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Abstract— Faster Than Nyquist (FTN) signaling is extended.
We send FTN pulse trains that overlap in both time and
frequency; this is called two dimensional Mazo signaling. The
minimum time and frequency separation that achives d

2

min = 2

for root raised cosine pulses is found. Two dimensional signaling
is more bandwidth efficient than one dimensional. A simple
decoder is tested and it verifies the distance results.

I. INTRODUCTION

The concept of Faster Than Nyquist (FTN) signaling is well

established. If a PAM system is based on orthogonal pulses,

the pulses can be packed closer than the Nyquist rate 1/T

without suffering any distance loss. In a bandpass system a

QAM signal constellation is used. The rate where the square

distance falls below 2 for the first time is called the Mazo limit.

In this paper we consider a more general approach: instead

of stacking pulses closer in time we stack them closer in

frequency, or both. At some time- and frequency separation the

distance falls below 2. This is called the two dimensional Mazo

limit. The outcome is that the two dimensional limit gives a

lower bandwidth consumption than the one dimensional. A

simple decoder for these signals is suggested and tested. The

decoder verifies the achieved minimum distances.

Consider a baseband QAM system based on a time con-

tinous pulse h(t). The signal transmitted over the channel is

given by

sa(t) =

∞∑

n=−∞

a[n]h(t − nT∆), (1)

where a[n] ∈ {±1±j} are the data symbols and T∆ is the sym-

bol time. We shall refer to this as the symbol time separation.

Let a denote the sequence {. . . , a[−1], a[0], a[1], . . .}. Further-

more we assume h(t) to be of unit energy, i.e.
∫
∞

−∞
|h(t)|2dt =

1. It is well known that if the data symbols are uncorrelated

the power spectral density of the transmission equals |H(f)|2.

The normalized bandwidth is measured by

nbw =
W

R
Hz/bit/s, (2)

where W is the one sided baseband bandwidth of the trans-

mission and R = 1/T∆. For the pulse h(t) we use the family

of root raised cosine pulses with excess bandwidth α. When

α = 0 we get an ideal sinc pulse. Throughout this paper we use

α = .3. All pulses within this family are orthogonal if packed

at the Nyquist rate 1/T . The minimum square distance for

these systems is 2 and is achieved by a single symbol error.

We assume the AWGN channel.

The normalized bandwidth can be decreased by decreasing

T∆ below T . Mazo showed [1] that for ideal sinc pulses

the bandwidth can be reduced to .401 Hz/bit/s without any

Euclidean distance loss. This corresponds to setting T∆ =
.802T instead of T . This value is refered to as the Mazo

limit. More recently the limits for root raised cosine pulses

with nonzero excess bandwidth were derived in [2]. Efficient

receivers for FTN signaling were also presented in this paper

for the first time. Methods of computing the minimum distance

of FTN signaling can be found in [3] and [4]. Mazo–type

limits can also be derived for other pulse shapes, [5]. Mazo

limit phenomena turn up in other places as well. For example,

it occurs in CPM, see [6] and references therein.

Instead of packing signals in time they can be stacked in

frequency. The data can be divided into K streams or we

can assume K users; then we form K signals of the type (1)

and modulate each with a carrier, the carriers being separated

by f∆ = 2W Hz. This will guarantee that the K different

transmissions can be decoded independently. Note that if an

offset QAM multicarrier modulation system (OQAM-MCM)

is used f∆ can be set to 1/T without loss of orthogonality

even for α > 0, [7]. However, the possible benefits of OQAM-

MCM are not investigated in this paper.

Just as FTN gave up orthogonality in time we can also

give up orthogonality in frequency; instead of decreasing the

symbol time separation we can decrease the symbol frequency

separation f∆. The most general strategy is to decrese both.

For some combinations of time and frequency separation the

minimum distance will fall below 2. These points in a two

dimensional space are all refered to as two dimensional Mazo

limits. Even if we only stack signals tighter in frequency we

still refer to this as two dimensional to distinguish from the

original Mazo limit.

The symbols can be thought of as located at points in a

lattice separated by T∆ and f∆. This is illustrated in figure 1.

II. UPPER BOUNDS TO THE TWO DIMENSIONAL MAZO

LIMIT

In this section we search for upper bounds to the two

dimensional Mazo limit. Let ā denote K sequences of input

symbols a, i.e. ā is the set {a0, . . . ,aK−1}. These will

generate K signals sa0
(t), . . . , saK−1

(t) according to (1).

The baseband representation of the transmitted signal is now



f
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{

Fig. 1. Illustration of the separation of the transmitted symbols. Each dot
locates a symbol. Symbols are separated by T∆ seconds and f∆ Hz.

formed as

sā(t) =

K−1∑

k=0

sak
(t)ej2πfkt (3)

where frequency fk is chosen as fk = kf∆. If f∆ = 2W the

K transmissions are non overlapping in frequency.

Define the error sequence ē
.
= ā − b̄ and assume that the

data symbols are normalized by 1/
√

2. Then the normalized

Euclidean distance between the signals generated by sets ā

and b̄ is

d2(ā, b̄) =

∫ ∞

−∞

∣
∣sā(t) − sb̄(t)

∣
∣
2
dt

=

∫
∞

−∞

∣
∣

K−1∑

k=0

sak−bk
(t)ej2πfkt|2dt

=

∫ ∞

−∞

∣
∣

K−1∑

k=0

sek
(t)ej2πfkt|2dt

=

∫ ∞

0

∣
∣

K−1∑

k=0

Sek
(f − fk)

∣
∣
2
df, (4)

where we have used Parseval’s identity in the last equality. It

can seen that this is not time invariant if f∆ < 2W . Since the

Euclidean distance between the signals generated by ā and b̄

only depends on ā − b̄ we write

d2(ā, b̄) = d2(ā − b̄) = d2(ē). (5)

The minimum Euclidean distance is defined as

d2
min

.
= min

e
d2(ē). (6)

Our goal is now to find the smallest possible product T∆f∆

that maintains d2
min = 2. We want to find the Euclidean

distance of the error event ē = {e0, . . . , eK−1}. Furthermore,

without loss of generality, assume that both e0[n] �= 0 and

eK−1[n] �= 0 for some n. Since the signals are non overlapping

in frequency in the intervals F0 = [f0−W, f0−W + f∆] and

FK−1 = [fK−1 +W −f∆, fK−1 +W ] the Euclidean distance

generated by e can be lower bounded as

d2(ē) =

∫
∞

0

∣
∣

K−1∑

k=0

Sek
(f − fk)

∣
∣
2
df

≥
∫

F0

∣
∣Se0

(f − f0)
∣
∣
2
df +

+

∫

FK−1

∣
∣SeK−1

(f − fK−1)
∣
∣
2
df.

.
= d2(e0)

∣
∣
F0

+ d2(eK−1)
∣
∣
FK−1

. (7)

For some product of T∆f∆ the lower bound (7) will equal 2,

and T∆f∆ is an upper bound to the two dimensional Mazo

limit. By searching for the minimum f∆ for a given T∆ that

fulfills
∫ f0−W+f∆

f0−W

∣
∣Se0

(f − f0)
∣
∣
2
df ≥ 1, ∀ e0, (8)

we can find an upper bound to the two dimensional Mazo limit

by only exhausting error events for a single transmission, i.e.

ek = 0, k > 0. This is true since the two terms on the right

hand side of (7) have identical minimum values. Note that (8)

is time invariant since there is no overlap in frequency in this

frequency interval.

We collect the results of this search in table 1 for differ-

ent values of T∆. The normalized bandwidth is calculated

according to (2) and equals T∆f∆/2; this is for infinitely

many frequency carriers. All events out to length nine have

been exhausted. The value .704 is the one–dimensional Mazo

T∆ f∆ nbw (Hz/bit/s)

1 .78 .39

.9 .8 .36

.8 .86 .344

.704 .93 .327

TABLE I

UPPER BOUNDS ON THE MINIMUM FREQUENCY SEPARATIONS POSSIBLE

FOR DIFFERENT TIME SEPARATIONS. NORMALIZED BANDWIDTH APPLIES

FOR INFINITELY MANY FREQUENCY CARRIERS.

limit for 30 % root raised cosine pulses, resulting in nbw

.4577 Hz/bit/s. This value can not be violated without having

d2
min < 2. It is seen that significant bandwidth reductions are

possible by time and frequency stacking; the bottom row of

table 1 gives a coding gain of 3.98 dB compared to 16 QAM.

These, however, are only upper bounds.

III. FINDING d2
min

Finding the exact value of the minimum distance for arbi-

trary values of f∆ and T∆ is a hard task. If we consider error

events having support K in frequency and want to exhaust

all error events out to N error symbols in time we are facing

9NK events in total. The trivial symmetry property

d2(ē) = d2(−ē) = d2(jē) = d2(−jē) (9)

reduces this number four fold.



In the previous section we found upper bounds to the two–

dimensional Mazo limit which only required exhausting 9N

error events. Here we propose an algorithm that finds the

minimum distance in an efficient way for an arbitrary number

of frequency carriers.

The algorithm is based on the following simple lemma:

Lemma 1: Assume f∆ and T∆. If d2
min < 2 then at least

one of the right hand terms in equation (7) is smaller than 1.

Proof Assume the contrary, then d2
min ≥ 1 + 1 = 2.

We can exploit Lemma 1 to find d2
min without exhausting

all events. We propose the following algorithm which is given

for K = 3 carriers but can be extended to any K:

1) Let Me0
= {e0 : d2(e0)

∣
∣
F0

≤ 2, where F0 = [f0 −
W, f0 − W + f∆]}.

2) Let Me2
= {e2 : d2(e2)

∣
∣
F2

≤ 2, where F2 = [f2 +

W − f∆, f2 + W ]}. This is essentially the same search

as in step 1.

3) For each e0 ∈ Me0
and e2 ∈ Me2

such that

d2(e0)
∣
∣
F0

+ d2(e2)
∣
∣
F2

< 2 find the error event e1 that

minimizes d2({e0, e1, e2}) = d2(ē).

This algorithm exhausts less than |Me0
||Me2

| · 9N events,

which is usually much less than 93N . The extension of this

algorithm to K > 3 and stricter bounding criteria as well

as detailed explanations of how to efficiently perform the

involved steps will be reported in a future paper. Different

strategies should be applied in different parts of the (T∆, f∆)
plane.

For each computation of d2(ē) in step 3 of the algorithm

care must be taken concerning the time variation of the

Euclidean distance function. It is possible to avoid the time

variation by generating an alternate signal according to

sā(t) =

K−1∑

k=0

∞∑

n=−∞

ak[n]h(t − nT∆)ej2πfkt−nf∆ (10)

But it can be shown that this introduces an identical frequency

variation of the Euclidean distance instead. Therefore we

stick to our original signal generation (3) and deal with time

variation.

In order to find the worst case time offset for a given error

event e we must compute

min
p<s

{d2(τp(ē)}, (11)

where τp is the p-step time delay operator, and s is given as

s
.
= arg min

r
: d2(τr(ē) = d2(ē). (12)

Note that this must be done also for a completely exhaustive

search. From eq. (4) it can be seen that s also must satisfy

s = arg min
r

: ej2πrf∆T∆ = 1

⇔ arg min
r

: rf∆T∆ = u, u ∈ Z. (13)

Normally s is a large number and the computational effort is

high. We can choose “nice” numbers for f∆ and T∆ to get

a small s but this limits the possible choices for f∆ and T∆.

Instead we try to solve for the worst case analytically. The

Euclidean distance of the r step delayed error event ē equals

d2(τr(ē)) =

∫
∞

−∞

sτr(ē)(t)s
∗

τr(ē[n])(t)dt

=

∫
∞

−∞

K−1∑

k,l=0

N−1∑

m,n=0

ek[m]e∗l [n]h(t−(r+m)T∆)×

× h∗(t−(r+n)T∆)ej2πf∆(l−k)tdt

=

∫
∞

−∞

K−1∑

k,l=0

N−1∑

m,n=0

ek[m]e∗l [n]h(t − mT∆)×

× h∗(t − nT∆)ej2πf∆(l−k)(t+rT∆)dt

=

K−1∑

k,l=0

N−1∑

m,n=0

ek[m]e∗l [n]ej2πf∆(l−k)rT∆ ×

×
∫ ∞

−∞

h(t − mT∆)h∗(t − nT∆)ej2πf∆(l−k)tdt

=

K−1∑

k,l=0

N−1∑

m,n=0

ek[m]e∗l [n]ej2πf∆(l−k)rT∆γk,l[m, n]

=

K−1∑

k,l=0

ej2πf∆(l−k)rT∆

N−1∑

m,n=0

ek[m]e∗l [n]γk,l[m, n]

=
K−1∑

k=0

K−1∑

l=0

ej2πφ(l−k)βk,l(ē), (14)

where

γk,l[m, n] =

∫ ∞

−∞

h(t−mT∆)h∗(t−nT∆)ej2πf∆(l−k)tdt (15)

and

βk,l(ē) =

N−1∑

m=0

N−1∑

n=0

ek[m]e∗l [n]γk,l[m, n]. (16)

The last expression of (14) is the Euclidean distance of e at

time–frequency offset φ; this we write as

d2(ē; φ) =

K−1∑

k=0

K−1∑

l=0

ej2πφ(l−k)βk,l(ē). (17)

To find the worst case φ we take the derivative of d2(ē; φ)

∂ d2(ē; φ)

∂φ
=

K−1∑

k=0

K−1∑

l=0

j2π(l − k)ej2πφ(l−k)βk,l(ē) (18)

For f∆ ≥ W we have γk,l[m, n] = 0 for |l − k| > 1; this

implies that βk,l(e) = 0 for |l − k| > 1 as well. Setting the

derivative equal to zero we get

∂ d2(ē; φ)

∂φ
= j2π

K−1∑

k=1

ej2πφβk,k−1(ē) −

− j2π

K−1∑

k=0

e−j2πφβk,k+1(ē)

= 0 (19)



Equation (19) is the second order second order equation

(ej2πφ)2
K−1∑

k=1

βk,k−1(ē) =

K−1∑

k=0

βk,k+1(ē) (20)

which can be analytically solved; the case f∆ < W gives a

fourth order equation and is omitted here. The two solutions

φ1, φ2 to (20) are

{2πφ1, 2πφ2} = arg

{

±

√
√
√
√

∑K−1
k=0 βk,k+1(ē)

∑K

k=1 βk,k−1(ē)

}

, (21)

where arg{ } denotes the angle in radians of a complex

number. Whether φ1 is the minimum or the maximum can be

determined from the sign of
∑K−1

k=0 βk,k+1(ē). This method

of determining the worst time offset of the error event is

only valid for strictly irrational products of f∆T∆. If rational

numbers are used not all values for φ are obtainable; we can

then find the worst point simply by finding the two closest

allowed points to the minimizing φmin. This is illustrated in

figure 2. The asterix shows φmin and the two points closest

obtainable points to φmin. The left point gives the smallest

Euclidean distance.

0 0.2 0.4 0.6 0.8 1

1.8

1.9

2

2.1

2.2

2.3

D
a
v
P

E

φ

Fig. 2. Distance of an error event e as a function of φ. The asterix indicates
φmin and the dots indicates the two possible locations for the worst case
Euclidean distance.

In all our searches for the two dimensional Mazo limit

below we have searched over error events up to length 7 in

time and length 3 in frequency. An exhaustive search would

involve 921 ≈ 1020 events, which is far beyond our computing

capability. Our proposed algorithm, combined with the stricter

bounding technique mentioned in section III, only requires

testing roughly 5000000 events; for the leftmost point in figure

3 it was as low as ≈ 60000. The two dimensional Mazo

limit is shown in figure 3. At the points marked at the solid

curve the minimum distance is 2. Significant gains are obtained

compared to the one dimensional case which has nbw .4577
Hz/bit/s as Mazo limit.

0.75 0.8 0.85 0.9
0.65

0.7

0.75

0.8

0.85

0.9

f ∆

T∆

2D Mazo limit

nbw .325

nbw .3125

nbw .30

Fig. 3. Results for the 2 dimensional Mazo limit. The level curves indicates
constant normalized bandwidth of (from top) .325, .3125 and .30 Hz/bit/s.

IV. DECODING

These normalized bandwidth gains cannot be exploited

unless we are able to derive a decoder for this type of coded

modulation. Here we show that decoding is indeed possible.

Unfortunately the proposed decoder thus far only works for

K = 2 − 4 frequency carriers; this increases the normalized

bandwidths suggested in figure 3.

The decoder is based on the minimum Euclidean distance

receiver. The receiver should choose as its output the signal

sa(t) that minimizes
∫

∞

−∞

|r(t) − sā(t)|2dt, (22)

where r(t) is the received signal. It is well known that

minimizing

min
ā

∫
∞

−∞

|r(t) − sā(t)|2dt (23)

is equivalent to maximizing

max
ā

∫ ∞

−∞

r∗(t)sā(t) + r(t)s∗ā(t) − |sā(t)2|dt. (24)

The term
∫
∞

−∞
r∗(t)sā(t) + r(t)s∗ā(t)dt of (24) can be ex-

pressed as
∫

∞

−∞

r∗(t)sā(t) + r(t)s∗
ā
(t)dt =

2R

{∫ ∞

−∞

r∗(t)

K−1∑

k=0

∞∑

n=−∞

ak[n]h(t − nT∆)ej2πfkt

}

=

2R

{ K−1∑

k=0

∞∑

n=0

ak[n]

∫
∞

−∞

r∗(t)h(t − nT∆)ej2πfkt

}

=

2R

{ ∞∑

n=0

K−1∑

k=0

ak[n]rk[n]

}

, (25)



where

rk[n]
.
=

∫
∞

−∞

r∗(t)h(t − nT∆)ej2πfkt, (26)

and R{ } is the real value of a complex number. The term
∫ ∞

−∞
|sā(t)|2dt of (24) can similarly be expressed as

∫
∞

−∞

|sā(t)|2dt =
K−1∑

l,k=0

∞∑

m,n=0

al[m]a∗

k[n]λl,k[m, n], (27)

where

λl,k[m, n]
.
=

∫ ∞

−∞

h(t − mT∆)h∗(t − nT∆) ×

× ej2πflte−j2πfktdt. (28)

Since λl,k[m, n] = λ∗

k,l[n, m] the summations in eq. (28) can

be organized as

∫
∞

−∞

|sā(t)|2dt = 2R

{ K−1∑

l=1

∞∑

m=0

al[m] ×

×
l∑

k=0

m∑

n=0

a∗

k[n]λl,k[m, n]

}

. (29)

Eq. (29) together with the final expression of eq. (25) can be

seen as the trellis description of the receiver; at each time m
the receiver uses the current symbol of data stream l, a l[m]
and previous symbols, ak[n], n ≤ m, k ≤ l. This trellis is

in some sense two dimensional (over both n and k). Since

the number of states in this trellis is an astronomical number,

MLSE is out of the question. Instead we do reduced sequence

estimation (RSE) using the well known M–algorithm [6]. We

traverse the trellis column by column in figure 1.

From simulations we can see that the M (list size) needed is

often very large, e.g. 1000 or even more. This can be avoided

by introducing a Residual Noise Canceler (RNC). This is a

simple device that is cascaded on the output of the decoder

which tries to improve the decided symbol sequence. For all

n and 0 ≤ k ≤ K − 2 it tests all possible combinations of

the symbols (ak[n], ak[n+1], ak+1[n], ak+1[n+1]), and gives

as output the combination that minimizes eq. (22). This often

improves the BER while decreasing the needed M .

Some simulations are shown in figures 4–5. The simulations

verify the obtained minimum distances well. As previously

mentioned the decoder only works for a small number of

frequency carriers. In further research we are seeking a good

decoder for an arbitrary number of frequency carriers to fully

exploit the large gains suggested in table 1. Possible structures

could be an iterative decoder as proposed in [8]. It appears that

large complexity reductions are possible.

V. CONCLUSIONS

The concept of Faster Than Nyquist signaling has been

generalized. We have shown that it is possible to reduce the

frequency separation between the different data transmissions

to less than twice the baseband bandwidth of an individual

transmission. By also introducing time FTN signaling in each

transmission the normalized bandwidth can be further reduced.

4 6 8 10
10

−6

10
−4

10
−2

10
0

Eb/N0

B
E

R

Uncoded

(.8,.86)

(.8,.80)

Fig. 4. Simulations for K = 2 frequencies and 30 % excess bandwidth root
raised cosine pulses. The legend gives (T∆, f∆). The resulting normalized
bandwidths are .432 and .42 Hz/bit/s respectively. M = 250; no RNC used.
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(1,.71)

(.9,.80)

Fig. 5. Simulations for K = 4 and 30 % excess bandwidth root raised cosine
pulses. The legend gives (T∆, f∆). The resulting normalized bandwidths are
.425 and .4163 Hz/bit/s respectively. M = 500; RNC used.

The points where the distance falls below 2 make up the two

dimensional Mazo limit. It turns out that even for a small

number of frequency carriers the two–dimensional Mazo limit

is lower than the one–dimensional. A simple decoder was

tested and the Euclidean distances verified. In a sequel we

will develop a more sophisticated algorithm for finding d2
min.
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