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Abstract. A mixed model for micro-macroscopic computer simulation of binary alloy solidification is 

proposed. It involves a two-domain approach to solute conservation equations in the liquid and solid phases, 

whereas transport of momentum and energy in the two-phase region is modelled using the phase mixture 

theory. To distinguish regions of columnar and equiaxed crystal structures evolving in a cast during 

solidification, the special front tracking technique on non-structural triangular grids is included in the 

model. In this two-domain approach, solute conservation equations are averaged across solid and liquid 

phases, and the solute transport at the phase interface is included. Additionally, the microstructure evolution 

is modelled to capture the development of various complex grain structures and more accurately describe 

the solute transport between the phases. The accuracy of the proposed model is first verified by a grid 

refinement analysis, and then the model is used to predict the solute concentration and macro-segregation in 

the example problem of Pb-48%wt Sn alloy solidification in a 2D mould. The results obtained are next 

compared with the relevant ones predicted by the fully single-domain model, earlier developed by authors. 

Thus, the role of finite diffusion in liquid and solid phases is identified and discussed. 

1 Introduction  

Solidification of binary alloys is a complex process, 
which involves multiscale transport phenomena and 
formation of a complex tiny tree-like microstructure of 
the solid phase. Its morphology can be columnar or 
equiaxed. The former one develops close to cooled walls 
and these grains grow towards the mould interior. In 
front of them, in the undercooled liquid, globular grains 
can appear and they evolve into equiaxed crystals. 
Columnar dendrites are stationary, whereas equiaxed 
grains can be freely transported with the ambient, melt. 
Within these two macroscopic regions of different grain 
structures distinct flow conditions and transport 
properties occur, so they should be treated separately and 
individually - as a porous medium and slurry of solid 
grains, respectively. Hence, the important part of micro-
macroscopic modelling of alloy solidification is the 
identification of zones of different grain morphology by 
tracing of a moving hypothetical interface separating 
these zones. In their advanced multi-phase model Wang 
and Beckermann [1] used a simple one-dimensional 
approach of the single point tracking of the liquidus 
isotherm, justified only for diffusive heat and mass 
transport. Browne and Hunt [2], in their model of 
diffusion driven binary alloy solidification, introduced 
tracing of a line separating the columnar dendrite region 
from the undercooled zone on a regular control volume 
grid. The line, consisting of connected linear segments, 
being a locus of the envelope of columnar dendrite tips, 
represented by mass-less markers moving across the 
domain according to prescribed kinetics. This approach 

was further extended to the cases involving thermal 
natural convection (Banaszek and Browne [3]), thermo-
solutal natural convection   (Seredyński   and   Banaszek  
[4,5]) and non-structural triangular control volume grids 
(Seredyński   and Banaszek [6]). Their model took into 
account micro- and macroscopic transport of solute, 
equilibrium growth of solid grains in the undercooled 
liquid, blocking of growth of columnar dendrites with 
equiaxed grains, and it replaced the commonly used 
coherency point model (e.g. Ilegbusi and  Mat [7]) by 
more exact distinguishing the zones of different dendrite 
structures [5]. 
However, since the model is based on the mixture 
theory, where local thermal and solutal equilibrium is 
assumed, many microscale phenomena are beyond its 
scope, like nucleation, globular/equiaxed growth, solute 
transport rate at the phase boundary related to evolving 
grain shape, etc. 
Several recently developed models, which are based on 
the volume averaging and the multi-domain approach, 
enable modelling of these nonequilibrium processes. The 
basic equations have been developed by Ganesan and 
Poirier [8] and Ni and Beckermann [9]. They have been 
further generalized for multi-phase systems (for example 
[10]), and implemented in the commercial software (for 
example [11]).  
The paper presents an updated model for micro-
macroscopic computer simulation of binary alloy 
solidification, which preserves the computational 
efficiency of the single domain mixture model. It is 
based on a two-domain approach to solute conservation 
equations in the liquid and solid phases, whereas 
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transport of momentum and energy in the two-phase 
region (mushy zone) is modelled on the basis of the 
mixture theory. To distinguish regions of different 
crystal structures evolving in a mould during 
solidification, the front tracking technique on non-
structural triangular grids, earlier developed by the 
authors ([4-6]), is included in the model. Its accuracy is 
verified by the grid independency study, and its 
predictions of solute concentration fields and macro-
segregation with potential channeling are compared with 
the relevant results obtained from the fully equilibrium 
mixture model, for the selected example problem of Pb-
48%wt Sn alloy solidification in a 2D mould. 

2 Mathematical model  

Mathematical model takes into account mass, 
momentum, energy and solute transport in the two-phase 
medium during solidification. The procedure of front 
tracking is also used to separate regions in the two-phase 
domain, where various dendrite morphologies prevail. 
The idea and details of its implementation are discussed 
in the next section. The mathematical model used here is 
refers to the previous ones developed by authors.  

2.1 Transport equations 

The momentum and energy transfer are assumed to be 
equilibrium processes. It can be justified with relatively 
low velocities of the molten alloy and high Lewis 
number, typical for metal alloys, so the averaged across 
both phases transport equations of mass, momentum and 
energy can be expressed in the form (e.g. [5]) 
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The mass balance equation of the solid phase is based on 
the volume averaging procedure of the microscale mass 
balance equation and reflects findings presented in [9] 
and [10] 
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where Vs is the local intrinsic volume average velocity of 
solid phase and Γs is the mass flux of solid phase per unit 

volume at the phase interface due to phase change. The 
term related to the effect of nucleation is neglected here.  
The solute transport equations are established in solid 
and liquid phases separately. The equation are based on 
the volume averaging procedure performed over solid 
and liquid phases (e.g. [9,10]) 
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where d

s
J  and d

l
J  are the interfacial fluxes of solute per 

unit volume due to diffusion on the solid and liquid sides 
of the phase interface, respectively. Similarly, 

s
J

  and 

l
J

  are the interfacial fluxes of solute per unit volume 
due to phase change on both sides of the phase interface. 
In eq. (5) and (6) terms related to the solid grains 
nucleation are neglected. Presented above equations 
need additional relations, closure data, which are 
discussed in following sections.  

2.2 Modelling of fluid flow 

The single momentum balance equation (2) describes the 
fluid flow in the whole domain. In the region where two-
phases coexist two zones are identified, with columnar 
dendrites and equiaxed grains. In those zones two 
different flow regimes are distinguished. In the columnar 
dendrites zone the solid phase is stationary and the 
character of flow is typical for porous medium. In this 
domain the permeability, K, is defined, and described 
with the formula 
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Average velocity of the solid phase in this region is 
equal to zero. In the second part of the two-phase 
domain, solid grains are immersed in the undercooled 
liquid, and the model of slurry flow is utilized. The 
mechanical equilibrium between phases is assumed, so 
averaged phase velocities are taken to be equal, Vs=Vl. It 
is justified with relatively small size of the domain and 
low velocities of the two-phase mixture.  
In the liquid and solid phases buoyancy forces appear 
due to variation of liquid density with temperature and 
composition. The simple Boussinesq model is used 

 

 
 

 
 
 

,

,

, ,

,

,

, ,

1

T l ref

l l ref

C l l l ref

T s ref

s s ref

C s s rs ef

T T

C C

T T
V g

C

g

C


 








 
  
   

 
 




   

g

g

B

 (8) 

2

E3S Web of Conferences 128, 10003 (2019) https://doi.org/10.1051/e3sconf/201912810003

ICCHMT 2019



 

2.3 Modelling of mass transfer at the 
phase boundary 

Two mechanisms of solute transport at the phase 
boundary are accounted for, namely related to solutal 
diffusion across the interface and the phase boundary 
motion due to phase change. Additionally, the simple 
nucleation mechanism is considered to capture the onset 
of solidification. All mentioned processes are tightly 
related to microscopic evolution of grains. 

2.3.1 Nucleation 

The simple nucleation model is applied. Solidification 
starts when local temperature drops below the onset of 
solidification temperature. It is defined as the difference 
in local liquidus temperature and prescribed 
undercooling, ΔTliq. In this study the value of ΔTliq was 
equal to 0.1 K.  

2.3.2 Interphase solute diffusion 

The simple diffusive transport is adopted based on the 
model presented in [9]. The diffusion flux on the side of 
the phase k (solid or liquid) is related to the difference 
between the concentration at the phase interface and the 
average concentration in phase k 
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where Sv is the interfacial area density. For globular 
grains it can be expressed as 
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where gs,c is the volumetric fraction of solid phase, at 
which packing of grains occurs. For columnar dendrites 
simple formula is adopted [9] 
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Diffusion lengths close to globular/equiaxed grains were 
calculated with the formulae taken from [9] 
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where Schmidt and Reynolds numbers and parameter a 
were determined with the formulae 
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Diffusion lengths in the columnar zone are determined 
with the formula [9] 
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2.3.3 Solute transport due to phase change 

The solute transfer at the phase interface is determined 
by 
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where phase change rate in the solid and liquid phases 
accomplishes the relation, Γs = -Γl. It is determined with 
the mass balance at the phase boundary, 
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If the equilibrium solute composition at the phase 
interface is assumed, namely * *
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solute balance equation at the interface becomes 
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3 Front tracking procedure 

Due to existence of two regions where various dendrite 
morphologies prevail and where different models of 
fluid flow should be applied, the procedure of 
identification of these regions is utilized. It is realized 
with the procedure of tracking the envelope of columnar 
dendrite tips, which separates both subdomains of the 
two-phase region. The front is defined as the sequence of 
linear segments connected with mass-less markers. 
Markers move according to prescribed dendrite tip 
kinetics, which is a relation between solutal 
undercooling and dendrite tip growth rate. For the alloy 
Pb-48wt%Sn the relation reads [5]:  

7 2 37
1.689 10 1.217 10

t
V T T

      where  

m l
CT T m T   . On the basis of the actual position 

of the front the switching function, V , is determined in 
control volumes crossed by the front. This function 
determined for each control volume expresses which part 
of the c.v. is behind the front. It is equal to 0 in these 
cells which are entirely immersed in the undercooled 
liquid and 1 in the cells placed entirely in columnar 
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dendrites zone. The idea of the front tracking procedure 
and its relation to the momentum balance equation have 
been presented in [5] for the mapped c.v. meshes and in 
[6] for the non-orthogonal, triangular c.v. meshes. In the 
proposed model the switching function is also used to 
identify regions where different models of growth of 
solid phase are imposed. 

4 Problem statement 

The problem considered here is solidification of binary 
alloy, Pb-48%wt Sn in a rectangular cavity of length 0.1 
m and height 0.06 m, cooled from a side. The Newton-
Robine boundary condition for the energy equation is 
imposed on the left wall; the heat transfer coefficient and 
the ambient fluid temperature are equal to 400W/(m2K) 
and 25°C, respectively. All other walls are perfectly 

insulated and impermeable Initial solute concentration is 
equal to 48 wt % Sn, initial temperature is 216°C and 

initial velocity is zero. Material properties used in this 
case are available elsewhere (e.g. [4-6]). The domain 
was discretized with uniform, triangular, nonorthogonal 
c.v. grid, which diameter was set equal to 1 mm, 0.8 mm 
and 0.5 mm.  
Balance equations were integrated on collocated, non-
orthogonal, triangular control volume mesh. The 
transient terms were integrated with implicit Euler 
scheme. The formula for diffusive fluxes across control 
volume faces took into account the skewness term [11] 
resulting from the non-orthogonality of the mesh. To 
avoid artificial pressure oscillations, the Rhie and Chow 
[12] scheme was used to evaluate the interfacial 
convective fluxes. 

5 Results and discussion 

5.1 Grid sensitivity analysis 

Analysis of the role of mesh density was carried out first. 
Simulations were performed for three uniform and 
triangular c.v. meshes. Their densities were described 
with diameter of c.v’s, equal to 1.0 mm, 0.8 mm and 
0.5 mm. For each case the same time step, equal to 0.01s 
was used.  
In figure 1 contour plots of average solute fraction after 
200s of the process are compared. Position of the front is 
denoted with a black continuous line. Predicted 
concentrations match well, and positions of the fronts are 
similar. Tendency to formation of A-segregates is not 
observed here, but a slightly more enriched in solute 
region close to the fully solidified alloy is predicted with 
simulation performed on the finest mesh. Slight 
differences can be observed in the fully solidified region, 
close to cooled wall. Only for results predicted using the 
finest grid, the mesh dependent artefacts in the solute 
fraction distribution are not observed. 
 
 

 

Fig. 1. Contour plots of average solute concentration after 200s 

of the process predicted with simulations carried out on mesh 

densities 1.0 mm (A), 0.8 mm (B) and 0.5 mm (C). 

5.2 Comparison of the fully equilibrium and 
proposed models 

The proposed, two-domain (T-D) model accounting for 
the finite solute diffusion in the liquid and solute phases 
is compared with the fully equilibrium, single-domain 
(S-D) model. In the latter the Scheil model of 
microdiffusion is utilized, which is based on the 
assumption that the mass diffusion in the solid phase is 
neglected and liquid phase is well mixed. Details of the 
single-domain computational model of alloy 
solidification are available elsewhere, for example in [4-
6].  
Comparison of solid fractions predicted with fully 
equilibrium (S-D) model and the proposed two-domain 
(T-D) model are shown in Fig. 2. In spite of various 
assumptions applied in these models, related to micro-
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scale solute transport at the phase boundary, their 
comparison can supply some insight into underlying 
processes. Distributions of solute fraction predicted for 
two time instants, namely 100s and 200s of the process, 
reveal considerable differences between models in the 
initial stage, which subsequently diminish in the later 
stage. The S-D model predicts numerous segregate 
channels in the initial stage of solidification (Fig. 2A). In 
the later stage of the process they are partially 
overgrown by solidifying material (Fig. 2C). The second 
model (T-D) predicts no segregation channels, but only 
zone of reduced solid fraction in the mid-height of the 
domain close to cooled wall (Fig. 2B) which 
subsequently disappears (Fig. 2D). For each case 
position of the front close to the upper wall is shifted 
towards the cooled wall. It is due to developed at the top 
of the domain zone of enriched in solute liquid alloy, 
which is predicted with both models (Fig. 1). In the 
bottom part, growth of the front is retarded due to 
vigorous convection in the bulk liquid. This effect is 
more pronounced for results predicted with S-D model, 
but it diminishes in the later stage (Fig. 2C and D).  
Comparison of solute concentrations averaged across 
both phases predicted with S-D and T-D models (Fig. 3) 
reveals similar phenomena related to macrosegregation 
evolution. The vertical segregation is observed in the 
bulk liquid and the well mixed zone in the bottom part. 
Some similarities can be found behind the front, in the 
columnar dendrites zone. In the bottom of this region, a 
negative segregation develops. The proposed model 
predicts more intensive segregation in this zone. The 
crucial difference mentioned earlier is in the prediction 
of the developing segregation channels by the S-D 
model, what is not the case in the T-D model.  The 
reason can be related to the physical model of the 
process. In the fully equilibrium model (S-D model), 
solidification starts at the local liquidus temperature and 
next the equilibrium growth of solid grains occurs. So, 
the solid fraction is tightly related to solute concentration 
and temperature. That case describes the fastest possible 
growth of the solid phase in the undercooled liquid. 
Process of grain growth is also related to the release of 
solute to the bulk liquid, which is a source of the solutal 
convection. Stream functions predicted with both 
models, presented in Fig. 5 for the time of 100s, indicate 
that solutal convection is more vigorous in the case of 
the S-D model than the one predicted with the T-D. In 
that situation, the flow induced in the columnar dendrites 
zone is more intensive and can promote formation of 
segregation channels. This issue requires further and 
more detailed investigation. 
  

Fig. 2. Contour plots of solid fraction after 100s (A and B) and 

200s (C and D) of the process predicted with the S-D model (A 

and C) and the T-D model (B and D). 
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Fig. 3. Contour plots of average solute fraction after 100s (A 

and B) and 200s (C and D) of the process predicted with the  

S-D model (A and C) and the T-D model (B and D). 
 
 
 
 

 
Fig. 4. Contour plots of stream function after 100s of the 

process predicted with S-D model (A) and T-D model (B). 

6 Conclusions 

In the proposed paper the mixed model for micro-
macroscopic computer simulation of binary alloy 
solidification is proposed. It involves the mixture 
approach to modeling the mass, momentum and energy 
equation and two-domain approach to solute transport. 
The front tracking procedure is also used to distinguish 
zones of columnar and equiaxed grains to impose 
different models of fluid motion and different models of 
grain growth. 
The direct comparison of solid fraction and averaged 
solute concentration predicted with the proposed model 
and with the fully equilibrium one shows that actual 
positions of the boundary between various dendrite 
morphologies (Fig. 2, 3), as well as fluid flow structure 
(Fig. 4) differ considerably. Predicted averaged solute 
concentrations by the two analysed models reveal some 
similarities, like vertical segregation and the existence of 
well mixed zone in the slurry region. A disappearance of 
the segregation channels observed in the proposed model 
accounting for finite solute diffusion in both phases, at 
later stage of solidification, requires further study. 
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