
can be realized experimentally by ramping up a bias field on the z-axis Bbias =

Bz(t)ez = Ḃz t ez.
On the one hand, if the ramp is slow compared to the Larmor frequency of

the atoms, their spin will adiabatically follow the orientation of the magnetic
field, realizing the situation described previously.

Assuming that the ramp of the bias magnetic field is such that ϑ = π/2 at
t = 0 yields:

ϑ = arctan
(

−B⊥
Bz

)

= arctan
(

− b′R

2Ḃzt

)

(7.50)

with B⊥ =
√

B2
x + B2

y. The derivative of the angle is thus:

dϑ

dt
=

ω

1 + ω2t2 (7.51)

with ω = 2Ḃz/(b′R). The Larmor frequency is

ωLarmor =
gµB

h̄

b′R
2

√

1 + ω2t2 (7.52)

The condition |dϑ/dt| ≪ ωLarmor at t = 0 is thus equivalent to

Ḃz ≪
gµB

h̄

(
b′R
2

)2

(7.53)

Typically, R = 10 µm and the value of b′ can range from 10 G/cm to 240 G/cm.
For a gradient of 30 G/cm, we obtain Ḃz ≪ 160 G/s which does not put so much
constraint on the experiment.

On the other hand, if the ramp is too slow, the phase winding created during
condensation will decay because it will no longer be the true ground state of
the Hamiltonian but a metastable state as the bias field is ramped up.

In a trap the roughness of which is small compared to the relevant energy
scales for the cloud of atoms, the lifetime of a supercurrent can be on the order
of seconds [162]. A linear ramp of the bias field can only reach the complete
rotation of the spins asymptotically. Let us assume that it is sufficient to go
from a situation where cos ϑ = −0.99 to a situtation where cos ϑ = 0.99. The
duration of the ramp will be, using 7.50

t =
b′R

Ḃz · 0.14
≪ 1 second (7.54)

which gives the condition on Ḃz

Ḃz ≫ b′R · 7.1 Hz (7.55)

For a gradient of 30 G/cm and a radius of 10 µm, this means Ḃz ≫ 200 mG/s
which is also easily fulfilled.
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7.2.4.2 Interference of two rings

While projecting the spin in the |mz = +1〉 state allows for the detection of a
phase winding in the cloud, it relies on transforming the initial spinor into a
metastable supercurrent state.

This is not necessary to observe the condensation in different states of angular
momentum. Thanks to the flexibility of the DMD, we can project on the atoms
two coplanar rings with radii R1 < R2 and place them at a distance zR of the
zero of the magnetic field as shown on figure 7.3. The difference of angular
momentum in each ring can be probed via interference experiments such as
those described in chapter 3 in subsection 3.3.2.

Figure 7.3: Schematic of the experiment to reveal the different states of angular mo-
mentum in which the atoms condense. Two coplanar rings of atoms with
radii R1 and R2 are at a height zR above the zero of the magnetic field.

For a ring of radius R, the critical heights at which the angular momentum
changes are, as shown in 7.2.1

zc = ± R

2
√

3
(7.56)

In a two-ring setup, it is thus possible to distinguish several regimes for the
difference of angular momentum ∆ℓ = ℓ2 − ℓ1 as a function of the height of the
ring as depicted in figure 7.4. Let z

(1)
c and z

(2)
c be the critical heights for the two

rings with radii R1 and R2 according to equation 7.56; in the case zR > 0:

• if zR > z
(1)
c , z

(2)
c , both rings condense in the ℓ = 0 state, and the interfer-

ence pattern will consist in concentric rings.

• if z
(2)
c > zR > z

(1)
c , the inner ring will condense in the ℓ = 0 state and the

outer one in the ℓ = −1 state; the interference pattern will be a spiral of
charge minus one.

• if zR < z
(1)
c , z

(2)
c , both rings condense in the ℓ = −1 state, and the interfer-

ence pattern will consist in concentric rings.

7.2.4.3 Experimental requirements

Experimentally, the magnetic field has to be controlled well enough to move
the zero of the magnetic field in the relevant range. We assume that the ring
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Figure 7.4: Angular momentum of the ground state of each ring as a function of posi-
tion; regions where interference pattern will yield concentric fringes (resp.
spiral fringes) are depicted in light (resp. dark) grey.

is originally produced at zR = 0 and that a bias field Bz is added to move
the position of the zero of the quadrupole. There are several conditions to be
fulfilled so that the scheme is experimentally feasible:

1. The fluctuations of the ambient magnetic field Bfluct and the experimental
resolution on the bias field Bres have to be small enough to allow the
zero to be scanned in the |∆ℓ| = 1 region of height (R2 − R1)/(2

√
3) =

∆R/(2
√

3); they must also be smaller than the field generated by the
quadrupole on the rings:

δB = max (Bfluct, Bres) ≪ min
(

b′∆R

2
√

3
,

b′R1

2

)

(7.57)

2. The bias field has to be large enough to allow for a maximal displacement
of the zero of the quadrupole field of zmax > R2/(2

√
3), typically on the

order of 100 µm in the vertical direction

b′zmax < Bmax (7.58)

3. The speed of the atoms must be small enough so that the change in mag-
netic field orientation in time is small compared to the Larmor frequency
(adiabatic approximation)

ϕ̇ =
v

R
≪ ωLarmor =

gµBb′R
h̄

(7.59)

4. The fluctuations of the magnetic field or the residual field δB have to
induce a potential difference between diametrically opposite points on
the rings which is small with respect to the chemical potential of the gas
µ. In the case where δB ≪ b′Ri/2 (fulfillled thanks to equation 7.57), it
reads:

2gµB sin ϑi δB ≪ µ

h̄
(7.60)
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In our experimental setup, it is reasonable to consider radii such that R1 = 7 µm
and R2 = 17 µm; the gradient that can be produced ranges from 0 to 240 G/cm;
the bias coils provide a field up to 4.5 G with a resolution on the order of 10 mG,
which is also the amplitude of the magnetic fluctuations close to the experiment
(due to the magnetic field of the subway); the degenerate ring gases which were
produced so far have an estimated chemical potential of h · 2 kHz.

For this typical experimental values, the condition 7.60 is the most stringent.
At the critical height for the change of angular momentum, the chemical po-
tential of the gas has to be large compared to

√
3gµB δB = h · 12 kHz. This

implies that the chemical potential of the gas has to be increased for example
by compressing the accordion lattice as described in subsection 4.2.2 in order
to become less sensitive to the residual magnetic fields (this will also increase
the zero-point energy of the gas, and hence its relevant energy scale). It is also
possible to improve the stability of the magnetic fields in the experiment using
for example active compensation, which can reach residual magnetic fields of
300 µG according to [233]. This would lead to

√
3gµB δB = h · 0.4 kHz, avoiding

unwanted tilts of the ring potential. One can also resort to magnetic shielding
(although this would be difficult given the current set-up).

The possible values for the quadrupole are bounded by equations 7.57 and
7.58. Under our typical parameters, the quadrupole field can take values

30 G/cm < b′ < 500 G/cm (7.61)

which is well within experimental reach.
Last, for a velocity of the atoms on the order of 1 mm/s (on the order of the

thermal temperature and of the velocity field induced by the presence of the
angular momentum), we obtain ϕ̇ ≃ 2π · 1.6 Hz. This means that for a ring
of radius R = 7 µm, the gradient has to be much larger than 2.3 mG/cm, also
easily done on the experiment.

7.3 measuring berry’s phase

The problem of adiabatic following as described in section 7.1.1 can be phrased
in many different ways. It was first brought forward by Berry in [234] who
explained that if there is a way to split the degrees of freedom between a slow-
and a rapidly-varying, a particle moving through a closed loop in the slowly-
varying parameter space while adiabatically following the state of the fast de-
grees of freedom ends up in the same state that the one from which it originally
started, up to a phase factor. This phase has two contributions, one which is de-
pendent on the speed at which the atom travels through the closed loop in the
slowly-varying degrees of freedom, called the dynamical phase, and another
one which is independent of the speed. The latter contribution, which depends
on the contour, is called the Berry phase, or geometrical phase. It is of great
interest for ultracold atom physics due to the analogy that can be made with
the Aharonov-Bohm phase of a charged particle moving in a magnetic field.
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For a particle that adiabatically follows the state |χ(s)〉, where s is the co-
ordinates characterizing the slowly-varying degrees of freedom, the Berry phase
accumulated on a closed contour C in the s parameter space is

ϕBerry (C) = i
∫

C
〈χ(s)|∇s|χ(s)〉 · ds (7.62)

From this expression and from equation 7.5, there is a clear connection between
the Berry phase and the vector potential A:

ϕBerry (C) =
1
h̄

∫

C
A(s) · ds (7.63)

For a spin in an mF state aligned with a changing magnetic field, the Berry
phase has another simple expression, as derived in [234]. While moving in the
s parameter space, the spin takes orientations parametrized by two angles ϑ

and ϕ that are the polar angles describing the orientation of the magnetic field
(see figure 7.1). Using equation 7.19 and the Green theorem one gets

ϕBerry (C) = −mFΩ(C) (7.64)

where Ω(C) is the solid angle enclosed by the tip of the unitary vector B/B

as it moves along C. This generalizes what was computed for a ring centered
on the symmetry axis of a quadrupole magnetic field: an atom moving around
a closed contour in a magnetic field picks up a phase which is mF times the
solid angle (computed with the angles ϑ and ϕ) under which it sees the zero
of the magnetic field. The critical heights for condensation as computed in
7.2.1 correspond to heights where ϕBerry (C) = π [2π], i. e. heights at which the
closest multiple of 2π changes.

Using our experimental setup, it would become possible to measure the Berry
phase of a contour.

Consider a ring potential at a height characterized by ϑ. Using the dynamical
possibilities of the DMD, a cloud of degenerate atoms can be produced on one
side of the ring, e. g. around ϕ = 0, then released in the ring potential. The
atoms will start to expand hydrodynamically, spreading symmetrically on the
ring, and then interfere at the opposite point of the ring. The interference
pattern is characterized by a phase ϕinterf which indicates the amplitude of
the interfering matter-wave at the point ϕ = π. If the situation is perfectly
symmetric, the interference at ϕ = π is constructive: ϕinterf = 0. Assume now
that the quadrupole field is ramped up just before the atoms are released in
the ring potential. The quadrupole field might induce some energy shifts but
as long as the ring is centered, these effects will cancel out in the constructive
interference at ϕ = π. However, due to the adiabatic following of the ground
state, the atoms going in the ϕ > 0 path will pick up a geometrical phase
opposite to that picked by the atoms going along the ϕ < 0 path. The amplitude
of the interference at ϕ = π will thus give a direct measurement of the Berry
phase

ϕinterf =
R

h̄








∫ π

0
|A(ϕ)| dϕ

︸ ︷︷ ︸

atoms going in ϕ>0

−
∫ −π

0
|A(ϕ)| dϕ

︸ ︷︷ ︸

atoms going in ϕ<0








= ϕBerry (C = ring) (7.65)



166 prospective experiment : using magnetic texture to produce supercurrents

An asymmetry in the positioning of the ring with respect to the symmetry
axis of the magnetic field will result in a shift of the interference pattern which
is due to (i) the Berry phase (ii) the dynamical phase caused by slight energy
shifts between the two paths. The second contribution to the phase shift will be
linear with the magnitude of the gradient b′. Thus, the limit for b′ → 0 of the
phase shift of the interference pattern will lead to the value of the Berry phase.

7.4 a vortex pump

7.4.1 Basic idea

So far, we have considered experimental schemes during which the zero of the
quadrupole field stays at the same position – except for the projection of the
spinor of section 7.2.4.1, which is serving detection purposes. However, build-
ing on this detection scheme and on the imprinting of topological vortices de-
cribed in [228], we can use our system to pump quanta of angular momentum
in a ring of atoms.

Figure 7.5: Basic idea of the vortex pump. The zero of the quadrupole field is moved
on a periodic trajectory that pierces once through the ring. According to
the previous calculations, this motion leads to a decrease of ℓ by 2 at each
cycle.

The basic idea of the “vortex pump” can be understood in terms of the Berry
phase described in the previous section. Starting with a zero of the magnetic
field infinitely far above the ring of atoms, the Berry phase is going to be 0. As
the zero is moved down, closer to the ring, the solid angle under which the ring
sees the zero will increase. As it passes in the plane of the ring, there are two
possibilities:

1. the zero goes through the ring, inducing a solid angle of 2π

2. the zero goes outside of the ring, inducing a solid angle of 0

As the zero is moved further down, the solid angle goes to zero again; in case
1, the total phase winding picked up by the atoms is −4π while in case 2 it is 0;
in both cases, the spins now point toward the same direction. In the previous
section we saw that a change of Berry phase of −2π is equivalent to changing
the number of angular momentum quanta from ℓ to ℓ− 1. Hence, in case 1, if
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the adiabatic approximation is valid, the atoms in the ring will go from an ℓ

state to an ℓ− 2 state; in case 2 the ℓ quantum number will stay the same. It is
possible to repeat a cycle where the zero of the magnetic field is moved from
a position well above the ring of atoms down through it, and then back to its
original position avoiding going through the ring, as illustrated in figure 7.5.
Each cycle leads to an increase of angular momentum of −2.

7.4.2 Topological interpretation of the vortex pump

7.4.2.1 Topology of mappings from a torus to a sphere

We would now like to give a topological interpretation of the vortex pump. In
mathematics, topology studies properties of objects which are not affected by
continuous deformations of those objects. An emblematic example is that of
closed, orientable surfaces in R3. These surfaces can be classified according
to their genus which is the number of holes they have: for instance, a sphere
has genus 0 while a torus has genus 1 and this number stays the same under
continuous deformations of those surfaces (no “gluing” or “cutting” allowed).

It is very interesting in physics to produce topological excitations of matter,
meaning states of matters that cannot be brought back to the ground state by
continuous transformations, because these excitations are robust to perturba-
tions which usually induce continuous deformations of the initial state. In the
case of flux lattices, optical lattices which are non topologically trivial can be
realized to produce artificial magnetic fields of large amplitude on clouds of
ultracold atoms [222, 223, 235].

Topological properties are usually characterized by a set of integer numbers.
In some cases, these integers can be computed from geometrical properties of
the objects. In the case of orientable surfaces in R3 without boundary, the genus
can be computed using the Gauss-Bonnet theorem: the integral of the curvature
of the surface divided by 2π is an integer equals to two minus the genus of the
surface.

In the following, we will focus on characterizing the topological properties
of functions that associate to each point of a torus T a point on a sphere S

f : T 7→ S
M (α, φ) → P (ϑ (α, φ) , ϕ (α, φ)) (7.66)

where (φ, α) are two angles going from 0 to 2π that represent the point M on
T and (ϑ, ϕ) the two angles of the spherical coordinates representing the point
P on S . Characterizing those functions from a topological point of view is very
relevant in physics, for example to understand flux lattices. The properties of
a lattice are well described in reciprocal space in the Brillouin zone which, for
a square lattice, is also a square with periodic boundary conditions: it is thus
equivalent to a torus. In addition, these non topologically trivial lattices usually
couple several atomic internal states. In the case where two atomic states are
available, they can be mapped onto a spin 1/2 system, represented by a point
on the Bloch sphere. Hence knowing the topological properties of the lattice
means knowing the topological properties of the mapping from the Brillouin
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zone (represented by a torus) onto the atomic state (represented by a point on
a sphere).

Figure 7.6: Two possible mappings of the torus onto the sphere. In figure (a), the Chern
number is 0, while it is 1 on figure (b)

Functions f : T 7→ S are characterized by an integer number called the
Chern number. Two functions with the same Chern number can be continu-
ously transformed into each other. In a schematic way, the Chern number rep-
resents the number of times f (T ) wraps around the sphere. Let us illustrate
this using the functions fa and fb defined thanks to figure 7.6. Each function
associates a point of the sphere to a point of the torus in the following way:

• Pick a point of the torus M defined by the coordinates (φM, αM)

• Draw the line starting at the center of the sphere Ci (i = a, b) passing by
M. This line will intersect the sphere once at P which has the coordinates
(ϑP, ϕP)

• Define the function

fi : T 7→ S
(φM, αM) → (ϑP, ϕP) (7.67)

In case a), the center of the sphere Ca is outside of the torus and f (T ) only
represents a small part of the sphere: the Chern number of fa is 0. In case b),
the center of the sphere Cb is inside the torus and the torus wraps once around
the sphere: the Chern number of fb is 1.

Just as the genus of a closed orientable surface in R3 can be computed from its
curvature thanks to the Gauss-Bonnet theorem, the Chern number of a function
f can be computed by integrating the area spanned by the elementary vectors
∂φ f and ∂α f over the torus, which is defined as follows:

Ω f (φ, α) =
(
∂φ f × ∂α f

)
· f = ∂α ϕ∂φ cos ϑ − ∂φ ϕ∂α cos ϑ (7.68)

The integral of Ω f over the torus is zero provided that:
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• the integrated functions ϕ (φ, α) and cos ϑ (φ, α) obey periodic boundary
conditions

• the integrated functions have no singularity.

While the first condition is always fulfilled on a torus, the second is not: the
singularities will have a non-zero contribution to the integral and

∫∫

Ω f (φ, α)dφ dα = 4πν f (7.69)

where ν f is the Chern number of f (related to the number and nature of singu-
larities).

The Chern number can also be defined for any function h = g ◦ f such that
f is a function like those defined in equation 7.66 and g is a function from the
sphere to the unit vectors of Cn

g : S
(
R3
)

7→ S (Cn)

(cos ϑ, ϕ) → |m〉 (7.70)

as the integral

νh =
1

2π

∫∫

Ω (φ, α)dφ dα (7.71)

where α has been rescaled to vary from 0 to 1 (for example redefining α by
cos α) and where the Berry curvature is defined as:

Ω (φ, α) = i
(
〈∂φm|∂αm〉 − 〈∂αm|∂φm〉

)
(7.72)

7.4.2.2 Chern number of the vortex pump

Given a magnetic field configuration, there are three possible states in the F = 1
manifold that the atoms can follow adiabatically, corresponding to the states
|m = −1, 0, 1〉B described in 7.1.2. Choosing for example |m = 1〉B defines a
vector field on the ring. If the magnetic field is time-dependent, so is the vector
field. It can be repesented as a vector field on a cylinder where the height of
the cylinder represents the time, as depicted in figure 7.7 (a). In the case of
a periodic variation of the magnetic field, the time axis can be wrapped on
itself; the local ground state can be represented as a vector field on a torus, as
depicted in figure 7.7 (b). We are therefore brought back to the problem of
the previous subsection of a mapping of a torus on a sphere in the framework
of periodic Hamiltonians whose topological properties have already been the
object of studies [76, 236].

The coordinates on the torus are φ ∈ [0, 2π[ the position on the ring and
α ≡ ωt/(2π) modulo 1 the time. To each point on the torus corresponds a
point on a sphere, which is the orientation of the spin, characterized by two
angles ϑ and ϕ as defined previously.

The idea of the vortex pump corresponds to the following mapping (up to a
continuous function of α and φ):

cos ϑ =







−(1 − 4α) for α ∈ [0, 1/2]

−(4α − 3) for α ∈ [1/2, 1]
(7.73)
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Figure 7.7: (a) Orientation of the spins on the ring as a function of time. At t = 0, all the
atoms point up. The zero of the quadrupole is moved up through the cloud
between 0 and t2. At t = t1, the zero lies exactly at the center of the ring.
Then, from t2 to T, the quadrupole is switched off and a uniform bias field
rotates the spins (equivalent to the zero of the quadrupole being infinitely
far). At t = t3, the bias field is directed along the x axis. At t = T, the
spins are back to their original position. (b) Having a phenomenon perodic
in time, the figure (a) can be wrapped around, thus becoming a torus. The
study of the vortex pump – i. e. the configuration of the spins on a ring in a
time-periodic setup – thus becomes equivalent to the study of a vector field
on a torus which is an emblematic problem in topology.

ϕ =







π + φ for α ∈ [0, 1/2]

0 for α ∈ [1/2, 1]
(7.74)

Given this mapping, we compute the Berry curvature Ω(φ, α) for an atom fol-
lowing the |m = −1, 0, 1〉B states, whose integral yields the Chern number:

Ω(φ, α) = i
(
〈∂φmi|∂αmi〉B − 〈∂αmi|∂φmi〉B

)
(7.75)

It gives for i = −1, 0, 1 and for α ∈ [0, 1/2]:

Ω+1(φ, α) = −8 (1 − 2α) (7.76)

Ω0(φ, α) = 0 (7.77)

Ω−1(φ, α) = 8 (1 − 2α) (7.78)
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and Ωi(φ, α) = 0 for α ∈ [1/2, 1]. The Chern number can now be calculated
using the formula 7.71 which yields

ν1 = −2 (7.79)

ν0 = 0 (7.80)

ν−1 = 2 (7.81)

This corresponds to the increase or decrease of two in the number of angu-
lar momentum quanta depending on the local eigenstates that the atoms are
following.

7.4.2.3 The vortex pump as a topological charge pump

By considering the Hamiltonian of the system in momentum space, it is pos-
sible to interpret the vortex pump as a charge pump. The Hamiltonian 7.1 can
be written with φ as the only degree of freedom; a convenient basis to express
it is the set {|ℓ, m〉}

ℓ∈Z, m∈{−1,0,1} with ℓ the integer characterizing the orbital
angular momentum as in 7.38, and m being the projection of the spin on the z

axis for a spin one particle.
In this basis, with a quadrupole field of amplitude b′ = −h̄ωL/(gµBR) at

z = 0 and two bias fields, one along the x axis Bx = h̄ωx/(gµB) and one along
the z axis Bz = h̄ωz/(gµB), the Hamiltonian reads:

Ĥ =
h̄2

2MR2 ∑
ℓ,m

ℓ
2|ℓ, m〉〈ℓ, m|

+
h̄ωL

2 ∑
ℓ,m

(|ℓ, m〉〈ℓ+ 1, m − 1|+ h.c.)

+ h̄ωz ∑
ℓ

(|ℓ, 1〉〈ℓ, 1| − |ℓ,−1〉〈ℓ,−1|) (7.82)

+
h̄ωx√

2
∑
ℓ

(|ℓ, 1〉〈ℓ, 0|+ |ℓ, 0〉〈ℓ,−1|+ h.c.)

The second line comes from the spatial dependence of the quadrupole field at
z = 0: the magnetic Hamiltonian is

− gµBF̂ · B(r) = gµB
b′

2

(
xF̂x + yF̂y

)
= gµB

b′R
4

(

eiφ F̂− + e−iφ F̂+
)

(7.83)

The energy scale of the kinetic term for our typical experimental parameter
h̄2/(2MR2) = h · 0.6 Hz is much smaller than the other energy scales of the
system h̄ωi (for the quadrupole field at 30 G/cm and a radius of 10 µm, h̄ωL =

h · 21 kHz). If we neglect it, the remaining Hamiltonian can be seen as a one-
dimension tight-binding Hamiltonian where the unit cells are labelled by the
integer ℓ and where each unit cell has three sites labelled m. The energy scales
h̄ωL and h̄ωx correspond to tunnelling terms between the sites, while the energy
h̄ωz corresponds to an energy offset between the three sites in one unit cell, as
illustrated in figure 7.8.

The vortex pump consists in four steps, starting for example with a negat-
ive z bias, a quadrupole on and in the |ℓ = 0, m = −1〉 state (corresponding
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Figure 7.8: Tight binding model in the basis of the {|ℓ, m〉}ℓ∈Z, m∈{−1,0,1} states. The
m states are offset in energy due to the bias field on the z axis. Coupling
between the m states is provided by the x bias field and tunnelling between
different ℓ states is provided by the quadrupole. The description of steps (i)
to (iv) are given in the text.

to the |m+〉B state described previously): (i) inverting the bias in z with the
quadrupole on, thus moving the initial state to the |ℓ = −2, m = 1〉 state; (ii)
switching off the quadrupole (dark solid lines) and turning on the x bias field
(dotted lines); (iii) inverting the z bias with the x bias field on, yielding the
state |ℓ = −2, m = −1〉; (iv) switching off the x bias field and turning on the
quadrupole to come back to the initial situation (see figure 7.8).

Thus, a periodic Hamiltonian in this lattice configuration will induce a “charge”
transport (with ℓ being the charge) of two lattice sites, which is similar to recent
experiments [77, 237] implementing the original idea of the Thouless pump [76].
The Chern number can be computed with the same formula as in equation 7.71,
which can in this context be interpreted as the Chern number of the bands of
this lattice as in [238] (here the equivalent of the quasi-momentum is the phase
φ).



7.4 a vortex pump 173

Figure 7.9: The Hamiltonian 7.82 is periodic with a frequency of ω = 2π·15 Hz; all
fields vary in a piecewise linear manner with b′max = 60 G/cm, Bx,max = 8 G,
Bz,max = 2 G/cm and Bz,min = −2 G/cm. Here the value of the magnetic
fields are represented at all times for three periods.

7.4.3 Simulation of experimentally relevant parameters

7.4.3.1 Non interacting case

The Hamiltonian can be numerically integrated starting from a wavefunction
|Ψ(t = 0)〉 in the |ℓ = 0, m = −1〉 state. A time sequence for the magnetic
fields has to be chosen to implement a spin texture on the atoms close to the
mapping presented in equations 7.73 and 7.74. Piecewise linear magnetic fields
are chosen, as depicted in figure 7.9. Their amplitude are realistic for our ex-
periment.

To monitor the efficiency of the vortex pump, we compute for each value of
ℓ the quantity

〈ℓ(t)〉 = ∑
m

〈ℓ, m|Ψ(t)〉 (7.84)

with |Ψ(t)〉 the wavefunction evolved from the initial state |ℓ = 0, m = −1〉.
For an efficient pumping, 〈ℓ(t)〉 increases by two for each pump cycle. As can
be seen from figure 7.10 (a), the pumping is efficient for the magnetic fields
depicted in figure 7.9. However, if the period of the Hamiltonian is too short
as in (b), the adiabatic approximation is no longer valid and the pumping is no
longer efficient. If the quadrupole (resp. the x axis bias) field is not switched
off perfectly as in (c) (resp. (d)), not all the atoms are going to be transferred
to a state of higher angular momentum. This is easily seen in the tight-binding
picture of 7.4.2.3, since the dotted and full lines of figure 7.8 are going to be
switched on at the same time. Reverting the z bias will therefore lead to a
beamsplitter type of behaviour. The control of the in-plane magnetic bias thus
has to be very accurate in order not to induce partial pumping of the atoms
into states of higher angular momentum.
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Figure 7.10: A wavefunction initially in |ℓ = 0, m = −1〉 is evolved in time according
to equation 7.82. The different figures represent the projection of the wave-
function on the different ℓ states. In (a), it is the exact situation of figure
7.9. In (b), the frequency of the Hamiltonian is changed to ω = 2π·50 Hz;
the adiabaticity condition does not hold anymore. In (c), the quadrupole
field does not go to zero but to 2 G/cm and in (d) the bias field along the
x axis does not go to zero but to 1 mG.

7.4.3.2 Effect of the interactions

In this section, we analyze the interactions (that we assume to be spin-independent)
which have been neglected so far. The mean-field energy created by an atom
cloud of spatial density |Ψ(r)|2 on a given atom is:

Eint =
4πh̄2asc

M
N |Ψ(r)|2 (7.85)

where asc is the scattering length of the atoms, N the number of atoms in
the system and Ψ(r) the wavefunction of the system normalized to one. We
consider a function Ψ which is confined in the z axis by a tight confinement
characterized by the frequency ωz,conf and where the density is independent of
the radial coordinate in the ring

|Ψ(r)|2 =
e−z2/a²ho

√
πaho

· Θ (r − Rmin)Θ (Rmax − r)

Aring
· |Ψ(φ)|2 (7.86)

where aho =
√

h̄/(Mωz,conf) is the characteristic length of the harmonic oscil-
lator providing the vertical confinement, Aring the area of the ring of atoms, x 7→
Θ(x) the Heaviside function (equals to 1 for x > 0 and 0 otherwise) and Rmin
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and Rmax the inner and outer radii of the atom ring. Calling g̃ =
√

8πasc/aho

the dimensionless parameter characterizing the interaction strength for bidi-
mensional gases, the interaction energy thus reads Ψ(φ):

Eint =
h̄2

M
g̃

N

Aring
|Ψ(φ)|2 (7.87)

In the following, we will assume that the interaction strength is the same for
all spin states. The wavefunction Ψ can be decomposed on the basis we have
used so far

|Ψ〉 = ∑
ℓ,m

cℓ,m|ℓ, m〉 (7.88)

Hence

Ψ(φ) =

(

∑
ℓ,m

c∗ℓ,m〈ℓ, m|
)(

∑
ℓ,m

eiℓφcℓ,m|ℓ, m〉
)

= ∑
ℓ

αℓe
iℓφ (7.89)

with αℓ = ∑m |cℓ,m|2. The density thus reads:

|Ψ(φ)|2 = ∑
ℓ

Aℓe
iℓφ (7.90)

with Aℓ = ∑ℓ′ αℓ′+ℓαℓ′ . The interaction term in the Hamiltonian will thus couple
different states of orbital momentum depending on the spatial dependence of
the density. Writing Gross-Pitaevskii equation in the basis of interest for us, we
obtain the total Hamiltonian in momentum space which consists of the sum of
equation 7.82 with the interaction term

Ĥint =
h̄2

M
g̃

N

Aring
∑

ℓ,ℓ′ ,m
Aℓ−ℓ′ |ℓ, m〉〈ℓ′, m| (7.91)

The energy scale corresponding to the interactions is

Eint = h̄2 g̃N/(MAring) ≃ h · 162 Hz (7.92)

for a ring of atoms of internal (resp. external) radius of 8.5 µm (resp. 11.5 µm)
with a 2D density of 13 at/µm2. If the projection of the wavefunction on the ℓ

states 〈ℓ(t)〉 consists only of one ℓ state, all the Aℓ are zero except for A0 and
the atoms stay in that state of angular momentum, because it is not favorable
from the point of view of the interactions to create a density modulation when
there is none. However, if the wavefunction is spread over several ℓ states –
as is the case when the zero of the quadrupole is close to the ring, as shown
by the exact form of the spinor given in 7.1.2 – the interaction term can lead
to a diffusion in the various angular momentum states. This diffusion will be
prevented if the time spent with the zero of the magnetic field close to the ring
is small compared to h/Eint. In the case of the magnetic field configuration
presented in figure 7.9, with a frequency ω for the Hamiltonian, the zero of the
quadrupole is close to the ring during a time T ≃ 2π/(12ω); the condition thus
becomes

ω > 2π · 13 Hz (7.93)



176 prospective experiment : using magnetic texture to produce supercurrents

Figure 7.11: A wavefunction initially in |ℓ = 0, m = −1〉 is evolved in time according
to equation 7.82 plus the interaction term of equation 7.91 with the same
parameters as in figure 7.10. The different figures represent the projection
of the wavefunction on the different ℓ states. In (a), Eint ≃ h · 162 Hz and
ω = 2π·15 Hz. In (b), Eint ≃ h · 162 Hz and ω = 2π·50 Hz; the pumping is
now more efficient than without interactions. In (c) Eint ≃ h · 162 Hz and
ω = 2π·1 Hz; the slow evolution favours diffusion in the different ℓ states.
In (d), Eint ≃ h · 325 Hz and ω = 2π·15 Hz; the high density leads to faster
diffusion in the ℓ states too.

Various configurations have been simulated on figure 7.11. With the paramet-
ers of figure 7.9, it is still possible to pump efficiently the atoms to states with
higher angular momentum. Having interactions also favours faster dynamics
as illustrated by figure 7.11 (b) and (c). The scheme of the vortex pump should
be able to work even in the presence of interactions.

7.5 conclusion

In this chapter, we have studied what happens to a ring of atoms placed in a
magnetic field when the orientation of the atoms follows the local eigenstates
of its spin degree of freedom. For a well-chosen magnetic field, for example a
quadrupole field, this leads to an artificial magnetic field on the atoms.

From there two possible experimental schemes have been investigated. First,
we have studied the possibility of probing the ground state of the ring of atoms
in this artificial magnetic field by condensing in presence of the quadrupole
field. Depending on the relative position of the ring and the zero of the mag-
netic field, the atoms can condense in different angular momentum states which
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can be detected either by projecting the internal state of the atoms on a single
magnetic state or by letting two coplanar rings interfere. The problem of hav-
ing a gauge field on the atoms was also phrased in term of a Berry phase; this
phase could be detected in an interference experiment.

Then we studied the possibility to “pump” quanta of angular momentum in
the ring of atoms by controlling the quadrupole field as well as the vertical and
in-plane bias fields in a periodic manner. This vortex pump can be expressed in
a simple way by a mapping of a torus on a sphere, which is a typical problem of
topology. The Chern number characterizing the evolution of a local eigenstate
of the internal degree of freedom is either 0, +2 or -2 according to the number
of angular momentum quanta that are added to the system in one cycle.

Both experiments make use of the main features of the new experimental
set-up described in chapter 4. However, they will require careful control of the
magnetic fields, which is not implemented yet.





C O N C L U S I O N

In this work, I have presented some experiments and some proposals which are
made possible thanks to the development of techniques to produce 2D clouds
of degenerate atoms in arbitrary potentials. These techniques, first developed
on an existing set-up for the experiments presented in chapter 3, were imple-
mented in an improved version in the new experiment which was build during
my thesis and described in chapter 4. They consist of (i) a 2D confinement
provided by an “accordion lattice” whose spacing can be dynamically changed
in the experimental sequence, optimizing both the loading and the strength of
the confinement; (ii) a programmable intensity mask which is imaged onto the
atoms, which are then trapped in the dark regions of a light beam if it creates
a repulsive potential.

In a first series of experiments, we studied the crossover between the three- to
the two-dimensional regime. Driven by the bosonic statistics of the atoms, a 2D
cloud can exist even if the energy scale associated to temperature is not small
compared to the 2D confinement: this is a phase transition called transverse
condensation, whose mechanism was detailed in chapter 1. In chapter 3, we
demonstrated that the appearance of extended coherence in the cloud (revealed
by interference or time-of-flight measurements) is due to the crossing of this
transition, at phase-space densities which are too low to reveal Bose-Einstein
condensation of a finite system or the Berezinskii-Kosterlitz-Thouless transition
emblematic of 2D systems.

In a second series of experiments, the dynamical properties of the phase
transition were tested. By quench cooling gases in uniform ring or square
traps, we observe the formation of topological defects (supercurrents or point
vortices) and study their density as a function of the quench duration. These
measurements are compared to the predictions of Kibble and Zurek, explained
in chapter 2: the variation of the number of topological defects with quench
duration is compatible with the different theoretical models relevant for the
superfluid transition in a Bose gas, but the precision of our measurement does
not allow us to distinguish between them.

A third series of experiments allowed us to study collective effects between
light and atoms, as described in chapter 5. We used our ability to produce
homogeneous slabs of atoms with a varying density and thickness and study
their optical density when probed by a weak, near resonant laser. Instead of the
one atom Lorentzian line, we observed broadened resonances that are shifted
to the blue, in agreement with simulations of classical dipoles. We also reported
on the first experimental study of the propagation of an excitation in a quasi
2D cloud illuminated locally.

We have also presented two possible experiments which are easily accessible
in the new set-up of chapter 4.

The first one consists in taking advantage of the low dimensionality of the sys-
tem to implement “bulk” evaporative cooling. The 2D confinement provided by
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the accordion lattice, combined with a tilted potential, will allow us to evapor-
ate a uniform cloud in a uniform way without having to rely on atoms escaping
at the edge of the cloud as shown in chapter 6. This would be an improvement
on the previous measurement related to the Kibble-Zurek mechanism, which
requires a homogeneous temperature over the whole sample.

The second planned experiment analysed in this thesis is related to artificial
gauge felds. It is possible to take advantage of the internal states of the Rubid-
ium atom to create supercurrents in a ring trap combined with a quadrupole
magnetic field, as described in chapter 7. This is realized either by having
the atoms condense in a static artificial magnetic field or by implementing the
equivalent of a Thouless “vortex pump” on the atoms.

More generally, the ability to project tailored potentials with a high resolution
on a cloud of degenerate atoms is at the heart of the recent development of
“atomtronics”, aiming at harnessing the transport of atoms through circuits of
light in the same way the transport of electrons through different materials
was controlled in the past. In that respect, the new experimental set-up that
has been built is an excellent platform to explore these questions thanks to the
ability to project arbitrary dynamical potentials on the atoms.

Last, the possibility to have a gas of bosons in a uniform trap with a strong 2D
confinement (thanks to the accordion lattice) opens the way to implementing
some of the proposals to create large artificial magnetic fields [222], and access
the strongly correlated states of the quantum Hall effect.
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We present a general “fit-free”method for measuring the equation of state (EoS) of a scale-invariant gas.

This method, which is inspired from the procedure introduced by Ku et al. [Science 335, 563 (2012)] for

the unitary three-dimensional Fermi gas, provides a general formalism which can be readily applied to any

quantum gas in a known trapping potential, in the frame of the local density approximation. We implement

this method on a weakly interacting two-dimensional Bose gas across the Berezinskii-Kosterlitz-Thouless

transition and determine its EoS with unprecedented accuracy in the critical region. Our measurements

provide an important experimental benchmark for classical-field approaches which are believed to

accurately describe quantum systems in the weakly interacting but nonperturbative regime.
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Homogeneous matter at thermal equilibrium is described

by an equation of state (EoS), i.e., a functional relation

between thermodynamic variables of the system. While the

EoS is analytically known for ideal gases, one must resort

to approximations or numerical calculations to determine

the EoS of interacting fluids, which must then be compared

to experiments. Thanks to a precise control of temperature,

confining potential, and interaction strength, cold atomic

gases constitute a system of choice for the experimental

determination of quantummatter EoS [1]. While performed

on atomic systems, such measurements often provide

crucial insight on generic physical problems, well beyond

the atomic physics perspective. Prominent examples are the

recent measurements of the EoS of atomic Fermi gases

[2–5], which provided a precious quantitative support for

our understanding of strongly interacting fermions at low

temperatures. Another important paradigm accessible to

atomic gases is found in two-dimensional quantum sys-

tems, where the low temperature state is established via a

defect-driven transition. This generic phenomenon of two-

dimensional systems is described by the celebrated

Berezinskii-Kosterlitz-Thouless (BKT) theory, with a

scope that ranges from superconductivity to quantum

Hall bilayer physics to high energy physics.

In this context, the weakly interacting two-dimensional

Bose gas is of particular interest as it supports the

fundamental principles of the BKT theory, while allowing

for a simplified theoretical description. Indeed, for small

enough interparticle interactions, the thermodynamics of

the two-dimensional Bose gas is well captured by a

classical-field model [6,7], which is itself described by a

dimensionless coupling constant and exhibits scale invari-

ance [8]. In general, scale invariance occurs in any fluid

where no explicit energy or length scale is associated with

the (binary) interaction potential. For the weakly interacting

two-dimensional case, the 3D scattering length is normal-

ized by the extension of the system in the third dimension,

and this dimensionless ratio characterizes the effective 2D

interaction strength. Scale invariance also occurs in the

unitary Fermi gas, where the scattering length describing s-
wave interactions diverges (for a review, see [12]). This

property considerably simplifies the EoS structure, as

general dimensionless quantities such as the phase space

densityD which usually depend separately on the chemical

potential μ and the temperature T can only be expressed as

the ratio μ=kBT owing to the absence of other energy

scales [13,14].

The usual method for determining the EoS of a cold

atomic gas starts with the measurement of the density

distribution nðrÞ in a smoothly varying, confining potential

VðrÞ. Using the local density approximation (LDA), the

measured DðrÞ is linked to that of a uniform fluid with the

same interaction strength and temperature, and with

chemical potential μðrÞ ¼ μ − VðrÞ, μ being its value at

the center of the trap [1]. For a given realization of the gas,

T and μ are obtained by comparing the low-density wings

of nðrÞ with the known theoretical result for a dilute fluid.

However, any systematic error in the determination of the

density, e.g., due to imperfect calibration of the probing

system, will lead to inaccurate values of μ and T and thus
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affect the measurement of the EoS Dðμ; TÞ. Recently, an
alternative fit-free method that does not suffer from this

limitation has been put forward in [4] for the measurement

of the EoS of the scale-invariant 3D Fermi gas. It is based

on the use of two specific thermodynamic variables,

pressure and compressibility; in addition, absolute energy

scales T and μ were replaced by a single relative scale dμ,
which was itself determined by the LDA through

dμ ¼ −dV.
The purpose of the present Letter is twofold. First, we

describe a method that generalizes the procedure intro-

duced in [4], which does not rely on specific thermody-

namic variables but rather provides a generic formalism

that can readily be applied to other quantum systems.

Second, we implement this method on a two-dimensional

(Bose) fluid, for which the spatial density nðrÞ is directly
accessible from an image of the cloud. The precision of the

reconstructed EoS makes it suitable for a quantitative

comparison to the classical-field Monte Carlo calculation

[7] in the critical region, which could not be conclusive

from previous measurements [13,14]. Our measurement,

with a relative statistical error smaller than 1% on the

detectivity, is in excellent agreement (better than 5%) with

the prediction obtained from [7] at the critical point and

deeper in the superfluid regime. In the normal regime close

to the transition point, we observe a deviation on the order

of 15%, which might be due to beyond classical-field

effects.

We start our analysis by considering an atomic gas in

thermodynamic equilibrium confined in a known potential

VðrÞ. The only hypothesis for the method is the LDA,

which entails that nðrÞ depends on position only through

the local value of the trapping potential: nðrÞ ¼ n½VðrÞ%.
Although this method is applicable to any dimension, we

focus here on the particular case of the two-dimensional gas

for the sake of clarity. Let us introduce the energy E½VðrÞÞ%
with r ¼ ðx; yÞ, defined by [15]

E ¼
ℏ
2

m
n; ð1Þ

which we want to combine with other relevant energies in

order to form useful dimensionless variables. Though no

absolute energy scales are readily available, a relative

energy scale is provided by the variation of the trapping

potential dV. Furthermore, quantities formed in this manner

are directly connected by the LDA to the properties of the

uniform gas using the relation dμ ¼ −dV. Thus, we define
the dimensionless quantities

Xν ≡ Eν−1
∂νE

∂μν
¼ ð−1ÞνEν−1

dνE

dVν
; ð2Þ

where ν is an integer. By convention, X0 ¼ 1 and a negative

ν will instead correspond to jνj successive integrations of E
with respect to V, with, for example,

X
−1 ¼

1

E2

Z

∞

V

EðV 0ÞdV 0: ð3Þ

From a given image of the gas nðrÞ, one can thus construct

all functions XνðVÞ. In the case of a scale-invariant system,

the knowledge of a single thermodynamic variable Xν is

sufficient to determine the state of the fluid and, hence, the

values of all other variables Xν0 . In other words, all

individual measurements must collapse on a single line

in each plane fXν; Xν0g, irrespective of their temperature

and chemical potential. Such a line is a valid EoS of the

fluid under consideration.

Once the Xν are known, all other thermodynamic

quantities can be determined, up to an integration constant.

In particular, one can derive the phase-space density D and

the ratio α ¼ μ=kBT. Let us suppose that a point (X
ð0Þ
ν , X

ð0Þ
ν0 )

can be identified in a known portion of the EoS and that it

corresponds to the values α0 and D0. The link between the

set fXνg and (α, D) is provided by

DðX
ð1Þ
ν Þ ¼ D0 exp

!
Z

X
ð1Þ
ν

X
ð0Þ
ν

X1

ðν − 1ÞX1Xν þ Xνþ1

dXν

"

; ð4Þ

αðX
ð1Þ
ν Þ ¼ α0 þ

1

2π

Z

X
ð1Þ
ν

X
ð0Þ
ν

DðXνÞ

ðν − 1ÞX1Xν þ Xνþ1

dXν: ð5Þ

The determination of (α, D) thus requires the knowledge of

a triplet fX1; Xν; Xνþ1g. This requirement can be weakened

by choosing ν ¼ 1 or ν ¼ −1, in which case only the pairs

fX1; X−1g or fX1; X2g are needed.

We illustrate this general procedure with a few examples.

For the simple case of a Maxwell-Boltzmann gas, the EoS

in terms of the Xν’s can be obtained analytically, and one

gets, for example, X1X−1 ¼ 1 and X2 ¼ X2
1
. For an

interacting 2D gas, the EoS is not known analytically;

however, for the bosonic case, it can be approximated in

two limiting cases. For μ < 0, the gas is only weakly

degenerate and the mean-field energy of an atom in the gas

can be written as 2~gðℏ2n=mÞ, where the dimensionless

coefficient ~g (assumed here to be ≪ 1) characterizes

the strength of the interaction. The thermodynamics is

then well described by the prediction of the Hartree-Fock

theory [16],

D ¼ − ln ð1 − eα−~gD=πÞ; ð6Þ

from which we extracted numerically the values of X
−1 and

X1 and plotted the corresponding EoS in Fig. 1. In the

opposite case of a strongly degenerate gas (with a chemical

potential that is positive and larger than kBT), the gas is

described by the Thomas-Fermi equation D ¼ 2πα=~g. All
Xν are then constant, with X

−1 ¼ ~g=2, X1 ¼ 1=~g,
and X2 ¼ 0.

We now turn to the practical implementation of this

method for processing data obtained with a quasi-2D
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rubidium gas. Our experimental preparation follows along

the lines detailed in [14,17]. We start with a 3D gas of 87Rb

atoms, confined in their F ¼ mF ¼ 2 state in a magnetic

trap. To create a 2D system, we shine an off-resonant blue-

detuned laser beam on the atoms, with an intensity node in

the plane z ¼ 0. The resulting potential provides a strong

confinement perpendicular to this plane, with oscillation

frequency ωz=2π ¼ 1.9ð2Þ kHz, which decreases at most

by 5% over typical distribution radii. This corresponds to

the interaction strength ~g ¼
ffiffiffiffiffiffi

8π
p

a=lz ≈ 0.1, where a is the

3D scattering length and lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mωz

p

[18]. The energy

ℏωz is comparable to the thermal energy kBT, which

ensures that most of the atoms occupy the ground state

of the potential along z (see [14] and [19]). The magnetic

trap provides a harmonic confinement in the xy plane, with
mean oscillation frequency ωr=2π ¼ 20.6ð1Þ Hz. In situ

density distributions of our clouds are measured via

absorption imaging with a probe beam perpendicular to

the atomic plane. For the analysis presented below, we used

a data set of 80 samples, with temperatures ranging from

30 nK to 150 nK and atom numbers from 25 000 to

120 000.

In Fig. 2 we show typical density distributions of 2D

atomic clouds, together with the corresponding function

n½VðrÞ%. The cloud (a) exhibits a significant thermal

fraction, contrarily to cloud (b), which is essentially in

the Thomas-Fermi regime. The latter illustrates the power

of this fit-free method since it can be incorporated as such

in our determination of the EoS. On the other hand, it

would be discarded in a conventional approach, owing to

the impossibility of assigning it a temperature.

Though both choices of variables (X
−1, X1) and (X1, X2)

are, in principle, possible, the latter requires the exper-

imental evaluation of a second-order derivative, which

often suffers from a poor signal-to-noise ratio. By contrast,

the choice (X
−1, X1), also adopted in [4] when writing the

EoS in terms of pressure and compressibility, appears

particularly robust [23]. For each image, we perform an

azimuthal average and compute a set of ≈70 data points

(X
−1, X1), where the low (high) values of X

−1 correspond to

the high (low) density regions of the image.

In a first step, we combine all sets obtained from images

acquired at various temperatures and various atom numbers

to test the scale invariance. As explained above, each

individual measurement should sit on the same universal

curve in the (X
−1, X1) plane, provided the interaction

strength ~g is constant. We show in the inset of Fig. 1 the

repartition of data points in the (X
−1, X1) plane, which fall

as expected around a single curve. In the main panel we

plot the corresponding average curve, which provides the

EoS of our gas [24]. In order to reexpress this EoS in terms

of the more traditional variables α and D, we now need to

apply the transformations of Eqs. (4) and (5). However,

these transformations must be adapted to account for

possible imperfections in the calibration of the detectivity

of our imaging setup. Indeed, as in most cold atom

experiments, we only measure the density up to a global

FIG. 1 (color online). Determination of the EoS with variables

X
−1 and X1, along with known limits. The simple cases of the

ideal Bose gas (Boltzmann gas) are shown as a blue dashed

(dotted) line. The known limits of the EoS of the weakly

interacting 2D Bose gas are indicated by a black point for the

Thomas-Fermi limit and by a black solid line for the Hartree-

Fock mean-field theory. The red line results from the averaging

over all the separate intensity profiles, with the error bars

corresponding to the standard error introduced by the averaging

procedure. The data shown here contain ∼100 different values of

X
−1. Inset: Distribution of measured values of X

−1 and X1. The

gray level indicates the number of individual data points falling in

each pixel.

(a) (b)

(c)

FIG. 2 (color online). (a) and (b): Density distributions of 2D

atomic samples of 87Rb corresponding to a partially degenerate

(a) and a strongly degenerate cloud (b). (c): Corresponding

function n½VðrÞ% resulting from azimuthal averaging. The dis-

tributions are obtained with high intensity imaging.
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multiplicative factor β [25], which is defined as the ratio

between the unknown actual absorption cross-section and

the ideal one expected for monochromatic probe light in the

absence of stray magnetic fields. Taking this calibration

factor into account amounts to replacing Eqs. (4) and (5) by

DðX
ð1Þ
ν Þ¼D0 exp

!
Z

X
ð1Þ
ν =βν

X
ð0Þ
ν =βν

X1

ðν−1ÞX1XνþXνþ1

dXν

"

; ð7Þ

αðX
ð1Þ
ν Þ ¼ α0 þ

β

2π

Z

X
ð1Þ
ν =βν

X
ð0Þ
ν =βν

DðXνÞ

ðν − 1ÞX1Xν þ Xνþ1

dXν;

ð8Þ

where the bounds of the integrals now depend on β and

where X
ð0Þ
ν =βν corresponds to the reference values α0 and

D0. The value of β is a priori unknown; however, it can be

determined by fitting the measured EoS to the Hartree-Fock

mean-field theory, which is a good approximation in the

region α < 0. This procedure applies to any other quantum

gas, provided one has a good knowledge of the EoS in a

given segment of the parameter space.

We choose the bound of Eqs. (7) and (8) at X0

−1
¼ 3,

which corresponds to a phase-space densityD0 ¼ 1.45 and

α0 ¼ −0.22, well within the Hartree-Fock mean-field

regime, and find a detectivity factor β ¼ 0.456ð1Þ [26].

The EoS in terms of the variables (α, D)—obtained after a

small correction due to excited states of the z motion (see

[19])—is shown in Fig. 3(a), along with the numerical

prediction Dth [7]. The reconstructed EoS is remarkably

smooth and does not display any particular feature at the

transition point. This observation is also made on the EoS

for pressure, entropy, and heat capacity [19]. This illustrates

the “infinite-order” nature of the BKT transition, which is

not associated with any singularity of thermodynamic

quantities [27], as opposed to phase transitions driven by

the breaking of a continuous symmetry, such as the second-

order lambda transition observed at MIT [4]. To compare

quantitatively the reconstructed EoS with the numerical

prediction, we plot the quantity D=Dth − 1 in Fig. 3(c) and

find that it lies consistently below 15%, and even below 5%

around the phase transition, which occurs at μC=kBT ≈

0.17 [7]. The deviation observed in the fluctuation region

below the critical chemical potential might signal devia-

tions to the classical-field picture which is expected to be

accurate for ~g ≪ 1 [6,7]. Theoretically this deviation could

be addressed using quantum Monte Carlo methods [28,29].

In conclusion, we have presented a method to determine

the EoS of a scale-invariant fluid. This method does not rely

on thermometry of individual images, nor on the precise

calibration of the detectivity, and it leads to a strong

reduction of the noise level in the measurement. We have

applied it to the case of a weakly interacting Bose gas and

obtained its EoS with a precision of a few percent, in

excellent agreement with the theoretical prediction

obtained from a classical Monte Carlo simulation. Using

the response of the gas to a gauge field, originating, for

example, from a rotation, this method could be extended to

access the superfluid fraction of the gas along the lines

proposed in [1]. In principle, this method is not limited to

scale-invariant systems and could be extended to any

situation described by two independent dimensionless

parameters, such as the zero temperature limit of the

Fermi gas, either for a spin-balanced gas with varying

interactions [3] or for a unitary spin-imbalanced Fermi

gas [30].
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B
C A L C U L AT I O N O F T H E P R O B A B I L I T Y D I S T R I B U T I O N O F
T H E R E L AT I V E V E L O C I T Y

We consider the situation described in chapter 6 of a gas of atoms with mass M

following the Maxwell-Boltzmann distribution such that the probability distri-
bution of the atoms in phase space is

f (r,p) =
1

2πAMkBT
exp

(

− p2

2MkBT

)

(B.1)

f (v,p) =
M

2πAkBT
exp

(

− Mv2

2kBT

)

(B.2)

We now consider two particles with velocities v1 and v2. We want to compute
the probability for the relative velocity vrel = vr = v2 − v1 to have a modulus
vr equal to v0.

Calling v2 = 2kBT/M, the quantity that must be computed is

p (vr = v0) =
1

π2v4

∫

e
− v2

1
v2 e

− v2
2

v2 δ (|v2 − v1| − v0)d2v1 d2v2 (B.3)

Because the relative velocity and the center-of-mass velocity are two quadratic
degrees for the system of the two atoms, we have :

p (vr = v0) =
(M/2)

kBT
v0 exp

(

− (M/2)v2
0

2kBT

)

(B.4)

The probability distribution of vrel = vr is that of a Maxwell-Boltzmann distri-
bution with temperature T and mass M/2.

From this it follows that the probability for the kinetic energy in the relative
degree of freedom, Erel

kin = Mv2
rel/4 to be superior to an energy barrier ∆E > 0

is:

p

(

vr >

√

4∆E

M

)

=
∫ ∞

√
2∆E
M

p(v = v0)dv (B.5)

that is

p

(

vr >

√

4∆E

M

)

= exp
(

− ∆E

kBT

)

(B.6)

and p

(

vr >
√

4∆E
M

)

= 1 if ∆E < 0 as in Equation 6.54.

We also want to compute the mean kinetic energy Erel
kin knowing that Erel

kin >

∆E:

〈
v2

rel

〉

knowing Erel
kin>∆E

=

〈
v2

rel

〉

Erel
kin>∆E

p

(

vr >
√

4∆E
M

) (B.7)

187



188 calculation of the probability distribution of the relative velocity

In the case ∆E > 0:

〈
v2

rel

〉

Erel
kin>∆E

=
M

2kBT

∫ ∞

√
4∆E/M

v3 exp
(

− Mv2

4kBT

)

dv (B.8)

=
kBT

M

∫ ∞

2∆E
kBT

u e−u/2du (B.9)

=
4
M

(∆E + kBT) e−∆E/kBT (B.10)

such that
〈

Erel
kin

〉

knowing Erel
kin>∆E

= ∆E + kBT (B.11)

if ∆E > 0 and
〈

Erel
kin

〉

knowing Erel
kin>∆E

= kBT (B.12)

if ∆E 6 0.



C
D E S C R I P T I O N O F T H E C O U P L E D D I P O L E P R O G R A M S

Here, we describe the main functions of the python program used to simulate
multiple and recurrent scattering in chapter 5 available in the diffmult.py file.
at https://github.com/lauracorman/multipleScattering

c.1 drawpositions

c.1.1 Inputs

nat number of atoms simulated; default 200

rad radius of disk in xy plane in which the positions are drawn (in the unit
length of the program, defaults µm); default 25

dz size in z direction (in the unit length of the program, defaults µm); default
0.2

core minimal distance between 2 atoms (in the unit length of the program,
defaults µm); default 0.05

avoid boolean indicating whether the minimal distance between atoms should
be taken into account; default is true

methodz method used to drow the positions in the z axis. 1 is gaussian, 0 is
uniform; default is 1

c.1.2 Output

r 3×Nat matrix containing the positions (in the unit length of the program,
defaults µm)

c.2 heff

Computes the resolvant matrix ((h̄ω − H + i0+)
−1 of equation (30) of the pa-

per[128]).

c.2.1 Inputs

r 3×Nat matrix containing the positions (in the unit length of the program
defined by k0, defaults µm)

delta detuning in units of Γ/2; default 0

k0 value of the wavevector, which sets the unit length of the program; default
2π/0.78 (units in µm) (if 1 units in λ/2π)
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c.2.2 Output

h 3Nat×3Nat resolvant matrix

c.3 excvector

Computes the vector that indicates the excitation of the light field on the atoms
(vector |Ej,x〉 of equation (30) of reference [128]).

c.3.1 Inputs

r 3×Nat matrix containing the positions (in the unit length of the program
defined by k0, defaults µm)

pol 3× 1 vector indicating the polarization of the light field; default is x polar-
ization ((1, 0, 0)).

k 3 × 1 vector indicating the propagation direction of the light field; default is
along z ((0, 0, 1)).

k0 value of the wavevector, which sets the unit length of the program; default
2π/0.78 (units in µm) (if 1 units in λ/2π)

c.3.2 Output

a 3Nat×1 excitation vector.

c.4 transmission

Compute the mean OD (and standard deviation), the mean phase (and stan-
dard deviation) and the mean complex transmission (and standard deviation)
according to equation (21), (22), (23), (37)-(41) of reference [128], averaged over
some repetitions.

c.4.1 Inputs

nat number of atoms simulated; default 1000

nrepeat number of repetition; default 10

rad radius of disk in xy plane in which the positions are drawn (in the unit
length of the program, defaults µm); default 1.75

dz size in z direction (in the unit length of the program, defaults µm); default
0.2

core minimal distance between 2 atoms (in the unit length of the program,
defaults µm); default 0.01



C.5 doresonancesvaryod 191

delta detuning in units of Γ/2; default 0

avoid boolean indicating whether the minimal distance between atoms should
be taken into account; default is true

methodz method used to drow the positions in the z axis. 1 is gaussian, 0 is
uniform; default is 1

c.4.2 Output

trans 3 × 1 vector containing the mean of the complex transmission

transstd 3× 1 vector containing the standard deviation of the complex trans-
mission

od mean OD

odstd standard deviation of the OD

phi mean dephasing

phistd standard deviation of the dephasing

c.5 doresonancesvaryod

Does many transmission experiments varying the atom density and the detun-
ing (resonance curves). Stores the data in matlab and python readable files in
./Results/doResonancesVaryOD_(datetag).mat or .npz.

c.5.1 Inputs

nat number of atoms simulated; default 1000

od0s nOD×1 densities of atoms to be tested, expressed by their Beer-Lambert
OD; default is [0.1, 1, 2, 4, 8]

dz size in z direction (in µm); default 0

delta nDetunings×1 detuning in units of Γ/2; default linspace(-25,25,1)

nrepeat number of repetition per point; default 3

core minimal distance between 2 atoms (in µm); default 0.01

avoid boolean indicating whether the minimal distance between atoms should
be taken into account; default is true

methodz method used to drow the positions in the z axis. 1 is gaussian, 0 is
uniform; default is 1
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c.5.2 Output

trans 3 × 1 vector containing the mean of the complex transmission

transstd 3× 1 vector containing the standard deviation of the complex trans-
mission

ods nOD×nDetunings matrix containing the mean OD for all values of density
and detuning

odsstd nOD×nDetunings matrix containing the standard deviation of the OD
for all values of density and detuning

phis nOD×nDetunings matrix containing the mean dephasing for all values of
density and detuning

phisstd nOD×nDetunings matrix containing the standard deviation of the de-
phasing for all values of density and detuning

nod number of densities considered

delta the input parameter

od0 nOD×nDetunings matrix containing the Beer-Lambert OD for all values of
density and detuning

n nOD×1 vector with all the densities (in at/µm2)

nat the input parameter

od0s the input parameter

dz the input parameter

delta the input parameter

core the input parameter

avoid the input parameter

methodz the input parameter



D
E S T I M AT I N G C O N F I D E N C E I N T E RVA L S U S I N G T H E
B O O T S T R A P P I N G M E T H O D

In many experimental studies, some data is gathered from which a meaningful
parameter needs to be extracted. The error on this parameter is also wanted.
Bootstrapping allows to determine a confidence interval in such a situation.

d.1 position of the problem

Let us consider the probablity distribution P, and assume that we want to find
the mean x̄ and standard deviation σ, or any quantity θ(P) associated to P. If
P is defined on (a well-chosen set of ensembles of) R:

x̄ =
∫

x P(X = x)dx (D.1)

σ =

√∫

(x − x̄)2 P(X = x)dx (D.2)

To do this in an empirical manner, we will draw N random numbers x =

(x1, . . . , xN) following the distribution P and compute the estimated values of
the mean and the standard deviation:

ˆ̄x =
1
N

N

∑
i=1

xi (D.3)

σ̂ =

√

∑
(xi − ˆ̄x)2

N − 1
(D.4)

The use of N − 1 in the definition of the estimator of the standard deviation
stems from the fact that the empirical mean is used and not the real mean, and
is called the Bessel correction. For a different quantity θ(P) we would have to
use the appropriate estimator θ̂(x).

What is the error on ˆ̄x and σ̂ (or on any other parameter that can be computed
from the drawn numbers)?

1. If the probability distribution form is known (gaussian, uniform, expo-
nential. . . ), a formula might exist for some of the quantities we want to
compute. In the case of a gaussian distribution whose mean we want to
know, we can compute the standard error SE = σ̂/

√
N from which we

can deduce the confidence interval on ˆ̄x. However, such formulas are not
always available.

2. If we have the ability to draw several sets of N numbers according to
the same probability law, we can compute ˆ̄x, σ̂ or θ̂ for each draw and
look at the dispersion of the results. Let’s have a look at the results of
such a experiment as presented in figure D.1. Many samples at fixed N
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were drawn, the measured ˆ̄x and σ̂ are recorded and the reconstructed
probability distribution is plotted. From this, the uncertainty on ˆ̄x and σ̂

can be assessed. For the mean value, we see that it matches the prediction
of the standard error. We also check that increasing N a hundred times
decreases the spread of the results by a factor of ten. This method is
usually impractical or impossible to use, but it is interesting to understand
the bootstrap.

Figure D.1: Drawing several samples from a known probablity distribution and look-
ing at the spread of the results. Initial distribution is a gaussian one with
mean x̄ = 3 and standard deviation σ = 1.5. In a) and b), 104 samples
with N = 30 were drawn. In c) and d), 104 samples with N = 3000 were
drawn. The expected spread of the results given by the standard error is
represented in solid red line. For draws with N = 30, the mean value for
ˆ̄x is 3.00 with a standard deviation of 0.27 (the standard error gives 0.27),
and the mean value for σ̂ is 1.5 with a standard deviation of 0.2. For draws
with N = 3000, the mean value for ˆ̄x is 3.00 with a standard deviation of
0.028 (the standard error gives 0.027), and the mean value for σ̂ is 1.50 with
a standard deviation of 0.02.

d.2 the bootstrap principle

The bootstrap principle consists in computing the confidence interval not by
considering the (unknown) probability distribution P but by considering the
distribution P̂ built from the observed data (x1, . . . , xN):

P̂(X = x) =
nx

N
where nx = ∑

i

11(xi = x) (D.5)

According to the law of large numbers, P̂ converges towards P as N → ∞.
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Now we can use one of the two methods of the previous section to compute
the error on the parameter we are interested in ( ˆ̄x, σ̂ or θ̂) using P̂ instead of P.
This is the bootstrap principle. It might still be difficult to have an exact formula
to compute the error associated to a quantity with the probability distribution
P̂. However, the second technique, consisting in drawing many samples of the
same length and looking at the spread of the quantity of interest, is now easy to
implement. It is sometimes referred to as the Monte-Carlo bootstrap principle.

Figure D.2: Implementing the Monte-Carlo bootstrap principle on an example. A
sample x = (x1, . . . , x30) of 30 real numbers were drawn following a Gaus-
sian law P of mean 3 and of standard deviation 1.5. The histogram of the
binned drawn numbers is shown in (a) (blue histogram) along with the
probability density function of P (red curve). Using the probability distri-
bution P̂ as defined in D.5, we perform the same type of sampling as in
figure D.1: 100 000 samples of size 30 were drawn according to P̂, the his-
tograms of the distribution of measured x̂ (resp. σ̂) are represented in dark
blue in (b) (resp. in (c)). The light blue curves represent the distribution
obtained with the same procedure using P and not P̂ as in figure D.1. The
dashed red line in (b) (resp. in (c)) represents the mean (resp. the standard
deviation) computed from the original distribution x.

Let us illustrate this principle using the example of figure D.2. Here, a set
of numbers x = (x1, . . . , xN), N = 30 has been drawn with a Gaussian law of
mean 3 and standard deviation of 1.5; it has an empirical mean ˆ̄x and standard
deviation σ̂. We try to estmate the uncertainty on some parameters (mean and
standard deviation) using the probability distribution P̂ instead of P. This is the
Monte-Carlo bootstrap principle. We draw 100 000 samples of size N = 30 from
the {xi} with replacement (a single xi can be drawn several times). For each
sample, the mean and the standard deviation are computed. The dispersion in
the results obtained for ˆ̄xBS and σ̂BS gives the errorbar on ˆ̄x and σ̂ — the 95 %
confidence interval can for example be constructed from distributions such as
D.2b) and D.2c).

A variant version of this resampling technique is called the jackknife. There,
the samples are not drawn at random. If θ̂ is the statistics to be computed, then
we compute for each 1 6 i 6 N the values θ̂i which is the estimator of the
parameter computed leaving out the observation xi. From this set of N values,
we can compute the bias of the estimator or the variance of the estimator.
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d.3 precautions in using the bootstrap

d.3.1 The bootstrap does not provide better estimates of parameters

The bootstrap technique does not improve the knowledge on ˆ̄x, σ̂ or θ̂. It only
provides an estimate of the confidence interval of that parameter.

d.3.2 Bootstrap caveats

d.3.2.1 Narrowness bias

It usually happens that the bootstrap distribution is too narrow compared to
the original one. This can already be seen on the naive example of the previous
section: the bootstrap distribution (dark blue histogram) is not as spread as
the equivalent distribution obtained from the true original probability distribu-
tion, i. e. the width of the distribution of σ̂BS is smaller than the width of the
distribution of σ̂ computed from the original probability distribution. This can
sometimes be solved using several techniques [239]:

• by drawing a large number of samples of size N − 1 instead of size N

• by using the bootknife sampling to draw the samples (see [239] for more
details)

• by adding a small random noise to the samples that are drawn (also
known as the smoothed bootstrap). This is used in particular when the
initial probability law is continuous.

d.3.2.2 Biased estimator

It sometimes happens that the formula we use to compute the empirical value
of the parameter θ̂ does not coincide (or only coincides asymptotically as N →
∞) with the true value of the parameter θ. This is called a biased estimator. It is
for example the case for the naive estimator for the standard deviation without
the Bessel correction

σ̂bias =

√

∑
(xi − ˆ̄x)2

N
(D.6)

In such a case, it is not good to define the 95 % confindence interval by the two
values that leave out 2.5 % of the distribution on each side, because this interval
will be off-centered compared to the theoretical central value θ not due to the
form of the probability distribution but due to the bias of the estimator.

The effect of a biased estimator is even more important for the bootstrap
procedure, since a bias is felt twice. If the bias of the estimate is C ∈ R, the
empirical estimate will then be offset by C, and the bootstrap distribution (i. e.
the probability density distribution of θ̂BS) by 2C.

This effect can be corrected by comparing the empirical estimate θ̂ to the over-
all shape of the bootstrap distribution, off-centered compared to θ̂, which leads
to the bias-corrected bootstrap algorithm. If we have a biased estimator such that
(
θ − θ̂

)
follows a Gaussian law centered on z0, the value of z0 can be estimated
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by comparing θ̂ to the bootstrap cumulated density function θ̂BS 7→ G
(
θ̂BS
)
.

If Φ represents the cumuated density function of the normal distribution, an
estimated value of z0 is [167, 239]

z0 = Φ−1 (G
(
θ̂
))

(D.7)

The edges of the confidence interval found by the bootstrap technique can then
be offset by 2z0.

d.3.2.3 Asymmetric distributions

It is not easy to provide reliable confidence interval when the underlying distri-
bution of the parameter θ is asymmetric, or skewed in probabilistic terminology.
For example, we usually construct the 95 % confidence interval for a parameter
θ by computing the standard error SE associated to it and considering that

θ ∈ [θ̂ − A SE, θ̂ + A SE] with 95 % confidence (D.8)

The value of A = Φ−1 (0.975) ≃ 1.96 comes from the normal cumulated density
function Φ, and can be replaced by another numerical value in case of small
samples according to Student’s law.

This symmetric interval is very inaccurate in the case where the probabil-
ity distribution for θ is skewed. The bootstrap accelerated method computes
correct confidence intervals using an acceleration constant a [167, 239]. Consid-
ering the bootstrap cumulated density function θ̂BS 7→ G

(
θ̂BS
)
, the acceleration

constant a and the bias constant z0, the bias corrected and accelerated method
(BCa) provides according to [167, 239] the (1 − α) % confidence interval by com-
puting

(

G−1 (p(α/2)) , G−1 (p(1 − α/2))
)

(D.9)

with

p(γ) = Φ

(

z0 +
z0 + Φ−1 (γ)

1 − a (z0 + Φ−1 (γ))

)

(D.10)

We already know how to obtain z0. The proposed procedure in [167, 239] to
compute a in the case where we do not make any hypothesis on the underlying
probability distribution (the non-parametric case) given the set of observed data
x = (x1, . . . , xN) is the following:

• Compute θ̂(i) the wanted statistics (mean, standard deviation, etc.) which
excludes observation number i, xi.

• Compute the mean of those values ¯̂θexclude.

• Get a with the following formula [167, 239]

a =
−∑

N
i=1

(

θ̂(i) − ¯̂θexclude
)3

6 ∑
N
i=1

(

θ̂(i) − ¯̂θexclude
)3/2 (D.11)

The BCa method can require to draw more samples to be accurate (because it
might span the edges of the bootstrap distribution).
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d.4 conclusion

The bootstrap principle, developed by Efron, enables to estimate the error on
a parameter by resampling the original set of data. It does not provide better
estimates but confidence intervals for the estimates. These confidence intervals
are sensitive to bias and skewness of the distribution, which is accounted for
when using the bias corrected and accelerated method. For the data analysis
described in chapter 3, the bias-corrected and accelerated method has been
used. For the data analysis (result of fit) of chapter 5, an uncorrected bootstrap
approach has been used.
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Résumé

Les gaz quantiques atomiques constituent un outil de
choix pour étudier la physique à N corps grâce à leurs
nombreux paramètres de contrôle. Ils offrent la possibil-
ité d’explorer la physique en basse dimension, modifiée
par rapport au cas à trois dimensions (3D) à cause du
rôle accru des fluctuations. Dans ce travail, nous étu-
dions le gaz de Bose à deux dimensions (2D) avec un
confinement original dans le plan atomique, uniforme et
de motif arbitraire. Ces gaz 2D et uniformes, développés
sur un montage existant, ont été installés sur un nouveau
montage grâce à des potentiels optiques polyvalents.

Nous présentons une série d’expériences exploitant cette
géométrie flexible. D’abord, nous étudions le comporte-
ment statique et dynamique d’un gaz uniforme lors de
la transition d’un état 3D normal vers un état 2D super-
fluide. Nous observons l’établissement de la cohérence
de phase dans un gaz à l’équilibre puis nous montrons
l’apparition après une trempe de défauts topologiques
dont le nombre est comparé à la prédiction de Kibble-
Zurek. Ensuite, nous étudions grâce au nouveau mon-
tage les effets collectifs dans l’interaction lumière-matière,
où les propriétés de résonance d’un nuage d’atomes dense
sont fortement modifiées par rapport à celles d’un atome
unique.

Enfin, nous proposons deux protocoles pour le nouveau
montage. Le premier permet d’évaporer de manière uni-
forme un gaz 2D grâce au réseau incliné du confinement
à 2D. Le second propose de produire des supercourants
de manière déterministe dans des pièges en anneaux,
soit par condensation dans un champ de jauge, soit en
réalisant une pompe à vortex topologique.

Mots Clés
Condensats de Bose-Einstein, Basse dimension, Inter-
action lumière-matière, Transition de phase, Mécanisme
de Kibble-Zurek, Systèmes hors d’équilibre

Abstract

Degenerate atomic gases are a versatile tool to study
many-body physics. They offer the possibility to explore
low-dimension physics, which strongly differs from the
three dimensional (3D) case due to the enhanced role
of fluctuations. In this work, we study degenerate 2D
Bose gases whose original in-plane confinement is uni-
form and of arbitrary shape. These 2D uniform traps,
which we first developed on an existing set-up, were sub-
sequently implemented on a new set-up using versatile
optical potentials.

We present a series of experiments that take advantage
of this flexible geometry. First, we study the static and
dynamic behaviours of a uniform gas at the transition be-
tween a 3D normal and a 2D superfluid state. We ob-
serve the establishement of extended phase coherence,
followed, as the gas is quench cooled, by the apparition
of topological defects whose scaling is compared to the
Kibble-Zurek prediction. Second, we present the first re-
sults of the new set-up: we investigate collective effects
in light-matter interactions, where the resonance proper-
ties of a dense ensemble of atoms are strongly modified
with respect to the single atom ones.

Last, we develop two experimental proposals for the new
set-up. The first one studies how a 2D gas can be uni-
formly evaporated using the tilted lattice providing the 2D
confinement. In the second one, we propose to produce
supercurrents in a deterministic way in ring-shaped traps
either by condensing in an artificial gauge field or by im-
plementing a topological vortex pump.

Keywords
Bose-Einstein condensate, low dimensionality, light-matter
interaction, phase transition, Kibble-Zurek mechanism,
out-of-equilibrium systems
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