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The Two-Dimensional Gaussian Beam Synthetic Method' 

Testing and Application 

R. NOWACK AND K. AKI 

Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge 

The Gaussian beam method of •erven9 et al. (1982) is an asymptotic method for the computation of 
wave fields in inhomogeneous media. The method consists of tracing rays and then solving the wave 
equation in "ray-centered coordinates." The parabolic approximation is applied to find the asymptotic 
local solution in the neighborhod of each ray. The approximate global solution for a given source is then 
constructed by a superposition of Gaussian beams along nearby rays. The Gaussian beam method is 
tested in a two-dimensional inhomogeneous medium using two approaches. One is the application of the 
reciprocal theorem for Green's functions in an arbitrarily heterogeneous medium. The discrepancy 
between synthetic seismograms for reciprocal cases is considered as a measure of the error. The other 
approach is to apply Gaussian beam synthesis to cases for which solutions are known by other approxi- 
mate methods. This includes the soft basin problem that has been studied by finite difference, finite 
element, discrete wavenumber, and glorified optics. We found that the results of these tests were in 
general satisfactory. We have used the Gaussian beam method for two applications. First, the method is 
used to study volcanic earthquakes at Mount Saint Helens. The observed large differences in amplitude 
and arrival time between a station inside the crater and stations on the flanks can be explained by the 
combined effects of an anomalous velocity structure and a shallow focal depth. The method is also 
applied to scattering of teleseismic P waves by a lithosphere with randomly fluctuating velocities. 

INTRODUCTION 

In this paper we will discuss applications of the Gaussian 
beam method. The Gaussian beam method is a variation of 

both the asymptotic ray method [-(•erven) et al., 1977] and the 
parabolic approximation method [-Tappert, 1976; Claerbout, 

1976]. The Gaussian beam method has been recently de- 

õtcribed in the literature by Babich and Popov [1981], Popov 

1-1981, 1982], and •erven) et al. 1-1982]. These studies were 
based on the scalar wave equation. The elastic case was first 

derived by Kirpichnikova [1971] and more recently by 

C'•erven• and Ps•enZik [i983b] for the two-dimensional case 
and by •erven) and P•en•ik [1983a] for the three-dimensional 
case. 

There are three basic steps involved in the Gaussian beam 
method. First, a system of rays must be traced from the 

source. Since high-frequency energy flows along rays, the 

system of rays can be thought of as the framework upon 

which the wave field is to be built. This step requires the 

numerical solution of the kinematic ray tracing system. 
Second, the wave equation (elastodynamic equation) is solved 

in "ray centered" curvilinear coordinates for each ray using 
the parabolic approximation. This is now a local parabolic 

approximation related to a particular ray trajectory. These 

local solutions can be expressed in terms of Gaussian beams. 

The final solution is the result of superposing local solutions 

along individual rays to give an approximate global solution 

for a given source condition. This step is justified by the lin- 

earity of the underlying wave equation. 

There are several advantages in using the Gaussian beam 

method. In relation to the asymptotic ray method, the Gaus- 
sian beam method is always finite at caustics. In addition, no 

prior knowledge of caustic locations is required as in the 

Maslov method [Kravtsov, 1968; Chapman and Drummond, 

1982]. Since the Gaussian beam method relies on local para- 
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bolic approximations, no global direction of propagation must 

be assumed as in the standard parabolic approximation. Fin- 

ally, the Gaussian beam method is comparable in cost to ray 

methods, and possibly even faster since no two-point ray trac- 
ing is done. 

The organization of this paper is as follows. First, a more 
detailed description of the Gaussian beam method is given 

along with computational procedures. Then, various examples 

are given in order to illustrate different uses of the method as 

well as to test its validity. Two procedures are used to test the 

,•o•h,•a •;r•, •ho reciprocal •h ........ •;a r .... arbitrary 

heterogeneous medium, is applied. The discrepancy between 

reciprocal seismograms is considered as a measure of the error 

in the Gaussian beam solution. Second, the Gaussian beam 

synthesis is applied to several cases, including the two- 

dimensional soft basin problem, for which solutions are 

known by other approximate methods. The Gaussian beam 

method is then used for two applications. First, the method is 

used to study volcanic earthquakes recorded under Mount 

Saint Helens. Then, the method is applied to scattering of 

teleseismic P waves by a lithosphere with randomly fluctu- 

ating velocities. 

REVIEW OF THE GAUSSIAN BEAM METHOD 

In this section a more detailed description of the Gaussian 

beam method is given. The discussion is limited to the two- 

dimensional case, for which the examples are given, and fol- 

lows the results of (•erven) et al. [1982-[, (•erven) and Pgen•ik 
[1983b], and •erven) [1983]. 

Before solving for the rays and the beam solutions, the 

velocity model must be parameterized. The velocities are input 

as discrete points and then interpolated using cubic splines. 
This results in continuous velocities as well as first and second 

derivatives. For velocities given on a mesh in two or three 

dimensions, this involves a tensor product of one-dimensional 

splines [De Boor, 1980]. Velocity discontinuities are included 
by introducing interfaces between layers with smoothly vary- 

ing velocities. Curved interfaces are input as a discrete set of 

points and then spline interpolated. 
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Fig. 1. Ray-centered coordinate system in two dimensions. The 
beam solution is concentrated near the ray and has a Gaussian shape. 

Spline interpolation of the velocity may introduce some os- 

cillation in the interpolated function depending on the input 

grid values [Azbel et al., 1980]. Care must be taken to check 

the interpolated function and to have the grid velocities 

change slowly. Several methods can be used to avoid the oscil- 

lations in the interpolating function. The first is to use 

smoothed splines as described by Pretlova [1976]. A second 

approach is to use splines under tension [see Cline, 1981]. For 
the remainder of this paper, careful use is made of simple 
bicubic spline interpolation by comparing the desired and in- 

terpolated functions. 

The first step of the Gaussian beam method is to solve the 

kinematic ray tracing system. The rays are extremal of 

Fermat's integral and are determined by solving the ray equa- 
tions' 

dxi dpi 

ds - vpi ds 

with initial conditions 

X(So) = Xo 

- -v -2 i= 1, 2 (1) 

p(So) = Po 

where x is the location along the ray and p is the slowness 
vector tangent to the ray. In an elastic medium, the velocity v 
is either • or •. This system can be solved by standard numeri- 

cal techniques such as the Runge-Kutta method. At an inter- 

face, Snell's law is applied locally. These ray equations are 
appropriate for isotropic nondispersive media. In isotropic 
dispersive media, wave packets will travel at the group veloci- 

ty, but their trajectories will be determined by the local phase 
velocity. 

The second step of the Gaussian beam method involves 

solving the wave equation locally in ray-centered coordinates 

using the parabolic approximation. The ray-centered coordi- 

nate system is an orthogonal curvilinear system that follows 

along a particular ray and was introduced to seismology by 
Popov and P•en•ik [1976, 1978]. In a two-dimensional 

medium, the ray-centered coordinates can be specified by the 
unit vector t tangent to the ray and the unit vector n normal 

to the ray (see Figure 1). An element of infinitesimal length in 
the ray-centered coordinates can be written 

Idrl 2-- hi 2 ds 2 q-h2 2 dn 2 (2) 

where the scale factors h• and h 2 are given by 

h a = 1 + v-av.n h 2 = 1 

where v and v n are evaluated on the central ray with n- O. 

The ray-centered coordinates comprise an orthogonal system. 

Since the local flow of high-frequency energy is along rays, the 
ray-centered coordinate system is an appropriate system for 

approximating the wave equation by local one-way operators. 
The elastodynamic equation i s then writte n in orthogonal 

curvilinear coordinates, as in Aki and Richards [1980, equa- 

tion 2.48], using scale factors for the •ay-centered system. The 
basic step in deriving a one-way operator from the elastodyna- 

mic equation is the substitution 

%(s, n, to, t) = U•(s, n, oo)e -iø*-*(s)) (3) 

where z(s) = $v(s)-a ds is the time delay along the central ray, 
v(s) = • or v(s) = fi, and U• is a slowly varying envelope. The 
envelope is then expanded as 

Uj = E uj iO)-i/2 
i=o 

Note that this is in half powers of co-a as opposed to the 
typical ray series expansion in integral powers. In two dimen- 

sions, U• and Un are the in-plane components along the ray 
and normal to it, and U• is the out of plane component 

normal to the ray. After substitution of (3) into the elastodyna- 

mic equation, the resulting equations are approximated for 

large co. The following results are obtained by retaining only 

terms of order co •, V >- 1 and letting v = tol/2n assuming that 
v = O(1). To this order of approximation, the P and S compo- 

nents alecouple. For an incident P wave [(•erven)5 and Pgent•ik, 
1983b], 

1 

Usø(S, v)= wø'(s, v) Unø= 0 
(4) 

Un a = -i•Us,v ø Ut, = 0 

where W ' satisfies the following parabolic equation' 

2i0•- • W • + W • 30• v 2 W • 0 (5) 

For an incident SV wave 

1 

u,,ø(s, v)= W(s, v) 0 
(6) 

Us a = ifiU,,,v ø Uo = 0 

where W • satisfies the parabolic equation 

2ifi- a W,$• + W,v? fi- 3 2 -- /•.nn ¾ W II '-- 0 (7) 

and for an incident SH wave 

1 

u,,ø(s, v) = W(s, v) Us = = 0 (8) 
with W • satisfying the same parabolic equation as for the SV 
case. All velocities and densities are evaluated along the cen- 

tral ray. These results were derived from asymptotic analysis 

of the elastodynamic equation. The same basic parabolic 

equation for W can also be obtained from the eikonal equa- 
tion as shown in Appendix A. 

The last term in the parabolic equation (5) or (7) comes 
from the approximation of order co: 

h 2[ 1 1 ]W • -wv(s)- ,nnlj2W a('O ['V(S; rt) 2 h a2/;(s) 2' 3V 
where v(s) and v,•n are evaluated along the central ray, v(s, n) is 
the velocity in the vicinity of the central ray, and h a is the 
scale factor for the ray-centered coordinates. Without this ap- 
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proximation for the last term, the parabolic equations (5) and 

(7) are similar in form to those given by Aki and Richards 

[1980, equation 13.154] or Claerbout [1976, equation 10-3-9]. 

The parabolic equations (5) and (7) are valid for small-angle 
forward scattering about the central ray direction assuming 
large-scale inhomogeneities with respect to the wavelength. In 
addition, the validity of the above approximation requires that 
the velocities be smoothly varying within a certain beam 

width of the central ray. Since, as will be seen, the beam 

solutions to (5) or (7) spread with distance, this will result in a 

range limitation for the Gaussian beam method. 

A particular solution to the parabolic equation (5) or (7) can 
be written as 

W(s) = [q(s)]•/2 exp q•j v 2 (9) 
where q(s) and p(s) satisfy 

d 0 v q 

with v(s) and u,.. evaluated along the central ray. These are 
the same equations as the dynamic ray tracing system for ray 
theory, except here p(s) and q(s) must be complex. The vari- 
ables p(s) and q(s) must also satisfy certain conditions, among 
them the condition Im (p/q) > 0. In this case the energy will be 
confined to a vicinity of the central ray, and the solution will 

be a Gaussian beam (see Figure 1). For ray theory, p and q are 
real and q(s) has the interpretation of spreading and v(s). 
[p(s)]/[q(s)] has the interpretation of wave front curvature. 

The equations in (10) are in transmission-line form, where the 
ratio p/q is related to the characteristic admittance for the 

system. 

The complete solution to the parabolic equation for a par- 
ticular central ray is made up of an infinite system of linearly 
independent beam solutions or modes [•;erven_• et al., 1982] of 
the form 

W•(s, v)= [q(s)]•/• -- Hk{vEi m (p/q)]•/2) 

ß exp • v 2 k = 0, 1, 2,... (11) 
where HK are hermite polynomials. Here only the zeroth order 

beam solution (9) is used for each central ray and no mode 
coupling between higher-order beam solutions is assumed. 

The localized solution to the two-dimensional elastodyna- 
mic equation along a particular central ray, specified by a ray 
index parameter 5, can be written in the following form 
[•;erven3• and P•endik, 1983b]' 

1 

uo(s, n, to)= r 
Ev(s)p(s)q(s)] 1/2 

v(s) l p(s) 2 q(s) 

where for P waves, 

(12) 

v(s) = 

for S V waves, 

r = [t + n•(s) p(s) ] q-•n 

v(s) = l(s) p(s) ] r = n - tfl(S) q-• n 

and for SH waves, v(s) = fi(s) and r = b (out of plane compo- 
nent), where p and q solve (10) and are, in general, complex, 
and r gives the orientation of the displacement vector near the 

central ray. Note that the beam solutions are valid only where 
the ray-centered coordinates are well defined and regular in 
some region near the central ray. 

The beam solutions must be modified in the presence of any 
interfaces. Following Popov [1982], it is assumed that to first 

approximation the beam solutions (11) for a given ray remain 
uncoupled at a smoothly curved interface. Then the particular 

beam solution (9) is only modified by a possibly complex re- 
flection or transmission coefficient and the change in p(s) and 
q(s) due to the interface. Formulas for how real-valued p(s) 
and q(s) transform at an interface are given by (7erven35 and 
Pdendik [1979], and for curvature by •erven35 and Hron 
[1980]. Formulas for how complex-valued p(s) and q(s) trans- 
form at an interface are given by V. Cerven•, and I. P•en•ik 
(unpublished manuscript, 1984), where the equations are writ- 
ten so that q(s) is a relative spreading across each interface. 

This avoids writing an additional factor in the beam ampli- 
tude. 

For Gaussian beams, p(s) and q(s) can be written as [see 
•erven35 et al., 1982] 

q(s) = eq•(s) + q2(s) p(s) = ep•(s) + P2(S) (13) 

where p(s) and q(s) satisfy (10), e is a complex valued parame- 
ter to be determined, and 

is the fundamental matrix of linearly independent real solu- 
tions of (10) with initial conditions 

0 

From these initial conditions, 

p•(So) 
K•(So) = v o - 0 

q•(so) 

representing an initial plane wave at the source, 

P2($0) 
K2($o) = V 0 -- 00 

q2(So) 

representing a line source, where Vo = V(So). Thus the complex 
solution is a linear combination of real solutions for a plane 
wave and line source weighted by e as in (13). Here e is a 

factor chosen so that (a) q(s) • 0, resulting in no singularities 

in amplitude along the ray, and (b) 

im (P(S)• 
k,q(s)J > 0 

giving a solution that is concentrated near the ray. Following 
Cerveny et al. [1982], e is written in the form 

e = So -- i •v ø LM 2 (14) 
where, geometrically, LM is the beam width at a specific lo- 

cation along the beam known as the beam waist and So is a 
parameter that shifts the location of the beam waist away 
from the source location, So, along the ray. (•erven35 et al. 
[1982] showed that conditions (a) and (b) above are both 

satisfied when LM -• 0. This result depends on the fact that the 
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determinant of the fundamental matrix above is a nonzero 

constant along the ray and therefore qx(s) and q2(s) cannot 
simultaneously be zero for a given s. Thus the method is con- 
structed to ensure no singularities in amplitude. 

The fundamental beam solution can now be written from 

(12) as 

1 

% = [v(s)p(s)q(s)],/2 r 

where 

+ ico ' exp [--ico(t- •: •sS))•'•K(s)n2--••s) ] (15) 

q(s) = So- i •o LM2 qa + q2 (16) 

equal to the complex spreading, 

K(s) = •(s) Re 
Lq(s)J 

equal to the phase front curvature of the beam, which reduces 
to 

K(s) - v(s) (Sop• + P2XSoq• + q2)+ •k 2Vo ) Plq• 
(Soqa + q2) 2 + k 2Vo qa2 

and 

L(s, = I• Im k,q'•]_] 
equal to the beam halfwidth, which reduces to 

(18) 

[ 2 (2130•2(SOql_[_q2)211/2 L(s) = LM2ql d- \COL-•J 
For convenience, the parameter L o will sometimes be used to 

specify the initial beam width at the beam waist. L o is speci- 
fied by LM- (2Vo/co) TM Lo, and is independent of frequency 
since from (18), LM ----/_,(s o -- So) - O(co-•/2). 

The properties of a Gaussian beam in a homogeneous 
medium are briefly reviewed in Appendix B. An example of a 
Gaussian beam in a homogeneous medium with L•- 1 and 
2- n/4 is shown in Figure 2. The beam waist is located at 

s- 0. The solid lines show the spread of the beam with dis- 

tance, and the dashed straight lines are the far-field asymp- 
totes. The distance s½ separates the collimated near zone from 

the diverging far zone of the beam and is proportional to the 
initial beam width squared over the wavelength. The near 
zone has planar phase fronts, while the far zone diverges as if 
from a point. By adjusting the initial beam width, the beam 

width observed at a given station range can be changed. Ad- 
justing the initial beam width so that the station distance is 

just s½ results in the smallest possible beam width at the sta- 
tion. This will be called the critical initial beam width for a 

given station range. It also places the station just between the 
collimated planar part of the beam and the far-field spreading 
part. For a homogeneous medium the critical initial beam 

width is Ls•cr - (2s/•) •/2. For the general inhomogeneous case, 

LM =(2-•)•/2(1Søql 4- q21)•/2 (19) " \1 qa 

[see •erven3) et al., 1982]. 

Fig. 2. A Gaussian beam in a homogeneous medium with L u = 1 
and 2 = •/4. 

An alternative way to generate a Gaussian beam in a homo- 

geneous medium is to use an initial planar Gaussian ampli- 
tude distribution and diffract it using the Fresnel diffraction 
integral [see Marcuse, 1982]. Since the Gaussian beam is a 
known solution to the Fresnel integral for a given initial am- 
plitude distribution, the field from an arbitrary initial ampli- 
tude distribution can be approximated as a sum of basis 
Gaussian beams. 

The final step of the Gaussian beam method is a super- 
position of beam solutions to represent a given source using 
the proper weight functions (1)(6), where 6 is the ray index 
parameter. For an initial line source, 6 represents an initial 
takeoff angle for a given ray. For an initial plane wave, 6 
represents the distance along the wave front for a given ray. 
Each beam solution solves the wave equation in the vicinity of 
a ray, and together, the weighted superposition approximately 
satisfies a source condition for a given source. Thus the fol- 

lowing integral over ray index parameter and frequency can 
be written 

u(x, t)= 1 Re (l)(6)F(co)%(s, n, co, t) d6 dco (20) 
7• o 

where F(co) is the source spectra and 6o, 6• define the range of 
the ray index parameter. The values 6o and 6• must be chosen 
to adequately cover the area of interest with rays. Using the 
slowness approach [Chapman, 1978], 

f•i•'(l)(6)g(x, u(x, t)= t, 6) d6 (21) 

where g(x, t, 6) is a wave packet [see Cerven3•, 1983]. In the 
examples, F(co) is the source spectra for the following damped 
cosine wavelet [see Cerven3• et al., 1977]' 

f(t) - exp [-(cot/V) 2] cos (cot + •0o) (22) 

Using this source wavelet, the wave packet g(x, t, 6) is ap- 
proximately Gaussian in both time and space [Cerven3•, 1983]. 
Equation (21) is then approximated by the finite sum 

N 

u(x, t)= • (l)(6i)g(x , t, 6i) A6 (23) 
i=0 

where A6 must be chosen small enough to smoothly interpo- 
late the beam solutions and to adequately sample the medium. 

The weight factors (I)(6) for a given source must then be 
specified. The weight function for an acoustic line source is 

given by Popov [1982] and •erven)) et al. [1982], and for a 
plane wave by Cerveni• [1982]. In Appendix C the weight 
function for a two-dimensional point force in an elastic 
medium is obtained by comparing the Gaussian beam super- 
position with the exact plane wave decomposition. 

There are thus several free parameters when computing the 
Gaussian beam solution for a given problem: 60, 6M, and A6 
for the finite sum, the initial beam width at the beam waist 
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Ls•, and the shift of the beam waist away from the source 

given by the parameter So. The sensitivity of the method on 

these parameters, particularly Ls•, will be investigated in sev- 

eral of the following examples. 

APPLICATIONS 

In this section, several applications of the Gaussian beam 

method are given in order to illustrate the used of the method 

and test its range of applicability. The computer program for 

the Gaussian beam synthesis was modified from the ray 
tracing program, RAY81, written by Pgen•ik [1983]. For all 

examples, the slowness method is used in which the frequency 

integral is evaluated first assuming Gaussian packets and a 

damped cosine source wavelet [•erven3•, 1983]. 

Example ,4 

In this example, an initial plane wave in a homogeneous 
medium is decomposed into a number of centered Gaussian 

beams. Each beam is propagated along the straight line rays 
shown in Figure 3a. The initial plane wave is located at z = 

-50 km. The station is shown by the triangle at x = 25 km, 

z = 0 km. The velocity is 6 km/s, and the source wavelet 

parameters are f = 2 Hz, 7 = 4, ½o = 0 (see (22)). The contri- 

bution of each beam to the resulting sum is shown for three 

different initial beam widths in Figures 3b-3d. The initial 

beam width is represented by L o, a frequency independent 

parameter where LM = (2Vo/O))•/2Lo ß Ls• is in kilometers, and 
L0 is in km •/2. For this example, L•r = 0.98L 0. The value 
L0 = 7 km •/2 represents the critical initial beam width that 
gives the smallest beam width at the station range of 50 km. 

Larger than critical initial beam widths result in planar beams 

GB SUM FOR PLANE 

WAVE 

lO •o 30 40 SO 

X 

I lO Lo lOO lOOO 

le 8e sum 

ray number 

t2L•- 7 c 
•o 

t 

-o 10 2o sum 

ray number 

L•- 1 d 

e le 2e sum 

ray number 

Fig. 3. Superposition of Gaussian beams to represent an initial 
plane wave in a homogeneous medium. (a) Ray diagram for initial 
plane wave at z = 50 km. Individual beam contributions indexed by 
ray number along the wave front and the resulting sum for three 
initial beam widths. (b) Lo = 100 km 1/2, (c) L o = 7 km 1/2, and (d) 
L o - 1 km 1/2. (e) The amplitude of the Gaussian beam sum as a 
function of Lo. 

at the receiver, while smaller then critical initial beam widths 

result in diverging phase fronts at the receiver as if from a 

point. 

The "ray number" in Figures 3b-3d represents the ray index 

parameter, which for this example measures distance along the 

initial plane wave front. The initial ray spacing is 2 km. The 

rays in the ray diagram (Figure 3a) are assigned a number 

from 1 to 25. The beam going directly to the station follows 

along ray number 13. The scaled sum for each initial beam 

width is shown to the right in Figures 3b-3d. 

For L 0 = 1 km •/2, less than critical, only a limited number 
of beams around the direct ray contribute to the resulting sum 

due to phase interference (see Figure 3d). There is also a spuri- 

ous end effect in the resulting sum caused by lack of cancel- 

lation of the end beams. As the initial beam width is changed 

to L 0 = 7 km•/2, near critical, again only a limited number of 
beams contribute to the resulting sum (see Figure 3c). This is 

now caused by amplitude decay of beams away from the sta- 

tion. The spurious end effects have been avoided in the re- 

sulting sum by using the critical initial beam width. Finally, 

for L0 = 100 km •/2, larger than critical, the beams are more 
planar at the station distance and no amplitude or phase in- 

terference limits the number of rays contributing to the re- 

sulting sum (Figure 3b). The sum will then depend on the ray 

aperture used. 

Figure 3e shows the amplitude of the resulting sum as a 
function of initial beam width. The critical initial beam width 

is shown. The true amplitude at the receiver is one. For larger 
than critical initial beam widths, the amplitude of the Gaus- 

sian beam sum falls off, since a finite aperture of rays is used. 
The following comments can be made concerning decom- 

posing an initial plane wave in a homogeneous medium into 
Gaussian beams. For larger than critical initial beam widths, 

the amplitude is not stable using a finite ray aperture. For 
near-critical initial beam widths, the result is stable by ampli- 
tude decay of beams away from the receiver. The end effects 

are avoided here by amplitude decay. For smaller than critical 

initial beam widths, a stable result occurs by phase inter- 
ference, but spurious end effects are noticeable in the resulting 
sum. This is similar to a decomposition of the initial wavefront 
into point-like sources as viewed at the receiver. 

Example B 

In this example, an initial half plane is decomposed into 
Gaussian beams. The half plane is located at a depth of 2.5 km 
and terminates at x = 15 km as seen in Figure 4a. Receivers 

are located on the surface from 12 to 18 km with a spacing of 
0.2 km. The velocity is 2.5 km/s and the source wavelet pa- 
rameters aref = 20 Hz, 7 = 5, ½o = •/2. 

The initial beam width L•t is related to L o by L•t = 0.2Lo. 
The critical value of L o for a receiver range of 2.5 km is 

Lo, - s •/2 = 1.58 km •/2. Figure 4b shows the resulting seismo- 
grams for L o = 1.5 km •/2. Since the initial amplitude on the 
edge of the half plane goes to zero gradually over 0.3 km, the 

amplitude at the receivers smoothly goes to zero at x - 15 km 

with no evident edge diffraction. When L o is reduced to 0.05 
km •/2, the initial amplitude on the edge of the half plane goes 
to zero much more sharply. A diffracted wave from the edge of 
the half plane can now be seen (Figure 4c). 

Example C 

In this example, the decomposition of a line source in a 

homogeneous medium into Gaussian beams is investigated. 



7802 NOWACK AND AKI' GAUSSIAN BEAM SYNTHETIC METHOD 

GB REPRESENTATION 

OF HALFPLANE 
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L•.05 
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x 

Fig. 4. Superposition of Gaussian beams to represent an initial half plane. (a) Half plane located at z = 2.5 km and 
terminating at x = 15 km. Stations located on the surface from x = 12 km to x = 18 km. (b) Gaussian beam seismograms 
for L o = 1.5 km •/2. (c) Gaussian beam seismograms for L o = 0.05 km •/2. 

Each beam is propagated along the rays shown in the ray 

diagram in Figure 5a, for a source at x = 25 km, z = -50 km. 

The station at which the resulting sum is evaluated is shown 

by the triangle located at x = 25 km, z = 0 km. The velocity is 

6 km/s and the source wavelet parameters are f = 2 Hz, 7 = 4, 
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Fig. 5. Superposition of Gaussian beams to represent a line 
source in a homogeneous medium. (a) Ray diagram for line source at 
x = 25 km, z = -50 km. Individual beam contributions indexed by 
ray number representing initial takeoff angle and the resulting sum 
for (b) L o = 100 km x/2. (c) L o = 10 km •/2, and (d) L o = 1 km x/2. (e) 
The amplitude of the Gaussian beam sum as a function of L o. 

½o -- 0. The contribution of each beam to the resulting sum at 

the station is shown for three initial beam widths in Figures 

5b-5d. The initial beam width is represented by L o, where 
Lta--0.98Lo. The ray number corresponds to the ray index 

parameter, which for this case is the initial takeoff angle at the 

source. The rays in the ray diagram (Figure 4a) are assigned a 

number from 1 to 18. The beam going directly to the station is 
represented by ray number 10. The scaled sum for each initial 

beam width is shown to the right in Figures 5b-5d. 

The initial beam width of L o = 10 km a/2 is slightly larger 
than the critical value of L o = 7 km a/2. For a given station 
distance, L o equal to critical separates planar beams from the 

beams that diverge as if from a point. For L o -- 100 km a/2, 
larger than critical, only a limited number of beams contribute 

around the direct ray due to phase interference (see Figure 5b). 
A noticeable end effect from the finite ray aperture can be seen 

in the sum. For L o = 10 km 1/2, again only a limited number of 
rays about the direct ray contribute to the sum (see Figure 5c). 
This is now due to amplitude decay of beams away from the 
station. The end effects have been avoided in this case. For 

Lo--1 km a/2, smaller than critical, neither amplitude nor 
phase interference limits the number of beams contributing 
about the direct ray (see Figure 5d). The result then will 
depend on the ray aperture used. 

The amplitude of the Gaussian beam seismogram as a func- 
tion of initial beam width is shown in Figure 5e. The ampli- 
tude of 1.0 in Figure 5e corresponds to the amplitude of the 
far-field approximation for a line source, where U(D)• 
- 1/47r(,•/r)i/2eiø"/"ei"/'•. For r = 50 km, IU(D)I = 0.01949. The 
amplitude of the Gaussian beam sum for L o - 10 km •/2 is 
luigi- 0.01958. For larger than critical initial beam widths, 

the amplitude of the Gaussian beam synthesis is stable within 
1% of the far-field line source solution. For smaller than criti- 

cal initial beam widths, the amplitude of the Gaussian beam 
sum falls off. 

The following conclusions can be made concerning decom- 
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posing a line source into Gaussian beams. For larger than 

critical Lo, a stable result occurs by phase interference. This is 
similar to a decomposition of a line source into plane waves. 

Spurious end effects occur for this case due to the finite ray 

aperture. Using the critical Lo, a stable result occurs by ampli- 

tude decay and end affects are avoided. Finally, for smaller 

than critical Lo, the amplitude is not stable. 

Example D 

In this example, an SH line source above a welded interface 
is investigated. The velocities are 3.7 km/s over 4.6 km/s with 
the source and receivers located 30 km above the interface. 

The receivers range from 20 to 200 km with a spacing of 20 

km. The model is shown in Figure 6a. 
Figure 6b shows the seismograms computed using the Cag- 

niard method [see Alii and Richards, 1980]. The Cagniard 

result is convolved with a source wavelet with parameters, 

f- 3 Hz, 7 = 4, ½o = 0, and the seismograms are plotted in 

reduced time, T- X/4.6. The precritical reflection coefficient 
goes to zero near 60 km and then changes sign. The critical 

distance is located at 81.2 km, and the amplitude becomes 

large at a distance Slightly greater than the critical distance. 

For postcritical distances, total reflection occurs with a phase 

shift. A small head wave can also be seen emerging past the 

critical distance. The Gaussian beam result using a larger than 

critical initial beam width, Lo = 75 km •/2, is shown in Figure 
6c. The Gaussian beam result is similar to the Cagniard result, 

including the head wave phase. But there also exists a spuri- 

ous end effect cutting across the Gaussian beam seismograms 
from about 6 s at 100 km to about 12 s at 200 km. 
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Fig. ?. Gaussian beam seismograms for $H line source above 

welded interface for (a) œo = 20 km z/•, (h) L o = 60 km zn, and (c) 
L o = ]20 km•/•. 
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Fig. 6. $H line source above a welded interface. (•) Model geome- 
try with source and receivers 30 km above interface. (b) Cagniard 
seismograms. (c) Gaussian beam seismograms using L o = 75 km x/2. 

The Gaussian beam result for three initial beam widths is 

shown in Figures 7a-7c. The value of Lo equal to 20 is slightly 
larger than critical for the farthest station. For L o = 20 km •/2, 
the small head wave phase is not generated, but the other 

phases compare with the Cagniard result. For larger Lo, the 
head wave begins to form. In addition, an unwanted end effect 

begins to appear. 

Example E 

In this example, the effect of a single caustic in a layer over 

a gradient is reviewed. This is a standard example but illus- 
trates several features of the Gaussian beam solution [see 

•erven• et al., 1977, 1982; L. Klime•, and V. •erven9, unpub- 
lished manuscript, 1983]. The velocity model is constant to 15 

km with a velocity of 5.6 km/s and increases linearly from 15 

km down to 40 km with a velocity of 8 km/s. The ray diagram 

is shown in Figure 8a using 36 rays and a ray spacing of 1 ø. 

The wavelet parameters are f= 4 Hz, 7 = 3, ½o = 0.0. 
A caustic intersects the surface at 120 km. Ray theory 

would predict an infinite amplitude at the caustic and no 
energy in the caustic shadow. The Gaussian beam seismo- 

grams are shown in Figures 8b-8c for two initial beam widths, 

Lo = 8 km •/•', near the average critical value for the set of 
rays, and Lo = 128 km •/2. So is chosen to be 0.0, locating the 
beam waist at the source. The Gaussian beam seismograms 
show several interesting features including the shift of the peak 
amplitude to the right of the caustic location and the penetra- 
tion of energy into the caustic shadow. As a result of phase 
interference between beams, the Lo = 128 km •/2 does not pen- 
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Fig. 8. Layer over a gradient. (a) Ray diagram where caustic in- 
tersects surface at x = 120 km. (b) Gaussian beam seismograms for 
L o = 8 km •/2. (c) Gaussian beam seismograms for L o = 128 km •/2. 

phase time and ray number are similar to plane wave de- 

compositions in phase time, • = ß + px, and horizontal ray 

parameter [see Chapman, 1978]. 

Figure 10 shows the results for a station at x = 120 km, 

where the caustic intersects the surface. Here the two geo- 

metric arrivals merge as one. Figure 10b shows the individual 

beam contributions for L 0 = 8 km •/2. Again the ray number 
represents the ray index parameter and indexes the rays from 

1 to 18. There is now only one stationary point in the curve, 
represented by the locus of individual beam wavelets, located 
at ray number 10. The result for L0 = 128 km •/2 is shown in 
Figure 10c. The sum shows a spurious end effect caused by the 
lack of cancellation of the end beams. The L 0 = 8 km •/2 case 
avoids this end effect by amplitude decay of beams away from 
the station. 

In Figure i 1, the beam contributions are shown for a sta- 
tion at x = 110 km in the caustic shadow. Here no geometric 

arrival occurs, and the individual beam wavelets shown in 

Figures 11b-11c have no stationary points. The L0 = 8 km •/: 
case shows a clean resulting sum, whereas the L 0 = 128 km •/: 
case shows spurious end effects that are the same order as the 

actual signal. 

Example F 

In this example the effect of caustics on q(s) is investigated. 
The caustics result from multiple bounces of rays in a surface 

wave guide. The velocity model consists of a 0.1-km homoge- 

neous surface layer having a velocity of 1.8 km/s over a linear 

velocity gradient from 1.8 to 5.6 km/s at 5.0 km. The ray 

diagram for a source in the thin surface layer is shown in 

LAYER OVER GRADIENT 

etrate any further into the caustic shadow than the L0 = 8 

km •/2 solution. But spurious phases can be seen in the L 0 = 
128 km 1/e solution that do not quite cancel with the ray set 
used. 

In order to investigate how each beam contributes to the 

final seismograms the individual beam solutions are plotted 
for several station locations and initial beam widths. The re- 

sults for a station at 140 km are shown in Figure 9. Figure 9a 
shows the ray diagram using 18 rays and a ray spacing of 2 ø. 

The station is located by the triangle, and two geometric arriv- 

als are seen at this station. Figures 9b-9c show the individual 

beam contributions for L0 = 8 and 128 km •/•. The ray 
number represents the ray index parameter. The rays are here 

simply indexed from 1 to 18 from a shallow initial takeoff 

angle to a steep initial takeoff angle from horizontal. The two 

geometric arrivals are seen in the scaled sum to the right in 

Figure 9b-9c. 

For L 0 -8 km •/•, near the average critical value, the 
energy is concentrated around the two direct beams to the 

station with ray numbers 4 and 17. The individual beam 

wavelets in Figure 9b map out a curve that has stationary 

points corresponding to the direct beams to the station. For 

L 0 = 128 km •/•, the energy is more evenly distributed among 
the beams as seen in Figure 9c. The beam solutions away from 

the stationary points now phase interfere, giving a similar re- 

sulting sum as for the L 0 - 8 km •/•' case. 
For very large L0, each beam solution is effectively an initial 

plane wave contribution. For a large L0 and a one- 
dimensional medium, the individual beam contributions in 
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Fig. 9. Layer over a gradient. (a) Ray diagram with station at 
x = 140 km. (b) Individual beam contributions and resulting sum for 
L o - 8 km•/2. (c) Individual beam contributions and resulting sum for 
L o = 128 km•/2. 
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Figure 12a. The complex function qr(s) is shown in Figure 12b 
as a function of distance along the ray. Here qr(s) is a relative 

spreading across each interface, and for this case is related to 

q(s) by 

q(s) = (- = (- + 

where % is the number of reflections from an interface. Here 

q'(s) is the actual spreading factor that occurs in the amplitude 

of the beam [-see •erven)• and Pgen•ik, 1983a]. For simplicity, 
the parameter • is set to -i. The horizontal scale for q•(s) is 10 

times larger than the vertical scale. 

For ray theory, caustics occur when q:(s)= Re [q(s)] goes 

to zero. Several zero crossings for Re [q•(s)] are shown in 

Figure 12b, for example, between points b and c. By combin- 

ing the results for an initial plane wave and an initial line 

source, the magnitude of the complex function qr(s) never 

equals zero. In Figure 12b the plot of q•(s) cycles counterclock- 
wise about the origin but never passes through it. 

Using ray theory, a phase advance of n/2 must be intro- 

duced at each caustic. This is done using the KMAH index, 

which counts the number of caustics crossed by a given ray. 
Using a complex q'(s), the phase of q•(s) automatically changes 
by • between zero crossings of Re [q•(s)]. Thus as long as the 

phase of qr(s) is kept continuous, taking a square root results 

in the proper number of •/2 phase shifts. 

Example G 

In this example the effect of the scale of a velocity inhomo- 

geneity on the Gaussian beam solution is investigated. A 
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Fig. 13. Ray diagram for a single heterogeneity with a radius of 25 
km and a velocity contrast of 10%. 

single heterogeneity is considered with an incident plane wave 

impinging from below. The background velocity is 6 km/s, 

and the wavelet parameters are f= 1 Hz, 7- 4, (P0- 0. The 
velocity heterogeneity is circular, and the velocity varies 

smoothly in a Gaussian manner. The radius of the heterogen- 
eity ranges from 15 to 25 km with a velocity contrast of 10% 

lower than the background? The Gaussian beam solution is 
then compared with the finite difference solution of the 45 ø 

parabolic equation typically used in seismic exploration and 

forward scattering simulations [see Claerbout, 1976; Kjart- 

ansson, 1980]. The ray diagram for a 25-km radius heterogen- 

eity is shown in Figure 13. 

Figure 14 shows the seismograms for an inhomogeneity 

with a radius of 25 km, a velocity contrast of 10%, a distance 

from the initial wave front to the heterogeneity of 50 km, and 
a distance from the initial wave front to the stations of 120 

km. The finite difference solution of the parabolic equation, 
Parab45, is shown in Figure 14a. Figures 14b-l,4d show the 
Gaussian beam solutions for three initial beam widths. The 

critical initial beam width for the station distance in a homo- 

geneous medium is L0cr = 11 km •/'-. From the results of exam- 
ple A, the decomposition of an initial plane wave in a homo- 
geneous medium requires initial beam widths comparable with 
or smaller than the critical initial beam width for the receiver 

distance. The maximum arnplitude for each solution is shown 
in Figure 14. The Gaussian beam results for the different ini- 

tial beam widths are seen to be stable and compare with the 
Parab45 result. 

Figure 14 also shows the beam width in kilometers at the 

inh•omogeneity distance for each initial beam width solution. 
The smallest beam width at the heterogeneity distance is 14 
km, resulting from an initial beam width of L0 = 7 km x/•-, and 
is smaller than the heterogeneity radius. From example A, this 
smallest beam width defines the zone of contributing beams tO 
the final sum. For smaller than critical initial beam widths a 

similar limited region is defined by phase interference about 
the stationary direct arrival and is related to the first Fresnel 
zone. 

Figure 15 shows the same experiment, except now the initial 

wavefront is 140 km from the heterogeneity and 210 km from 

the stations. The Parab45 result is shown in Figure 15a, and 

the Gaussian beam seismograms for four initial beam widths 

are shown in Figures 15b-15e. Due to the spread of the beams 

with distance, the beam widths at the heterogeneity are larger 
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Fig. 14. Single velocity heterogeneity with a radius of 25 km, a velocity contrast of 10%, the distance from the initial 
wave front to the heterogeneity of 50 km, and the distance from the initial wave front to the stations of 140 km. (a) 
Parab45 seismograms. Gaussian beam seismograms for (b) Lo = 10 kmt/2,(c) Lo = 7 kmt/2, and (d) Lo = 4 km t/•. 
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Fig. 15. Single velocity heterogeneity with a radius of 25 km, a velocity contrast of 10%, the distance from the initial 
wave front to the heterogeneity of 120 km, and the distance from the initial wave front to the stations of 210 km. (a) 
Parab45 seismograms. Gaussian beam seismograms for (b) L o = 13 km •/2, (c) L o = 10 km •/2, (d) L o = 7 km •/:, and (e) 
L o = 4 km •/•. 

than the previous case. The smallest beam width at the hetero- 

geneity distance is 23 km and is just slightly smaller than the 

heterogeneity radius. The Gaussian beam results are still 

stable and compare with the Parab45 result. The Lo = 4 km TM 
result has a much larger beam width of 50 km at the hetero- 

geneity distance, but the number of beams contributing is now 

limited by phase interference. The amplitude for this case is 
fairly stable, but a spurious secondary phase can be seen. 

In the final case the inhomogeneity radius is reduced to 15 
km with a velocity contrast of 10%, a distance from the initial 

wave front to the heterogeneity of 30 km, and a distance from 
the initial wave front to the stations of 210 km. The Parab45 

result is shown in Figure 16a. The Gaussian beam results are 

shown in Figures 16b-16e for several initial beam widths. For 

this case the Gaussian beam amplitudes are less stable. The 
Gaussian beam solution with the smallest beam width at the 

heterogeneity compares best with the Parab45 result. All the 

Gaussian beam solutions have a larger secondary arrival than 

the Parab45 solution. This may in part be due to dip filtering 
in the Parab45 formulation. 

These preliminary results indicate that when using the 

Gaussian beam method in a heterogeneous medium, the criti- 

cal beam width be smaller than the heterogeneity scale. This is 

more restrictive than simply small wavelength with respect to 

heterogeneity scale, and is related to the approximation made 

in the final term in (5) or (7). This restriction is similar to that 

given for geometric optics by Kravtsov and Orlov [1980] in 

which the medium and wave parameters must be slowly vary- 
ing over the first Fresnel zone. 

Example H 

In this example, SH waves in a two-dimensional basin 

structure are investigated. This problem has been studied by a 

number of investigators using techniques including finite dif- 

ference, finite element, discrete wave number, and glorified 

optics (a ray method) [-Boore et al., 1971; Hong and Helmber- 
ger, 1977; Bard and Bouchon, 1980; Aki and Richards, 1980]. 

The basin structure varies in thickness from 1 km at the edge 

to 6 km in the center over a range of 25 km. The interface has 

a cosine shape. The material parameters in the basin are v• = 

0.7 km/s and p• = 2.0 g/cm 3, and the material parameters of 
the basement are v2 = 3.5 km/s and P2 = 3.3 g/cm 3. 

Figure 17 shows the ray diagrams for the direct wave and 

the first two bounces. The rays represent an upward traveling 
SH plane wave normally incident from below. The Gaussian 

beam synthesis was made up of 12 bounces. The incident 

plane wave was expressed by equally spaced rays in the base- 
ment. No two-point ray tracing was required; the rays were 
simply allowed to reverberate in the basin. For this case, 150 

rays were used with a ray spacing of 1 km. 
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Fig. 16. Single velocity heterogeneity with a radius of 15 km, a velocity contrast of 10%, the distance from the initial 
wave front to the heterogeneity of 50 km, and the distance from the initial wave front to the stations of 230 km. (a) 
Parab45 seismograms. Gaussian beam seismograms for (b) L o = 13 km TM, (c) L o = 10 km TM, (d) L o = 7 km i/e, and (e) 
L o = 4 km•/•. 

The damped cosine source wavelet used in the Gaussian 

beam synthesis (see (21)) was adjusted to simulate an often 
used Ricker wavelet [see Bard and Bouchon, 1980]. In Figure 
18 the solid line is the Ricker wavelet, and the dashed line is 

the damped cosine wavelet used in the Gaussian beam syn- 

thesis with T = 16.5 s and ? = 3.2. The value of L o was set at 
2.0 km •/2. 

Figure 19 shows a comparison of four different methods for 
the two-dimensional basin structure. The Gaussian beam seis- 

mograms have been added to Figure 13.26 of Aki and Rich- 
ards [1980]. The center of the basin is marked as 0 km, and 

the edge of the basin as 20 km. For each distance the Gaus- 

sian beam seismogram is at the bottom. The second phase on 

the seismograms represents energy propagating across the 

basin. The seismograms calculated by the Gaussian beam 

method compare well with the other solutions at the earlier 

portions of the seismograms. Discrepancies among the various 

methods are evident in the latter portions of the seismograms. 

This may be due to the fact that both the Gaussian beam 

method and glorified optics are high-frequency methods, while 

the discrete wave number method is applicable over a broader 

range of frequencies. 

Example I 

In this example the Gaussian beam method is applied to the 

study of volcanic earthquakes under Mount Saint Helens. 

During the summer of 1981 a nine-station array was deployed 
on the flanks and within the crater of the Mount Saint Helens 

volcano. This was a joint effort undertaken by Oregon State 

University, Massachusetts Institute of Technology, and the 

U.S. Geological Survey [Fehler and Chouet, 1982]. Two of the 

more significant observations of the recorded high-frequency 

volcanic events were that (1) the arrival times at the crater 
station were between 0.4 and 0.7 s earlier than those at the 

flank stations and (2) the amplitudes at the crater station were 

about 10 times greater than those recorded at the flank sta- 
tion. 

Figure 20 shows the two-dimensional model of the velocity 

structure that was tentatively adopted for Mount Saint 

Helens. This model is based on evidence obtained by various 

workers on Mount Saint Helens (S. Malone, lecture notes, 

1982) as well as on other similar types of volcanoes such as 

Saint Augustine in Alaska [Kienle et al., 1979] and Showa- 

shinzan in Japan [Hayakawa, 1957]. In all these cases the 

internal structure of a volcano is depicted as a high-velocity 
central body with a P velocity of about 4 km/s covered by 

lower-velocity surficial layers. 

It was first thought that the observed high amplitude and 

early arrival time could be explained by locating the earth- 

quake foci at the bottom of the hypothesized high-velocity 
column. Figure 20 shows the ray diagram for a focus located 

3.5 km below the summit. The high-velocity column tends to 
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cause energy to diverge from the summit. Vertical component 

Gaussian beam seismograms for stations located across the 

volcano from 2.5 to 7.5 km along the surface are shown in 

Figure 21 using frequencies of 5, 10, and 20 Hz. The ampli- 

tudes at the flank stations appear to be comparable to those 
at the crater, and the differences in arrival time are within 
0.25 s. 

If the focal depth is moved upward to 1 km below the 

summit, the seismic signal changes dramatically. The ray dia- 

gram for a focus 1 km below the summit is shown in Figure 

20. In this case the ray paths going directly upward are dense 
and short, while those toward the flank of the volcano are 

sparse and take a detour. The resultant seismograms for 5, 10, 
and 20 Hz are shown in Figure 22. These show an amplitude 

at the crater station an order of magnitude greater than at the 

flank stations and about 0.5 s earlier arrival, in agreement 
with observation. 

In order to check the accuracy of the computed seismo- 

grams, reciprocal seismograms were compared in Figure 23. In 

case A a two-dimensional vertical point force is applied at a 

point 3.5 km beneath the summit, and the receiver is on the 
flank of the volcano. In case B the vertical point force is on 
the flank of the volcano, and the receiver is located 3.5 km 

beneath the summit. The free surface is neglected here. The 

vertical component seismograms are shown, for both cases, for 

_• . I . t . i . i . ! - , - . - 
0 l0 i•0 30 40 

Fig. 18. Comparison between a Ricker wavelet (solid line) used in 
other studies of the soft basin, and the damped cosine wavelet (dotted 
line) used for the Gaussian beam seismograms with T = 16.5 s and 
7-- 3.2. 

frequencies of 5, 10, and 20 Hz. There is a satisfactory agree- 

ment in wave form for all three frequencies. The amplitudes 

agree to within 1% for 20 Hz, 6% for 10 Hz, and 12% for 5 
Hz, showing better accuracy for higher frequencies, as ex- 

pected. 

Thus the P velocity structure depicted in Figure 20 and 

focal depths less than 1 km from the summit can explain the 

two significant observations. A similar observation was made 

for Saint Augustine volcano by Lalla and Kienle [1982], who 

found a correlation between the amplitude ratio of summit to 
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Fig. 17. Ray diagrams for an SH plane wave incident on a two- 
dimensional basin structure. The direct wave and first two bounces 

are shown. 

DW 
0 

GB 

4 

8 

0 50 100 150 200 250 

Fig. 19. Comparison of seismograms computed by various meth- 
ods for a soft basin; DW discrete wave number, GO glorified optics (a 
ray method), FE finite element, and GB Gaussian beam. The center of 
the basin is marked as 0 km, and the edge as 20 km. 
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flank stations and the focal depth. For focal depths shallower 

than about 2 km the summit amplitude was greater by an 

order of magnitude than the flank amplitude, and for deeper 

events the opposite was observed. 

In any case the sensitivity of the seismic signal to the focal 

depth is strong, owing to the heterogeneous structure under a 

volcano. This result also suggests a promising way of accu- 

rately locating volcanic earthquakes using variations in ampli- 
tude as well as in arrival time. 

Example J 

In this final example the Gaussian beam method is used to 

study the influence of small-scale fluctuations on teleseismic P 
wave forms. The models consist of several realizations of a 

lithosphere with randomly fluctuating velocities. The layer 

thickness is 120 km with a correlation length of 15 km. The 

average velocity is 8 km/s, and the root mean square fluctu- 

ation is 3%, roughly representing the results obtained for 

LASA [Aki, 1973; Capon, 1974]. 

Normally distributed random velocities were used to con- 

struct a two-dimensioinal velocity grid with a 15-km spacing 

between mesh points. This was then interpolated using bicubic 
splines to give continuous velocities as well as first and second 

derivatives. The first realization for the randomly fluctuating 
velocities is shown in Figure 24. The top portion is a contour 
plot of the random velocities contoured at 0.1-km/s interval. 

The bottom portion is a printer plot of the random velocities, 

where each integer on the plot represents a 0.3-km/s velocity 

interval and the integer 4 represents the velocity interval 7.7- 

8.0 km/s. 

Figure 25 shows the ray diagram for a vertically incident 

plane wave perturbed by the random velocity layer. The 

-1 
deep source 

3.5 km 

beneath summit 

-1 

-E 

-3 

-4 

-5 
0 1 P- 3 4 5 6 ? 8 g 10 

shallow source 

1.0 km 

beneath summit 

Fig. 20. Velocity model used to depict the structure under Mount Saint Helens. Ray diagrams are shown below for a 
source located 3.5 km beneath the summit and a source located 1.0 km below the summit. 
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receivers are located jhst above the random layer at z = 75 
km. The range of receivers is from 125 to 275 km, spaced at 

5-km intervals. Figure 26 shows the resulting wave field for 

two dominant frequencies, 2 and 1 Hz. The amplitude and 

phase have both been significantly distorted by the random 
velocity layer. A multipath effect can also be seen in the range 

from 130 to 160 km. No significant P coda with a duration 

beyond about 3 s has developed as a result of the random 

velocity layer. 

In order to check the accuracy of the method for this exam- 

ple, seismograms from reciprocal geometries have been com- 

pared using a two-dimensional point force as a source. The 

first comparison, shown in Figure 27, is for a source and 

receiver 300 km above and below the random velocity layer. 
In this geometry the rays for the reciprocal cases sample the 
same region of the random layer. There is a good agreement 

in wave shape between reciprocal cases. Also, the amplitudes 

agree within 5%. For this case the parameter So was specified 

to put the minimum beam width (beam waist)just before the 

ray entered the random layer, and Lo was specified as 12 
kml/2. 

In addition to reciprocity checks, the calculation was re- 

peated using the finite difference solution of the 45 ø equation 
[Claerbout, 1976]. Figure 28 shows a comparison between the 
parabolic result, Parab45, and the Gaussian beam result for 

the 1-Hz case. The results are similar in the significant details. 

i 
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I f I I , 

I • 8 9 10 

DEEP SOURCE 

(3.5 km) 

Fig. 21. 
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3 4 S 6 ? 8 
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Gaussian beam seismograms for a source located 3.5 km below the summit using three frequencies' 5, 10, and 20 
Hz. 
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In Figure 29 a second realization for the random velocity 

layer is shown. The perturbed rays for an incident plane wave 

are shown in Figure 30. The wave fields observed on the 

surface of the random velocity layer for the two dominant 

frequencies of 2 and 1 Hz are shown in Figure 31. This realiza- 

tion perturbs the wave field less than the previous realization. 

The results have been checked using reciprocity and compared 

against the Parab45 solution and showed good agreement. 

For this realization a comparison has been made between the 

natural logarithm amplitude and the residual phase delay. 

This is shown in Figure 32. The positive correlation between 

In (A) and the phase delay residual is in agreement with obser- 

vations of teleseismic P waves at the Montana LASA by Aki 

[1973]. 

CONCLUSIONS 

There are several advantages in using the Gaussian beam 

method. First, the method is always finite at caustics. In addi- 

tion, no prior knowledge of caustic locations is required as in 
other methods. Next, since the Gaussian beam method relies 

on local parabolic approximations, no global direction of 

propagation must be assumed as in the standard parabolic 

approximation. Finally, the Gaussian beam method is com- 

parable in cost to ray methods, and possibly faster since no 

two-point ray tracing is done. 

The Gaussian beam result depends on the choice of the 

initial beam width. The expansion of a plane wave by Gaus- 

sian beams in a homogeneous medium requires initial beam 

! 

20 HZ 

0 I • 8 9 

i ! 

• 3 4 5; 6 ? 

lO HZ 

o ! 8 9 lO 

SHALLOW SOURCE 

(1.0 km) 

! 

5 HZ 

3 4 5 6 7 
0 I i I I 

o 1 • 8 9 1o 

Fig. 22. Gaussian beam seismograms for a source located 1.0 km below the summit using three frequencies: 5, 10, and 20 
Hz. 
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Ray diagrams and seismograms shown for reciprocal cases A and B. The reciprocal seismograms are shown for 
three frequencies: 5, 10, and 20 Hz. 

widths comparable with or smaller than the critical initial 

beam width for a given station distance. This is similar to an 

expansion of an initial plane wave into pointlike sources as 
viewed from the station. The approximate expansion of a line 

source into Gaussian beams in a homogeneous medium re- 

quires initial beam widths comparable or larger than the criti- 
cal initial beam width. This is similar to an expansion of a line 

source into plane waves. The use of initial beam widths near 
critical avoids end effects but does not simulate certain arriv- 

als, such as head waves in the welded interface example. 

The Gaussian beam method in a heterogeneous medium 

has been tested using two approaches. The first is the appli- 

cation of the reciprocal theorem, where the discrepancy be- 

tween seismograms calculated for reciprocal cases is con- 
sidered as a measure of error. The second is the application of 

the Gaussian beam method to cases, including the two- 

dimensional basin problem, which have solutions from other 

approximate methods. Preliminary results for a single hetero- 

geneity using the finite difference solution to the parabolic 

equation and the Gaussian beam method gave best compari- 

sons for critical beam widths smaller than the heterogeneity 
scale. 

The Gaussian beam method was then applied to the study 

of volcanic earthquakes under Mount Saint Helens. The ob- 

served differences in amplitude and arrival time between a 

station inside the crater and those at the flank can be ex- 

plained by the combined effects of an anomalous velocity 
structure and a shallow focal depth. The method was also 

applied to study the influence of small-scale velocity fluctu- 

ations on teleseismic P wave forms. Significant amplitude and 

phase fluctuations due to a,!ithosphere with randomly fluctu- 
ating velocities were found, ih agreement with observations by 
Aki [1973] at the Montana LASA. 

APPENDIX A 

In this appendix we give a derivation of the parabolic equa- 

tion from the eikonal equation [•ee• Gloge and Marcuse, 1969; 
and Marcuse, 1982]. By considering a variable end point in 

Fermat's integral, the eikonal or Ha:/nilton-Jacobi equation 
can be obtained' 

IVzl 2 - v- 2 (A1) 

The rays are the characteristics of this equation. In ray- 

centered coordinates the eikonal equation can be written 

c3r h• 1-v 2 =0 (A2) 
Os v • 

where h• is the scale factor in (2). The Hamiltonian is written 
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random velocity layer 

55 

110 

165 

220 

275 

8 km/sect3%, a=15 km iseed=O 

contour 

int .1 

Fig. 24. Contour plot and printer plot of a layer with randomly fluctuating velocities. The average velocity is 8 km/s 
with a root mean square fluctuation of 3%. The correlation length is 15 km. The contour interval is 0.1 km/s for the 
contour plot, and 0.3 km/s for the printer plot' random number seed is zero. 

as 

H(n, p.) = - h.• [1 - l)2pn2] 1/2 (A3) 

and Pn -- az/an is the slowness in the n direction and is identi- 

fied as the generalized momentum. The Hamiltonian can be 

approximated to second order about the central ray (see V. 
•erven$,, unpublished lecture notes, 1982) as 

H(n, Pn) 1 1 1 = -- - + l)pn 2 - 2v n 2 (A4) 

Following Marcuse [1982], a parabolic equation can be 

derived by treating all variables as operators. By analogy to 
quantum mechanics, 

Ft'• Ft pn'• --i•c •nn H--• i•c 0'• (AS) 

km 

O 2.00 aOO 300 400 

Fig. 25. Ray diagram of vertically incident plane wave perturbed by 
the random velocity layer shown in Figure 24. 
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Fig. 26. Wave field of vertically incident plane wave propagated 
through random layer shown in Figure 24. Two frequencies are used' 
1 and 2 Hz. 
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Fig. 28. Comparison between the Parab45 solution and the Gaus- 
sian beam solution for the random layer shown in Figure 24. 
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Fig. 27. Ray diagrams and seismograms for the shown reciprocal 
cases A and B. For case A the source is at (200,800) and the receiver is 
at (200,80). For case B the source is at (200,80) and the receiver at 
(200,800). The random layer velocities are shown in Figure 24. The 
seismograms are computed for two frequencies: 1 and 2 Hz. 

where tc is a parameter to be determined. Applying the oper- 

ator H to a wave function ½, 

i•c • ½ = He (A6) 

Using equations (A4) and (A5), this is written 

_• 2 __ 1 v,..n2 ½ + •p = 0 (A7) 
UK ,nn 

Writing ½ in terms of the envelope 

= 
and assuming v = oi/2n, where v = O(1), gives 

2i 1 

+ w = 0 

Letting • = w-• gives 

2i 

•s + •vv- U(S)-3U,nnV2• = 0 (A9) 

This is equivalent to the parabolic equation in (7) derived 

from asymptotic analysis. Note that in quantum mechanics 

• = h/2n, where h is Planck's constant, but here • = Vo(2o/2•). 
The Vo can be avoided here by writing the eikonal equation 

(A2) in terms of z' = VoZ. Classical ray theory is valid when 2o 
is much smaller than the heterogeneity scale. The natural ana- 

logy between mechanics and ray thetory thus provides a link 

between the eikonal equation and the parabolic equation. 

Further results from this analogy can be found by Marcuse 
[1982] and Marcuvitz [1980]. 
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Fig. 29. Contour plot and printer plot of a layer with randomly fluctuating velocities. The average velocity is 8 km/s 
with a root mean square fluctuation of 3%. The correlation length is 15 km. The contour interval is 0.1 km/s for the 
contour plot and 0.3 km/s for the printer plot; random number seed is 6. 

APPENDIX B 

In this appendix a brief review of the properties of a Gaus- 
sian beam in a homogeneous medium is given. From the dy- 
namic ray tracing equations (10) and the initial conditions for 

-E00 

-•80 ...... ' ' ' i , ..... 
0 100 •00 •00 400 

Fig. 30. Ray diagram of vertically incident plane wave perturbed by 
the random velocity layer shown in Figure 29. 

a plane wave and line source, one obtains 

q•(s) = 1 p•(s) = 0 

q,_(s) = s - So p,_(s) = 1/Vo 

For the source at So = 0, with the beam waist at the source, 
So = 0, and using (16), the complex spreading can be written 

q(s) = s -- i •v v L• • 

where LM is the initial beam width at the beam waist. The 
beam width can be written from (17) as 

L(s)= L• 1 + nL•2 
The phase front curvature can be written from (18) as 

1 

K(s) = (B4) 
S[ l q- (I[LM2/,•S) •-] 

At the beam waist, L(s)= L• and K(s)= 0.0. Thus at the 
beam waist the minimum beam width is acheived and the 

wave front is planar. As Isl• •, the angular spread or the 
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Fig. 31. Wave field of vertically incident plane wave propagated 
through random layer shown in Figure 29. Two frequencies are used' 
1 and 2 Hz. 

far-field diffraction angle can be defined as 

½= lim [L__•] 2 Isl-• •tL• 

This leads to the uncertainty relation 

½L• = 2/• (B5) 

For a small Ls• there is a large far-field spread, whereas for a 

large Ls• there is a small far-field spread. The distance Sc, at 
which the beam width starts to significantly differ from the 
initial beam width, is 

L• ItLM 2 
½ •---• Sc = • (B6) 

s c 

This is similar to the Fraunhofer range for an aperture of 
radius a, which has the form s >> a2/2. For Isl 

which is the curvature of the wave front for a line source. 

Extrema in the curvature occur at Isl - s•. 
The critical value of Ls• is the one that gives the smallest 

beam width L(s) at the receiver distance s. In a homogeneous 
medium this places the receiver distance at s = so. Thus from 
(B6), LMc, = (2s/tO '/2. 

APPENDIX C 

In this appendix the weight function (I)(6) for a two- 

dimensional point force in an elastic medium is obtained by 

comparing the Gaussian beam synthesis with the exact plane 

wave decomposition. For a general point force at the origin in 

the x3 direction, the displacement field for an isotropic, homo- 

geneous medium is given by 

(el) 

[Aki and Richards, 1980], where a time dependence of e -i'øt is 

assumed, and the direction cosines of r are given by 7• = 
xi/r. In order to express the above displacements as an inte- 

gral superposition of plane waves, the Weyl integral is used to 
obtain 

c• c• Iexp(ic0 c•x3 c•xi 

-- •r• k i exp (ikixi + ik2x 2 -t- ikcx3) dki dk 2 

I (r3) r- _] r = C'02 (3•/iY3 -- 6i3) icoc + 3 _ 7i73(c2r) 1 exp ico - c 

(c2) 

where kc = +[((-02/½ 2) - kl 2 - k22] 1/2 and c is either • or/L 
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Fig. 32. Plots of In (amplitude) versus residual phase delay for the wave fields shown in Figure 29. 
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Then for the three-dimensional point force 

Ui- 8•23ro 2 ki 

ß exp [i(k•x• + k2x 2 + k•x3) ] dk• dk 2 

i ki - 
8•210ro 2 k/lfl 2 J 

ß exp [i(k•x• + k2x 2 + kt•x3) ] dk• dk 2 (C3) 

Now we will investigate the P wave integral alone and inte- 

grate with respect to x2 to obtain the line force solution. Thus 

ULi = U i dx2 

-4•t}ro 2 ki exp [i(k•x• + k•xs)] dk• (C4) 
= 2]•/2 Let ̀ 9 be the angle with where k• = ks + [(ro/a) 2 - k• . 

the xs axis, then k• = (to/a)sin ̀ 9 and ks = (to/a)cos ,% Now, 

writing the integral over 0, 

- + o,/• j' + ,•/2 i UL• = U• dx 2 = • cos 0 sin ,9 
- o,/• -,•/2 4•P a2 

ß exp i--(x•sin0+x3cos0) 

(c5) 

I UL3 = U 2 dx 2 = 4•3a 2 cos 0 cos ,9 d - to/• J - n/2 

ß exp i--(Xl sin0+x3cos0) dO 

The Gaussian beam solution for a homogeneous medium is 
written 

+n12 UaB(x, ro)= (I)(r5)uo(s, n, ro) dr5 
d - 

+ n/2 

I = (c6) 
J-,•/2 \ apq ,/ 

[ FrOm ] ß exp iro - + i n 2 dr5 

where it has been assumed that q)(rs) has the form, (I)(rs)= 

ß '(rs)(aoPoqo) •/2. For a homogeneous medium, 

q=r+8 qo=8 

-1 -1 

p = Vo Po = Vo 

1 

p/q = • 
Vo[r + 8] 

where 8- So - i(ro/2vo)LM 2. To compare with the plane wave 
solution, let LM--} ov and let r5 = 0. Then 

•/2 ua,(x, to)= 
J- n/2 

ß exp i--(x•sin0+x3cos0) dO (C7) 

Comparison with (A5) given 

and 

ß '(o) = 
i cos 0 

4•P0a0 2 

cos 081/2 

4:n:po i/2 ao3/2 (C8) 
where •(0) is the approximate weight for the Gaussian beam 

representation of P wave radiation from a two-dimensional 
point force and 0 is the angle between the direction of the 
point force and the beam direction. 
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