
International Journal of Computational Geometry & Applications
c© World Scientific Publishing Company

THE TWO GUARDS PROBLEM

CHRISTIAN ICKING

and
ROLF KLEIN

Praktische Informatik VI, Fernuniversität – GH – Hagen
Elberfelder Str. 95, D-5800 Hagen, Germany

Received 18 June 1991
Revised 18 December 1991

Communicated by D. T. Lee

ABSTRACT

Given a simple polygon in the plane with two distinguished vertices, s and g, is it
possible for two guards to simultaneously walk along the two boundary chains from s to

g in such a way that they are always mutually visible? We decide this question in time
O(n logn) and in linear space, where n is the number of edges of the polygon. Moreover,

we compute a walk of minimum length within time O(n logn + k), where k is the size of
the output, and we prove that this is optimal.

Keywords: visibility, watchman routes, planar polygons, motion planning.

1. Introduction

Several types of watchman problems (also called art gallery problems) have been
proposed in the literature. The first of this family of problems was the minimum
watchmen problem considered by Chvatal1 and Fisk2 and many others, where a
number, as small as possible, of places for watchmen in a given scene is to be
calculated such that every point of the edges (walls) in the scene is visible from
at least one place (watchman). Lee and Lin3 have shown that finding the exact
minimum number of watchmen in a simple polygon is NP-hard.

Another example of this type of problem is the watchman route problem. There,
a route of minimum length within a polygon has to be found such that every point
of the polygon is visible from at least one point of the route. In some circumstances,
this problem is NP-hard, too, see Chin and Ntafos4. A survey of art gallery problems
and many other related issues can be found in O’Rourke5.

In this paper, we study the following problem. Imagine a police patrol in a
dangerous midtown street. Each of two officers has to walk along one of the side-
walks, all the way down the street, and to check all the bank doors on his side.
Can the two guards proceed in such a way that they are always mutually visible?

1

More formally, let us assume that we are given a simple polygon with n edges and
distinguished vertices s and g. Can two points be moved from s to g, each on one
of the two boundary chains, such that the line segment connecting the two points
is at each time fully contained in the polygon? The points are allowed to backtrack
locally, but eventually they must both arrive at g. A movement subject to these
constraints is called a walk. A polygon that admits a walk is walkable. The general
walk problem asks for a walk in which the total distance travelled by the two points
is minimized.

One special case arises when no backtracking is necessary in order to get the
points from s to g. Such a walk will be called straight. During a straight walk,
the line segment connecting the points sweeps the polygon in an ordered way. In
a sense, this is a generalization of monotone polygons, which can be swept with a
line of fixed orientation. In our problem, the line can turn during the sweep. As
we compute a walk of minimum length, we will find a straight walk, if there is one.
It turns out that the important information for deciding if a straight walk exists
can be extracted from the hit points of the edge extensions of the polygon’s reflex
vertices, see Figure 6. For answering these shooting queries in total time O(n logn),
we employ the method of Chazelle and Guibas6. In Section 3 we show that this
leads to an O(n log n) algorithm that computes a straight walk.

During a walk it may be necessary for one of the guards to move backwards
(towards s) while the other one still advances towards g. This type of motion is
called a counter-walk. In Section 4 we give an O(n logn) algorithm for the straight
counter-walk problem: Can one guard move from s to g while the other one moves
from g to s on the other side without backtracking, in such a way that they are
always mutually visible? In addition to answering shooting queries, here we also
have to compute certain visibilities. To this end, we apply the shortest path algo-
rithm by Guibas and Hershberger7 in order to compute, for each vertex v, the first
segments of the shortest paths from v to a point on the opposite chain. This can
be done in total time O(n logn).

Section 5 shows how these results can be used to solve the general walk prob-
lem, i.e. to move the guards from s to g with backtracking. We compute in time
O(n logn + k) a minimum length walk, and prove in Section 6 that this is the op-
timum bound. Here, k denotes the size of the output, i. e. the number of walk
instructions for the two guards. A single walk instruction causes the guards to walk
straight towards the next halting point, at most to the next vertex in the given di-
rection. Hence, the number k of walk instructions is not less than the total number
of vertex visits, but of the same order of magnitude. As we will show in Section 6,
k can be of order Θ(n2).

2. Notations

We are given a simple polygon P in the plane, i.e. a polygon without self-
intersections or holes. Two vertices s and g are marked; then the polygon’s bound-
ary consists of two polygonal chains, L and R, with common endpoints s and g.
Points on L will be denoted by p, p1, p′ or similarly, points on R by q, q1, q′, etc.

2

Succ(p) (resp. Pred(p)) denote the vertex next (resp. previous) to p in a chain. Both
chains, L and R, are oriented from s to g, see Figure 1.

���

�������XXXX��������
C
CCHH

S
SS

�
�
Q

QQ�������
S

S
S

XXXX

S

S
SS

6

•

R

•

TL

s

g

Fig. 1. Polygon P consisting of two chains L and R

Just for convenience, we assume that the polygon is in a general position in the
following sense. No three lines extending three edges of P have a point in common,
and no three vertices are collinear.
Definition 2.1 Let T denote the union of the interior domain of polygon P and
P itself. We call a point x ∈ P visible from a point y ∈ P iff the connecting line
segment xy is entirely contained in T . For the parts of P visible from a point x, see
Figure 2, we use

vis(x) := {y ∈ P | y visible from x}

@@...................
TT......................(((

�
�

�
Z

ZZ�
�

�

@@...................
TT......................(((

`̀ �
�

�
�

��JJ

`̀ �
�

�
�

��JJ

Z
ZZ�

�
�

@@...................
TT......................(((JJ

�
�

�
�

��`````̀
�
�
�
�"

"
"

""

Z
ZZ�

�
�

hh
C
C
C
CC�������b

b
b

bb
�������

�
�
�

@
@@

PPPPPL
L
L
L
LL(((.............

............T
T

TT

...
...
...
....
...
...
....
...
...
....

....
....
....
....
....
....
....
....
....
....
....
....
....
....
....

......
......

......
......

......
......

......
......

......
......

......
......

......
...

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

..

x
•

Fig. 2. The points of P visible from x, vis(x)

Visibility is a symmetric relation. We often refer to pq as the visibility segment
of the pair (p, q). Obviously, two visibility segments p1q1 and p2q2 cross iff the order
of p1, p2 on L is opposite to the order of q1, q2 on R, see Figure 3.

3

..

..........
..........

.....

�
��

Z
Z
�

�
�

�
��S

SS��
C
C
C
�
�
�
��XXXXXXX�

�
�

�
�

�

�
�

�
�

�C
C
C
C
C
C
CC

....................
...

>
�
�
�� 6C

C
CO

•

s

•

•

•

•

•

R
L

q2
T

p1

p2
q1

g

Fig. 3. Crossing visibility segments

Definition 2.2
(i) A walk on P is a pair (l, r) of continuous functions such that:

l : [0, 1] −→ L, r : [0, 1] −→ R,

l(0) = r(0) = s, l(1) = r(1) = g,

l(t) is visible from r(t) for all t ∈ [0, 1].

Any line segment l(t) r(t) is called a walk line segment of the walk. The
point r(t) is the walk partner of l(t), and vice versa.

(ii) A walk on P is called straight if both l and r are non-decreasing with
respect to the orientation of L and R.

(iii) P is called (straight) walkable if it admits a (straight) walk.
(iv) Correspondingly, a straight walk on P from line segment p0 q0 to line
segment p1 q1, where p0 < p1, q0 < q1, and p0 q0, p1 q1 are contained in P ,
has to fulfill the conditions l(0) = p0, r(0) = q0, l(1) = p1, r(1) = q1; and l
and r are non-decreasing.

..........
...............

....

..........
...

.........

...............
..................

...
............

....
....
........

...

...
...
...
...
...
...
..

...

...

...

.....
.........
.......................

,
,

,,
b

b
bb.....................b

bb�
�
��
E
E
E
EE���

�
�
�����T

T
T

T
T

T
�
�T

T
T
TT�

�
�
��
C
C
C
C
CC

•

•

s

g

.................

...........
.......................

.....
.....

..

........
......

.....

......................................

...................................

.............................

.............................

....
....
....
....
.

...........................
.....

........................

�
�

��b
b

b
bb

e

e
e�

�
��
E
E
E
E""�

��
��
�
�
���

�
��

�
�
�

e
ee

�
�
A

A
A

A
AA

•

•

s

g
�

�
��

b
b

b
bb

e

e
e�

�
��
E
E
E
E""�

��
��
�
�
���

�
��

T
T
TE
E
E
EL
L
LL�

�
�
�
�
�
��

Q
Q

Q
Q

Q
QQ

•

•

s

g

Fig. 4. A straight walkable and a walkable polygon, and one that is not walkable.

4

Lemma 2.3 A walk is straight iff no two walk line segments cross.
We want to decide if P is walkable and, if so, to compute a minimum length

walk, that is, one where the sum of the lengths of the two curves given by the
parametrizations l and r becomes a minimum. Any straight walk (if one exists)
is of minimum length. Figure 4 depicts a straight walk, a walk on a polygon that
admits no straight walk, and a polygon that is not walkable at all.

Definition 2.4 A walk instruction is one of the following elementary motions, see
Figure 5.

(i) Both guards move forward along segments of single edges.
(ii) One of the guards moves forward, the other one moves backward along
segments of single edges.

As a special case of (i) or (ii) one of the guards may stand still while the other
moves.
Let k denote the number of walk instructions in a walk of minimal length.

�
�
�
���

B
B

B
B

BBM

...........................

......
......

6

B
B

B
B
B
B
�
�
�
�
��

�
�
��

Z
Z

Z
ZZ
�

��
B

B
B

B
B

BB
�
�
�
��

(i)

•
•

••

RL

....
....
....
....
....
....
....
....
....
..................................C
C
C C
CW

B
B

B
B

BBM

6

�
�
��

Z
Z

Z
ZZ
�

��
B

B
B

B
B

BB
�
�
�
��

(ii)

•

•

••

RL

Fig. 5. The types of walk instructions.

3. Straight Walks

Our algorithm for solving the straight walk problem consists of the following
steps.

First, we solve a special shooting problem. Let r be a reflex vertex of P (i.e. one
with interior angle larger than 180◦). For each of the two rays emanating from
vertex r through the interior of the polygon that extend the incident edges we
determine the first hit points on P , see Figure 6. Then we build up a balanced
search tree for all vertices and hit points on L, and a second one for the vertices
and hit points on R. Links are established between those points on L and R that
are origin and target of the same shot.

Based on this data structure, a straight walk can be computed in the following
way. First, we check if a situation like the one depicted in Figure 7 (i) occurs. If so,
the polygon is clearly not straight walkable. Otherwise, we proceed by computing,

5

for each vertex v, a connected subset of the polygonal chain, L or R, opposite to v

that will be called the walk interval of v. It turns out that the polygon is straight
walkable if and only if none of the walk intervals is empty. In this case, the walk
interval of vertex p ∈ L consists of all points q ∈ R such that there exists a straight
walk of the polygon in which the walk line segment pq occurs (note that it is not a
priori clear why these sets should be connected!).

We now describe our algorithm in detail. For a point v and a direction ~u, let
r(v, ~u) denote the ray starting from v with the direction of ~u. We are interested in
the following shooting queries.
Definition 3.1 Let pj−1, pj, pj+1 be three consecutive vertices on L, where pj is a
reflex vertex. We denote by Forw(pj) the first point of P on the ray r(pj,−−−−→pj−1pj)
that is visible from pj. Analogously, Backw(pj) is the first point of r(pj,−−−−→pj+1pj)∩P

that is visible from pj . For vertices on R, Forw and Backw are defined symmetrically.
See an example in Figure 6. We may consider Forw and Backw as functions

that return just the first point of P hit by the corresponding ray.

�
�

�
�7

@
@

@
@

@
@@
�

�
�

�
�

��

7

....
....
....
....
....
....
....
....
.

R

...................................

�����
�
�
�
�
��

HHHHHH�
�

�
�HHHHHHH

s

g
•

•
•

•

•

•

•

pj

pj+1

pj−1

Forw(pj)

Backw(pj)

Fig. 6. Forw(pj) and Backw(pj)

Chazelle and Guibas6 have presented an algorithm that computes, after an
O(n logn) time preprocessing step, for any point v in T and for any direction ~u

the first intersection of r(v, ~u) with P in time O(logn). Clearly, this result can be
used to determine the points Forw(v), Backw(v) for all vertices v ∈ L ∪ R in time
O(n logn), since O(n) shooting queries have to be answered in time O(logn) each.

For all vertices and hit points on L we build a search structure according to
the total order on L, and an analogous structure for R. We establish links be-
tween these two search structures, namely for each hit point we establish a link
to its corresponding vertex, and for each reflex vertex v two links to Forw(v) and
Backw(v).

This structure can be built up incrementally, as the shooting queries are an-
swered, in total time O(n logn), using balanced trees.

P can only be walkable if L and R are mutually weakly visible. As usual (see
Avis and Toussaint8), L is called weakly visible from R if for each point p ∈ L

6

there exists a point q ∈ R such that q is visible from p. Here we give an equivalent
characterization for the chain L being weakly visible from R.
Lemma 3.2 The chain L is weakly visible from R iff there is no reflex vertex p ∈ L

such that
p < Backw(p) ∈ L or p > Forw(p) ∈ L

holds.

6

....
....
...
....
....O

............

.....
.....

.....
...

�
�

�
��

XXXXXXC
C
C
C
C
C
CQQ

(i)

Backw(p)•

•p

L

�
�

�
��

XXXXXXC
C
C
C
C
C
CQQ............

...
....
....
....
...
.
O

6

A
A
A
AA��

....
....
.

....
....
....
....
....
....
....
....
....
....
....
..

....
....
....
....
....
....
....
....
....
....
....
...

...
...
...
...
...
...
...
...
...
...
...
...

.....
.....

.....
.....

.....
...

.......
.......

.......
.....

..................
........

..........................��

��

��

��

(ii)

r′

•

•

•

p

p1

L

p2

Fig. 7. Weak visibility and hit points (Lemma 3.2)

Proof. Necessity is obvious, since if, for example, p < Backw(p) ∈ L then Succ(p)
is invisible from R, see Figure 7 (i).

For sufficiency, if a point p ∈ L cannot see any point of R, then there must exist
a vertex p1 ∈ L whose Backw or Forw shot violates the assumed conditions, see
Figure 7 (ii). 2

The conditions of this lemma can easily be checked on inserting the hit points
into the search structure. If any of the conditions becomes true, P is reported not
to be straight walkable. In fact, it is not even walkable in that case.

Weak visibility of the chains L and R is a necessary condition for straight walka-
bility. Further necessary conditions are given by the following lemma illustrated by
Figure 8. Later in Theorem 3.11 we will see that the conditions listed in Lemma 3.2
and Lemma 3.3 together are also sufficient for straight walkability.
Lemma 3.3 There is no straight walk for P if one of the following is true, see
Figure 8.

(i) ∃p ∈ L, q ∈ R:
(

q < Backw(p) ∈ R and p < Backw(q) ∈ L

)
or

(
q > Forw(p) ∈ R and p > Forw(q) ∈ L

) “deadlock”

(ii) ∃p, p′ ∈ L : p < p′ and R 3 Forw(p′) < Backw(p) ∈ R “left wedge”
(iii) ∃q, q′ ∈ R : q < q′ and L 3 Forw(q′) < Backw(q) ∈ L “right wedge”

In case (i) not even a walk for P exists.
Proof. Assume that the first alternative of situation (i) applies and that a walk
exists. Let p̃ be the first walk partner of Succ(q) and q̃ the first walk partner of

7

6

@
@@

6

�
��

.....
.....

.....
.....

...
�

.....
.....

.....
.....

...
I

@
@@

6

.......................R

.......................	

�
��

6

(i) Deadlocks.

•

•

p′

•qp

RL

•• qp

L R

.....
.....

.....
.....�

...................R

66

@
@@

�
��

(ii) Left wedge.

•

•
p′

p

RL

6

...................	
.....

.....
.....I

6

�
��

@
@@

(iii) Right wedge.

•

•

L R

q′

q

Fig. 8. Lemma 3.3.

Succ(p). The three points Succ(p), p, and Backw(p) lie on one line. The point q and
Backw(q) lie on opposite sides of that line, thus Succ(p) < Backw(q). L<Backw(q) is
not visible from Succ(q). It follows that Succ(p) < Backw(q) ≤ p̃ and, symmetri-
cally, Succ(q) < Backw(p) ≤ q̃.

In consequence, a walk (which is a continuous function) must go through Succ(p)
before reaching Succ(q) for the first time, and it must pass Succ(q) before reaching
Succ(p) for the first time, which is a contradiction, see Figure 8 (i). For obvious
reasons, we sometimes call this type of situation a deadlock.

In situation (ii), let q and q′ denote the walk partners of Succ(p) and Pred(p′)
in a prospective straight walk. Then q′ ≤ Forw(p′) < Backw(p) ≤ q, contradict-
ing Succ(p) < Pred(p′). The other situation can be dealt with analogously, see
Figure 8 (ii) and (iii). 2

This shows that the Forward and Backward shots of the reflex vertices place
restrictions on the possible positions of a walk partner for a given vertex, which in
some cases may even cause a polygon to be not straight walkable. As we will see,
these constraints are the only ones we need to observe, and if none of the above
situations applies, a polygon is in fact straight walkable.

We proceed by computing for each vertex v an interval [lo(v), hi(v)] of the op-
posite chain such that, according to the shot restrictions, any possible walk partner
of v must be contained in this interval. For simplicity, in the following definition
we assume that p belongs to L. The case of vertices in R is symmetric.

Definition 3.4 For a vertex p ∈ L we define:

hiP(p) := min{q| q vertex in R and L 3 Backw(q) > p}
hiS(p) := min{Forw(p′) ∈ R| p′ vertex in L>p}
hi(p) := min{hiP(p), hiS(p), g}

loP(p) := max{q| q vertex in R and L 3 Forw(q) < p}
loS(p) := max{Backw(p′) ∈ R| p′ vertex in L<p}
lo(p) := max{loP(p), loS(p), s}

8

In our notations, the letters S and P stand for self and partner, correspondingly,
meaning that the restriction is caused by a vertex on the same chain or by a vertex
on the opposite chain. See Figure 9 for examples how loS, loP, and lo can look like.
The following lemmata are direct consequences of the given definition.
Lemma 3.5 Considered as functions

{vertices of L} → R or {vertices of R} → L,

hi and lo are monotonically increasing.

Lemma 3.6 Each possible straight walk partner for a vertex v is contained in the
interval [lo(v), hi(v)].
Note that, for example, in Figure 8 (i) we have lo(p′) ≥ Backw(p) > q ≥ hi(p′), so
[lo(p′), hi(p′)] is empty.

The above quantities can be calculated in two passes over the search structures,
one from s to g to calculate loS, loP, and lo, and one from g to s for the others.
This takes time O(n).

The functions lo and hi are related by the following formal symmetry.
Lemma 3.7 Let p ∈ L, q ∈ R be two vertices of P .

(i) If q < lo(p) then hi(q) < p; if q > hi(p) then lo(q) > p.
(ii) p ∈ [lo(q), hi(q)] ⇐⇒ q ∈ [lo(p), hi(p)].

Proof.
(i) We consider two cases, namely lo(p) = loS(p) and lo(p) = loP(p).

Assume q < lo(p) = loS(p). According to the definition of loS, there is a
vertex p′ ∈ L<p such that q < lo(p) = Backw(p′) ∈ R. According to the
definition of hiP, hi(q) ≤ hiP(q) ≤ p′ < p.
Assume q < lo(p) = loP(p). Denote loP(p) by q′. This is a vertex in R>q with
the property that L 3 Forw(q′) < p. Then hi(q) ≤ hiS(q) ≤ Forw(q′) < p.
The second assertion of (i) is symmetric to the first.

(ii) If q /∈ [lo(p), hi(p)] then q < lo(p) or q > hi(p). Assume q < lo(p) then, using
(i), hi(q) < p, thus p /∈ [lo(q), hi(q)].

2

Lemma 3.8 Let the chains L and R be mutually weakly visible and let p ∈ L be a
vertex satisfying

lo(p) ≤ hi(p) .

Then the interval [lo(p), hi(p)] is visible from p.
Proof. How can p not be visible from lo(p)? The polygon P must somehow
intersect p lo(p). By definition of lo, there is a point p′ < p which is visible from
lo(p), see Figure 9 for the two main cases lo(p) = loS(p) and lo(p) = loP(p). In
one case, lo(p) = Backw(p′), in the other p′ = Forw(lo(p)). Any intersection of
p lo(p) from below p′ lo(p) must intersect p′ lo(p) first, which is impossible. Thus,
L<p′ ∪ R<lo(p) does not intersect p lo(p), and analogously there is a point p′′ > p

such that L>p′′ ∪R>hi(p) does not intersect p hi(p).
Since lo(p) ≤ hi(p), we conclude that L<p′ ∪ L>p′′ ∪ R<lo(p) ∪ R>hi(p) inter-

sects neither p lo(p) nor p hi(p), see the third drawing in Figure 9. Now assume

9

��

��)

..............................
..........

..........
..1

���
�
�
�
�
��

..........

�
��

lo(p) = loS(p)

p′
•

lo(p)

p

•

• ��

HHH
�
�
�
�

..............................

.........
.........

..........
..

)

..........

�
� ���

�
�
�
�
�
�
��

��)

lo(p) = loP(p)

p′
•

lo(p)

p

•

•

.........................

�
�
�
�

L
L
L

�
�

�
��

.................

....
....
.....
....
..

B
B
B
B
BB

p′′

hi(p)

•

•p′

•
lo(p)

p

•
•

Fig. 9. The cases discussed in Lemma 3.8

that [p′, p) intersects p lo(p). Then there is a vertex p′′′ < p such that either
Backw(p′′′) ∈ L>p′′′ , see Figure 10 (i), or Backw(p′′′) > lo(p), see Figure 10 (ii);
both are contradictions. Analogously, (p, p′′] cannot intersect p hi(p) or p lo(p).
Thus, no part of L can intersect p lo(p) and p hi(p).

....

....

....

....

...

....

.
6

...
...........

..............
.....

.....
.....

....

.............

.........................

�
�
�
�

L
L
L

�
�
�

��

....
....
.....
....
..

B
B
B
B
BB

(i)

p′′′•

p′′

hi(p)

•

•p′

•
lo(p)

p

•
•

.............

.................................

.....
.....

.....
.....

.....
..

�

�
�

.........................

�
�
�
�

L
L
L

�
�

�
��

....
....
.....
....
..

B
B
B
B
BB

(ii)

Backw(p′′′)

p′′′•

p′′

hi(p)

•

•p′

•
lo(p)

p

•
•

.............
.............

........y

...

...

..

SS
..................................

....

�
�
�
�

L
L
L

�
�

�
��

....
....
.....
....
..

B
B
B
B
BB

(iii)

q•

p′′

hi(p)

•

•p′

•
lo(p)

p

•
•

Fig. 10. Cases leading to a contradiction in the proof of Lemma 3.8

Furthermore, by definition of lo and hi, there is no vertex q ∈ (lo(p), hi(p)) such
that Forw(q) < p or Backw(q) > p, see Figure 10 (iii) for a case contradicting the
definition of hiP. Thus, every point in [lo(p), hi(p)] is visible from p. 2

The following Lemma 3.9 gives a characterization for a polygon to be straight
walkable. The conditions stated there can be checked in O(n) time.
Lemma 3.9 Let the chains L and R be mutually weakly visible. There is a straight
walk for P iff

lo(v) ≤ hi(v) for all vertices v ∈ L ∪ R.

Proof. Necessity follows from Lemma 3.6.
In order to prove sufficiency we will explicitly construct a straight walk. In

Lemma 3.8 we have seen that the interval [lo(v), hi(v)] is visible from v, for all
vertices v. The monotonicity property, Lemma 3.5, of lo guarantees that no two

10

walk line segments cross if we choose (and mark in the data structure) lo(p) as a
walk partner for each vertex p ∈ L.

A vertex q ∈ R that has not yet been assigned a walk partner lies between two
nearest marked points, lo(p) and lo(p′), where p < p′. It follows from Lemma 3.7
that p < hi(q) < p′. Since function hi is monotonic, we can choose hi(q) as a walk
partner for q, and all these walk line segments do not cross, see Figure 11 (ii). The
polygon is now subdivided into a sequence of quadrilaterals and triangles, which
gives us a sequence of walk instructions. 2

.............

.....
......

......
.....

......
......

.....

....
....
....
....
....
....
....
.

B
B
B
B�

�
�
�� �

�
�

�� T
T

TT
"

"
""

hhhhhhh
�

�
�

�
��Z

Z
Z

Z
Z

ZZ

......
......

..... ...
............

B
BN

�
�
��

�
�
�
�
��

HHHHHHHH((((A
A

A
A

AA
������A

A
A

A
A

AA

(i) All vertices of L have a walk partner

g

•s

R

L

•

....
....
....
....
....
....
....
....
....
....
.

..
......

......
......

......
......

......
...

....
....
....
....
....
....
....
.

B
B
B
B�

�
�
�� �

�
�

�� T
T

TT
"

"
""

hhhhhhh
�

�
�

�
��Z

Z
Z

Z
Z

ZZ
...............................

.....
....

.....
.....

.....
.....

.....
.....

...

....
....

....
....

....
....

....
....

.

.....
.....

.....
.....

.....
.....

.....
.....

..
..........

..........
.

.....
.....

.....
.....

.....
.....

.

......
......

.....

.............

...
............

B
BN

�
�
��

�
�
�
�
��

HHHHHHHH((((A
A

A
A

AA
������A

A
A

A
A

AA

(ii) All vertices have a walk partner

g

•s

R

L

•

Fig. 11. Construction of a straight walk

The choice of lo(p) as a walk partner for p and hi(q) for q is quite arbitrary. For
symmetry, we may also choose hi(p) as a walk partner for all vertices p ∈ L. This
has the following consequence.
Corollary 3.10 If P is straight walkable then for every vertex v each point of the
interval [lo(v), hi(v)] is a suitable walk partner for v.
Proof. There is one walk including p lo(p) as a walk line segment, and another
one including p hi(p). Now we consider the following walk. From s to p lo(p) we
follow the first walk, then we rotate the walk line segment around p until it is in
the position of p hi(p), and continue with the second walk towards g. The rotation
is possible because the whole interval [lo(p), hi(p)] is visible from p, according to
Lemma 3.8. 2

Because of this property we call the interval [lo(p), hi(p)] the walk interval of p.
Now it is not difficult to prove the sufficiency of the conditions in Lemma 3.2

and Lemma 3.3.
Theorem 3.11 Let the chains L and R be mutually weakly visible. Then there is
a straight walk for P iff none of the conditions of Lemma 3.3 is true. To test the
conditions, and to construct a straight walk, O(n logn) time and linear space are
sufficient.

11

Proof. To apply Lemma 3.9, we have to show that lo(v) ≤ hi(v) for all vertices
v ∈ L∪R. Assume that lo(p) > hi(p) for some p ∈ L. Then lo(p) 6= s and hi(p) 6= g.
Four cases have to be checked: hi(p) is either hiP(p) or hiS(p), lo(p) is either loS(p)
or loP(p).

Case 1: hi(p) = hiP(p), lo(p) = loS(p).
According to Definition 3.4, hiP(p) is a vertex q′ ∈ R such that Backw(q′) > p,
and loS(p) = Backw(p′) for some vertex p′ ∈ L<p. Thus, Backw(p′) > q′ and
Backw(q′) > p > p′, a contradiction to Lemma 3.3, condition (i), first alternative.

Case 2: hi(p) = hiS(p), lo(p) = loS(p).
Here, hiS(p) = Forw(p′) for some vertex p′ ∈ L>p and loS(p) = Backw(p′′) for some
vertex p′′ ∈ L<p. Thus, Backw(p′′) > Forw(p′) and p′ > p > p′′, a contradiction to
condition (ii).

Case 3: hi(p) = hiP(p), lo(p) = loP(p).
Now, hiP(p) is a vertex q′ ∈ R such that Backw(q′) > p, loP(p) is a vertex q′′ ∈
R such that Forw(q′′) < p. Thus, q′′ > q′ and Backw(q′) > p > Forw(q′′), a
contradiction to condition (iii).

The fourth case is symmetric to Case 1, the contradiction is against condition
(i), second alternative.

After the shooting queries are answered, the running time of the other operations
is linear in n. 2

4. Straight Counter-Walks

In this section we consider a problem that seems to be symmetric to the one we
solved in the previous section. We are still given the polygon P with two marked
vertices, s and g, and two guards have to walk along two chains, L and R, of the
polygon such they are always mutually visible. But this time, one of the guards
starts at s and goes to g while the other one starts at g and walks to s, still without
backtracking. We call this type of walk a counter-walk. Though the results for
straight counter-walks are to some extent similar to those for straight walks, a
direct duality does not seem to exist.

Throughout this section, we assume that L and R are weakly visible and that s

and g are mutually visible, which is necessary for the existence of a counter-walk.
Definition 4.1

(i) A counter-walk on L, R is defined just like a walk (Definition 2.2), but with
the boundary conditions l(0) = s, l(1) = g, r(0) = g, r(1) = s.

(ii) A straight counter-walk has a non-decreasing function l and a non-increasing
function r with respect to the orientation of L and R.

(iii) P is called (straight) counter-walkable if it admits a (straight) counter-
walk.

(iv) A straight counter-walk on P from line segment p0 q0 to p1 q1 in P , where
p0 < p1 and q1 < q0, is required to fulfill the conditions l(0) = p0, r(0) = q0,
l(1) = p1, and r(1) = q1; and l is non-decreasing and r is non-increasing.

12

Lemma 4.2 There is no straight counter-walk for L, R, if one of the following
applies, see Figure 12.

(i) ∃p ∈ L, q ∈ R:
(

q > Forw(p) ∈ R and p < Backw(q) ∈ L

)
or

(
q < Backw(p) ∈ R and p > Forw(q) ∈ L

)
(ii) ∃p, p′ ∈ L: p < p′ and R 3 Forw(p) < Backw(p′) ∈ R

(iii) ∃q, q′ ∈ R: q < q′ and L 3 Forw(q) < Backw(q′) ∈ L

In case (i) not even a counter-walk exists.

..........�

..........-........�
........-

(i)

L

•
•

q

R

•
p

R

•
q

p

L

..............-

..............-

•

•
p′

p

RL

(ii)

..............�

..............�

(iii)

•

•

L R

q′

q

Fig. 12. Cases where no straight counter-walks exist (Lemma 4.2)

Proof. Assume that the first alternative of situation (i) applies. Let p′ denote
the first walk partner of Succ(q) with respect to the orientation of chain L, and
let q′ be the first walk partner of Pred(p). It follows from the assumption that
Pred(p) < Backw(q) ≤ p′ and, symmetrically, Succ(q) > Forw(p) ≥ q′.

It follows that a counter-walk (which is a continuous function) would have to
go through Pred(p) before reaching Succ(q) for the first time as well as it would
have to pass Succ(q) before reaching Pred(p) for the first time, a contradiction, see
Figure 12 (i).

In situation (ii), let q and q′ denote the walk partners of Pred(p) and Succ(p′)
in a prospective straight counter-walk. Then q′ ≥ Backw(p′) > Forw(p) ≥ q, con-
tradicting Pred(p) < Succ(p′). The other situation can be dealt with analogously,
see Figure 12 (ii) and (iii). 2

While the necessity of the conditions of Lemma 4.2 for the existence of a straight
counter-walk is clear, sufficiency is true but not evident. We proceed as in Section 3
by computing, for each vertex v ∈ L, the interval(!) of its possible counter-walk
partners on R.

First, we define an interval [C-lo(v), C-hi(v)] that captures the restrictions im-
posed by the Forw and Backw shots. Unlike the case of straight walks, where the
analogue intervals [lo(v), hi(v)] are already the walk intervals, here the intervals
[C-lo(v), C-hi(v)] may be partially invisible from their associated vertex v. We will

13

see that the real counter-walk interval for a vertex v is the interval [C-lo(v), C-hi(v)]
intersected with vis(v), the parts of P visible from v.
Definition 4.3 For a vertex p ∈ L we define:

C-hiS(p) := min{Forw(p′) ∈ R | p′ vertex in L≤p}
C-hiP(p) := min{Pred(q) | q vertex in R and L 3 Forw(q) < p}

C-hi(p) := min{C-hiS(p), C-hiP(p), g}
C-loS(p) := max{Backw(p′) ∈ R | p′ vertex in L≥p}
C-loP(p) := max{Succ(q) | q vertex in R and L 3 Backw(q) > p}

C-lo(p) := max{C-loS(p), C-loP(p), s}

These quantities are defined analogously for vertices q ∈ R. As in Section 3,
the letters S and P stand for self and partner, correspondingly, meaning that the
restriction is caused by a vertex on the same chain or by a vertex on the opposite
chain. The letter C is for counter, as opposed to straight.
Lemma 4.4 Each possible walk partner for a vertex v in a straight counter-walk is
contained in the interval [C-lo(v), C-hi(v)].

The proof is obvious.
Lemma 4.5 Let p ∈ L, q ∈ R be two vertices of P .

(i) If q < C-lo(p) then p < C-lo(q), if q > C-hi(p) then p > C-hi(q).
(ii) p ∈ [C-lo(q), C-hi(q)] ⇐⇒ q ∈ [C-lo(p), C-hi(p)].

Proof.
(i) If q < C-lo(p) = C-loP(p) then, according to the definition, Pred(C-loP(p))

is the maximum vertex q′ ∈ R with Backw(q′) > p. Because of q ≤ q′,
if follows from the definition of C-loS that Backw(q′) ≤ C-loS(q). Thus,
p < Backw(q′) ≤ C-loS(q) ≤ C-lo(q).
If q < C-lo(p) = C-loS(p) then there is a vertex p′ ≥ p such that C-loS(p) =
Backw(p′). According to the definition of C-loP, p ≤ p′ < C-loP(q) ≤ C-lo(q).
The second assertion of (i) is symmetric to the first.

(ii) This is a direct consequence of (i).
2

From now on we assume that none of the conditions of Lemma 4.2 applies.
We have to prove that P admits a counter-walk. A major step towards this is

proving the following two lemmata.
Lemma 4.6 For all vertices v of P we have [C-lo(v), C-hi(v)] 6= ∅.
Proof. Assume there is a vertex p of L with C-hi(p) < C-lo(p). This immediately
implies C-lo(p) 6= s, C-hi(p) 6= g.

Case 1: C-hi(p) = C-hiP(p) < C-lo(p) = C-loP(p)
According to Definition 4.3, Pred(C-loP(p)) is a vertex q ∈ R with Backw(q) > p,
and Succ(C-hiP(p)) is a vertex q′ ∈ R such that Forw(q′) < p, q′ < q. But this is
exactly situation (iii) of Lemma 4.2.

Case 2: C-hi(p) = C-hiS(p) < C-lo(p) = C-loP(p)
Here, Pred(C-loP(p)) = q just as in Case 1, and there is a vertex p′ ∈ L, p′ ≤ p

14

with Forw(p′) = C-hiS(p) ≤ q and equality is impossible due to the general position
assumption. We have Backw(q) > p ≥ p′ and Forw(p′) < q; this is situation (i) of
Lemma 4.2.

Case 3: C-hi(p) = C-hiP(p) < C-lo(p) = C-loS(p)
This becomes Case 2 if we reverse the order on L and R and exchange s and g.

Case 4: C-hi(p) = C-hiS(p) < C-lo(p) = C-loS(p)
There are two different vertices p′, p′′ ∈ L with p′ ≤ p ≤ p′′ and Forw(p′) =
C-hiS(p) < C-loS(p) = Backw(p′′). This is situation (iii) of Lemma 4.2 (with L and
R exchanged). 2

....
....
....
..
�

E
E
E
E
E
EE

,
,

,
,

�
�

�
�

..............................

�......9

E
E
E
E
E
E
�
��

.......
.......

.......
......

.........................
�
�
�
�
��

E
E
E
E
E

,
,

,
,

....
....
....
....
....�

E
E
E
EE

..............................
.......

.......
.......

.......
.....

E
E
E
E
E
E
�
��

A
A
A
AA

�
�
�
�
��

•

Case 1

••

p′′
•

•

C-hiS(p)••
•

•

q

p

p′

C-lo(p)

C-hiP(p)

C-lo(p)

p′

p

•

PPT
T

T
TT

l
l

ll

A
A
A
AA

�
�
�

.....................................

.......
.......

.......
.......

.......
....

E
E
E
E
E
E
�
�
�
�
��

•

•

Case 2

C-hi(p)

C-lo(p)

p •

XXXT
T

TT��
��
Q

Q
Q

QQ

...................
..................

!!
D
D
D
Dl

l
ll

�
�

�
�

A
AA

�
�
�

.....................................

.......
.......

.......
.......

.......
...

E
E
E
E
E
E
�
�
�
�
��

•

•

Case 4

q

C-hi(p)

C-lo(p)

p •R

.............y

B
B

B
BB
.........................

HHH

@
@@B

B
B

B
B
BB

...................
..................

A
AA

�
�
�

.....................................

.......
.......

.......
.......

.......
...

E
E
E
�
�
�
�
��

•

Case 5

•
q

C-hi(p)

C-lo(p)

p

•

Fig. 13. Lemma 4.7

Lemma 4.7 For all vertices v of P we have [C-lo(v), C-hi(v)] ∩ vis(v) 6= ∅.
Proof. We already know by Lemma 4.6 that [C-lo(v), C-hi(v)] 6= ∅ holds for all
vertices v. Assume that [C-lo(p), C-hi(p)] is completely invisible from a vertex p ∈ L.
We distinguish the main cases, all others are symmetric; see Figure 13. Note that
cases in which some part of [C-lo(v), C-hi(v)] intersects p C-lo(p) or p C-hi(p) do
not need to be considered. That interval must be hidden behind something else
than itself since it is assumed to be invisible from p.

Case 1: Some part of L<p intersects p C-hi(p).
Then there is a vertex p′ < p with Backw(p′) > C-hi(p) such that (p′, p] is invisible
from C-hi(p).

15

If C-hi(p) = C-hiP(p) then there is a vertex q ∈ R, q < Backw(p′) with Forw(q) < p′;
this is the forbidden situation (i) of Lemma 4.2.
If C-hi(p) = C-hiS(p) then there is a vertex p′′ ≤ p′ with Forw(p′′) = C-hi(p) <

Backw(p′); this is situation (ii) of Lemma 4.2.
Case 2: Assume that Case 1 does not apply and that some part of R<C-lo(p)

intersects p C-hi(p).
Then L≤p would be invisible from C-hi(p), but the definition of C-hi tells us other-
wise (note that in case C-hi(p) = g point s is visible by assumption).

For the remaining cases we assume that neither Case 1 nor Case 2 applies.
Case 3: L<p intersects p C-lo(p) and L>p intersects p C-hi(p) such that together

they completely obstruct the view from p to [C-lo(v), C-hi(v)].
Then p is invisible from R.

Case 4: R<C-lo(p) intersects p C-lo(p) and R>C-hi(p) intersects p C-hi(p) such
that together they completely obstruct the view from p to [C-lo(v), C-hi(v)].
As in Case 3, there is a point q ∈ [C-lo(v), C-hi(v)] that is invisible from L.

Case 5: R<C-lo(p) intersects p C-lo(p) and L>p intersects p C-hi(p) such that
together they completely obstruct the view from p to [C-lo(v), C-hi(v)].
Now, there is a point q ∈ [C-lo(v), C-hi(v)] such that pq intersects both, R<C-lo(p)

and L>p. One of the situations (i) of Lemma 4.2 applies, depending on which of
R<C-lo(p) ∩ pq or L>p ∩ pq comes first on the ray −→pq . 2

Lemma 4.8 The set [C-lo(v), C-hi(v)] ∩ vis(v) is connected for all vertices v of P .
Proof. Assume q, q′′ ∈ [C-lo(p), C-hi(p)] ∩ vis(p), q < q′ < q′′, q′ invisible from p,
for some vertex p ∈ L.

C
C
CC

�
�

�
�

	

....................................

�
�

�
%%

`̀
�
��

.....................................

.......
.......

.......
.......

.......
...

E
E
E
E
E
E
�
�
�
�
��

C-hi(p)

•

•

•

q′′′
q′•

q

q′′

p

•

•

Fig. 14. Lemma 4.8; Forw(q′′′) < p contradicts the definition of C-hi(p).

Then p q′ must be intersected by some part of [q, q′′], resulting in a vertex
q′′′ ∈ [q, q′′] with either Forw(q′′′) < p or Backw(q′′′) > p, but this is impossible by
the definition of C-hi and C-lo; see Figure 14. 2

Now that we know that the visible part of [C-lo(v), C-hi(v)] is an interval, it is
convenient to give names to its endpoints.
Definition 4.9 For a vertex v of P we define:

VC-lo(v) := min
(
[C-lo(v), C-hi(v)] ∩ vis(v)

)
,

VC-hi(v) := max
(
[C-lo(v), C-hi(v)] ∩ vis(v)

)
.

16

Lemma 4.10 Considered as functions {vertices of L} → R or {vertices of R} → L,
C-hi and C-lo are monotonically decreasing. The same property holds for VC-hi and
VC-lo.
Proof. The property for C-hi and C-lo follows immediately from the definition.

Now, take two vertices p, p′ ∈ L, p < p′. We have to show that VC-lo(p) ≥
VC-lo(p′). If VC-lo(p′) = C-lo(p′) then the assertion is true because VC-lo(p) ≥
C-lo(p) by definition and C-lo is monotonic.

In the remaining case VC-lo(p′) > C-lo(p′) we assume VC-lo(p) < VC-lo(p′).
The segment p′ VC-lo(p′) must be touched from below, so that VC-lo(p′) is the
lowest point above C-lo(p′) that is visible from p′, due to Lemma 4.8. We distinguish
two subcases.

Case 1: [p, p′) touches p′ VC-lo(p′), thereby intersecting p′ C-lo(p′).
Then there is a vertex p′′ ∈ (p, p′) with Backw(p′′) ≥ VC-lo(p′) > C-lo(p) in
contradiction to the maximality property of C-lo(p).

Case 2: [VC-lo(p), VC-lo(p′)] touches p′ VC-lo(p′).
Then there would be a vertex q ∈ [VC-lo(p), VC-lo(p′)) that is visible from p′, a
contradiction, because of C-lo(p′) < q.

Since no part of L<p ∪ R<VC-lo(p) can reach p′ VC-lo(p′) without crossing the
visibility segment p VC-lo(p), a contradiction follows.

Similarly, one shows that VC-hi(p) is decreasing. 2

Lemma 4.11 Let p ∈ L, q ∈ R be two vertices of P .
(i) If q < VC-lo(p) then p < VC-lo(q); if q > VC-hi(p) then p > VC-hi(q).
(ii) p ∈ [VC-lo(q), VC-hi(q)] ⇐⇒ q ∈ [VC-lo(p), VC-hi(p)].

Proof.
(i) Assume q < VC-lo(p). If q < C-lo(p) then p < C-lo(q) ≤ VC-lo(q) by

Lemma 4.5.
For the remaining case, C-lo(p) ≤ q < VC-lo(p), we know that VC-lo(p) is
visible but C-lo(p) is invisible from p, and p VC-lo(p) must be touched “from
below”. We distinguish two subcases.
Case 1: L<p touches p VC-lo(p), thereby intersecting p C-lo(p).
Here, there is a vertex p′ ∈ L with Backw(p′) > VC-lo(p) > q. According to
the definition, p′ < C-loP(q) ≤ C-lo(q). The interval (p′, p] is invisible from
q, so p < VC-lo(q).
Case 2: R<VC-lo(p) touches p VC-lo(p)
Now, there is a vertex q′ < VC-lo(p) with Backw(q′) > p, q′ visible from p.
The connectedness of [C-lo(p), C-hi(p)] ∩ vis(p) implies q′ < C-lo(p) ≤ q, thus
L≤p is invisible from q and p < VC-lo(q).
The other assertion is symmetrical.

(ii) This is a direct consequence of (i).
2

We need to compute the sets [VC-lo(v), VC-hi(v)] = [C-lo(v), C-hi(v)] ∩ vis(v)
(still assuming that none of the situations of Lemma 4.2 applies). As in Sec-
tion 3, after performing all Forw and Backw shots, all intervals [C-lo(v), C-hi(v)]
can be computed in linear time. But computing vis(v) and intersecting it with

17

[C-lo(v), C-hi(v)] for all vertices may require as much as Ω(n) operations per ver-
tex, and is therefore much too expensive. However, Lemma 4.7 and Lemma 4.8
show that [VC-lo(v), VC-hi(v)] is a nonempty interval included in [C-lo(v), C-hi(v)],
so we do not really need to compute all of vis(v).
Lemma 4.12 All intervals [VC-lo(v), VC-hi(v)] can be computed in time O(n logn).
Proof. The idea is to use the optimal shortest path queries provided by Guibas and
Hershberger7. Given a triangulated polygon, after a linear time preprocessing step
their algorithm determines in time O(logn) the length of the shortest path inside a
polygon P between two arbitrary points. This algorithm can be modified to report
the first segment of such a shortest path within the same time. For our purposes,
an O(n logn) triangulation method (as described by Preparata and Shamos9) is
sufficient.

K

....
....

....
....

....
.

}

.....
......

......
.....

......
....

>

.....
......

......
.....

......
......

.....
......

....

aaaa
Z

ZZ

C
C
C
C
C
C
C
C
CCZ

ZZ
A
A
A
A
A
AA

�
�

BB
!!!!""""""

PP�
�

1

..........
..........

..........

-.......................

vh

vl
•

•
•p

C-hi(p) = C-hiS(p)

C-lo(p) = C-loP(p)

VC-hi(p)

VC-lo(p)

Fig. 15. An illustration of Lemma 4.12

Consider for a vertex p ∈ L the shortest paths from p to C-lo(p) and to C-hi(p).
Let vl and vh denote the first vertices after p on the two shortest paths. Then
VC-lo(p) and VC-hi(p) are the hit points of the shots from p through vl and vh; see
Figure 15.

In this way, we can compute each point VC-lo(v), VC-hi(v) from the points
C-lo(v), C-hi(v) by one shortest path query and one shooting query each, in an
overall running time of O(n log n). 2

Now we have the tools for deciding if a straight counter-walk exists. The next
theorem gives us both an equivalent criterion and a method for efficiently computing
such a walk.
Theorem 4.13 There is a straight counter-walk iff the chains L and R are mutually
weakly visible and none of the conditions of Lemma 4.2 applies. Such a straight
counter-walk can be computed in O(n logn) time.
Proof. Necessity was shown in Lemma 4.2.

In order to prove sufficiency, we explicitly construct a straight counter-walk.
From Lemma 4.7 we know that for all vertices v the interval [VC-lo(v), VC-hi(v)] is

18

not empty and is visible from v, and that all possible walk partners for a vertex v

must be contained in that interval.
From Lemma 4.10 we know that VC-lo and VC-hi are monotonically decreasing.

If we assign and mark the point VC-lo(p) as walk partner to each vertex p ∈ L then
these walk partners are in the correct order for a straight counter-walk. (In fact,
every two walk lines cross. This corresponds to the property of straight walks that
no two walk lines cross, see Lemma 2.3.)

A vertex q ∈ R that has not yet been assigned a walk partner lies between
two nearest marked points, VC-lo(p) and VC-lo(p′), where p > p′. It follows from
Lemma 4.11 that p′ < VC-lo(q) ≤ p. So we can choose VC-lo(q) as a walk partner
for q. Still all walk partners are mutually visible and in the correct order for a
straight counter-walk.

Now that all vertices have been assigned walk partners, a straight counter-walk
can be obtained in the following way. Assume that l and r, the guards on L and R,
are at the marked points pi and qi, respectively, and let pi+1 and qi−1 denote the
next marked points on L and R. Then the guards proceed in such a way that their
walk segment lr rotates about the intersection point piqi∩ pi+1qi−1. This results in
the type of elementary walk instruction depicted in Figure 5 (ii). 2

By analogy to the case of straight walks, we have the following corollary.
Corollary 4.14 If P admits a straight counter-walk then for every vertex v each
point of the interval [VC-lo(v), VC-hi(v)] is a suitable walk partner for v.

5. General Walks

Let us now allow backtracking of the guards. We will see in this section that
a polygon admits a general walk if and only if it is weakly visible and contains
no deadlocks, see Figure 8, whereas wedges are permitted, in contrast to straight
walkable polygons. All straight walks for a given polygon are of equal length, but
with backtracking allowed it makes sense not only to ask if a given polygon is
walkable and to construct a walk, but also to ask for a shortest walk.

Our algorithm for the general walk problem consists of the following steps. First,
we solve the shooting problem of Section 3, build the search structures for all vertices
and hit points, and check for weak visibility of L and R and for the deadlock
conditions described in Lemma 3.3 (i). We give an algorithm turnpoint to compute
the necessary and sufficient turning points for a walk. With that information we
can partition P into straight walkable and straight counter-walkable pieces and
apply the results of Section 3 and Section 4 for each piece. We can show that the
concatenation of these walks is of minimal length and that the whole algorithm runs
in time O(n log n + k), where n is the number of vertices in P and k is the number
of walk instructions the minimal walk consists of.

Once the weak visibility of L and R is verified with the help of Lemma 3.2,
those shots Forw(p) or Backw(p) of some vertex p ∈ L that hit L are no longer
interesting. From now on we assume that L and R are weakly visible. Also we use
the following convention. Whenever two shots Forw(p) and Backw(p′) are compared,

19

where p, p′ ∈ L, then these hit points are assumed to lie on R, and vice versa. In
Lemma 3.3 (i) we have seen that in the case of a deadlock situation, as shown in
Figure 8 (i), not even a general walk exists; thus we assume from now on that there
are no deadlocks in P .

Obviously, a wedge W = [p, p′] on L, as shown in Figure 8 (ii), causes the
guard on R to turn, backtrack, and turn again, while its partner moves through W .
The problem is how to organize the backtrack moves on R. The example polygon
depicted in Figure 16 shows that not every wedge on L defines turning points on R.

The following algorithm turnpoint scans L from s to g and reports the turning
points on R that are necessary for a walk.

Algorithm turnpoint
1 utp := s;
2 ltp := g;
3 FOR all reflex vertices p ∈ L in increasing order DO
4 IF ltp > utp
5 THEN IF Backw(p) > utp
6 THEN utp := Backw(p)
7 ELSE IF Forw(p) < utp
8 THEN ltp := Forw(p)

ENDIF
ENDIF

9 ELSE IF Forw(p) < ltp
10 THEN ltp := Forw(p)
11 ELSE IF Backw(p) > ltp
12 THEN report-turning-points(utp,ltp);
13 utp := Backw(p);
14 ltp := g

ENDIF
ENDIF

ENDIF
ENDFOR;

15 IF ltp < utp
16 THEN report-turning-points(utp,ltp)

ENDIF

The algorithm turnpoint scans L and stops at every reflex vertex (line 3). It keeps
track in line 5–6 of the maximum (with respect to the order on R) Backw shot utp
because this is a candidate for an upper turning point. In Figure 16, utp takes on
the values q4, then q6. Maximization of utp stops once the first Forw shot < utp is
detected in line 7, namely point q2 in Figure 16. This point is called ltp because it
gives rise to a candidate for a lower turning point (line 8). At this moment, a wedge
has been detected, and utp is a necessary upper turning point, whereas ltp is still
to be minimized. Note that Forw(p) < utp implies Backw(p) < utp, so line 7 is in
fact executed each time the condition is fulfilled. Afterwards, ltp < utp holds.

As we proceed scanning L, two cases can occur. First, a shot Forw(p) is encoun-
tered that is less than the current minimum Forw shot ltp (line 9). This happens in

20

6 6

6@@

.........................

@@........................

��
�� R

......................................

j

....................................

�

.....
.....

.....
.....

.....
.....

.....
..

7

....
....
....
....
....
....
....
....
....
....
....
....
....
..

R

....................................

z
............................

•

•

•

•

•

p1

p2

p3

p4

p5

p6

•

q1

q3

q4

q5

q6

q2

Fig. 16. A walk with backtracking

Figure 16 on reaching vertex p4. At this moment, utp equals q6, and ltp equals q2,
and it is clear that the guard on R has to go back (at least) to q1 = Forw(p4) after
visiting q6. Therefore, q1 becomes the lower turning point ltp (line 10).

The second possible event is that a shot Backw(p) greater than ltp occurs (line
11), for example point q5 in Figure 16. Again, Forw(p) must be higher than ltp

in this case. Then the guard on R must turn again at ltp and walk at least to
Backw(p). Therefore, (utp, ltp) define a pair of consecutive turning points on R and
have to be reported as such (line 12). The point Backw(p) is a new candidate for
an upper turning point (line 13), a corresponding lower turning point of which is
still to be detected, if it exists. As long as this is the case, ltp is set to g (line 14 and
line 2). Initially, utp is set to s (line 1) to denote that no candidate for an upper
turning point has so far been detected.

After leaving the FOR loop (line 3–14), we have to check if a new wedge has
been detected in line 7 that has not yet been reported in line 12. If so, we report
this last wedge and terminate (line 15–16).

A symmetrical version of the algorithm can be used to compute turning points
on L.

The above discussion shows that any walk for P has to visit the upper and lower
turning points in the order given by the algorithm. In the rest of this section we
will prove that there is indeed a walk that turns at exactly these points. Such a
walk is clearly of minimal length.
Definition 5.1 Let utp = Backw(up), ltp = Forw(lp) be a pair of points that has
been reported by algorithm turnpoint.
If up, lp ∈ L (and utp, ltp ∈ R) we call (up, lp, utp, ltp) a left maximum wedge.
Otherwise, i.e. if up, lp ∈ R, we call (utp, ltp, up, lp) a right maximum wedge. (Note
that we use the order inside the 4-tuples to distinguish between left and right
maximum wedges.) In either case, such a 4-tuple is called a maximum wedge.

The set of maximum wedges is totally ordered in the following sense. Two

21

maximum wedges on the same side are in the order in which they were reported by
the algorithm. Two maximum wedges on opposite sides can always be separated
by a line segment from L to R, due to the following lemma. Thus, we may speak of
the first, second, last, etc. maximum wedge. We will use the sign ≺ for this order.
Lemma 5.2 For two maximum wedges W1 = (utp1, ltp1, up1, lp1) and
W2 = (ut2, lt2, utp2, ltp2) on L and R, resp., the following holds.

Either
(
utp1 < up2 and lp1 < ltp2

)
or

(
lp2 < ltp1 and utp2 < up1

)
.

In the first case, we denote this by W1 ≺ W2, in the second by W2 ≺ W1.

}

......
......

......
......

..

	

..............................

�

.....
.....

.....
.....

.....
....

~

..........................

ZZ

��

ZZ

��

utp1

lp2

lp1

up1

ltp2

utp2

ltp1

up2

•

•

•

•

Fig. 17. Maximum wedges on opposite sides do not interfere.

Proof. Otherwise a deadlock situation like Figure 8 (i) would occur, see Figure 17.
2

By the next two lemmata we show that a straight walk exists between two consec-
utive maximum wedges, and that a straight counter-walk exists inside a maximum
wedge. In a sense, these are generalizations of Theorem 3.11 and Theorem 4.13 in
that they solve the corresponding edge-to-edge problem instead of the point-to-point
problem.
Lemma 5.3 Let W1 ≺ W2 be two consecutive maximum wedges (in the order ex-
plained above). Then there is a straight walk on P from lp1 ltp1 to up2 utp2.
Proof. We distinguish two cases. W1 and W2 can be on the same side or on
opposite sides of P .

Assume that W1 = (up1, lp1, utp1, ltp1) and W2 = (up2, lp2, utp2, ltp2) are both
left maximum wedges, see Figure 18 (i). Then ltp1 < utp2 and lp1 < up2, because
these two maximum wedges were reported consecutively by our algorithm, so it
makes sense to speak of a straight walk from lp1 ltp1 to up2 utp2, both of which are
visibility segments.

Let us consider the straight walk problem for the polygon P ′ consisting of the
two chains L′ = ltp1 lp1[lp1, up2]up2 utp2 and R′ = [ltp1, utp2] with s′ = ltp1 and

22

......................

@
@

@
@
E
EE
�
�
�
�

�
�

��
.......................
�
��

�
��
L
L...............

B
BB
�
��

�
��
L
L.......................R

............................

>

......
......

......
......

..

�

.....
.....

.....
.....

.....
....

~

..........................

��

@@E
E
E

ZZ

���
�
�

(i)

•

•

P ′

•

• utp2 = g′

ltp1 = s′

up1

utp1

•

lp2

lp1

ltp2

up2

•

E
E
E

�
�

�
��

D
D

��
D
DD
�
��
�

�
�

��B
BB
�
�
�

���
�
�
�
�
B

B
B
B

D
DD
��

D
DD

}

......
......

......
......

..

	

..............................

�

.....
.....

.....
.....

.....
....

~

..........................

ZZ

��E
E
E

ZZ

���
��

(ii)

up1

ltp1•

•

P ′

s′ = lp1

utp2 = g′

utp1

lp2

ltp2

up2

•

•

•

•

Fig. 18. Lemma 5.3

g′ = utp2. All of ltp1, lp1, up2 and utp2 are non-reflex vertices in P ′, so each reflex
vertex of P ′ is also a reflex vertex of P . From the assumption that L and R are
weakly visible it follows that each point of R′ is visible from one point of L′, and,
since the two wedges are maximum, there is no vertex p ∈ L′ with Backw(p) > utp2

resp. Forw(p) < ltp1. Now Lemma 3.2 shows that each point of L′ is visible from
one point of R′; thus L′ and R′ are weakly visible.

There is no deadlock, see Figure 8 (i), in P ′, since otherwise a deadlock in P

would exist, or weak visibility of P would be violated if a shot hits the opposite
chain in P ′ but not in P .

Assume that P ′ contains a wedge, see Figure 8 (ii), defined by the reflex vertices
v < v′, i.e. Forw(v′) < Backw(v), where w.l.o.g. [v, v′] does not contain another
pair of vertices with this property. Due to weak visibility, this must be a wedge
in P , too. Because it is minimal in the above sense, [v, v′] must be contained in a
maximum wedge W reported by the algorithm, which must fulfill W1 ≺ W ≺ W2

(or a violation of Lemma 5.2 must occur in case W is a right maximum wedge and
overlaps with one of W1, W2). This contradicts our assumption that W1 and W2

are consecutive maximum wedges, so there is no wedge in P ′. Now Theorem 3.11
implies the existence of a straight walk in P ′ from s′ to g′.

It remains to show that there exists a straight walk from edge lp1 ltp1 to edge
up2 utp2. There is no vertex q ∈ R′ with Backw(q) > up2 because there is no
deadlock in P , so hi′(up2) = g′ = utp2 (hi′ denotes hi with respect to P ′). Sym-
metrically, we have lo′(lp1) = s′ = ltp1. Following the proof of Lemma 3.9, there
is a straight walk for P ′ in which each vertex p ∈ L′ has lo′(p) as its walk partner.
From up2, lo′(up2) on, the left guard may stand still while the right one proceeds to
g′ = utp2 = hi′(up2). Lemma 3.8 guarantees that during the last move the guards
remain covisible. Consequently, there is a walk in P ′ (and also in P) from lp1 ltp1

to up2 utp2.
For the second case, i.e. W1 and W2 are on opposite sides, we assume w.l.o.g.

23

that W1 = (utp1, ltp1, up1, lp1) and W2 = (up2, lp2, utp2, ltp2), see Figure 18 (ii).
Then ltp1 < utp1 < up2 and lp1 < ltp2 < utp2 by Lemma 5.2, and the polygon P ′

consisting of L′ = lp1 ltp1[ltp1, up2]up2 utp2 and R′ = [lp1, utp2] with s′ = lp1 and
g′ = utp2 is well defined.

The rest of the proof for the second case differs from the first case only in the
following arguments. The maximality of utp2 still guarantees that there is no vertex
p ∈ L′ with Backw(p) > utp2. A vertex p ∈ L′ with Forw(p) < lp1 would cause a
deadlock in P . With Lemma 3.2 we have that L′ and R′ are weakly visible. We
have hi′(up2) = g′ = utp2 as before, and lo′(ltp1) = s′ = lp1 because a vertex q ∈ R′

with Forw(q) < ltp1 would violate the minimality of ltp1. 2

Lemma 5.4 For a maximum wedge W , there is a straight counter-walk on P from
utp up to ltp lp.

..........................
�

�
��PP�

��

@
@

@
@@E
E
E
EE
�

��
C
C
CC

.............
.............
B
B

BB
�
�
�
��
AA

............
B
BB

�
�

�
��

...R

��
...l

l
ll

"""""""

B
BB......................

�
�
�
��
B
B
BB

�
�

�
��

....
....
....
....
....
....
....
....
....
....
....
....
....
....
.

7

P ′

(i) A maximum Wedge.

RS

•

•

•

LS

s′ = up
•

lp

ltp

utp = g′
�
�
�
��
B
B
B
.........................

.....................................-

...................................-

�
�

��@@

.............
..............
.....

@
@

@
@

............
B
BB

�
�

�
��

...R

��
...l

l
ll

"""""""

B
BB......................

�
�
�
��
B
B
BB

�
�

�
��

....
....
....
....
....
....
....
....
....
....
....
....
....
....
.

7

P ′

(ii) Not a maximum Wedge.

•

•

•p
′

p

lp

Backw(p′)

s′ = up

Forw(p)•

•

•

ltp

utp = g′

Fig. 19. Lemma 5.4

Proof. W.l.o.g. assume W = (up, lp, utp, ltp) to be a left maximum wedge, see
Figure 19 (i). Let LS denote the shortest path inside P from lp to utp and RS

the shortest path from up to ltp. Both LS and RS are convex chains consisting of
reflex vertices. We define a polygon P ′ with L′ = [up, lp] LS and R′ = RS [ltp, utp].
We consider the straight counter-walk problem for P ′ with s′ = up and g′ = utp.
Let Forw′ denote Forw with respect to P ′.

The chains LS and RS are weakly visible, since the point of intersection of
utp up and ltp lp can see both reflex chains, LS and RS. For all reflex vertices
q ∈ [ltp, utp] we have Forw(q) > lp and Backw(q) < up because otherwise there
would be a deadlock in P . So each point in R′ is visible from a point in L′ by
Lemma 3.2. On the other hand, for p ∈ [up, lp] we have Forw(p) ≥ ltp due to the
minimality of ltp and Backw(p) ≤ utp because of the maximality of utp, as corner
points of a maximum wedge. Again from Lemma 3.2, it follows that each point of
L′ is visible from a point in R′. All together we have that L′ and R′ are weakly
visible.

As we have seen, Forw′(p) ≥ ltp holds for all reflex vertices p ∈ L′. But there is

24

no q ∈ R′
≥ltp with Backw′(q) ∈ L′. By construction, we have Forw′(q) > lp for all

reflex vertices q ∈ R′. There is no p ∈ L′
>lp, i.e. p ∈ LS, with Backw′(p) ∈ R′. We

conclude that condition (i) of Lemma 4.2 cannot apply.
With Forw′(q) > lp and Backw′(q′) < lp for all q, q′ ∈ R′ it follows that condition

(iii) of Lemma 4.2 cannot apply, either.
Assume condition (ii) of Lemma 4.2 holds, i.e. Forw′(p) < Backw′(p′) for some

p < p′. This could only be the case for p, p′ ∈ [up, lp] and Forw′(p), Backw′(p′) ∈
[ltp, utp], see Figure 19 (ii). But with ltp < Forw′(p) < Backw′(p′) < utp and
up < p < p′ < lp it would follow that the algorithm turnpoint should have reported
an additional pair of turning points.

We therefore know from Theorem 4.13 that there exists a straight counter-walk
on P ′ from up utp = s′g′ to utp up = g′s′. It remains to show that there is such
a walk which takes on ltp lp as an intermediate position. The point ltp is visible
from lp, and, by checking with Definition 4.3, one can verify that it is contained in
[C-lo′(lp), C-hi′(lp)], thus it is in [VC-lo′(lp), VC-hi′(lp)]. The existence of the walk
in question follows from Corollary 4.14. 2

Now the existence of straight resp. counter walk pieces between the turnpoints
has been established; together, they form a walk for P . It remains to discuss the time
performance. This is a subtle issue, for two reasons. First, consecutive maximum
wedges on the same side can overlap. Second, we cannot afford to compute all
Forw′ and Backw′ shots for each subpolygon P ′ occuring in the existence proof.
Essentially, we have to live on the Forw and Backw shots computed for P in the
beginning.
Lemma 5.5

(i) All straight walk pieces for P , i.e. all straight walks between two consecutive
maximum wedges, can be computed in total time O(n logn + k).

(ii) All counter-walk pieces for P , i.e. all counter walks inside maximum wedges,
can be computed in O(n log n + k) time, too.

Proof. We have already spent O(n log n) time for computing all Forw and Backw
shots for P . The algorithm turnpoint reports all maximum wedges in time O(n).

(i) For the straight walks between two maximum wedges (and in particular the
first piece after s and the last piece towards g), our method of Section 3
applies, but with the following considerations.
Let P ′ be a subpolygon as defined in the proof of Lemma 5.3, see Figure 18,
consisting of sides L′ and R′ with n′ vertices. A straight walk from lp1 ltp1

to up2 utp2 can easily be obtained from a straight walk for P ′, see the proof
of Lemma 5.3.
We make use of the fact that all Forw and Backw shots are already computed
for P . All shooting queries for P ′ can be obtained in the following way, using
total time O(n′). In Figure 18 (i), for example, in order to compute Forw′(p)
for a vertex p ∈ L′, we check if Forw(p) belongs to [lp1, up2]∪[ltp1, utp2]. If so,
we have Forw′(p) = Forw(p). Otherwise, Forw′(p) is the point of intersection
of p Forw(p) with either lp1 ltp1 or up2 utp2. Analogous observations hold for
Backw shots and for vertices in R′.

25

The computation of hi′, lo′, etc. can be done in O(n′) time to obtain the
desired walk. The sum of the n′ is O(k) although the straight walk pieces
of P can overlap. Namely, if a vertex v belongs to t pieces like P ′ then v is
visited O(t) times in the minimal walk.

(ii) Given a left maximum wedge (up, lp, ltp, utp), we consider the subpolygon P ′

which was defined in the proof of Lemma 5.4, see Figure 19 (i). However,
we do not compute the convex chains LS and RS, because we do not know
in how many chains a vertex may appear (of course, the chains do restrict
the visibility from [up, lp] to [ltp, utp]). But the Forw and Backw shots from
vertices in LS and RS do not restrict the walk from up utp to lp ltp.
Let n′ be the number of vertices of [up, lp] and [ltp, utp]. We know from
Lemma 5.4 that a straight counter-walk exists from utp up to ltp lp.
In the proof of Lemma 5.4 we noted that for all reflex vertices q ∈ [ltp, utp]
we have Forw(q) > lp and Backw(q) < up. Thus all Forw and Backw shots
from [ltp, utp] are irrelevant for our counter-walk.
Also following the proof of Lemma 5.4, for a reflex vertex p ∈ [up, lp] we
have Forw(p) ≥ ltp and Backw(p) ≤ utp. So the shots from [up, lp] are only
interesting if they hit in [utp, ltp], because Forw(p) > utp and Backw(p) < ltp

are irrelevant restrictions for the intended counter-walk. Thus we do not need
additional shooting queries for computing all intervals [C-lo′(p), C-hi′(p)] for
the vertices p ∈ [up, lp], which can, therefore, be done in time O(n′).
After that, we compute the intervals [VC-lo′(p), VC-hi′(p)] for the vertices
p ∈ [up, lp], using the method of shortest path queries and shooting queries
described in Lemma 4.12. This requires time O(log n) per vertex, but the
vertices of [up, lp] are visited only once in our walk for P .

�
�
�

�
�

..9

�
�

B
BB
................
...EE

AA

..q

.........
.........

.........
.........

.........
.........

...1

A
AA

�
�

��

T
T
T
T
TT

PP�
��

@
@

@
@@E
E
E
EEPPP

�
�

�
��

............
B
BB

�
�

�
��

��
...

@
@

@
@

"""""""

P ′

•

p

•p′
up

utp

q••
• VC-lo′(p′)

VC-lo′(p)

x

•

•

•

lp

ltp

Fig. 20.

Now that we have all walk intervals for vertices on the left side, it is not difficult
to assign all walk partners. As in the proof of Theorem 4.13, to each vertex
p ∈ [up, lp] we assign VC-lo′(p) as walk partner. A vertex q ∈ [ltp, utp] that
has not yet been assigned a walk partner lies between two nearest assigned

26

points, VC-lo′(p) and VC-lo′(p′), with p > p′. Let x denote the point of
intersection of p VC-lo′(p) and p′ VC-lo′(p′). A suitable walk partner for q

is the point of intersection of p p′ and the ray −→q x, since x can see the whole
interval [p′, p], see Figure 20. All these walk partners can be assigned in time
O(n′). Now all walk partners are mutually visible and in the correct order for
a straight counter walk.
The overall time spent on this construction is O(n logn + k).

2

Theorem 5.6 There is a walk for P iff the chains L and R are mutually weakly
visible and P does not contain a deadlock, i.e. condition (i) of Lemma 3.3 does not
hold. Furthermore, a walk of minimum length can be computed in time O(n log n+k)
and O(n) space where k is the number of walk instructions.
Proof. The existence follows from Lemma 5.3 and Lemma 5.4, the time and space
bounds from Lemma 5.5. 2

6. The Lower Bound

In the preceding sections we have shown that one can, in time O(n log n), deter-
mine if a given simple polygon admits a walk from s to g, and compute a walk of
minimum length in time O(n logn + k), if there is one. Here n denotes the number
of edges of the polygon, and k is the size of the output, i.e. the number of walk
instructions. As the next lemma shows, k can be quadratic.
Lemma 6.1 The number k of walk instructions for the two guards is Θ(n2) in the
worst case.
Proof. The polygon depicted in Figure 21 is walkable, but the guard on R has to
make Ω(n2) vertex visits on his way from s to g.

..?

..R

...~

..s

...=

..�

...�

..?

�
�
�
��

QQ
...

..... ��
A
A
A
A

A
A
AA .. �

�
�
��A

AU

�
���

s

L

R

•
g

︸ ︷︷ ︸
n
2

•

Fig. 21. Each of the n
2

vertices on R is visited O(n) times.

On the other hand, the triangles, quadrilaterals, and rotations mentioned at the
end of Section 5 are defined by a total of O(n) points on P . Their number is O(n2)
because they can only contain two consecutive points on the same chain. Since the
walk is of minimum length, the guards do not take on the same relative position
twice. 2

Now we prove that our upper bound on O(n logn + k) for computing a walk
is optimal. Since the walk instructions do in particular contain all turnpoints,

27

the assertion follows from the following theorem, whose proof is based on an idea
communicated by Formann and Wagner10.
Theorem 6.2 Computing the turnpoints for a walkable polygon of n edges requires
Ω(n logn) time.
Proof. Given n real numbers, 0 < α1 < α2 < . . . < αn < π, in ascending order,
and an unsorted sequence β1, β2, . . . , βn of reals in (α1, αn), all different from the
αi, it takes Ω(n log n) steps in the comparison model to determine for each βi the
unique ασ(i) such that ασ(i)−1 < βi < ασ(i) holds. We show that this problem can
be reduced in linear time to the computation of turnpoints.

.........
�

...............
.........

..

..

...
bb

....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
.

....
....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
.....
.

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
....

....
.

.........................
......................... ll

.....................

..

..

..�
�
�
�
��
�

��hhhhhhhhhh
B
B
B
B
BB•

•

• •

• •

•
•

•∆ {

•

t2

t1t3

(0,0)s g

p1

p2

pn

α1

(1,−1)

Fig. 22. The proof of the lower bound.

Let C be the upper half of the circle of radius 1 centered at (0, 0), as shown
in Figure 22. For an angle γ ∈ (0, π) let f(γ) := (− cos(γ), sin(γ)) denote the
corresponding point on C. Let pi := f(αi). We connect the (ordered!) points pi by
edges. Moreover, p1 is connected with (−1, 0), and pn with (1, 0). This polygonal
chain will be the left side L of polygon P .

Next, we choose ∆ > 0 so small that the rectangular slab defined by (−1,−1),
(−1,−1−∆), (1,−1−∆), and (1,−1), is spacious enough to accomodate n wedges
all of whose right edges aim at s, whereas the left edge of the ith wedge, in left to
right order, aims at f(βi), 1 ≤ i ≤ n. Let ti denote the Backw hit point on L of the
ith wedge.

Finally, we connect s := (−1, 0) with (−1,−1) and (1,−1) with g := (1, 0) and
with the wedges. This chain is the right side R of P .

The resulting polygon P is walkable. As the guard on R walks from s to g, the
guard on L first has to walk to t1. Then it must turn and backtrack to s, turn and
walk to t2, turn again and backtrack to s, and so forth. To compute the turnpoints
of this walk means to compute the edges of L containing the points ti, 1 ≤ i ≤ n.
But evidently, ti ∈ pj−1pj ⇐⇒ αj−1 < βi < αj.

Therefore, we can solve our original problem by computing turnpoints. 2

28

7. Conclusions

It is not hard to see how to solve in time O(n log n+k) the general counter-walk
problem, where the guards move in opposite directions, with backtracking allowed.

There are some other related questions which may be interesting for further
research. Given a polygon P , do there exist two vertices s and g such that P is
(straight) walkable? Report all such pairs. In which walk is the maximum distance
between the two guards minimized? What if the two guards have to find out on-line
if the polygon admits a walk, based only on their local visibility information?

Finally, how fast can one decide if a polygon is straight walkable? Our lower
bound only applies to computing a general walk of minimum length.

Acknowledgements

We would like to thank the anonymous referees for their valuable comments and
suggestions for improvements.

References

1. V. Chvatal, “A Combinatorial Theorem in Plane Geometry”, Journal of Combina-
torial Theory B 13(6) (1975) 39–41.

2. S. Fisk, “A Short Proof of Chvatals’s Watchman Theorem”, Journal of Combinato-
rial Theory B 24 (1978) 374.

3. D. T. Lee and A. K. Lin, “Computational Complexity of Art Gallery Problems”,
IEEE Transactions on Information Theory 32 (1986) 276–282.

4. W.-P. Chin and S. Ntafos, “Optimum Watchman Routes”, Information Processing
Letters (1988).

5. J. O’Rourke, Art Gallery Theorems and Algorithms, (Oxford University Press, New
York, Oxford, 1987).

6. B. Chazelle and L. J. Guibas, “Visibility and Intersection Problems in Plane Geom-
etry”, Discrete and Computational Geometry 4(6) (1989) 551–581.

7. L. J. Guibas and J. Hershberger, “Optimal Shortest Path Queries in a Simple Poly-
gon”, Journal of Computer and System Sciences 39(2) (1989) 126–152.

8. D. Avis and G. T. Toussaint, “An Optimal Algorithm for Determining the Visibility
of a Polygon from an Edge”, IEEE Transactions on Computers 30 (1981) 910–914.

9. F. P. Preparata and M. I. Shamos, Computational Geometry, (Springer-Verlag, New
York, 1985).

10. M. Formann and F. Wagner, unpublished note, Freie Universität Berlin, 1990.

29

