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The etiologies of neurodegenerative diseases may be

diverse; however, a common pathological denominator is

the formation of aberrant protein conformers and the

occurrence of pathognomonic proteinaceous deposits.

Different approaches coming from neuropathology, genet-

ics, animal modeling and biophysics have established

a crucial role of protein misfolding in the pathogenic

process. However, there is an ongoing debate about the

nature of the harmful proteinaceous species and how toxic

conformers selectively damage neuronal populations.

Increasing evidence indicates that soluble oligomers are

associated with early pathological alterations, and strik-

ingly, oligomeric assemblies of different disease-associated

proteins may share common structural features. A major

step towards the understanding of mechanisms implicated

in neuronal degeneration is the identification of genes,

which are responsible for familial variants of neurodegen-

erative diseases. Studies based on these disease-associated

genes illuminated the two faces of protein misfolding in

neurodegeneration: a gain of toxic function and a loss of

physiological function, which can even occur in combi-

nation. Here, we summarize how these two faces of

protein misfolding contribute to the pathomechanisms of

Alzheimer’s disease, frontotemporal lobar degeneration,

Parkinson’s disease and prion diseases.
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Oligomeric protein assemblies in a deadly
cascade

The most frequent neurodegenerative disorder is Alzheimer’s

disease (AD). Major progress has been made in this field due

to the identification of the deposited amyloidogenic proteins

and genetically linked mutations, which accelerate amyloid

formation and disease onset (Haass and Selkoe, 2007). Two

major proteins are found within the pathological hallmarks of

AD. Amyloid-b peptide (Ab) is deposited in amyloid plaques

within the parenchyma and tau in neurofibrillary tangles

within neurons. It is now becoming more and more clear

that both proteins are required to confer neurotoxicity in a

process called the amyloid cascade (Hardy and Selkoe, 2002;

Figure 1A). Ab is derived by proteolytic processing from the

b-amyloid precursor protein (bAPP, see below) and exists as

several species of distinct lengths (Haass, 2004). The most

abundant 40 amino-acid species (Ab40) is rather benign,

whereas the less abundant 42 amino-acid variant (Ab42)

aggregates much faster and is therefore directly related to

disease pathology (for a review, see Haass and Selkoe, 2007).

However, it is currently unclear how the addition of the two

amino acids at the C-terminus of Ab changes the biophysical

properties of the peptide in a way that it aggregates faster.

The amyloid cascade is probably initiated by subtle changes

in the Ab42/Ab40 ratio, a total increase of Ab generation, or

reduced clearance of Ab (Figure 1A). There is strong genetic

evidence that specifically the Ab42/Ab40 ratio is affected by

mutations in one of the Ab-generating enzymes (see below)

and the bAPP substrate itself (Haass, 2004). In addition,

environmental factors and specifically genetic predisposition

such as the ApoE status can influence disease onset

(Figure 1A; Martins et al, 2006). All Ab species are secreted

from healthy neurons throughout life, but specifically the

longer Ab42 species tends to form soluble oligomers (Haass

and Selkoe, 2007). These in vivo generated oligomeric assem-

blies can be as small as dimers or trimers (Podlisny et al,

1995) or as large as dodecamers (Lesne et al, 2006). Probably,

long before these oligomers are deposited in disease-charac-

terizing pathological plaques, they inhibit the maintenance of

long-term potentiation (Walsh et al, 2002). This by itself may

lead to mild cognitive impairment (MCI) at early stages of AD

(Haass and Selkoe, 2007). One should keep in mind that

brains of MCI patients may already contain some deposits, so

it may be difficult to conclude that exclusively soluble Ab
oligomers are involved in early memory loss. However, the

effects of Ab oligomers on long-term potentiation were ob-

served in rats lacking any amyloid deposits, making it likely

that such soluble oligomers could indeed be responsible for

the very first symptoms of memory loss in human patients.

Inflammatory responses involving microglia and astrocytes

follow the deposition of Ab and may enhance progressiveReceived: 14 August 2007; accepted: 24 October 2007
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synaptic and neuronal injury. As a result, ion homeostasis

may be affected and oxidative stress occurs. Strikingly, these

events then directly can affect tau metabolism (Blurton-Jones

and Laferla, 2006). Tau, a microtubule-binding protein, is

required for microtubule stabilization (Mandelkow et al,

2007). Misphosphorylation of tau, which is a pathological

signature of all AD cases, reduces binding of tau to micro-

tubules, which then detaches. Unbound tau is apparently

Figure 1 Pathomechanisms in AD (A), FTLD linked to chromosome 17 (B), PD (C) and prion diseases (D). (A) In AD, environmental factors,
genetic predisposition and mutations in bAPP and PS can affect the metabolism of Ab. Initially, small and soluble oligomeric assemblies of
Ab42 are produced, which then cause synaptic dysfunction as well as an induction of the amyloid cascade. Note the ‘shortcut’ to tau pathology
and FTLD via chromosome 17-linked tau mutations. (B) The major variants of chromosome 17-linked FTLD. On the left panel, FTLD cases with
tau-positive inclusions (tauopathies) are described. On the right panel, the tau-negative, ubiquitin-positive cases are shown. (C) In sporadic PD
and familial PD there are common pathophysiological alterations, such as oxidative stress, mitochondrial dysfunction and protein misfolding,
which ultimately result in the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta. (D) In the classical
form of prion diseases, conversion of PrPC to PrPSc leads to a neurodegenerative and infectious disorder. The conformational transition can
occur spontaneously (sporadic), or can be induced by invading PrPSc (acquired) or mutations (inherited). Transgenic mouse models indicated
that expression of mutant PrPs can trigger neurodegeneration in the absence of infectious prion propagation; whether such disease entities
exist in animals or humans is unknown. PrPSc: self-propagating isoform, essential component of infectious prions; CtmPrP: a transmembrane
form of PrP with the C-terminus facing the cytosol; cytoPrP: cytosolically localized PrP; PG14PrP: mutant PrP containing a nine octarepeat
insertion; PrPDHD: mutant PrP lacking the internal HD.

Two faces of protein misfolding in neurodegeneration
KF Winklhofer et al

&2008 European Molecular Biology Organization The EMBO Journal VOL 27 | NO 2 | 2008 337



misfolded and begins to aggregate due to its enhanced free

concentration in the cytoplasm. Finally, hyperphosphorylated

tau forms the paired helical filaments found within tangles

(Mandelkow and Mandelkow, 1998; Ballatore et al, 2007). A

strong support of a direct induction of tau pathology by Ab
came from the observation that pathological phosphorylation

of tau is induced by the intracerebral injection of Ab42 fibrils

(Gotz et al, 2001). Moreover, double transgenic mice expres-

sing a tau mutation, together with mutant APP, showed

enhanced tau pathology (Lewis et al, 2001). Strikingly, Oddo

et al (2003) demonstrated that Ab accumulation precedes tau

pathology by several months in transgenic mouse models of

AD. Consistent with these findings, a reduction of Ab by an

anti-Abvaccination strategy (Haass and Selkoe, 2007) in brains

of transgenic mice reduces tau pathology. Importantly, under

these conditions, early tau pathology is selectively reduced,

whereas late tau pathology is apparently not affected (Oddo

et al, 2004). Recent evidence further supported the connection

between Ab and tau within the amyloid cascade by demon-

strating that memory deficits can be prevented in a transgenic

model for AD pathology upon removal of the tau gene

(Roberson et al, 2007). Thus, there is culminating evidence

that Ab is at the beginning of the amyloid cascade and initiates

tau mislocalization, misfolding and toxicity. Plaques may serve

as reservoirs for a continuing supply of soluble oligomers of

Ab, which can diffuse and cause neuronal dysfunction and cell

death even far away from amyloid deposits (Haass and Selkoe,

2007). Thus, a direct correlation of the amyloid plaque load

with memory loss is not necessarily to be expected. The same

may be true for tau, as oligomeric species composed of 8–14

tau molecules have been implicated in neurotoxicity (Wille

et al, 1992).

Interestingly, in the absence of amyloid toxicity aggrega-

tion of tau can result in a different neurodegenerative

disorder, named frontotemporal lobar degeneration (FTLD)

(Figure 1B). In other words, abnormal tau by itself can induce

a ‘shortcut’ within the above-described amyloid cascade

(Figure 1A and B). The chromosome 17-linked FTLD cases,

which are characterized by tau-positive inclusions (tangles),

are caused by mutations within the tau gene (Ballatore et al,

2007; Mandelkow et al, 2007). These mutations affect tau

function by several distinct mechanisms. Some mutations

change the splicing pattern of tau and lead to the accumula-

tion of the four repeat variant (Hutton et al, 1998). The

change in the ratio from four-repeat to three-repeat tau is

apparently directly related to its neurotoxic propensity and its

ability to cause neurodegeneration, but it is currently not

known how it affects neuronal viability. Other mutations

within tau do not affect splicing but are missense mutations

causing single-amino-acid exchanges. These seem to affect

the microtubule-binding capacity of tau and/or increase its

aggregation (Mandelkow et al, 2007).

Figure 1 Continued.
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Gain of neurotoxic and loss of protective
function in combination?

Deposition of aggregated a-synuclein in Lewy bodies and

Lewy neurites is a pathological hallmark of Parkinson’s

disease (PD) (Figure 1C) and some other neurodegenerative

entities, collectively termed a-synucleinopathies. The physio-

logical function of a-synuclein, which is abundantly

expressed in the central nervous system, is not fully under-

stood. Its enrichment in presynaptic terminals and its asso-

ciation with vesicles suggests a role of a-synuclein in synaptic

dynamics. In a manner similar to tau, a-synuclein is a

natively unfolded or intrinsically disordered protein with

considerable conformational plasticity (for reviews, see

Volles and Lansbury, 2003; Beyer, 2007; Uversky, 2007). In

vitro, different a-synuclein conformers can be populated:

monomers, which adopt a N-terminal a-helical structure

upon membrane binding, morphologically diverse b-sheet-

rich oligomers, called protofibrils, amorphous aggregates and

amyloid fibrils with a characteristic cross-b structure. Three

a-synuclein missense mutations as well as genomic multi-

plications promote the propensity of a-synuclein to aggregate

and are associated with autosomal dominant PD

(Polymeropoulos et al, 1997; Kruger et al, 1998; Singleton

et al, 2003; Chartier-Harlin et al, 2004; Farrer et al, 2004;

Ibanez et al, 2004; Zarranz et al, 2004). As in the case of Ab,

it is currently discussed that not the final aggregates, but

rather oligomeric intermediates might be the toxic species

(for review, see Lansbury and Lashuel, 2006; Haass and

Selkoe, 2007; Uversky, 2007). Remarkably, dopamine can

modify the aggregation pathway of a-synuclein, facilitating

the formation of oligomeric intermediates (Conway et al,

2001; Li et al, 2004; Cappai et al, 2005; Norris et al, 2005;

Mazzulli et al, 2006). In support of a role of dopamine in

enhancing the toxic potential of a-synuclein, inhibition of

dopamine synthesis blocked cell death induced by a-synu-

clein overexpression in a cell culture model (Xu et al, 2002).

Various mechanisms have been proposed to explain the toxic

effects of a-synuclein based on observations in different

model systems (for a review, see Cookson and van der

Brug, 2007), including impairment of proteasomal or lysoso-

mal protein degradation (Stefanis et al, 2001; Tanaka et al,

2001; Petrucelli et al, 2002; Snyder et al, 2003; Cuervo et al,

2004; Lindersson et al, 2004), induction of endoplasmic

reticulum (ER) stress (Smith et al, 2005; Cooper et al,

2006), Golgi fragmentation (Gosavi et al, 2002), sequestration

of antiapoptotic proteins into aggregates (Xu et al, 2002) and

the formation of pores on cellular membranes (Volles et al,

2001; Lashuel et al, 2002). Basic insight into early events of a-

synuclein toxicity came from a recent study in Saccharomyces

cerevisiae. Overexpression of wild-type or mutant a-synuclein

resulted in defective ER-to-Golgi vesicular transport, and

Rab1, a small GTPase identified in a screen for modifiers of

a-synuclein toxicity, protected against neuronal loss in some

animal models (Drosophila melanogaster, Caenorhabditis

elegans) and in primary cultures of rat midbrain neurons

(Cooper et al, 2006). Furthermore, Sept4, a presynaptic

scaffold protein, has recently been shown to suppress

a-synuclein toxicity in a transgenic mouse model (Ihara

et al, 2007). Clearly, model systems to study the toxicity of

a-synuclein have intrinsic limitations, and to discriminate

causal events from secondary effects is a difficult task.

However, it seems plausible that more than one single

mechanism contributes to the complex pathogenesis of

a-synucleinopathies, which proceeds over decades in pa-

tients. To add another layer of complexity, a-synuclein may

also play a neuroprotective role (for a review, see Lee et al,

2006). Transgenic expression of a-synuclein has been shown

to prevent neurodegeneration caused by the deletion of

cysteine-string protein-a, a molecular chaperone that is cru-

cial for folding and refolding of synaptic SNARE proteins

(Chandra et al, 2005). If and how the physiological activity of

a-synuclein is coupled to its pathological potential and which

conformers constitute the functional or toxic species is still a

challenge for future research.

A deadly and infectious variant of protein
misfolding

Protein misfolding can also lead to neurotoxicity and infec-

tivity. The concept that a conformational transition of the

cellular prion protein (PrPC) to the pathological prion protein

(PrPSc for scrapie PrP) implicates the formation of a neuro-

toxic conformer that in addition is infectious, is unprece-

dented (Prusiner, 1982; Figure 1D). After it had been

proposed that heritable infectious proteins are responsible

for mammalian prion diseases, studies in fungi indicated that

self-propagating protein conformers might be of broader

biological significance (Wickner, 1994). In prion disease

research, numerous studies have been focused on the enig-

matic composition of the infectious agent. A conclusive

answer is still missing partly due to the fact that the purest

infectious preparation (prion rods) still contains components

in addition to PrPSc. Nucleic acids longer than 25 nucleotides

can definitely be excluded as essential components for in-

fectivity (Safar et al, 2005), but a possible role of the poly-

saccharide scaffold, which accounts for 5–15% of prion rods,

remains to be established (Dumpitak et al, 2005). The first

successful attempts to generate infectivity in vitro with

recombinantly expressed PrP were reported, but with extre-

mely low infectious titer, and PrPC-overexpressing mice were

used for the bioassays (Legname et al, 2004, 2005). Even if

infectivity is entirely deciphered in the conformation of PrPSc,

it seems plausible that auxiliary components can significantly

modulate various aspects in the pathogenesis of prion dis-

eases (for a review, see Caughey and Baron, 2006).

At present, there is only little understanding of how PrPSc

or neurotoxic PrP mutants cause neurodegeneration (for

review, see Hunter, 2006). Interestingly, expression of PrPC

in neuronal cells seems to be required to mediate neurotoxic

effects of PrPSc (Brandner et al, 1996; Mallucci et al, 2003;

Chesebro et al, 2005). Neurotoxicity of PrPSc could be linked

to its propagation in neuronal cells, or PrPSc might elicit a

deadly signal through a PrPC-dependent signaling pathway.

Indeed, these observations might provide a link to the

physiologcial function of PrPC. A stress-protective activity

of PrPC was first observed in cell culture experiments with

primary neurons (Kuwahara et al, 1999). It was then shown

that PrPC-knockout mice display enlarged infarct volumes

after ischemic brain injury and an increased sensitivity to

kainate-induced seizures (Walz et al, 1999; McLennan et al,

2004; Shyu et al, 2005; Spudich et al, 2005; Weise et al, 2006;

Mitteregger et al, 2007; Rangel et al, 2007). In one study, the

neuroprotective activity of PrPC was linked to the octarepeat
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region, located within the unstructured N-terminal domain

(Mitteregger et al, 2007). Based on these and other studies

with established cell lines, it is plausible to propose that PrPC

can modulate signaling cascades, in particular stress-protec-

tive pathways (for review, see Flechsig and Weissmann, 2004;

Roucou and LeBlanc, 2005; Westergard et al, 2007).

Moreover, a loss of PrPC function could be implicated in the

pathogenesis of prion diseases and PrPC-dependent pathways

might be involved in neurotoxic signaling. For example, in

vivo crosslinking of PrPC by antibodies triggered neuronal

apoptosis (Solforosi et al, 2004) and PrPC-dependent recep-

tors were postulated to explain neurotoxic effects of a PrP

mutant lacking the hydrophobic domain (HD) (see below).

Transgenic mouse models revealed that several aberrant

conformers of PrP distinct from PrPSc can induce neuronal

cell death in the absence of infectious prion propagation

(Muramoto et al, 1997; Chiesa et al, 1998; Hegde et al,

1998; Shmerling et al, 1998; Ma et al, 2002; Flechsig et al,

2003; Baumann et al, 2007; Li et al, 2007; Figure 1D). From

one class of PrP mutants it emerged that PrPC can acquire a

neurotoxic potential by deleting the internal HD (Shmerling

et al, 1998; Baumann et al, 2007; Li et al, 2007). PrPDHD is

complex glycosylated and linked to the plasma membrane via

a GPI anchor, suggesting a similar cellular location to PrPC

(Winklhofer et al, 2003b). Two different models were pro-

posed to explain the neurotoxic activity of PrPDHD. In one

model, it was suggested that PrPDHD blocks neurotrophic

signaling via binding to a yet unidentified cell-surface recep-

tor (Shmerling et al, 1998). In another model, PrPDHD

competes with PrPC for binding to a hypothetical signal

transducing protein. In this scenario, PrPC induces neuropro-

tective signaling, while binding of PrPDHD triggers a neuro-

toxic cascade (Li et al, 2007).

Acquisition of a neurotoxic activity is not restricted to PrP

conformers present in the secretory pathway. Spontaneous

neurodegeneration of transgenic mice expressing a PrP mu-

tant without the N-terminal ER-targeting sequence indicated a

toxic potential of PrP when located in the cytosolic compart-

ment (cytoPrP) (Ma et al, 2002). Toxicity of cytoPrP seems to

be dependent on its association with intracellular membranes

(Wang et al, 2006) and its binding to Bcl-2, an antiapoptotic

protein present at the cytosolic side of ER and mitochondrial

membranes (Rambold et al, 2006). Might the toxic potential

of misfolded PrP in the cytosol be relevant to the pathogen-

esis of prion diseases? First, some pathogenic mutants linked

to inherited prion diseases in humans are partially mistar-

geted to the cytosol (Zanusso et al, 1999; Heske et al, 2004).

Second, access to the cytosol is possible via retrograde

translocation of PrP out of the ER (Ma and Lindquist, 2001;

Yedidia et al, 2001). Third, most recent data revealed an

impairment of the ubiquitin-proteasome system (UPS) in

prion-infected mice. In conjunction with in vitro and cell

culture approaches, it was proposed that prion neurotoxicity

is linked to PrPSc oligomers, which translocate to the cytosol

and inhibit the UPS (Kristiansen et al, 2007).

Loss of a protective function

So far we have discussed how aggregation-prone proteins, such

as Ab, tau, PrP and a-synuclein can cause neurodegeneration

by a gain of toxic function. In the following, we will concen-

trate on proteins associated with autosomal recessive diseases,

which can lose their function due to misfolding. Mutations in

parkin, a gene encoding an E3 ubiquitin ligase (Kitada et al,

1998), are responsible for the majority of autosomal recessive

PD (Figure 1C). E3 ubiquitin ligases catalyze the covalent

attachment of ubiquitin to lysine residues of substrate proteins.

Ubiquitin is best known for its role in targeting proteins for

proteasomal degradation, therefore, it has been proposed that a

loss of parkin function due to pathogenic mutations causes the

accumulation of parkin substrates, which ultimately damage

dopaminergic neurons. Various putative parkin substrates have

been described; however, an accumulation was observed for

only two putative substrates in one parkin knockout model,

and the pathophysiological relevance of this observation is still

unclear (Ko et al, 2005, 2006). Notably, degradation-indepen-

dent functions of ubiquitylation have been implicated in var-

ious cellular functions, such as signal transduction,

transcriptional regulation, DNA repair, endocytosis and cellular

trafficking (for review, see Pickart and Fushman, 2004;

Haglund and Dikic, 2005). Recent research from different

laboratories revealed that parkin can indeed promote non-

degradative ubiquitylation (Doss-Pepe et al, 2005; Lim et al,

2005; Hampe et al, 2006; Matsuda et al, 2006; Henn et al, 2007)

and that a neuroprotective activity of parkin is linked to this

mode of ubiquitylation (Fallon et al, 2006; Henn et al, 2007).

Since its discovery in 1998 (Kitada et al, 1998), a large

number and a wide spectrum of pathogenic mutations have

been identified, including exon deletions and rearrange-

ments, missense, nonsense and frameshift mutations (for a

review, see Mata et al, 2004). Accumulating evidence indi-

cates that misfolding of parkin is a major mechanism of

parkin inactivation. All pathogenic C-terminal deletion

mutants spontaneously adopt a misfolded conformation and

form aggregates in cell culture models (Winklhofer et al,

2003a; Henn et al, 2005). Aberrant parkin folding not neces-

sarily induces the accumulation of misfolded conformers, but

can also lead to destabilization and rapid proteasomal de-

gradation, exemplified by some missense mutations within

the N-terminal ubiquitin-like domain of parkin (Henn et al,

2005). Alterations in the detergent solubility or cellular

localization of parkin have also been described for various

missense mutants (Ardley et al, 2003; Cookson et al, 2003; Gu

et al, 2003; Muqit et al, 2004; Sriram et al, 2005; Wang et al,

2005b; Hampe et al, 2006). Remarkably, recent publications

provide a scientific rationale for the hypothesis that inactiva-

tion of parkin by misfolding may also play a role in sporadic

PD. Based on the observation that parkin is prone to mis-

folding and aggregation in the presence of high-level oxida-

tive stress (Winklhofer et al, 2003a), LaVoie et al (2005) could

demonstrate that in the substantia nigra of patients suffering

from sporadic PD, detergent-insoluble parkin is present,

which is covalently modified by an oxidation product of

dopamine. In support of this concept, nitrosative stress has

been reported to impair the E3 ligase activity of parkin, and S-

nitrosylated parkin was indeed detected in the brains of PD

patients (Chung et al, 2004; Yao et al, 2004). How could the

inactivation of parkin promote the demise of dopaminergic

neurons? Parkin has the capacity to maintain neuronal

integrity under various moderate stress conditions, including

mitochondrial stress, excitotoxicity and ER stress.

Mechanistic insight into this activity emerged from recent

work, showing that parkin can stimulate pro-survival path-

ways (Fallon et al, 2006; Henn et al, 2007). Dopaminergic
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neurons are characterized by a high oxidative burden and

thus require an effective stress-response management, yet

parkin is inactivated under severe and dopamine induced

stress (Winklhofer et al, 2003a; LaVoie et al, 2005, 2007;

Wang et al, 2005a; Wong et al, 2007). This inherent imbal-

ance might explain why dopaminergic neurons are particu-

larly vulnerable to a loss of parkin function.

Strikingly, studies in Drosophila indicated a genetic link

between parkin and another PD-associated gene, namely

PINK1 (PTEN-induced kinase 1). Mutations in the PINK1

gene encoding a mitochondrial kinase are the second most

common cause of autosomal recessive PD (Valente et al,

2004). In Drosophila, PINK1 and parkin loss-of-function

mutants show a similar phenotype, including mitochondrial

defects. Remarkably, parkin can compensate for the loss of

PINK1 function, but not vice versa, suggesting that parkin

acts downstream of PINK1 (Clark et al, 2006; Park et al, 2006;

Yang et al, 2006). Now rescue activity of parkin has also been

observed in PINK1-deficient mammalian cells (Exner et al,

2007). It will now be an important endeavor to elucidate the

underlying mechanism.

In addition to parkin and PINK1, DJ-1 has been associated

with autosomal recessive PD (Bonifati et al, 2003). While

PINK1 and parkin genetically interact as described above, DJ-

1 is not part of this signaling cascade, as recent evidence

demonstrated that DJ-1 fails to rescue the pathological phe-

notype caused by PINK1 reduction (Exner et al, 2007; Yang

et al, 2006). Mutations in the DJ-1 gene are extremely rare,

accounting for about 1% of early onset PD. Diverse cellular

functions have been attributed to DJ-1; the most relevant

function linked to the pathogenesis of PD might be a role of

DJ-1 in the response to oxidative stress. DJ-1 has been shown

to protect cells against oxidative stress-induced cell death in

various cell culture and animal models. Different mechan-

isms have been proposed to explain the protective activity of

DJ-1. It could serve as a sensor of oxidative stress via

modification of a cysteine residue to sulfinic acid, and/or it

might have an intrinsic antioxidative or chaperone activity

(for a review, see Moore et al, 2005). A recent study has

provided evidence for an atypical peroxiredoxin-like perox-

idase activity of DJ-1 implicated in the scavenging of mito-

chondrial H2O2 (Andres-Mateos et al, 2007). Furthermore,

DJ-1 has been shown to influence signaling pathways im-

plicated in the regulation of cell death; it stimulates the pro-

survival PI3K/Akt pathway and inhibits the pro-apoptotic

ASK1 pathway (Junn et al, 2005; Yang et al, 2005; Gorner

et al, 2007). There is reason to assume that the generation of

a non-native conformation also plays a role in the inactiva-

tion of DJ-1. The L166P mutant impairs the formation of

functional DJ-1 dimers, resulting in a highly unstable protein

(Macedo et al, 2003; Miller et al, 2003; Moore et al, 2003;

Gorner et al, 2004, 2007; Olzmann et al, 2004). Whether

misfolding of other PD-associated gene products, such as

PINK1 or LRRK2 (leucine-rich repeat kinase 2, dardarin),

might contribute to the pathogenesis of PD, has not been

reported so far. Mutations in the LRRK2 gene are regarded as

the most common cause of genetic PD; they are responsible

for the majority of autosomal dominant PD typically asso-

ciated with late-onset and are also found in some cases which

would have been classified as sporadic PD (Paisan-Ruiz et al,

2004; Zimprich et al, 2004). The LRRK2 gene encodes a large

multidomain protein, including a kinase domain related to

the mixed lineage kinase family, a Rho/Ras-like GTPase

domain, a WD40-repeat domain and leucine-rich repeats.

Some pathogenic mutations seem to increase the kinase

activity of LRRK2 in vitro, assessed by autophosphorylation

or phosphorylation of generic substrates, which may suggest

a toxic gain-of-function mechanism (West et al, 2005;

Gloeckner et al, 2006; Greggio et al, 2006; Smith et al,

2006). However, we still do not know the physiological and

pathological function of LRRK2 in vivo.

Lack of a neuroprotective factor may also play a role in a

different neurodegenerative disorder. In addition to the tau-

positive FTLD cases, a significant number of FTLD patients

carried tau- and a-synuclein-negative but ubiquitin-positive

neuronal inclusions (Rademakers et al, 2002; Figure 1B).

These inclusions define a novel type of FTLD, called

fronotemporal lobar degeneration with ubiquitin-positive

inclusions, FTLD-U (Pickering-Brown, 2007). The 43 kDa

TAR DNA-binding protein (TDP-43) has been shown to be a

major component of these inclusions (Neumann et al, 2006).

Strikingly, TDP-43-positive inclusions were also found in

sporadic and familial non-SOD1 amyotrophic lateral sclerosis

(Neumann et al, 2006; Dickson et al, 2007; Mackenzie et al,

2007; Tan et al, 2007). TDP-43 is a nuclear protein, which

may be involved in RNA binding (Buratti et al, 2001; Zuccato

et al, 2004; Ayala et al, 2006) or DNA binding (Ou et al,

1995), and accumulates frequently in cytoplasmic and some-

times also in nuclear deposits in FTLD-U cases (Neumann

et al, 2006, 2007; Cairns et al, 2007; Davidson et al, 2007;

Seelaar et al, 2007). These neuronal deposits contain insolu-

ble hyperphosphorylated, proteolytically generated C-term-

inal fragments of the full-length protein (Neumann et al,

2006). Currently, it is unclear if these deposits are toxic

entities of the disease and/or if they result in a loss-of-

function of TDP-43 due to its reduced concentrations within

the nucleus, where it is normally located and expected to be

functional, for example as an mRNA-stabilizing factor (Strong

et al, 2007). While familial cases of FTLD with tau pathology

often carry mutations in the tau gene on chromosome 17,

three genes and an uncharacterized locus on chromosome 9p

have been linked to familial FTLD-U: the valosin-containing

protein (VCP) gene on chromosome 9 (Watts et al, 2004), the

charged multivesicular body protein 2B gene (CHMP2B) on

chromosome 3 (Skibinski et al, 2005) and the progranulin

gene (PGRN) on chromosome 17 in close vicinity of the tau

locus (Baker et al, 2006; Cruts et al, 2006). VCP/p97 is a

multifunctional AAA (ATPases associated with a variety of

activities) ATPase, which has been implicated in the ubiqui-

tin-proteasome pathway, ER-associated protein degradation

(ERAD), membrane fusion and cell-cycle control (for review,

see Wang et al, 2004; Halawani and Latterich, 2006). It has

been reported that some pathogenic VCP mutants impair the

ubiquitin-proteasome and ERAD pathway (Weihl et al, 2006).

CHMP2B constitutes a subunit of the endosomal sorting

complex required for transport III (ESCRTIII), involved in

the trafficking of ubiquitylated proteins along the endosomal

pathway via multivesicular bodies to lysosomes (for a review,

see Williams and Urbe, 2007). Expression of mutant CHMP2B

has recently been associated with ESCORTIII dysfunction,

resulting in the accumulation of autophagosomes (Lee et al,

2007). PGRN is a secreted protein, which has properties of a

growth factor or wound-healing factor (Zanocco-Marani et al,

1999; He et al, 2003). Numerous nonsense, frameshift and
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splice-site mutations have now been identified, which all lead

to haploinsufficiency (for review, see Kumar-Singh and

Van Broeckhoven, 2007; Mackenzie and Rademakers, 2007;

van der Zee et al, 2007a). Apparently, all these mutations

result in the degradation of the mutant mRNA by nonsense-

mediated mRNA decay (Baker et al, 2006; Cruts et al, 2006).

Thus, these mutations cause a loss-of-function by neutraliz-

ing the mRNA derived from one mutant allele. Together

with the fact that PGRN has many properties of wound

healing and growth factors, this suggests that the loss-of-

function of PGRN probably results in reduced neuroprotec-

tion. This is supported by the observation that PGRN is

upregulated in activated microglia surrounding amyloid

plaques of AD patients (Baker et al, 2006). If that indicates

a general function of PRGN in neuroprotection is currently

unknown. Interestingly, three exceptional PRGN mutations

have been observed, which all lead to the exchange of

only one amino acid within the mature protein (PGRN

P248L and PGRN R432C; Schymick et al, 2007; van der

Zee et al, 2007b) or the signal sequence (PGRN A9D;

Mukherjee et al, 2006). The two mutations occurring C-

terminal to the signal sequence allow the synthesis of the

immature protein and its translocation into the ER

(Shankaran et al, 2007). However, possibly due to misfolding

(van der Zee et al, 2007b) these proteins fail to be efficiently

transported through the secretory pathway, which leads

to a significant reduction in PGRN secretion. In contrast,

the mutation within the signal sequence is hardly expressed

at all. This protein is mislocated to the cytoplasm, where

it is rapidly degraded by the proteasome (Shankaran

et al, 2007). Thus, three independent mechanisms,

nonsense-mediated mRNA decay, reduced secretion and

degradation upon mislocalisation all lead to the same result,

that is a loss-of-function of a putative neuroprotective factor

(Figure 1B). It is currently unclear if and how the loss-of-

function of PGRN is associated with the cytoplasmic deposi-

tion of TDP-43. However, very recently it has been suggested

that a reduction of PGRN leads to caspase-mediated

generation and subsequent accumulation of insoluble

TDP-43 fragments, similar to those observed in human

patients (Zhang et al, 2007).

A loss-of-function, which results in a
gain-of-function?

We have now described a number of pathological conse-

quences, which occur upon a loss or a gain-of-function;

however, there is still one rather surprising and very challen-

ging variant to be described, namely a loss-of-function that

may result in a gain of (toxic) function. This occurs in at least

some autosomal dominant AD-associated presenilin (PS1 and

PS2) mutations. PSs are directly involved in the proteolytic

generation of Ab from its precursor, the bAPP. Ab is produced

from APP by proteolytic processing mediated by secretases.

First, b-secretase (BACE1) has to cleave at the N-terminus of

the Ab domain to generate a membrane-retained C-terminal

stub. This is the immediate substrate for the subsequent

g-secretase cleavage, which liberates Ab (Haass, 2004). The

intramembrane cleavage mediated by g-secretase is hetero-

genous and can take place at several positions within the

transmembrane domain. Familial AD (FAD)-associated muta-

tions shift the cleavage from position 40 to position 42 of the

Ab domain to produce a more aggregation prone Ab species

(Ab42) or at least increase the ratio of Ab42/Ab40 (Haass and

Selkoe, 2007). This is clearly a toxic gain-of-function, which

is directly related to the disease, as disease onset and the

amount of Ab42 generated roughly correlate (Duering et al,

2005; Page et al, 2007).

PSs harbor the catalytically active center of the g-secretase

complex. More than 150 missense mutations are spread

throughout the entire amino-acid sequence with no obvious

hot spots observed (Haass, 2004). However, all of the muta-

tions investigated so far specifically affect the precision of the

g-secretase cut. This can only be explained by slight structur-

al changes, which all affect the catalytically active center

in a similar manner. In fact, studies using fluoresecence

resonance energy transfer suggested that PS mutations

can cause alterations in its conformation (Berezovska et al,

2005). Moreover, certain drugs, such as the nonsteroidal anti-

inflammatory drugs (NSAIDs) modulate the g-secretase clea-

vage by shifting the cut from amino acid 42 to amino acid 38,

thereby reducing the generation of the neurotoxic Ab42

(Weggen et al, 2001). Strikingly, this shift in cleavage preci-

sion is accompanied by a structural change of the domains

containing the catalytic center within PS (Lleo et al, 2004).

These findings suggest that FAD-associated PS mutations

result in a gain of (toxic) function due to structural changes

affecting the catalytic center of the protease. However, there

is also strong evidence that at least some PS mutations are

associated with a loss-of-function (Bentahir et al, 2006; De

Strooper, 2007; Wolfe, 2007). Apparently, these PS mutants,

if expressed in cells lacking endogenous PS1 and PS2, show

reduced Ab production. As Ab40 is more severely reduced

than Ab42, these mutations still affect the Ab42/Ab40 ratio

(Bentahir et al, 2006). How can such an apparent paradox

be explained? The g-secretase complex is physiologically

required for Notch signaling, a process which requires the

liberation of the cytoplasmic domain and its subsequent

nuclear translocation (Haass, 2004). Already very early

evidence suggested that FAD-associated PS mutations do

not efficiently rescue a Notch-related loss-of-function of the

C. elegans PS homolog sel-12 (Levitan et al, 1996; Baumeister

et al, 1997; De Strooper, 2007; Wolfe, 2007). Moreover, some

FAD-associated mutations reduce intramembrane proteolysis

of Notch and thus its nuclear signaling capacity (Moehlmann

et al, 2002; Bentahir et al, 2006). However, in mice the knock-

in of certain FAD-associated mutations rescued the PS1-

knockout phenotype (Guo et al, 1999; Nakano et al, 1999;

Siman et al, 2000). But which model is true? We suggest that

a somewhat reduced function of at least selected PS mutants

is associated with a favored production of Ab42. This may be

explained by a packman-like processing model starting from

the cytoplasmic end of the transmembrane domain. If in line

with the data in C. elegans, PS mutations reduce the catalytic

activity of the g-secretase, one may assume that the enzyme

simply cleaves slower and slower until it reaches position 42.

If the substrate is then released from the complex before

further cleavage at the subsequent sites (positions 40 and 38)

occurs, the Ab42/Ab40 ratio may be changed by an apparent

loss-of-function. However, one should keep in mind that this

may not be a general mechanism of all FAD-associated

mutations, but rather of individual mutations, which in

most cases are extremely aggressive and cause an unusually

strong increase of Ab42. Although mutations may generally

Two faces of protein misfolding in neurodegeneration
KF Winklhofer et al

The EMBO Journal VOL 27 | NO 2 | 2008 &2008 European Molecular Biology Organization342



affect the structure of the active site of PS within the g-

secretase complex (Berezovska et al, 2005), individual muta-

tions may affect the PS structure more severely and thus

cause a measurable loss-of-function.

Perspective

Aberrations in protein folding, processing and/or degradation

are common features of neurodegenerative diseases, resulting

in the accumulation of misfolded conformers. The identifica-

tion of genes, which are responsible for rare familial variants

of neurodegenerative diseases, provided important insights

into common as well as specific features of different disease

entities. Clearly, amyloidogenic proteins, such as Ab, tau, PrP

and a-synuclein, which accumulate in sporadic and autoso-

mal dominant forms of the respective diseases, can acquire a

toxic gain-of-function. Considerable evidence from recent

research indicates that soluble oligomeric assemblies and

not amyloid fibers or the final aggregates mediate the toxic

effects. However, a disease-relevant impact of large deposits

cannot be excluded: on one hand they can sequester and

thereby inactivate toxic oligomers, on the other hand they

may serve as a dynamic reservoir for the liberation of soluble

oligomers. Different mechanisms have been proposed to

explain the toxic potential of misfolded protein conformers

as summarized in Figure 2. Although some aspects of toxicity

may be specific for a distinct entity, certain common mechan-

isms have emerged. Strikingly, prion diseases illustrated

that misfolding can induce not only a toxic but also a self-

propagating protein species. The transmissible nature of

prion diseases brings up the question how this feature can

be explained and how it can be demarcated from seeding

effects observed after the experimental inoculation of

misfolded conformers. Whether transmissibility is associated

with a specific pathological conformation and/or with

structural dynamics of the physiological isoform remains to

be seen. In some neurodegenerative diseases, protein

misfolding is implicated in the pathogenesis via a loss-of-

function mechanism, exemplified by autosomal recessive

PD (parkin, DJ-1) and FTLD-U with PGRN mutations. In

these diseases, the deficiency of a neuroprotective factor

may be associated with an increased neuronal vulnerability.

In addition, there is experimental evidence suggesting

that PrPC as well as a-synuclein may have a neuroprotective

capacity, which is lost upon the formation of misfolded

conformers. Finally, a rather puzzling case occurs with

the FAD-associated PS mutations, where a loss-of-function

can surprisingly result in a gain-of-function, in at least

some cases.

How can our current understanding of neurodegenerative

diseases be translated into the development of therapeutic

strategies? Remarkably, different oligomeric assemblies,

formed by either Ab, a-synuclein or PrPSc, share structural

features, suggesting a common harmful potential of these

species (Kayed et al, 2003). Defining the toxic signature of

these oligomers might pave the way for immunization ap-

proaches. Strikingly, anti-Ab vaccination has been shown to

prevent cognitive deficits and disease progression in mouse

models of AD (Roberson and Mucke, 2006; Haass and Selkoe,

2007). Another therapeutic target may be the modulation of

the protein quality control machinery, above all molecular

chaperones, which are the first line of defence to encounter

misfolded conformers.
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