
ar
X

iv
:2

10
6.

10
66

8v
1 

 [
m

at
h.

A
P]

  2
0 

Ju
n 

20
21

TWO DIMENSIONAL LIQUID CRYSTAL DROPLET PROBLEM WITH

TANGENTIAL BOUNDARY CONDITION

ZHIYUAN GENG AND FANGHUA LIN

Abstract. This paper studies a shape optimization problem which reduces to a nonlocal free
boundary problem involving perimeter. It is motivated by a study of liquid crystal droplets with a
tangential anchoring boundary condition and a volume constraint. We establish in 2D the existence
of an optimal shape that has two cusps on the boundary. We also prove the boundary of the droplet
is a chord-arc curve with its normal vector field in the VMO space. In fact, the boundary curves
of such droplets belong to the so-called Weil-Petersson class. In addition, the asymptotic behavior
of the optimal shape when the volume becomes extremely large or small is also studied.

1. Introduction

1.1. Background. Liquid crystal droplets are of great interest from both the theory and applica-
tions. They are important in the studies of topological defects in the bulk or on the surface of liquid
crystals; and they are useful in understandings of anisotropic surface energies and variety anchoring
conditions. Determining the shape of the droplets and the associated equilibrium configurations of
the liquid crystals leads to a shape optimization problem that, in some cases, it becomes a nonlocal
free boundary.

In fact, we are particularly interested in the elongated droplets known as tactoids, which usually
possess a characteristic eye shape. After a quick examination, one finds the boundary anchoring
condition for the molecular orientation to achieve such a desired shape needs to be a tangential
anchoring , i.e. the director is orthogonal to the normal of the droplet boundary.

Mathematically, the most commonly used continuum theory to describe nematic liquid crystals
is the Oseen-Frank theory, where the local state of the liquid crystal is described by a S

1- or S
2-

valued vector n that represents the mean local orientation of molecule’s optical axis. Let Ω be the
region occupied by a nematic liquid crystal droplet, the Oseen-Frank bulk energy associated with
the director field is the functional

(1.1) EOF (n,Ω) =

ˆ

Ω
w(n.∇n) dx,

where

w(n,∇n) =k1(div n)
2 + k2(n · curln)2 + k3|n× curln|2(1.2)

+ (k2 + k4)
(

tr(∇n)2 − (div n)2
)

.

We shall consider the one-constant approximation, i.e., k1 = k2 = k3 = 1 and k4 = 0, the energy
functional (1.1) reduces to

(1.3) EOF (n,Ω) =

ˆ

Ω
|∇n|2 dx,

which is the energy functional for harmonic maps.
Liquid crystal droplets are often either dispersed in an polymeric medium or surrounded by

another fluid such as water, there is an interfacial energy which will play an essential role in
1
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determining the optimal shapes. Following [10] and [24], the surface energy may be written as

(1.4) Es(Ω, n) =

ˆ

∂Ω
f(n · ν) dA

where ν is the outer normal on ∂Ω and for simplicity, f is assumed to have the form (see [6])

(1.5) f(θ) = µ(1 + λθ2),

for some µ > 0 and −1 < λ < ∞. Thus the total energy for a liquid crystal droplet configuration
is given by:

E(Ω, n) = EOF (Ω, n) +Es(Ω, n)

As both the shape of Ω and the director n are varying, determining the stable configuration
leads to the following free boundary problem:

Problem A. Find a pair (Ω, n), that minimizes the functional

(1.6) E(Ω, n) =

ˆ

Ω
w(n,∇n) dx+

ˆ

∂Ω
f(n · ν)dA.

subject to the constraint vol(Ω) = V0.

Here vol denotes Lebesgue measure and V0 is a positive constant.
Problem A draws great attention from both physicists and mathematicians. There are many

research works on Problem A with physical experiments, numerical simulations and formal analysis,
see for example [5, 17, 26, 25, 22, 27, 30, 18, 23]. On the other hand, rigorous theoretical treatment
of this problem is more challenging because of the difficulty of determining the shape and the
director at the same time. One way to overcome such difficulty is to assume the droplet have a
simple geometry, such as a disk, an ellipse or a intersection region of two disks, see e.g. [15, 30, 32].
In these works, the shape of the droplet is either fixed, or determined by only one or two parameters
(such as the eccentricity of an ellipse). And the minimization often involves finding the best shape
parameter and the director field under various boundary conditions and different Oseen-Frank
elastic constants. Another way is to presume the configuration of director field (such as a constant
vector field), and then find the best shape that minimize the surface energy alone, subject to the
fixed volume constraint, see e.g. [27, 31]. These two methods are useful to partially justify the
phenomena observed in experiments but are not satisfactory from a mathematical point of view.

A more rigorous study of Problem A was conducted by the second author and Poon in [20].
Under the key assumption that all admissible domains are convex, they establish the existence and
partial regularity of Problem A (see [20, Theorem 2.4]). The convexity assumption on Ω the shape
of droplets, on one hand, makes the problem more accessible mathematically; and on the other
hand, it does match many experimental observed liquid crystals droplets which are of shapes of
ellipsoids (balls) and cigars. In this connection, they also studied the cases when the surface energy
favors the normal boundary anchoring condition or the tangential boundary anchoring condition.
When λ > 0 and µ → ∞, we get the following minimization problem:

Problem B. (Problem B in [20]) Find a pair (Ω, n) that minimizes
ˆ

Ω
w(n,∇n) dx+ µArea(∂Ω)

and such that (i) vol(Ω) = V0 and (ii) n · ν = 0 on ∂Ω.

When −1 < λ < 0 and µ → ∞, one gets

Problem C. (Problem C in [20]) Find a pair (Ω, n) that minimizes
ˆ

Ω
w(n,∇n) dx+ µArea(∂Ω)
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and such that (i) vol(Ω) = V0 and (ii) n · ν = 1 on ∂Ω.

It is proven in [20] that there are minimizers among convex domains Ω for both Problem B and
Problem C. Moreover, the only solution to Problem C (up to a Euclidean motion) is (BR,

x
|x|), such

that |BR| = V0.
Li & Wang recently extends the previous result in which they Replace the convexity assumption

by a notion of M-uniform domains, see [19]. It is worth to point out that the Problems A, B and C
thus presented were all derived from a phenomenological theory, see [24] and [6]. In a recent work
[21], it is shown that one can rigorously establish these model problems from a general theories of
Ericksen (for liquid crystals with variable degree of orientations [7]) or from the de Gennes-Landau
model of liquid crystals [8] in suitable physical regimes.

From our experience, One likely can establish a general existence and partial regularity theory
for Problems A, B and C without the convexity assumption on the shape of Ω. However, one also
expects such a theory will not be able to tell certain particular shapes and configurations (that
are observed in experiments and numerical simulations) are minimizers. In particular, one likely
will not be able to deduce that tactoids, balls, cigars and apples shaped droplets are minimizers.
The latter are in fact commonly observed in experiments and of interest to many researchers. In
this article, we will concentrated on the two dimensional case of Problem B, where the tangential
anchoring boundary condition and the fixed volume constraint is presumed. The minimizer is
expected to have a spindle shape, which is known as tactoids, and a bipolar director field. Here the
bipolar direct field refers to an axially symmetric configuration with tangential anchoring boundary
condition, such that two boojums are located at opposite ends of the axis. If one investigate thin
liquid crystals samples in experiments, the region of nematic liquid crystals will form a planar
domain (tactoid) whose boundary consists of two curves that meet at two singular points and form
angles or cusps. For more experimental evidences and numerical simulations of tactoids with such
bipolar director configurations, the readers are referred to [5, 17, 26, 25, 27, 30] for more details.
These works also manifest the significance of tactoids as an object of study.

There are several works that focus on the rigorous mathematical analysis of tactoids with tangen-
tial anchoring of the director on the surface. Shen et al. [28] discussed such bipolar configurations
of droplet in the fixed spherical domain case as well as the free boundary case. For the latter, they
introduce a relaxed energy to establish the existence of critical points and some stability results.
Recently, a model problem based on highly disparate elastic constants is proposed by Golovaty,
Novack, Sternberg and Venkatraman in [12] to understand corners and cusps that form on the
nematic-isotropic interface. They prove some Γ-convergence results (when some elastic constant
ε goes to 0) and study the role played by the boundary tangency requirement and the elastic
anisotropy on the formation of interfacial singularities.

In this work, we investigate the planar tactoids by solving Problem B. What distinguishes our
work from the previous work of Lin & Poon is that we drop the convexity assumption on the
domain Ω. Instead, we only assume a symmetry assumption with respect to x-axis for the purpose
of convenience. We first prove some geometric properties of the free boundary. The main property
is that away from two cusps, the boundary curve is a vanishing chord-arc curve and the boundary
normal vector ν is in VMO. Furthermore, we notice that our curve Γ has many similar properties
with the so-called Weil-Petersson curve (see Section 2.3). As a consequence, the arc-length param-

eterization of the curve is in the Sobolev space H3/2. Then using these properties, we demonstrate
the existence of global minimizer with two cusps on the boundary, which verifies the shape of tac-
toids. We also study the asymptotic shape of the nematic drop when the volume tends to be very
large or very small. Note that due to a very strong non-local character of this problem, currently



4 ZHIYUAN GENG AND FANGHUA LIN

we are not able to show that ν is continuous on the boundary. We hope to prove higher regularity
results in the future.

1.2. Mathematical Formulation. Now we give the precise formulation of the model problem.
Note that what we have in mind is the tactoid that forms two cusps on the boundary. Set Ω ⊂ R

2

as the simply-connected region which is a domain enclosed by a Jordan curve with finite length.
We denote by n ∈ S

1 the unit vector that represents the director of liquid crystal. The Oseen-Frank
bulk energy is given by (1.3). Then the variational problem is

Problem D. (2D case of Problem B) Find a pair {Ω, n} that minimizes

ˆ

Ω
|∇n|2dx+ Per(∂Ω)

such that vol(Ω) = V0 and n · ν = 0 on ∂Ω. Here Per means the perimeter.

Here we want to point out that this formulation already implies that the boundary of the min-
imizer Ω cannot be smooth everywhere. We can briefly explain it in this way: if ∂Ω is a closed
smooth curve and the boundary tangential vector is continuous, then the topological degree of tan-
gential vector is at least one and therefore there is no finite Dirichlet energy extension of n|∂Ω inside
the 2D domain Ω. Now we refine this problem by adding more constraints and then introduce the
final version of the problem that we will study.

First we assume Ω is symmetric with respect to x-axis. And therefore we only consider half of
the domain located in the upper-half plane. Let Γ be a rectifiable curve that satisfies following
conditions:

(i) Γ = {(x(t), y(t)) : x(t), y(t) ∈ AC([0, l(Γ)])}, where l(Γ) is the length of Γ.

(ii) (x(0), y(0)) = (0,−a), (x(1), y(1)) = (0, a) for some a > 0.

(iii) H1(Γ ∩ {(x, 0) : x ∈ R}) = 0.

(iv) ẋ(t) ≥ 0, y(t) ≥ 0, (x(t), y(t)) 6= (x(s), y(s)) for s 6= t.

(v)
√

|ẋ(t)|2 + |ẏ(t)|2 = 1 almost everywhere.

Note that here condition (i) and (v) mean that we parameterize Γ by unit length; condition (ii)
implies two endpoints of Γ belong to x-axis; condition (iv) tells that Γ does not touch itself and will
always ”point from left to right”. Now we define ΩΓ as the region enclosed by Γ and x-axis. Note
that so far ΩΓ may not be a simply connected region since Γ(t) may touch x-axis at some other
point between two endpoints. However, we will show later in Lemma 2.1 that for a minimizer, ΩΓ

has to be simply connected.
The boundary condition for director n on ∂ΩΓ = {(x, 0) : x ∈ [−a, a]} ∩ Γ is given by

n(x, y) = (1, 0) on {(x, 0) : x ∈ [−a, a]},
n(x(t), y(t)) = (x′(t), y′(t)) on (x(t), y(t)) ∈ Γ.

Note that in 2D, the unit vector can be determined by an angle function Θ according to n1 =
cosΘ, n2 = sinΘ. We will work with this angle function Θ. Then the corresponding boundary
condition for Θ is

Θ(x, y) = 0 on {(x, 0) : x ∈ [−a, a]}
Θ(x(t), y(t)) = arcsin y′(t) on (x(t), y(t)) ∈ Γ.

(1.7)
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Now we are ready to define the following admissible set for Γ:

Gv :={Γ satisfies condition (i–v), and Θ
∣

∣

∂ΩΓ
has a harmonic extension Θ defined in ΩΓ

such that

ˆ

ΩΓ

|∇Θ|2 dxdy < ∞ and |ΩΓ| = v}

Here v is a positive constant representing the volume of ΩΓ. Figure 1 shows our assumptions on
Γ, ΩΓ and the tangential anchoring condition for Θ.

(−a, 0)

|ΩΓ| = v

(a, 0)

Γ = {(x(t), y(t))}

Θ = arctan y′(t)

Figure 1. Curve Γ, domain ΩΓ and Θ

To this end, we consider the following variational problem

Problem P. Find Γ ∈ Gv that minimizes the following functional

(1.8) E(Γ) =

ˆ

ΩΓ

|∇Θ|2 dxdy + l(Γ),

where Θ is determined by Γ in the following way
{

∆Θ = 0, in ΩΓ,

Θ
∣

∣

∂ΩΓ
is defined as in (1.7).

We will study the existence and properties of global energy minimizers of Problem P in the rest
of the article. In Section 2 we prove various geometric properties of Γ and ΩΓ. When the energy
E(Γ) is finite (not necessarily a minimizer), we show that Γ is a vanishing chord-arc curve and

ν ∈ VMO on Γ. Moreover, the arc-length parameterization (x(t), y(t)) belongs to H3/2(0, l). As a
consequence, the function Θ defined on Ω̄Γ can be extended to a H1 function on R

2 according to
the classical theory on the relationship of quasidisks and Sobolev extention domains. The existence
of a global minimizer for Problem P is established in Section 3. The proof relies heavily on the
properties proved in Section 2. We also show that Γ and x-axis will form two cusps near two
intersection points. Under the assumption that Γ can be written as the graph of a C1 function
f , the Euler-Lagrange equation for Γ is also derived. Finally in Section 4 we study asymptotic
profiles of Γ when the volume v tends to be very large or small. We would like to point out that
this article just represents an initial investigation of Problem P, and there are many open problems
to be studied in the future.

Acknowledgement The research of the authors are partially supported by an NSF grant
DMS1955249.
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2. Geometric properties of Γ and ΩΓ

2.1. Sobolev extension domain. We assume v = 1 throughout this section. And if there exists
a energy minimizer for Problem P, we denote it by Γm. We further write the corresponding ΩΓm

and Θ function as Ωm and Θm. We start with the observation that

Claim: G1 is not empty. There is at least one smooth curve Γ ∈ G1.

Actually we can find a smooth curve Γ0 ∈ G1 by directly constructing a curve Γ0. Let Γ0 be the
graph of function f0(x) =

cos x+1
2π , x ∈ [−π, π]. By definition ΩΓ0 = {(x, y) : −π ≤ x ≤ π, 0 ≤ y ≤

f0(x)} and we set Θ0(x, y) = − 2πy
cos x+1 arcsin

sinx
2π for (x, y) ∈ ΩΓ0 . It is straightforward to check

that Γ0 satisfies the condition (i–v), |ΩΓ0 | = 1, and Θ0 satisfies the boundary condition (1.7). Then
we compute the energy directly

E(Γ0) =

ˆ π

−π

√

1 +

(

df0
dx

)2

dx+

ˆ π

−π

ˆ
cos x+1

2π

0
|∂yΘ0|2 + |∂xΘ0|2 dydx

=

ˆ π

−π



















√

1 +
sin2 x

4π2
+

2π
∣

∣arcsin ( sinx
2π )

∣

∣

2

cos x+ 1
+

∣

∣

∣

∣

cos x(cos x+1)√
4π2−sin2 x

+ arcsin ( sinx
2π ) · sinx

∣

∣

∣

∣

2

6π(cos x+ 1)



















dx

≈ 12.65

Therefore we have verified that Γ0 ∈ G1. And if Problem P admits a global minimizer Γm, then we
get the following upper bound for the energy infimum:

M := E(Γ0) ≥ E(Γm)

The next lemma tells us that the minimizing curve Γm, if exists, will not touch x-axis besides
two endpoints, which implies Ωm is simply connected.

Lemma 2.1. If Γm is the global minimizer of E(Γ) among all Γ ∈ G1 and it is parametrized by arc
length as in condition (i–v), then for any t ∈ (0, l(Γm)), we have y(t) > 0.

Proof. We prove by contradiction. Assume y(t0) = 0 for some t0 ∈ (0, l(G(m))), then the point
(x(t0), y(t0)) cuts Γm into two parts, which are denoted by Γ1 and Γ2 respectively. We call the
domain enclosed by Γi and x−axis as Ωi for i = 1, 2. Let α := |Ω1|. We can further assume
α ∈ (0, 1) because if α = 0 or 1, then one of Γi will coincide with x−axis which contradicts with
the fact that Γm is a minimizer. Now we set

Γ̃1 =
1√
α
G1, Ω̃1 =

1√
α
Ω1, Θ̃1(

x√
α
,

y√
α
) = Θm(x, y) for (x, y) ∈ Ω1

Γ̃2 =
1√

1− α
G2, Ω̃2 =

1√
1− α

Ω2, Θ̃2(
x√
1− α

,
y√

1− α
) = Θm(x, y) for (x, y) ∈ Ω2

Now we can easily check that for i = 1, 2, (Γ̃i, Ω̃i, Θ̃i) are energy competitors (after some horizontal
translations) for (Γm,Ωm,Θm). By basic scaling property we get

l(Γ̃1) =
1√
α
l(Γ1), l(Γ̃2) =

1√
1− α

l(Γ2),

ˆ

Ω̃i

|∇Θ̃i|2 =
ˆ

Ωi

|∇Θ|2 for i = 1, 2
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The minimizing property yields

1√
α
l(Γ1) +

ˆ

Ω1

|∇Θ|2 ≥ l(Γ1) + l(Γ2) +

ˆ

Ω1

|∇Θ|2 +
ˆ

Ω2

|∇Θ|2,

1√
1− α

l(Γ2) +

ˆ

Ω2

|∇Θ|2 ≥ l(Γ1) + l(Γ2) +

ˆ

Ω1

|∇Θ|2 +
ˆ

Ω2

|∇Θ|2.

Combining these two inequalities we arrive at

l(Γ1) ≥
√
α

1−√
α
l(Γ2) ≥

√
α

1−√
α
·

√
1− α

1−
√
1− α

l(Γ1)

⇒
√

α(1− α) ≤ (1−
√
α)(1 −

√
1− α) ⇒ α = 0 or 1,

which yields a contradiction.
�

Now we want to prove some geometric properties of Γ ∈ G1 (not necessarily a minimizer). The
next statement says that for any three points on Γ, they are supposed to satisfy a reversed triangle
inequality, with a constant depending on E(Γ).

Lemma 2.2. If Γ ∈ G1 and E(Γ) ≤ M , then there exists a constant C = C(M) such that for
any three points z1 = (x(t1), y(t1)), z2 = (x(t2), y(t2)) and z3 = (x(t3), y(t3)) on Γ such that
t1 < t2 < t3, it holds that

(2.9) max {dist(z1, z2),dist(z2, z3)} ≤ Cdist(z1, z3).

Proof. Assume C is a large enough number (say larger than 100) which will be determined later. We
simply write (x(ti), y(ti)) as (xi, yi) for i = 1, 2, 3. Without loss of generality, we assume y1 ≥ y3.
Then for the value of y2, there are three cases:

(1) y1 ≥ y2 ≥ y3,
(2) y2 ≥ y1 ≥ y3,
(3) y1 ≥ y3 ≥ y2.

The inequality (2.9) for the first case is trivial, because by simple geometry we can get

max {dist(z1, z2),dist(z2, z3)} ≤ dist(z1, z3).

Now we study the second case, and assume (2.9) is false. By triangle inequality, we have

min {dist(z1, z2),dist(z2, z3)} ≥ (C − 1)dist(z1, z3).

Therefore it holds that
min{y2 − y1, y2 − y3} ≥ (C − 2)|x1 − x3|.

For convenience we assume y2 = maxt∈(t1,t3) y(t). Otherwise we can take z2 to be the point with
the maximum value of y on Γ between z1 and z3. Note that such choice will not violate any of the
above estimates.

We set the curve Γ between z1, z2 and z2, z3 as Γ1,Γ2, written as Γ1 := Γz1z2 , Γ2 := Γz2z3 . Set
li := l(Γi) for i = 1, 2. Also we reparametrize Γ1 and Γ2 as following

Γ1 := {(x(s), y(s)) : s ∈ [0, l1], (x(0), y(0)) = (x2, y2), (x(l1), y(l1)) = (x1, y1),

x′(s) ≤ 0, |x′(s)|2 + |y′(s)|2 = 1 a.e.},
Γ2 := {(x(s), y(s)) : s ∈ [0, l2], (x(0), y(0)) = (x2, y2), (x(l2), y(l2)) = (x3, y3),

x′(s) ≥ 0, |x′(s)|2 + |y′(s)|2 = 1 a.e.}
Note that for such reparametrization, Γ1 starts at z2 and ends at z1, while Γ2 starts at z2 and ends
at z3. Also we have Θ(x(s), y(s)) = − arcsin y′(s) on Γ1 and Θ(x(s), y(s)) = arcsin y′(s) on Γ2.
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We first look at Γ1. Set

r(s) :=
√

|x(s)− x2|2 + |y(s)− y2|2, s ∈ [0, l1],

I(r) := {s ∈ [0, l1] : r(s) = r}
For 0 < r < |z1 − z2|, the circle {|z − z2| = r} will intersect with Γ1 and therefore Ir is not empty.
By definition we have

ˆ l1

0
y′(s) ds = y1 − y2,(2.10)

ˆ l1

0
x′(s) ds = x1 − x2.(2.11)

For r(s), we can estimate its derivative by

|r′(s)| =
∣

∣

∣

∣

(x(s)− x2) · x′(s) + (y(s)− y2) · y′(s)
r(s)

∣

∣

∣

∣

≤
√

|x′(s)|2 + |y′(s)|2 = 1.

Then by coarea formula, we have

l1 ≥
ˆ l1

0
|r′(s)| ds =

ˆ |z1−z2|

0
H0(Ir) dr

This tells us that for almost every r ∈ [0, |z1 − z2|], H0(Ir) is finite. Note that H0 is just the
counting measure, and we will simply write it as |Ir|. Denote by A the subset of [0, l1] such that
for any s ∈ A, r′(s) = 0. Again co-area formula gives

0 =

ˆ

A
|r′(s)| ds =

ˆ |z1−z2|

0
H0(A ∩ Ir) dr

So A ∩ Ir = ∅ for a.e. r ∈ [0, |z1 − z2|]. We define

R0 := {r ∈ [0, |z1 − z2|] : |Ir| is finite, and |r′(s)| > 0 for any s ∈ Ir}.
We have m([0, |z1 − z2|]\R0) = 0. For any r ∈ R0, we pick a representative from Ir in the following
way:

sr = min{s : s ∈ Ir}.
We define the following two subsets:

R1 := {r ∈ [2[z1 − z3], |z1 − z2|] ∩R0 : x
′(sr) ≤ −1/2},

R2 := ([2|z1 − z3|, |z1 − z2|] ∩R0) \R1.

Note that R1 corresponds to the part of curve on Γ1 where is not “too vertical”. Using co-area
formula again, we get

1

2
m(R1) ≤

∣

∣

∣

∣

∣

ˆ

R1

dx(sr)

ds
·
∣

∣

∣

∣

dr(sr)

ds

∣

∣

∣

∣

−1

dr

∣

∣

∣

∣

∣

≤ |
ˆ

r−1(R1)
x′(s) ds|

≤ |x1 − x2|.
As a consequence, we get

(2.12) m(R2) ≥ |z1 − z2| − 2|z1 − z3| − 2|x1 − x2| ≥ |z1 − z2| − 4|z1 − z3|.
Now we make the following observation:
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For any r ∈ R2, y
′(sr) < −

√
3
2 .

This is a consequence of definition of R2 and sr. Since r ∈ R2, we have

y′(sr) >

√
3

2
or y′(sr) < −

√
3

2
,

y(sr) < y2 −
√
3|z1 − z3|, x2 − |z1 − z3| ≤ x(sr) < x2,

|y(sr)− y2| >
√
3|x(sr)− x2|.

We also have that dr(sr)
ds > 0 because (x(sr), y(sr)) is the first point that Γ1 touches {|z − z2| = r}.

If y′(sr) >
√
3
2 , then

r′(sr) =
x′(sr)(x(sr)− x2) + y′(sr)(y(sr)− y2)

r
< 0,

which yields a contradiction. Therefore we have verified the observation.
Now we deal with Γ2 in the same way with several minor modifications. We can show that there

exists a R3 such that

R3 ⊂ [2|z1 − z3|, |z2 − z3|] , m(R3) ≥ |z2 − z3| − 4|z1 − z3|,

and ∀r ∈ R3, y
′(sr) < −

√
3

2
.

Here sr is the point that Γ2 first touches {|z − z2| = r}.
We are now ready to derive a contradiction. Denoting R := R2 ∩R3, then we have

R ⊂ {r : 2|z1 − z3| ≤ r ≤ min{|z1 − z2|, |z2 − z3|}} , m(R) ≥ min{|z1 − z2|, |z2 − z3|} − 8|z1 − z3|.
For any r ∈ R, Γ1 first intersects {|z − z2| = r} at z1(r) := (x(sr), y(sr)) and Γ2 first intersects

with {|z − z2| = r} at z2(r) := (x(sr), y(sr)). The arc
>

z1(r)z2(r) is contained in ΩΓ because of the
definitions of sr, sr. Moreover, Θ = − arcsin y′(sr) > π

3 at z1(r) and Θ = arcsin y′(sr) < −π
3 at

z2(r). Then we are ready to estimates the Dirichlet energy of Θ in ΩΓ,
ˆ

ΩΓ

|∇Θ|2 dxdy ≥
ˆ C|z1−z3|

0
dr

ˆ

{|z−z2|=r}∩ΩΓ

|∇Θ(z1 + reiθ)|2(2.13)

≥
ˆ

r∈R

|Θ(z1(r))−Θ(z2(r))|2
πr

dr

≥
ˆ (C−1)|z1−z3|

8|z1−z3|

4π

9

1

r
dr

≥ log
C − 1

8
.

By choosing C satisfying log C−1
8 ≥ 2M , we arrive at a contradiction with the energy bound. Thus

we proved (2.9) for case (2).
For case (3) when y1 ≥ y3 ≥ y2, the proof follows similar arguments. Assume y2 = mint∈[t1,t3] y(t).

We still call the curve between z1, z2 and z2, z3 as Γ1,Γ2 and reparametrize them as before. And r(s),
I(r), R0, s

r, sr, z1(r), z2(r) are all defined in the same way. Recall that z1(r) := (x(sr), y(sr)) ∈ Γ1

and z2(r) := (x(sr), y(sr)) ∈ Γ2. Similarly, we can find R2 ⊂ [2|z1 − z3|, |z1 − z2|] such that for
any r ∈ R2, Θ(z1(r)) < −π

3 . Also there exists R3 ⊂ [2|z1 − z3|, |z1 − z3|] such that for r ∈ R3,
Θ(z2(r)) >

π
3 .
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Now we claim that for any r ∈ R := R2 ∩R3, it holds that

(2.14)

ˆ

{|z−z2|=r}∩Ωf

|∇Θ(z1 + reiθ)|2 ≥ C1

r
.

Here C1 is a constant that can be chosen as π
18 . This is the place where case (3) differs from case

(2), because in case (2) the set {|z − z2| = r} ∩ ΩΓ is just the arc
>

z1(r)z2(r). However in case (3),
{|z−z2| = r}∩ΩΓ is more complicated. We prove the claim by discussing following three situations
(see Figure 2):

(1) {|z− z2| = r} only intersects with Γ at z1(r), z2(r) and doesn’t intersect with x-axis. Since
Θ(z1(r)) < −π

3 and Θ(z2(r)) >
π
3 , we have

ˆ

{|z−z2|=r}∩ΩΓ

|∇Θ(z2 + reiθ)|2 ≥ 1

r

ˆ

z1+reiθ∈Ωf

|∂Θ
∂θ

|2dθ ≥ C1

r
.

(2) {|z − z2| = r} only intersects with Γ at z1(r), z2(r) and also intersects with x-axis at z3(r).

Without loss of generality we can assume the arc
>

z1(r)z3(r) is contained in Ωf . Then since
Θ = 0 on x-axis, we have |Θ(z1(r))−Θ(z3(r))| ≥ π

3 , then we can verify (2.14) by the same
calculation.

(3) {|z − z2| = r} intersects with γf at more than two points. Let z3(r) = (x3(r), y3(r)) be
another point of intersection besides z1(r), z2(r). Without loss of generality we assume
x3(r) < x1(r). In our construction we make sure that r′(sr) > 0 at z1(r). And we can

assume
>

z1(r)z3(r) ⊂ Ω̄f . Therefore we have Θ(z3(r)) ≥ 0 because at z3(r), Γ(t) is ”leaving”
the disk {|z − z2| ≤ r} as t increases. This implies that |Θ(z1(r)) − Θ(z3(r))| ≥ π

3 Then
(2.14) follows immediately in the same way.

z2

z1 z3

ΩΓ z1(r) z2(r)

(a) Situation (1)

z2

z3(r)

z1 z3

ΩΓ z1(r) z2(r)

(b) Situation (2)

z2

z1 z3

ΩΓ

z1(r)
z2(r)

z3(r)

(c) Situation (3)

Figure 2. Three different situations of Ir and {|z−z2| = r}∩ΩΓ, when y1 ≥ y3 > y2

With (2.14), we can repeat the computation in (2.13) and finally verifies (2.9) for case (3). This
completes our proof of Lemma2.2.

�

A direct consequence of Lemma 2.2 is that Γ satisfy the following “two point condition”:

For any z1, z2 ∈ Γ, set γ be the arc of Γ between z1, z2, then diam γ ≤ C|z1 − z2|.
It is proved by Ahlfors in [1] that a Jordan curve is a quasicircle if and only if it satisfies the “two

point condition”. A quasicircle is the image of the unit circle T under a quasiconformal mapping of
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the complex plane onto itself. And in 2D a quasidisk (domain enclosed by a quasicircle) is equivalent
to a Sobolev extension domain, see [14]. However in our problem, ∂ΩΓ = Γ ∩ {(x, 0) : x ∈ [−a, a]}
is not a quasicircle because near two endpoints (−a, 0) and (a, 0) the “two point condition” will be
violated. The next lemma says that even though we cannot directly use the property of a quasidisk,
we can still extend Θ to the whole plane with a uniform control on its H1-norm.

Lemma 2.3. (Extension domain) Assume Γ ∈ G1 and E(Γ) ≤ M , then there exists a constant C2

that depends on M such that Θ|ΩΓ
can be extended to the whole plane with a norm control

‖Θ‖H1(R2) ≤ C2‖Θ‖H1(ΩΓ).

Proof. The idea of the proof is to add a rectangle to ΩΓ to make the combined domain a quasidisk.
Assume the intersection points of Γ and x-axis are (−a, 0) and (a, 0), we set

D1 := {(x, y) : −a < x < a, −a < y ≤ 0}, DΓ = ΩΓ ∪D1.

We claim that DΓ is a quasidisk. For any two points z1, z2 ∈ ∂DΓ, if z1, z2 ∈ Γ, then Lemma 2.2
says they satisfy the “two point condition”. If z1, z2 ∈ ∂D1 ∩ ∂DΓ, they automatically satisfy the
“two point condition” because a rectangle is a quasidisk. So we are left with the case z1 ∈ Γ, z2 ∈
∂D1 ∩ ∂DΓ. In such case, there are two situations:

(1) z2 ∈ {(x,−a) : −a ≤ x ≤ a}. Then |z1 − z2| ≥ a and Lemma 2.2 implies that dia(DΓ) ≤
(C + 2)a where C is the constant in (2.9). So the “two point condition” holds for this
situation.

(2) z2 ∈ {(−a, y) : −a ≤ y ≤ 0} ∪ {(a, y) : −a ≤ y ≤ 0}. Without loss of generality we assume
z2 = (−a, y) and set z0 := (−a, 0). Let γ be the arc of Γ between z0 and z1, then we get

|z1 − z2| ≥ max{|y|, |z1 − z0|}, diam(z2z0 ∪ γ) ≤ |y|+ diam(γ),

where z2z0 is the line segment between z0 and z2. One can easily shows that diam(z2z0∪γ) ≤
(C + 1)|z1 − z2|, since diam γ ≤ C|z1 − z0| by (2.9). The “two point condition” is verified.

Therefore by Ahlfors’ result, we prove the claim. Next we can trivially extend Θ to DΓ by
let Θ(x, y) ≡ 0 for (x, y) ∈ D1, because Θ vanishes on {(x, 0) : −a ≤ x ≤ a}. Obviously,
‖Θ‖H1(DΓ) = ‖Θ‖H1(ΩΓ). Moreover, we can further extend Θ to the whole plane R

2, since a 2D
domain is a quasidisk if and only if it is a Sobolev extension domain. And there exists C2 := C2(M)
such that

‖Θ‖H1(R2) ≤ C2‖Θ‖H1(ΩΓ).

This completes our proof of Lemma 2.3.
�

2.2. Γ is a chord-arc curve. We will give more geometric properties of Γ by showing that it is a
chord-arc curve, which means the length of the chord is comparable with the length of the arc (see
[13] for a detailed discussion on chord-arc curves).

Proposition 2.4. Let Γ ∈ G1 and E(Γ) ≤ M . There exists a constant C3(M) such that for any
two points z1, z2 ∈ Γ and the arc γ := Γz1z2, we have

l(γ) < C3|z1 − z2|.
In other words, Γ is a chord-arc curve.

Proof. First assume C3 is a very large number that will be determined later. We prove by contra-
diction. Suppose H1(γ) = c|z1 − z2| for some c > C3, our goal is to show that the Dirichelt energy
“generated” by this part of boundary will be very large, which contradicts to the uniform bounds
of Dirichlet energy (E(Γ) ≤ M). The basic idea can be roughly stated as following: if the length of
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curve is way too long compared with the chord length, then there will be lots of fluctuations of the
curve, which will lead to large energy. The co-area formula will be used repeatedly in the proof.

Since 2D Dirichlet energy is scaling invariant, we simply let |z1 − z2| = 1, and reparametrize the
curve γ in the following way:

γ = { (x(t), y(t)) : x(t), y(t) ∈ AC[0, c]; x′(t) ≥ 0; z1 = (x(0), y(0)) = (0, 0),

z2 = (x(c), y(c)) = (a,±
√

1− a2) for some a ∈ (0, 1]; |x′(t)|2 + |y′(t)|2 = 1a.e.}.
According to Lemma 2.2, we have |y(t)| ≤ C for t ∈ [0, c], where C is the constant in (2.9). So there
exists Y1 ≤ 0, Y2 ≥ 0 such that |Yi| ≤ C for i = 1, 2 and min y(t) = Y1, max y(t) = Y2. Furthermore
we have

(2.15) Γ ⊂ {0 ≤ x ≤ a, Y1 ≤ y ≤ Y2} =: Q.

We have the following upper bound for the energy
ˆ

Ωγ

|∇Θ|2 dxdy ≤ M, where Ωγ := Q ∩ {(x, y) below γ}.

Note that by Lemma 2.3, we can extend the domain of Θ to all of Q such that
ˆ

Q
|∇Θ|2 dxdy ≤ C2M =: C4.

Here this constant C4 only depends on M . Also we make the following definitions:

Ts := {t ∈ [0, c] : y(t) = s}, ∀s ∈ [Y1, Y2]

U := {s ∈ [Y1, Y2] : |Ts| is infinite}, W := {t ∈ [0, c] : y(t) ∈ U}.
S := {s ∈ [Y1, Y2] : |Ts| = 1}, A := {t ∈ [0, c] : y(t) ∈ S}.
V := [Y1, Y2]\(S ∪ U), B := [0, c]\(A ∪W ).

Here | · | denotes the cardinality of a set.
Now we have set up all the assumptions and are ready to derive a contradiction. First we point

out several elementary observations:

(i) The following estimate holds:

(2.16)

ˆ c

0
|y′(t)|2 dt = c−

ˆ c

0
|x′(t)|2 dt ≥ c−

ˆ c

0
|x′(t)|dt ≥ c− 1.

(ii) If Y2 > 1, then for any s ∈ [1, Y2), we have |Ts| ≥ 2 by mean value theorem for continuous
function. Similarly, if Y1 < −1, for any s ∈ (Y1,−1], it holds that |Ts| ≥ 2. In other words,
we have

S ⊂ [−1, 1] ∩ {Y1, Y2}.
(iii) We can estimate the measure of A by

m(A) =

ˆ

A

√

|x′(t)|2 + |y′(t)|2 dt(2.17)

≤
ˆ

A
|x′(t)| dt +

ˆ

A
|y′(t)| dt

≤ 1 +

ˆ

S
H0(Ts) ds (by coarea formula)

= 1 + |S| ≤ 3.
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(iv) By co-area formula one can easily check that

m(U) = 0,

ˆ

W
|y′(t)| dt = 0

For any s ∈ V , by definition we have 2 ≤ Ts < ∞, we want to derive a lower bound for the
following quantity:

E(s) :=

ˆ a

0
|dxΘ(x, s)|2 dx.

Assume Ts = {t1, . . . , tn} for some n ≥ 2, and by definition we have

sin(Θ(x(ti), s)) = y′(ti), for i = 1, . . . , n.

An easy observation is that for each two adjacent points, say ti and ti+1,

y′(ti) · y′(ti+1) ≤ 0.

We deduce that

|Θ(x(ti), s)−Θ(x(ti+1), s)| ≥ | sin(Θ(x(ti), s))− sin(Θ(x(ti+1), s)| = |y′(ti)|+ |y′(ti+1)|.

Then we estimate E(s) as following

E(s) =

ˆ 1

0
|dx(Θ(x, s))|2 dx(2.18)

≥
n−1
∑

i=1

ˆ x(ti+1)

x(ti)
|dx(Θ(x, s))|2 dx

≥
n−1
∑

i=1

ˆ x(ti+1)

x(ti)

∣

∣

∣

∣

Θ(x(ti+1), s)−Θ(x(ti), s)

x(ti+1)− x(ti)

∣

∣

∣

∣

2

dx

≥
n−1
∑

i=1

(|y′(ti)|+ |y′(ti+1)|)2
x(ti+1)− x(ti)

(Cauchy-Schwarz) ≥
(

n
∑

i=1
|y′(ti)|)2

x(tn)− x(t1)

≥
∑

t∈Ts

|y′(t)|2.

Using coarea formula, we get

(2.19)

ˆ

B
|y′(t)|3 dt =

ˆ

U

(

∑

t∈Ts

|y′(t)|2
)

ds



14 ZHIYUAN GENG AND FANGHUA LIN

Then by estimating the Dirichlet energy inside Q using (2.18) and (2.19), we have that

C4 ≥
ˆ

Q
|∇Θ(x, y)|2 dxdy(2.20)

≥
ˆ

V
E(s) ds

≥
ˆ

V

(

∑

t∈Ts

|y′(t)|2
)

ds

=

ˆ

B
|y′(t)|3 dt

Hölder inequality further implies that

(2.21)

(
ˆ

B
|y′(t)|3 dt

)

≥
(
ˆ

B
|y′(t)|2 dt

)3/2

·m(B)−1/2.

By (2.16) and (2.17), we have

(2.22)

ˆ

B
|y′(t)|2 dt ≥ c− 1−

ˆ

A
|y′(t)|2 dt−

ˆ

W
|y′(t)|2 dt ≥ c− 4.

As a result, combining (2.20), (2.21) and (2.22) leads to

C4 ≥
(c− 4)3/2

c1/2
,

which yields a contradiction if we choose the constant C3 to be large enough at first (recall that c
is a real number larger than C3). Now that since C4 only depends on M , C3 also only depends on
M . This completes our proof of Proposition 2.4. �

Actually, we can examine the chord-arc property of Γ more closely and prove that it is indeed a
vanishing chord-arc (also called “approximately smooth”) curve, which is the following lemma.

Proposition 2.5. Let Γ ∈ G1 and E(Γ) ≤ M . For any ε > 0, there exists a r = r(ε,Γ) such that
for any two points z1, z2 ∈ Γ that satisfy |z1 − z2| ≤ r, we have

l(γ) ≤ (1 + ε)|z1 − z2|,
where γ = Γz1z2 . That is to say, Γ is a vanishing chord-arc (approximately smooth) curve.

Proof. The technique here will be very similar to the proof of Proposition 2.4. We will only
present our main ingredients and omit some computational details. Take any z1, z2 ∈ Γ such that
|z1 − z2| = r. By Lemma 2.2, γ = Γz1z2 must be contained in a rectangle domain Qz1z2 with width
r and length 2Cr (see (2.15) for the existence of such rectangle). Let Θ be the angle function
determined by Γ, we again extend Θ to R

2 such that
´

R2 |∇Θ|2 dx < C2M . Then for any δ > 0,
there exists a σ > 0 such that

ˆ

E
|∇Θ|2 dx ≤ δ, whenever |E| < σ.

Therefore as r → 0, the Dirichlet energy of Θ inside Qz1z2 will go to zero. The convergence rate
doesn’t depend on the choice of z1, z2 but only depends on their distance r. As a consequence, in
order to prove the lemma, we only need to prove the following statement: for any ε > 0, there
exists a constant C(ε) > 0 such that

(2.23)

ˆ

Qz1z2

|∇Θ|2 dx ≥ C(ε), whenever l(γ) ≥ (1 + ε)|z1 − z2|
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Now we fix ε > 0. By scaling invariant property, we assume without loss of generality that
|z1 − z2| = 1 and l(γ) = 1 + ε, z1 = (0, 0), z2 = (cosα, sinα) for some α ∈ (0, π2 ). Note that here
|α| 6= π

2 , otherwise γ would be line segment orthogonal to x−axis and l(γ) = 1. We parameterize
γ as

γ := {(x(t), y(t)) : (x(0), y(0)) = z1, (x(1 + ε), y(1 + ε)) = z2, |x′(t)|2 + |y′(t)|2 = 1, a.e.}
Set

h(t) := cosα · y(t)− sinα · x(t), g(t) := sinα · y(t) + cosα · x(t).
We have

(2.24)

ˆ 1+ε

0
x′(t) dt = cosα,

ˆ 1+ε

0
y′(t) dt = sinα, h(0) = h(1 + ε) = 0.

Set hmax = max
0≤t≤1+ε

h(t) and hmin = min
0≤t≤1+ε

h(t), and define

Ts := {t ∈ [0, 1 + ε] : h(t) = s} for s ∈ [hmin, hmax],

B := {t ∈ [0, 1 + ε] : 2 ≤ Th(t) < ∞}.
Obviously for any s ∈ (hmin, hmax) we have |Ts| ≥ 2. Also we should deduct the subset of
[hmin, hmax] such that |Ts| is infinite (see the definition of set U,W in the proof of Proposition
2.4). But from the argument in the proof of Proposition 2.4 we know it is a measure zero set and
won’t affect our computation, so we may simply assume 2 ≤ |Ts| < ∞ for any s ∈ (hmin, hmax).

We discuss in two cases.

Case 1. If g′(t) = sinα · y′(t) + cosα · x′(t) ≥ 0 for a.e. t ∈ [0, 1 + ε]. We calculate in the same way
as (2.18), (2.19) and (2.20) (the only difference is we replace y(t) with h(t)) and obtain

(2.25)

ˆ

Qz1z2

|∇Θ|2 dxdy ≥
ˆ

Qz1z2

|∂gΘ|2 dxdy ≥ C

ˆ

B
|h′(t)|3 dt

Here C is a positive constant only depend on M . Also, from (2.24) and the assumption g′(t) ≥ 0
we have

ˆ 1+ε

0
| sinα · y′(t) + cosα · x′(t)|2 dt(2.26)

=

ˆ 1+ε

0
| sinα · y′(t) + cosα · x′(t)| · (sinα · y′(t) + cosα · x′(t)) dt

≤
ˆ 1+ε

0
(sinα · y′(t) + cosα · x′(t)) dt = 1

and
ˆ 1+ε

0
| sinα · y′(t) + cosα · x′(t)|2 + | cosα · y′(t)− sinα · x′(t)|2 dt = 1 + ε

The above two inequalities imply
ˆ 1+ε

0
|h′(t)|2 dt ≥ ε.

By co-area formula we know that the set where h(t) = hmin or hmax contributes nothing in the
above integral, so we have

(2.27)

ˆ

B
|h′(t)|2 dt ≥ ε.
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Then we combine (2.25), (2.27) and Hölder inequality to conclude that

(2.28)

ˆ

Qz1z2

|∇Θ|2 dxdy ≥ C
ε3/2

(1 + ε)1/2
.

Case 2. Assume g′(t) ≥ 0 doesn’t hold almost everywhere, then we may lose the estimate (2.26).

If we still have
´ 1+ε
0 |g′(t)|2 ≤ 1, then all the estimates in Case 1 still hold and there is nothing to

prove. So we assume

(2.29)

ˆ 1+ε

0
|g′(t)|2 dt = 1 + δ for some 0 < δ ≤ ε.

Then

(2.30)

ˆ

B
|h′(t)|2 dt = ε− δ.

Then the same computation leads to

(2.31)

ˆ

Qz1z2

|∂gQ|2 dxdy ≥ C
(ε− δ)3/2

(1 + ε)1/2
.

Now we set

gmax := max
0≤t≤1+ε

g(t), gmin := min
0≤t≤1+ε

g(t),

T 2
s := {t ∈ [0, 1 + ε] : g(t) = s} for s ∈ [gmin, gmax],

B2 := {t ∈ [0, 1 + ε] : 2 ≤ |T 2
g(t)| < ∞},

A2 := {t ∈ [0, 1 + ε] : g′(t) < 0}.
Again we can ignore the set where |T 2

g(t)| = ∞ since it may lead to more complicated notations

but won’t affect any of our estimates. So we assume for every t ∈ [0, 1 + ε], we have |T 2
g(t)| < ∞.

Then simple geometry tells us that A2 ⊂ B2. Also, since
´ 1+ε
0 g′(t) dt = 1 and

´ 1+ε
0 |g′(t)| ≥ 1 + δ,

it holds that

(2.32)

ˆ

B2

|g′(t)| dt ≥
ˆ

A2

|g′(t)| dt ≥ δ

2
.

Similar techniques in (2.18), (2.19) and (2.20) imply that

(2.33)

ˆ

Qz1z2

|∂hQ|2 dxdy ≥ C

ˆ

B2

|g′(t)|3 dt ≥ C
(δ/2)3

(1 + ε)2
. (Hölder inequality)

where C is a constant that only depends on M . We can combine this with (2.31) to get
ˆ

Qz1z2

|∇Q|2 dxdy

≥
ˆ

Qz1z2

|∂gQ|2 dxdy +

ˆ

Qz1z2

|∂hQ|2 dxdy

≥C

(

(ε− δ)3/2

(1 + ε)1/2
+

(δ/2)3

(1 + ε)2

)

≥C(ε,M)

This implies (2.23) and completes our proof of Proposition 2.5.
�
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Corollary 2.6. The normal vector ν along the curve Γ belongs to VMO (vanishing mean oscillation
space), i.e.

lim
r→0

(

1

l(B(x, r) ∩ Γ)

ˆ

B(x,r)∩Γ
|ν − νB(x,r)| dl

)

= 0 uniformly for x ∈ Γ,

where

νB(x,r) =
1

l(B(x, r) ∩ Γ)

ˆ

B(x,r)∩Γ
ν dl

Proof. We already have that Γ is a vanishing chord-arc curve, also we can easily check that Γ is
vanishing Reifenberg flat. Therefore we can direct apply results of Kenig & Toro [16] to conclude
that ν ∈ VMO. �

2.3. Weil-Petersson curve, H3/2 characterization, and β-number. Recall that a quasicircle
is the image of the unit circle T under a quasiconformal map f of R2, e.g. a homeomorphism of
the plane that is conformal outside the unit disk D, whose dilatation µ satisfies ‖µ‖L∞(D) < 1.
The collection of planar quasicircles is called the universal Teichmüller space T (1) and the metric
is defined in terms of ‖µ‖∞. Takhtajan and Teo [29] defined a Weil-Petersson metric on universal
Teichmüler space T (1) that makes it into a Hilbert manifold. A Weil-Petersson curve is the image of
T under a quasiconformal map f on the plane, and satisfies |µ| ∈ L2(dAρ), where Aρ is hyperbolic
area on D. Another characterization for the Weil-Petersson curve is in terms of conformal mapping
f : D → Ω, where Ω is the domain bounded by Γ. Γ is a Weil-Petersson curve if and only if
(log f ′)′ ∈ L2(D). In our problem, the curves in Gv resemble a lot to the Weil-Petersson curves in
the following way. For a Weil-Petersson curve Γ, let f : D → Ω be a conformal mapping. We focus
on the boundary map f : T → Γ. Since log f ′ is in the Dirichlet space, we have that argf ′(z), as a
function on T, has a finite Dirichlet energy extension inside D. One can check that for any a ∈ T,
it holds arg f ′(a) = arg νΓ(f(a))− 2πa, where νΓ(f(a)) is the outer normal vector of Γ at the point
f(a). Thus arg νΓ(b) − 2πf−1(b), as a function of b ∈ Γ, has a finite Dirichlet energy inside Ω.
Note that in our definition of Gv, we require the θ = arg νΓ − π

2 on the curve Γ, and it has a finite
energy extension inside ΩΓ. Such characterization is very similar to the Weil-Petersson curve. The
difference is that in our case Γ is not a closed curve and the domain ΩΓ is not a quasidisk.

In a recent work [3], Christopher Bishop gives 26 equivalent characterizations of the Weil-
Petersson class. In particular, he shows that a curve Γ is Weil-Petersson if and only if it has
arclength parameterization in H3/2(T), has finite Möbius energy or can be well approximated by
polygons in some precise sense. Another equivalent characterization is that Weil-Peterssson curve
has local curvature that is square integrable over all locations and scales, where local curvatures are
measured using various quantities such as Peter Jone’s β-numbers, conformal welding and Menger
curvature. We will show that some of these function theoretic and geometric characterizations can
be generalized to our curve Γ ∈ Gv, which greatly deepen our understanding of the class Gv. The
proof will follow Bishop’s paper [3] closely, with some necessary modifications.

Given Γ ∈ Gv, we denote the length of Γ by l. Let z(t) = (x(t), y(t)) : [0, l] → Γ be the arc-length

parameterization of Γ, i.e.
√

x′(t)2 + y′(t)2 = 1. Then Γ has the following properties.

Proposition 2.7. (1) The arc-length parameterization z(t) : [0, l] → Γ is in the Sobolev space

H3/2([0, l]).
(2) Let ν be the normal vector, it holds that

ˆ

Γ

ˆ

Γ

( |ν(z)− ν(w)|
|z − w|

)2

|dz| |dw| < ∞.
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Proof. (1) As in the proof of Lemma 2.3, we construct a quasidisk DΓ which is the combination of
ΩΓ and a rectangle with length 2a and width a

DΓ = ΩΓ ∪ {(x, y) : −a < x < a, −a < y ≤ 0}.

The length of ∂DΓ is l + 4a. We denote the arc-length between z ∈ Γ and (−a, 0) as l(z). Define
the function φ : T → T as

(2.34) φ(θ) =

{

arg ν(z((l + 4a)θ)), 0 ≤ θ ≤ l
l+4a ,

π
2 ,

l
l+4a < θ < 1.

One can easily check that in order to show z(t) ∈ H3/2([0, l]), it suffices to show φ ∈ H1/2(T).
We also define an orientation preserving arclength parameterization w : T → ∂DΓ, such that
|w′| = l + 4a, w(0) = (−a, 0) and w(θ) = z((l + 4a)θ) for θ ∈ [0, l

l+4a ]. Since DΓ is a quasidisk, we
can find a map f that is conformal in DΓ and can be extended to a quasi-conformal mapping in
the entire plane. Then on the boundary, f maps T to the quasicircle ∂DΓ.

Let φf := φ ◦ w−1 ◦ f . By the definition of Gv, one has φf ∈ H1/2(T). The rest of the proof is
exactly the same as that of [3, Lemma 8.1]. The idea is to show f−1 ◦ w is a quasisymmetric map

by definition, and then use the arguments by Beurling and Ahlfors [4] that H1/2 is invariant under
composition with a quasisymmetric homeomorphism of T.

(2) By the H3/2 characterization, we know
´ l
0

´ l
0

∣

∣

∣

z′(t)−z′(s)
t−s

∣

∣

∣

2
dtds < ∞. Since Γ is chord-arc,

|z(t)−z(s)|
|s−t| ∈ [ 1C , 1] for some constant C. We have

ˆ

Γ

ˆ

Γ

( |ν(z)− ν(w)|
|z − w|

)2

|dz| |dw| =
ˆ l

0

ˆ l

0

( |z′(t)− z′(s)|
|z(t) − z(s)|

)2

dsdt

≃
ˆ l

0

ˆ l

0

∣

∣

∣

∣

z′(t)− z′(s)
t− s

∣

∣

∣

∣

2

dsdt < ∞.

�

Remark 2.1. A direct consequence of the H3/2 characterization is Γ has finite Möbius energy, i.e.

(2.35) Möb(Γ) =

ˆ

Γ

ˆ

Γ

(

1

|z − w|2 − 1

l(z, w)2

)

dz dw < ∞.

Here l(z, w) is the length of Γ between z and w. For the proof, one can refer to the proof of [3,

Lemma 9.1]. The brief idea is to show that Möb (Γ) ≃
´

Γ

´

Γ

´

γz,w

´

γz,w
|ν(x)−ν(y)|2|dx| |dy|
|z−w|4 |dz| |dw| and

then change the order of integration. Furthermore, since Γ is chord-arc, it holds that

1

|z − w|2 − 1

l(z, w)2
=

(l(z, w) + |z −w|)(l(z, w) − |z − w|)
|z − w|2l(z, w)2 ≃ l(z, w) − |z − w|

|z − w|3 .

Then (2.35) implies that
´

Γ

´

Γ
l(z,w)−|z−w|

|z−w|3 |dz| |dw| < ∞.

Remark 2.2. Other characterizations of Weil-Petersson curve in [3] include approximation by poly-
gons in a precise sense and the square integrability of β-numbers. The arguments also work for
curves in Gv and we state them here without proof. Again we consider the arc-length parameter-

ization z(t) : [0, l] → Γ. For each n, let znj = z
(

jl
2n

)

for j = 0, 1, . . . , 2n. Then it is obvious that

{znj } divides Γ into 2n intervals with equal length. Let Γn be the curve that consists of all the line
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segments znj z
n
j+1 for j = 0, . . . , 2n − 1. Then one has

∞
∑

n=1

2n[l(Γ)− l(Γn)] < ∞.

Recall the definition of Peter Jone’s β-number: given a curve Γ, x ∈ R
2 and t > 0,

βΓ(x, t) := inf
L

sup
z∈B(x,t)∩Γ

dist(z, L)

t
,

where the infimum is over all lines hitting B(x, t). Then for Γ ∈ Gv, it satisfies
ˆ

Γ

ˆ ∞

0
β2
Γ(x, t)

dt dx

t2
< ∞.

3. Existence of minimizers

The primary goal of this section is to establish the existence for Problem P. Before we state the
theorem, we need to clarify some basic settings. Throughout this section we assume the volume
v = 1. We will consider Γ ∈ G1 such that EΓ ≤ M for some constant M > 0 and Γ will only
intersects with x−axis at two endpoints. As a consequence, Γ has all the geometric properties
that we have shown in Section 2 (Lemma 2.2, Lemma 2.3, Proposition 2.4, Proposition 2.5 and
Proposition 2.7).

Also we need to discuss different notions of boundary since we will perform integration by
parts in ΩΓ. In geometric measure theory, there are three different kinds of boundary for a set
E of finite perimeter: topological boundary ∂E, measure-theoretical boundary ∂eE and reduced
boundary ∂∗E. We refer to [9] for detailed definitions of these notions. It is well-known that
∂∗E ⊂ ∂eE ⊂ ∂E. For our domain ΩΓ, it is obvious that ∂ΩΓ = Γ ∪ {(x, 0),−a ≤ x ≤ a}. By
Lemma 2.2, one can easily verify that for any z ∈ Γ\{(−a, 0), (a, 0)}, we have

lim inf
r→0

|ΩΓ ∩B(z, r)|
πr2

> 0, lim sup
r→0

|ΩΓ ∩B(z, r)|
πr2

< 1

This means z ∈ ∂eΩΓ, and therefore ∂ΩΓ\∂eΩΓ ⊂ {(−a, 0), (a, 0)}. As for the relation between
measure-theoretical boundary and reduced boundary, a well-known result by Federer says that
H1(∂eE\∂∗E) = 0. So in the proof below, we don’t distinguish these different notions of boundary
when we write boundary integral.

Theorem 3.1. There exists a Γ ∈ G1 minimizing the functional E(Γ) defined by (1.8).

Proof. Let {Γi}∞i=1 be a minimizing sequence in G1.

lim
i→∞

E(Γi) = M0 := inf
Γ∈G1

E(Γ).

Let Ωi,Θi denote the corresponding ΩΓi ,ΘΓi respectively. For each i, we set (±ai, 0) as the two

endpoints of Γi. Because l(Γi) ≤ M for every i, we have ai <
M
2 . Also by Lemma 2.2 and the

fact that |Ωi| = 1 we have ai ≥ 2
C where C is the constant in (2.9). Now we summarize all the

properties (independent of i) we need for {(Γi,Ωi,Θi, ai)} before taking a limit.

(a) 2
C ≤ ai ≤ M

2 , l(Γi) ≤ M .

(b) Ωi ⊂ B(0, 2M), |Ωi| = 1 and ∂Ωi = Γi ∪ {(x, 0) : −ai ≤ x ≤ ai}.
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(c) Γi can be parameterized by (xi(t), yi(t)) such that

xi(0) = −ai, xi(l(Γi)) = ai, yi(0) = yi(l(Γi)) = 0,

x′i(t) ≥ 0, yi(t) ≥ 0, |x′i(t)|2 + |y′i(t)|2 = 1, a.e.
√

|xi(t+ s)− xi(t)|2 + |yi(t+ s)− yi(t)|2 ≥ s

C3
for t+ s < l(Γi)

where C3 is the constant in Proposition 2.4.
(d) Θi can be extended to a H1 function on B(0, 2M) such that ‖Θi‖H1(B(0,2M)) ≤ C5 for some

universal constant C5.

Then we claim that there is a subsequence, still denoted by {(Γi,Ωi,Θi, ai)} that converges in
the following sense:

(1) χΩi → χΩ weakly in BV (B(0, 2M)) and strongly in L1(B(0, 2M)), for some Ω which is a
set of finite perimeter in B(0, 2M) with volume 1.

(2) Θi → Θ weakly in H1(B(0, 2M)) and strongly in L2(B(0, 2M)) for some Θ ∈ H1(B(0, 1)).
(3) l(Γi) → l, ai → a for some constant l > 0, a > 0.
(4) Γi → Γ in Hausdorff distance for some chord-arc curve Γ. Γ can be parameterized by

x(t), y(t) such that

x(0) = −a, x(l) = a, y(0) = y(l) = 0,

x′(t) ≥ 0, y(t) ≥ 0, |x′(t)|2 + |y′(t)|2 ≤ 1, a.e.
√

|x(t+ s)− x(t)|2 + |y(t+ s)− y(t)|2 ≥ s

C3
for t+ s < l

(5) ∂eΩ ⊂ Γ ∪ {(x, 0) : −a ≤ x ≤ a}, ν · (cosΘ, sinΘ) = 0 a.e. on ∂∗Ω.

Proof of the convergence claim. (1), (2), (3) are straightforward to check. (4) is a direct conse-
quence of Arzela-Ascoli lemma and Property (c) that we list before, we omitted the detail of the
proof. So we only prove (5). First we show ∂eΩ ⊂ Γ ∪ {(x, 0) : −a ≤ x ≤ a}. Assume there exists
a point z ∈ ∂eΩ such that z 6∈ Γ ∪ {(x, 0) : −a ≤ x ≤ a}. Then by convergence properties (3) and
(4), there exists a r0 > 0 and n ∈ N such that

B(z, r0) ∩ ∂Ωi = ∅, ∀i ≥ n.

For any i ≥ n, we have
|Ωi ∩B(z, r)|

|B(z, r)| = 0 or 1, for any r ≤ r0

However, by convergence property (1), we have

|Ω ∩B(z, r)|
|B(z, r)| = lim

i→∞
|Ωi ∩B(z, r)|

|B(z, r)| = 0 or 1, for any r ≤ r0,

which contradicts with our assumption z ∈ ∂eΩ. Therefore we have proved ∂eΩ ⊂ Γ ∪ {(x, 0) :
−a ≤ x ≤ a}.

Now we set

Ωin := the domain enclosed by Γ and x-axis, Ωout := R
2\ (Γ ∪ {(x, 0) : −a ≤ x ≤ a} ∪ Ωin)

By similar density argument one can show Ωin ⊂ Ω0 and Ωout ⊂ Ω1, where Ωt is defined as

{z : lim
r→0

|Ω∩B(z,r)|
πr2 = t}. After a modification of a measure zero set, we can simply identify Ω as

Ωin. Now we are left to show the second part of (5), which says the tangential anchoring boundary
condition still holds for the limit domain. Let φ be an arbitrary C∞ function in R

2, we define

ni := (cosΘi, sinΘi), n := (cosΘ, sinΘ), νi = normal vector on ∂Ωi.
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Note that here all ni and n are defined on the larger domain B(0, 2M). We first deduce that

(3.36) lim
i→∞

ˆ

Ωi

div (φni) dx =

ˆ

Ω
div (φn) dx.

In fact,

|
ˆ

Ωi

div (φni) dx−
ˆ

Ω
div (φn) dx|

≤|
ˆ

Ω
div (φn− φni) dx|+ |

ˆ

Ω∆Ωi

|div (φni)| dx|

As i → ∞, the first term goes to zero because ni converges to n weakly in H1; the second term
goes to zero since Ωi converges to Ω in L1 and ni are uniformly bounded in H1. Also we have that
the following Gauss-Green formula holds

(3.37)

ˆ

Ωi

div (φni) dx =

ˆ

∂∗Ωi

φni · νi dH1,

ˆ

Ω
div (φn) dx =

ˆ

∂∗Ω
φn · ν dH1

We want to point out that (3.37) is not trivial here since ∂Ωi is not in C1. However in our problem,
it is valid because all Ωi and Ω are Sobolev extension domains and one can define the trace of H1

function on the reduced boundary. We refer to [19, Proposition 3.4.4] or [2, Theorem 3.84] for more
details. We may now combine (3.37) with (3.36) and get that

0 = lim
i→∞

ˆ

∂Ωi

φni · νi dH1 =

ˆ

∂Ω
φn · ν dH1.

Thus the tangential anchoring boundary condition is proved for Ω and n. �

On boundary ∂Ωi or ∂Ω, we define the tangent vector τi, or correspondingly τ , by rotating the
normal vector νi or ν by π

2 clockwise. One can check that

ni = τi on Γi\{(x, 0) : −ai ≤ x ≤ ai}, ni = −τi on {(x, 0) : −ai ≤ x ≤ ai}\Γi, ∀i ∈ N

Using similar arguments in the proof of tangential anchoring condition above again, we can show
that

(3.38) n = τ on Γ\{(x, 0) : −a ≤ x ≤ a}, n = −τ on {(x, 0) : −a ≤ x ≤ a}\Γ, a.e. x ∈ ∂Ω

The idea is to carefully choose a cut-off function φ and calculate
´

∂∗Ω φn · τ dH1 using Gauss-Green
formula. We omit the details here. Note that (3.38) is equivalent to our original boundary condition
(1.7), therefore we have verified that Γ ∈ G1 and Ω, Θ are just the corresponding ΩΓ, ΘΓ.

Finally, by convergence result (1–5) and lower semi-continuity we conclude that

ˆ

Ω
|∇Θ|2 + l(Γ) ≤ lim inf

i→∞
E(Γi) = M0

And by Lemma 2.1, Γ won’t touch x−axis besides two endpoints. So (Γ,Ω,Θ) is a minimizer of
Problem P. The proof is complete.

�
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Next we want to study the behavior of Γ ∈ G1 near (−a, 0) and (a, 0). The following lemma
indicates that Γ and x−axis form approximately cusps near two ends. Note that here we don’t
assume Γ is a minimizer.

Lemma 3.2. Let Γ ∈ G1 satisfy E(Γ) ≤ M . Γ only intersects with x−axis at z1 = (−a, 0) and
z2 = (a, 0). For any k > 0, there exists a constant r that depends on k and Γ such that

If z = (x, y) ∈ Γ ∩B(z1, r), then
y

x+ a
≤ k,

If z = (x, y) ∈ Γ ∩B(z2, r), then
y

a− x
≤ k.

Remark 3.1. This lemma implies that as z ∈ Γ approaches z1(or z2), the angle between the ray
z − z1(or z − z2) and x−axis converges to 0.

Proof of Lemma 3.2. Without loss of generality, we only prove the lemma near z1 = (−a, 0). We
argue by contradiction. Assume the Lemma is false, there would exist a constant k > 0, a sequence
of radiuses {ri}∞i=1 and a sequence of points {(xi, yi)}∞i=1 ⊂ Γ such that

ri → 0,
√

(xi + a)2 + y2i = ri,
yi

xi + a
= k.

By Lemma 2.3 we can extend Θ from ΩΓ to the whole R
2 such that ‖Θ‖H1(R2) ≤ C. For every i,

we introduce the following rescaled functions:

Γi := {z − z1
ri

: z ∈ Γ ∩B(z1, ri)},

Ωi := {z − z1
ri

: z ∈ ΩΓ ∩B(z1, ri)},

Θi(z) := Θ(z1 + riz) for z ∈ B(0, 1)

One can easily check the following properties hold

(a) l(Gi) ≤ C3 for the constant C3 from Proposition 2.4.
(b) Ωi ⊂ B(0, 1), |Ωi| ≥ arctan k

2 − k
2(1+k2)

=: C6

(c) Γi can be parameterized by (xi(t), yi(t)) such that

xi(0) = 0, xi(l(Γi)) =
1√

1 + k2
, yi(0) = 0, y(l(Γi)) =

k√
1 + k2

,

x′i(t) ≥ 0, yi(t) ≥ 0, |x′i(t)|2 + |y′i(t)|2 = 1, a.e.
√

|xi(t+ s)− xi(t)|2 + |yi(t+ s)− yi(t)|2 ≥
s

C3
for t+ s < l(Γi)

(d) {Θi}∞i=1 is uniformly bounded in H1(B(0, 1)) and we have

lim
i→∞

ˆ

B(0,1)
|∇Θi|2 dx = 0

Passing if necessary to a subsequence, we get

(1) χΩi → χΩ weakly in BV (B(0, 1)) and strongly in L1(B(0, 1)), for some Ω with volume
lower bound |Ω| ≥ C6.

(2) Θi → Θ weakly in H1(B(0, 1)) and strongly in L2(B(0, 1)) for some Θ ∈ H1(B(0, 1)).
(3) l(Γi) → l for a constant l > 0.
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(4) Γi → Γ∗ in the sense of Hausdorff distance for some chord-arc curve Γ∗. Γ∗ can be param-
eterized by x(t), y(t) such that

x(0) = 0, x(l) =
1√

1 + k2
, y(0) = 0, y(l) =

k√
1 + k2

,

x′(t) ≥ 0, y(t) ≥ 0,
1

C3
≤ |x′(t)|2 + |y′(t)|2 ≤ 1, a.e.

(5) ∂eΩ ⊂ Γ∗ ∪ {(x, 0) : 0 ≤ x ≤ 1} ∪ ∂B(0, 1), ν · (cosΘ, sinΘ) = 0 a.e. on ∂∗Ω.

The proof of the above convergence property is the same as Theorem 3.1. By lower semi-continuity
and weak convergence of Θi in H1(B(0, 1)) we have

ˆ

B(0,1)
|∇Θ|2 dx ≤ lim

i→∞

ˆ

B(0,1)
|∇Θi|2 dx = 0

Therefore Θ is a constant function, which contradicts with (5) since the normal vector of ∂Ω
obviously cannot be orthogonal to a constant vector by simple geometry. �

As for the regularity of Γ away from two endpoints, Proposition 2.5 and Proposition 2.7 tells
that ν belongs to VMO and H1/2([0, l]). Unfortunately this is the best regularity result we have
now. Here we give the following natural open problems:

Problem 1. Is Γ a C∞ curve, or at least C1?

Problem 2. Can one write Γ as a curve of function f(x), such that | dfdx | ≤ C for some constant
C < ∞?

The difficulty in answering these questions is due to the strong non-local character of the tan-
gential anchoring boundary condition. It prevents us from modifying Γ locally to obtain an energy
competitor and then deduce decay of some energy quantities. Therefore some new ideas and meth-
ods are needed in order to utilize the minimality. We now assume the statement in Problem 2 is
true, and we compute the Euler-Lagrange equation that f should satisfy.

Let Γ = {(x, f(x)) : x ∈ [−a, a]} such that

f(−a) = f(a) = 0, f(x) > 0 for x ∈ (−a, a), and

ˆ a

−a
f(x) dx = 1.

We write ΩΓ as Ωf . Then we consider the perturbation of f(x) and domain Ωf

ft(x) = f(x) + tg(x), Ωft(x) = {(x, y) : x ∈ [−a, a], y ∈ [0, f(x) + tg(x)]},
where g ∈ C1

0 (−a, a). We denote the domain variation by Φ(t, x) such that

Φ(t,Ωf ) = Ωft, Φ(t, (x, y)) = (x, y +
y

f(x)
tg(x))

By this definition, we can see that Φ(t) satisfies that

Φ(0) = I, Φ′(0) :=
d

dt
(Φ(t)− I) = V (x, y) = (0,

y

f(x)
g(x)).

Θ(t, z) solves the equation

(3.39)

{

−∆Θ(t, z) = 0 in Ωft ,

Θ(t) = arctan (f ′ + tg′) on ∂Ωft .

Here z = (x, y) ∈ R
2. The functional becomes

F (ft) =

ˆ a

−a

√

1 + |f ′
t(x)|2 dx+

ˆ a

−a

ˆ ft(x)

0
|∇Θ(t, z)|2 dxdy =: F1(ft) + F2(ft).



24 ZHIYUAN GENG AND FANGHUA LIN

Suppose f is smooth and t → Θ(t) has good differentiability properties(denote by Θ′ its derivative
at 0). We can differentiate (3.39) inside Ωf and at the boundary, by differentiating the following
identity:

For z = (x, f(x)), Θ(t,Φ(t, z)) = arctan (f ′ + tg′).

We obtain

−∆Θ′ = 0 in Ωf

Θ′(x, f(x)) +∇Θ(x, f(x)) · V =
g′(x)

1 + |f ′(x)|2 on Γ

Θ′ = 0 on {(x, 0) : x ∈ [−a, a]}.
Therefore, Θ′ is the harmonic function with a Dirichlet boundary condition(depending on f, g). We
compute the derivative of F (ft) at t = 0. For the first part, we easily obtain

d

dt
F1 =

ˆ 1

−1

f ′g′
√

1 + |f ′|2
dx.

For the second part, we have

d

dt
F2 =

ˆ

Ωf

{

2∇Θ′ · ∇Θ+ div(|∇Θ|2V )

}

dxdy

=

ˆ

Γ

{

2
∂Θ

∂ν
(

g′

1 + |f ′|2 −∇Θ · V ) + |∇Θ|2(V · ν)
}

dH1

=

ˆ a

−a

{

2
∂Θ

∂ν

g′
√

1 + |f ′(x)|2
− 2(∇Θ · ν) · (∇Θ · V )

√

1 + |f ′(x)|2 + g(x)|∇Θ|2
}

dx

where ν is the normal vector on Γ. Here we have used the boundary condition of Θ′ and integration
by parts. Also we have used the following formula

V (z) = (0, g(x)), ν(z) =
(−f ′(x), 1)
√

1 + |f ′(x)|2
for z = (x, f(x)) ∈ ∂Ωf .

Let d
dtF (ft) = 0 and take into account the volume constraint, we obtain the following Euler-

Lagrange equation

(3.40) λ = − d

dx

(

f ′
√

1 + |f ′|2

)

− 2
d

dx

(

∂Θ

∂ν

1
√

1 + |f ′(x)|2

)

− ∂Θ

∂ν

∂Θ

∂y

√

1 + |f ′|2 + |∇Θ|2

where λ is the Lagrange multiplier and the derivative of Θ is taking value at (x, f(x)). Note that
(3.40) is complicated and contains some highly non-local terms, such as the Dirichlet-to-Neumann
map ∂Θ

∂ν . The first part of the equation is the minimal surface equation while the rest comes
from the Dirichlet energy with tangential anchoring condition and domain variation. It will be
very interesting to study the well-posedness of (3.40) and we believe that the key of solving the
regularity problem of Γ is to understand this equation.

4. Large volume limit and small volume limit

In this section we study the behavior of the minimizer as the volume v tends to be extremely large
or small. A naive idea is to analysis the functional (1.8) from a scaling point of view. The curve
length term is of dimension one while the Dirichlet energy term is of dimension zero. Therefore,
when the volume is very large, the first term will be the dominating term and the minimizer is
expected to be close to a semicircle (minimizes length of graph under fixed volume constraint). On
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the other hand, when the volume is very small, the domain is energy preferable to be very thin to
avoid large elastic energy. We will present more rigorous analysis in the rest of this section.

4.1. Large volume limit. Since we are only interested in the shape of Γ, we will modify Problem
P and restrict a = 1. First we make the following notations:

Ga
v := {Γ ∈ Gv : Γ only intersects with x-axis at (a, 0), (−a, 0)}, Ga :=

⋃

v>0

Ga
v .

Then we can write Problem P as

min
a>0

min
Γ∈Ga

v

{
ˆ

ΩΓ

|∇Θ|2 dxdy + l(Γ)

}

.

Let x̄ = x
a , ȳ = y

a , Θ̄(x̄, ȳ) = Θ(ax̄, aȳ), the minimization problem becomes

min
a>0

min
Γ∈G1

v/a2

{
ˆ

ΩΓ

|∇Θ|2 dxdy + a · l(Γ)
}

.

Setting ã = a√
v
leads to

(4.41) min
ã>0

min
Γ∈G1

1/ã2

{
ˆ

ΩΓ

|∇Θ|2 dxdy + ã
√
v · l(Γ)

}

.

This is equivalent to

(4.42) min
Γ∈G1

{
ˆ

ΩΓ

|∇Θ|2 dxdy +
√
v

l(Γ)
√

|ΩΓ|

}

.

When v ≫ 1, we consider the following functional for Γ ∈ G1:

Ev(Γ) =
1√
v

ˆ

ΩΓ

|∇Θ|2 dxdy +
l(Γ)
√

|ΩΓ|
We denote by Γv the minimizer of functional Ev(Γ). As v → +∞, one expects that Γv will

“converge” in some proper sense to Γ∗ := {(x,
√
1− x2) : x ∈ [−1, 1]}, which is well known to

minimize the following functional

F (Γ) =
l(Γ)
√

|ΩΓ|
for Γ ∈ G1.

We have the following lemma:

Lemma 4.1. lim
v→∞

Ev(Γv) =
√
2π = F (Γ∗)

Proof. We borrow the idea of ”adding two cusps” from [12]. We modify Γ∗ near x = −1 and x = 1
by adding two cusps. For ε << 1, we define a function f̄ ε as follows

f̄ ε(x) =























√
1− x2, |x| ≤

√
1− ε2,

ε
1−ε −

√

( ε
1−ε)

2 − (x+
√

1+ε
1−ε)

2, x ∈ (−
√

1+ε
1−ε ,−

√
1− ε2),

ε
1−ε −

√

( ε
1−ε)

2 − (−x+
√

1+ε
1−ε)

2, x ∈ (
√
1− ε2,

√

1+ε
1−ε).

Note that here we change the graph near two endpoints of Γ∗ into two circular arcs to make sure
the derivative of f̄ ε vanishes near two end points (See Figure 3).



26 ZHIYUAN GENG AND FANGHUA LIN

(
√
1− ε2, ε)(−

√
1− ε2, ε)

(
√

1+ε
1−ε , ε)

r = ε
1−ε

Figure 3. The graph of function f̄ ε

Then we set for any ε ∈ (0, 14 ),

f ε(x) = f̄ ε(

√

1 + ε

1− ε
x),

Γε = {(x, f εx) : x ∈ [−1, 1]},

Θε(x, y) = arctan
d

dx
f ε(x) for (x, y) ∈ Γε

Θε(x, y) =
arctan d

dxf
ε(x)

f ε(x)
· y for (x, y) ∈ ΩΓε

It is straightforward to check that Γε satisfies the following property:

(1) Γε ∈ G1,
(2) lim

ε→0
F (Γε) =

√
2π,

(3)
´

ΩΓε
|∇Θε|2 dydx = O(1ε ).

For v ≫ 1, we set ε = v−
1
4 . Then 1√

v

´

ΩΓε
|∇Θε|2 dydx = O(v−

1
4 ). This implies

lim
v→∞

Ev(Γv) ≤ lim
v→∞

Ev(Γ
ε) =

√
2π ≤ lim

v→∞
Ev(Γv).

�

Remark 4.1. If lim
v→∞

F (Γv) =
√
2π, then

lim
v→∞

|ΩΓv∆ΩΓ∗| = 0, lim
v→∞

dH(Γv,Γ
∗) = 0,

where dH is the Hausdorff distance. This is an easy consequence of the stability of isoperimetric
inequality (see [11]).

4.2. Small volume limit. First we prove the following lemma which provides a rough estimate
for the Dirichlet energy when the volume of droplet is sufficiently small.

Lemma 4.2. Take ε ≪ 1, there exist constants c and C which are independent of ε, such that for
any Γ ∈ G1

ε , it holds that

c ε ≤
ˆ

ΩΓ

|∇Θ|2 dxdy ≤ C ε.
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Proof. Given Γ ∈ G1
ε , Θ is the corresponding angle function. We first estimate the lower bound of

energy. We set

Γ̃ = {(x, y) : (x, εy) ∈ Γ}, Θ̃(x, y) = arctan

(

tanΘ(x, εy)

ε

)

for (x, y) ∈ ΩΓ̃.

Then we can check that |ΩΓ̃| = 1 and Θ satisfies the boundary condition (1.7) corresponding to Γ̃.
Thus there exists a constant c such that

(4.43)

ˆ

ΩΓ̃

|∂yΘ̃|2 dxdy ≥ c

Otherwise one can use the similar argument in Section 3 to get a contradiction. On the other hand,
by definition of Γ̃ and Θ̃ we have

ˆ

ΩΓ̃

|∂yΘ̃|2 dxdy =

ˆ

ΩΓ

|∂yΘ|2

ε ·
(

1 +
∣

∣

∣

tanΘ(x,y)
ε

∣

∣

∣

2
)2

· | cosΘ(x, y)|4
dxdy(4.44)

≤ 1

ε

ˆ

ΩΓ

|∂yΘ|2 dxdy.

Therefore
ˆ

ΩΓ

|∇Θ|2 dxdy ≥ cε,

by (4.43) and (4.44). Meanwhile, we can construct a Γ ∈ G1
ε such that

´

ΩΓ
|∇Θ|2 dxdy =≤ Cε for

some larger constant C. Set

Γ ={(x, ε
2
(cos x+ 1)) : x ∈ [−1, 1]}

Θ(x, y) =
arctan f ′(x)

f(x)
y, for x ∈ (−1, 1), y ∈ [0, f(x)].

We can directly verify that Γ ∈ G1
ε and

´

ΩΓ
|∇Θ|2 dxdy ≤ Cε for some constant C independent of

ε. This proves Lemma 4.2. �

Remark 4.2. Now we consider the minimization problem (4.41) with v = ε2 ≪ 1. We can determine
the appropriate order of ã. Assume ã ∼ O(ε−α) for some α ∈ R. Then the second term (surface
energy term) is of order ε1−α. For the Dirichlet energy term since Γ ∈ G1

ε2α , by Lemma 4.2 we know

it is of order ε2α. Matching these two terms gives α = 1
3 . According to the deduction of (4.41) we

know that if we don’t fix two endpoints of Γ, then the energy-minimizing droplet with volume ε2

will be a elongated drop with length of the order ε
2
3 and the total energy is of order ε

2
3 .

Next we study the asymptotic shape of the rescaled droplet. For such purpose, we add some
extra regularity assumption on the curve Γ. Consider a subset of G1, denoted by G̃1, which consists
of all the curves in G1 that are graphs of H2

0 functions,

G̃1 := {Γ ∈ G1, Γ = {(x, f(x))},
where f satisfies

(4.45) f ∈ H2
0 ([−1, 1]), f ′(±1) = 0, f(x) > 0 on (−1, 1).

Given ε ≪ 1, we define a transformation operator Tε, which compresses Γ ∈ G̃1 in the vertical
direction:

Tε(Γ) = {(x, ε 2
3 f(x)) : x ∈ [−1, 1]}, Γ = {(x, f(x))}.
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Now after taking v = ε2 in (4.42) and multiplying ε−
2
3 , we obtain the functional

(4.46)

Eε(f) = Eε(Γ)

= ε−
2
3

ˆ

ΩTε(Γ)

|∇ΘTε(Γ)|2 dxdy + ε
1
3
l(Tε(Γ))
√

ΩTε(Γ)

= ε−
2
3

ˆ

ΩTεΓ

|∇ΘTε(Γ)|2 dxdy +
l(Tε(Γ))√

ΩΓ

= ε−
2
3

ˆ 1

−1

ˆ ε
2
3 f(x)

0
{|∂xΘTε(Γ)|2 + |∂yΘTε(Γ)|2} dydx +

´ 1
−1

√

1 + ε
4
3 |f ′(x)|2 dx

√

´ 1
−1 f(x) dx

.

Then for a sequence of positive numbers ε → 0, we consider the sequence of functionals on
H2

0 ([−1, 1])

(4.47) Eε(f) :=

{

Eε(f) defined in (4.46), if Γ = {x, f(x)} ∈ G1,

+∞ otherwise.

And we also define the candidate functional E0(f) for Γ-convergence,

E0(f) :=

ˆ 1

−1

|f ′x|2
f(x)

dx+
2

√

´ 1
−1 f(x) dx

, f ∈ H2
0 ([−1, 1]).

We have the following result:

Proposition 4.3. As ε → 0, the sequence {Eε} Γ-converges to E0 in the H2 topology.

Proof. First we prove the lower semi–continuity condition, i.e. for any g ∈ C1
0 [−1, 1] and for any

sequence {gε} in C1
0 [−1, 1],

(4.48) gε → g in H2[−1, 1] implies lim inf
ε→0

Eε(gε) ≥ E0(g).

The case lim inf
ε→0

Eε(gε) = +∞ is trivial. We therefore assume that lim inf
ε→0

Eε(gε) = C < +∞. And

by the C1 convergence of gε, we also suppose that |g′ε(x)| ≤ c for some constant c holds for any
ε > 0 and x ∈ [−1, 1]. Now we examine the first term of Eε(gε) more closely

ε−
2
3

ˆ 1

−1

ˆ ε
2
3 gε(x)

0
{|∂xΘTε(Γ)|2 + |∂yΘTε(Γ)|2} dydx

>ε−
2
3

ˆ 1

−1

ˆ ε
2
3 gε(x)

0
{|∂yΘTε(Γ)|2} dydx

≥ε−
2
3

ˆ 1

−1

{

|ΘTε(Γ)(x, ε
2
3 gε(x))|2

ε
2
3 gε(x)

}

dx

=ε−
2
3

ˆ 1

−1

{

| arctan (ε 2
3 g′ε(x))|2

ε
2
3 gε(x)

}

dx
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Since |g′ε(x)| ≤ c, we have that for any σ > 0, there exists εσ > 0 such that for any ε < εσ,

| arctan (ε 2
3 g′ε(x))| ≥ (1− σ)|ε 2

3 g′ε(x)|. And therefore we have

ε−
2
3

ˆ 1

−1

{

| arctan (ε 2
3 g′ε(x))|2

ε
2
3 gε(x)

}

dx

≥ε−
2
3 (1− σ)2

ˆ 1

−1

∣

∣

∣

∣

∣

ε
4
3 |g′ε(x)|2

ε
2
3 gε(x)

∣

∣

∣

∣

∣

dx = (1− σ)2
ˆ 1

−1

|g′ε(x)|2
gε(x)

dx, when ε < εσ

We obtain

lim inf
ε→0

Eε(gε)

= lim inf
ε→0







ε−
2
3

ˆ 1

−1

ˆ ε
2
3 gε(x)

0
{|∂xΘTε(Γ)|2 + |∂yΘTε(Γ)|2} dydx+

´ 1
−1

√

1 + ε
4
3 |g′ε(x)|2 dx

√

´ 1
−1 gε(x) dx







≥ lim inf
ε→0







ε
2
3

ˆ 1

−1

|g′ε(x)|2
gε(x)

dx+
2

√

´ 1
−1 gε(x) dx







≥ E0(g)

Here in the last step we used the C1 convergence of gε and Fatou’s lemma. This gives the proof of
the lower semi-continuity (4.48).

The second part of proving Gamma-convergence is to find a recovery sequence for each f satis-
fying (4.45). We can simply take fε = f for any ε > 0. By the same argument in the proof of lower
semi-continuity, we have

lim
ε→0

Eε(f) ≥ E0(f)

On the other hand, take Θε(x, y) =
y

ε
2
3 f(x)

arctan (ε
2
3 f ′(x)) for (x, y) satisfying −1 ≤ x ≤ 1, 0 ≤

y ≤ e
2
3 f(x). It holds that

ε−
2
3

ˆ 1

−1

ˆ ε
2
3 f(x)

0
|∂xΘε|2 dydx

=

ˆ 1

−1

ε
4
3

3
f(x)3

∣

∣

∣

∣

∣

f ′′

f(1 + ε
4
3 |f ′|2)

− f ′ arctan (ε
2
3 f ′)

ε
2
3 f2

∣

∣

∣

∣

∣

2

dx

∼O(ε
4
3 ).

ε−
2
3

ˆ 1

−1

ˆ ε
2
3 f(x)

0
|∂yΘε|2 dydx

=

ˆ 1

−1

| arctan (ε 2
3 f ′)|2

ε
4
3 f

dx ∼ O(1).
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After comparing the above two identities, we conclude that

ε−
2
3

ˆ 1

−1

ˆ ε
2
3 f(x)

0
|∇Θε|2 dydx+

´ 1
−1

√

1 + ε
4
3 |f ′(x)|2 dx

√

´ 1
−1 f(x) dx

=(1 + o(1))

ˆ 1

−1

|f ′|2
f

dx+
2

√

´ 1
−1 f(x) dx

+ o(1) = E0(f) + o(1)

Therefore we obtain lim
ε→0

Eε(f) = E0(f) for any f ∈ H2
0 ([−1, 1]). The proof is complete.

�

Proposition 4.3 inspires us to study the following minimization problem

(4.49) min
g∈H2

0 ([−1,1])

{

2
√

´ 1
−1 g(x) dx

+

ˆ 1

−1

|g′(x)|2
g(x)

dx

}

Let g = h2, the problem becomes

(4.50) min
h2∈H2

0 [−1,1]

{

2
√

´ 1
−1 h(x)

2 dx
+ 4

ˆ 1

−1
|h′(x)|2 dx

}

The Euler Lagrange equation is

h′′(x) = − h(x)

4(
´ 1
−1 h

2 dx)
3
2

, h ∈ H2
0 [−1, 1].

This ODE can be solved explicitly,

h(x) = π− 2
3 cos

π

2
x

and therefore

g(x) = π− 4
3

(1 + cos πx

2

)

is the minimizer for the minimization problem (4.49). Using the above Γ-convergence result, we con-

clude that when the volume v = ε2 << 1, the approximated profile of Γ is {
(

x, ε
2
3π− 4

3 (1+cos πx
2 )

)

:

x ∈ [−C,C]}, where C ∼ O(ε
2
3 ) is a coefficient that ensures the volume constraint.
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