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E-mail: samuel.abreu@uclouvain.be, lance@slac.stanford.edu,

eh10@stanford.edu, bpage@ipht.fr, mzeng@phys.ethz.ch

Abstract: We compute the symbol of the two-loop five-point amplitude in N = 8

supergravity. We write an ansatz for the amplitude whose rational prefactors are based

on not only 4-dimensional leading singularities, but also d-dimensional ones, as the former

are insufficient. Our novel d-dimensional unitarity-based approach to the systematic con-

struction of an amplitude’s rational structures is likely to have broader applications, for

example to analogous QCD calculations. We fix parameters in the ansatz by performing

numerical integration-by-parts reduction of the known integrand. We find that the two-

loop five-point N = 8 supergravity amplitude is uniformly transcendental. We then verify

the soft and collinear limits of the amplitude. There is considerable similarity with the

corresponding amplitude for N = 4 super-Yang-Mills theory: all the rational prefactors are

double copies of the Yang-Mills ones and the transcendental functions overlap to a large

degree. As a byproduct, we find new relations between color-ordered loop amplitudes in

N = 4 super-Yang-Mills theory.

Keywords: Extended Supersymmetry, Scattering Amplitudes

ArXiv ePrint: 1901.08563

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2019)123

mailto:samuel.abreu@uclouvain.be
mailto:lance@slac.stanford.edu
mailto:eh10@stanford.edu
mailto:bpage@ipht.fr
mailto:mzeng@phys.ethz.ch
https://arxiv.org/abs/1901.08563
https://doi.org/10.1007/JHEP03(2019)123


J
H
E
P
0
3
(
2
0
1
9
)
1
2
3

Contents

1 Introduction 1

2 The N = 8 supergravity integrand 4

3 Leading singularities 6

3.1 Leading singularities in four dimensions 7

3.2 Leading singularities in d dimensions 9

4 Construction of the amplitude 13

4.1 Pure basis of master integrals 14

4.2 Numerical reduction and analytic reconstruction 17

5 Validation 19

5.1 Divergence structure 19

5.2 Soft factorization 20

5.3 Collinear factorization 22

6 Structure of results 23

6.1 A symmetric form of the hard remainder R
(2)
5 24

6.2 Counting functions for N =8 SUGRA and N =4 SYM 26

7 Outlook 31

A Kinematics 33

A.1 Symbol alphabet 33

A.2 Twistor parametrization and rationalization of the alphabet 34

1 Introduction

Scattering amplitudes in gauge and gravity theories with high degrees of supersymmetry

are known to exhibit a wide variety of simplifications in their analytic form that are ob-

scured in traditional Feynman-diagram computations. A posteriori, these structures have

often been found to be linked to hidden symmetries, such as dual conformal symmetry [1–4]

in planar maximally-supersymmetric gauge theory. These results have also impacted cal-

culations in theories with lower degrees of supersymmetry, as techniques born to organize

the supersymmetric cases, such as the symbol map [5–7] and generalized unitarity [8],

have proven indispensable in computations of phenomenological relevance. As a result,

supersymmetric amplitudes have been used as a laboratory, both to extend our general

understanding of quantum field theories and to develop new computational tools to meet
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the precision goals for current and future collider experiments. Crucial to making progress

on these dual fronts has been the availability of ‘theoretical data’ — explicit expressions

for scattering amplitudes.

In the past decade, great leaps have been made in the understanding of integrands

of scattering amplitudes. For N = 4 super-Yang-Mills theory (N = 4 SYM) in the planar

limit there exist recursive all-multiplicity formulae for amplitude integrands to any loop

order (in principle) [9]. Local integrand representations have also been derived [10, 11] by

making full use of generalized unitarity [8, 11–14]. In parallel, there has also been enormous

progress in ‘geometrizing’ scattering amplitudes by relating them to mathematical objects

like the Grassmannian [15, 16] and the amplituhedron [17].

In theories of gravitation the construction of integrands is dramatically eased by

the color-kinematics duality and double-copy procedure of Bern, Carrasco and Johans-

son (BCJ) [18], where gravity integrands are represented as ‘squares’ of their much simpler

gauge-theory counterparts. Even though this construction has been proven to work for

tree-level amplitudes [19–21], a loop-level proof remains elusive. Nonetheless, on a case-

by-case basis, the existence of BCJ-satisfying representations [22] has been established up

to the four-loop order for four-particle amplitudes [23]. At higher multiplicities, the in-

tegrand of the two-loop five-point amplitude in the maximally supersymmetric theory of

gravity, N = 8 supergravity (SUGRA), has been known in a compact form for a number

of years [24, 25] and still constitutes the state of the art in this direction. Starting at five

loops, novel ideas [26, 27] were required to sidestep the difficulty of finding a BCJ form

for the integrand. In light of this progress, it is hard to overstate the importance of the

double-copy procedure. It has led to an explosion of gravity integrand calculations and

has fostered an improved understanding of the ultraviolet character of N = 8 SUGRA as

well as other theories of quantum gravity. For the latest progress see refs. [28, 29] and

references therein.

At the level of amplitudes, rather than integrands, whilst considerable progress has

been made in the planar sector of N =4 SYM (where bootstrap methods [30] have allowed

the computation of six-point five-loop [31] and seven-point four-loop [32, 33] amplitudes),

much less is known beyond the planar limit. Supersymmetric theories of gravitational

interactions are inherently nonplanar. For N =8 SUGRA, the maximally helicity violating

(MHV) one-loop amplitudes were computed over 20 years ago [34] and many other one-

loop computations have been performed since then. At two loops, however, the state of

the art has been the four-point amplitude in N = 8 SUGRA [35–37] as well as in N ≥ 4

supergravity [38],1 with partial two-loop results available for the four- and five-point all-plus

amplitudes in Einstein gravity [39–41].

In the absence of a bootstrap program for nonplanar amplitudes, the main obstacle

to obtaining higher multiplicity results in nonplanar sectors has been the difficulty of

constructing the relevant integration-by-parts (IBP) identities [42, 43], required for both

the reduction of the integrand and the calculation of the master integrals. However, this

field has seen major developments in recent years, in particular with its reformulation in

1See the noted added at the end of the introduction.
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terms of unitarity cuts and computational algebraic geometry [44–49], as well as with the

usage of finite-field methods [48, 50–53]. A combination of these improvements has unlocked

the pathway to computing more complex higher multiplicity amplitudes at two loops in a

variety of theories. Employing the method of differential equations [54–56] in a canonical

basis [57], by now all master integrals relevant for two-loop five-point massless amplitudes

are known, both in the planar [58–61] and nonplanar [62–67] sectors (at least at the level of

the symbol [5–7]). Furthermore, the complete set of leading-color (planar) five-point two-

loop planar amplitudes in QCD is now known numerically [48, 68–70] and the two-loop

five-gluon scattering amplitudes in pure Yang-Mills are known analytically [59, 71, 72].

Very recently, these methods have led to the first analytic results for the symbol of the

two-loop five-point N =4 SYM amplitude including nonplanar contributions [65, 73]. This

amplitude is simpler to compute than the one we study in this paper because its integrand

only involves numerators with one power of loop momentum, while in N = 8 SUGRA the

numerators have two powers of loop momentum [24].

In this work, we combine these advances in integration technology with integrand-level

leading singularity techniques [74] in order to compute the symbol of the two-loop five-

point scattering amplitude in N =8 SUGRA. Whilst for N =4 SYM, leading singularities

for MHV amplitudes are completely understood from the Grassmannian [75], the situation

in N = 8 SUGRA is less developed. Nonetheless, efficient techniques exist to compute

analytically the 4-dimensional leading singularities on a case-by-case basis [28, 76, 77].

These well-defined on-shell quantities encode non-trivial properties of the theory and are

therefore interesting to study in their own right, see e.g. refs. [16, 78]. As will be relevant

for this paper, these functions are not linearly independent but satisfy a number of residue

theorems, which were used recently to establish the absence of poles at infinity in the

two-loop five-point integrand for N =8 SUGRA [79].

For N =4 SYM, the four-dimensional leading singularities are MHV tree amplitudes,

or Parke-Taylor factors [80]. This fact was crucial for efficiently computing the symbol of

the two-loop five-point amplitude [65, 73]. In this paper, the leading singularities of N =

8 SUGRA, not just in four dimensions but also in d = 4−2ε dimensions, will systematically

guide us to construct an ansatz for the amplitude’s symbol. Employing the symbols of the

master integrals from ref. [65] and numerical IBP reductions of the BCJ integrand [24] in a

finite field, we can fix all parameters in the ansatz and determine the symbol uniquely. As

predicted from the integrand’s logarithmic singularity structure [79], our integrated result

has uniform transcendentality [16, 30, 81, 82], just like the four-point amplitude [36–38]

and its four- and five-point N =4 SYM counterparts [36, 65, 73]. Furthermore, the result

satisfies a number of interesting structural properties. For example, the function space

is surprisingly simple and closely related to that of the corresponding amplitude in N =

4 SYM, and after an appropriate infrared subtraction the contributions of d-dimensional

leading singularities drop out.

The structure of the paper is as follows. We begin, in section 2, by describing the

known integrand of the two-loop five-point scattering amplitude in N = 8 SUGRA. From

this integrand, we construct in section 3 a set of 4- and d-dimensional leading singularities.

Next, in section 4, we discuss our method for computing the symbol of the amplitude. Then,
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in section 5 we discuss various consistency checks satisfied by our result. In section 6 we

discuss interesting features of the amplitude. Finally, we conclude in section 7. We provide

an appendix detailing our conventions for the kinematics and symbol letters. We also

include a number of supplementary files, described below, containing computer-readable

expressions that are too lengthy to print.

Note added. In the final stages of this work, the preprint [83] appeared which also

investigated the two-loop five-point amplitude in N = 8 supergravity. The two computed

amplitudes are in complete agreement.

2 The N = 8 supergravity integrand

In this paper we compute the two-loop five-point amplitude in N = 8 supergravity. We first

briefly discuss our conventions and introduce some useful notation. We define normalized

L-loop n-point amplitudes M
(L)
n as

M(L)
n (1, 2, . . . , n) =

(κ
2

)n+2(L−1)
δ(16)(Q)

(
e−εγE

(4π)2−ε

)L
M (L)
n (1, 2, . . . , n) , (2.1)

where κ2 = 32πGN is the gravitational coupling, and, since we are concerned with MHV

scattering amplitudes in the maximally supersymmetric N = 8 theory, we also strip off

the super-momentum conserving delta-function δ(16)(Q), which relates the scattering am-

plitudes with only graviton external states to all other scattering amplitudes for states

in the same super-multiplet. (All 256 states in N = 8 SUGRA are in the same super-

multiplet.) Defined in this way, the amplitudes are totally Bose-symmetric in all labels.

The normalized four- and five-point tree amplitudes are given by [84]

M
(0)
4 =

[12]

〈34〉N(4)
, M

(0)
5 =

tr5
N(5)

, where N(n) ≡
n−1∏
i=1

n∏
j=i+1

〈i j〉 , (2.2)

where we introduced the parity-odd ε-tensor contraction tr5 defined as

tr5 ≡ ε(1, 2, 3, 4) ≡ 4iεµνρσk
µ
1 k

ν
2k

ρ
3k

σ
4 = tr(γ5/k1/k2/k3/k4)

= [12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41] .
(2.3)

For the two-loop five-point N = 8 SUGRA amplitude, our starting point is the in-

tegrand of ref. [24] which is valid in d = 4 − 2ε space-time dimensions and is given in

terms of the six topologies in figure 1. It was obtained using the BCJ double-copy proce-

dure [18, 21, 22]. Here, we adopt the conventions of ref. [24] and define the supergravity

amplitude by

M
(2)
5 =

∑
S5

(
I(a)

2
+
I(b)

4
+
I(c)

4
+
I(d)

2
+
I(e)

4
+
I(f)

4

)
. (2.4)

The sum is over all 5! permutations of external legs and the rational numbers correspond

to diagram symmetry factors. In eq. (2.4), the integrals I(x) are normalized as follows:

I(x) = e2εγE
∫

dd`1

iπd/2
dd`2

iπd/2

[
N (x)(1, 2, 3, 4, 5; `1, `2)

]2
ρ1 . . . ρ8

, (2.5)
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Figure 1. Diagram topologies entering the local representation of the two-loop five-point integrand

of N = 8 supergravity [24]. Each diagram has an associated kinematic numerator which we give in

the main text.

where the ρi are inverse propagators (diagrams (d), (e) and (f) include a loop-momentum

independent 1/sij propagator so that all integrals have the same mass dimension) and the

N (x) are the color-kinematics duality satisfying Yang-Mills numerators. For completeness,

we provide the N =4 SYM BCJ numerators [24] here,

N (a,b) =
1

4

[
γ12(2s45−s12+τ2`1−τ1`1)+γ23(s45+2s12−τ2`1 +τ3`1)

+2γ45(τ5`1−τ4`1)+γ13(s12+s45−τ1`1 +τ3`1)
]
,

N (c) =
1

4

[
γ15(τ5`1−τ1`1)+γ25(s12−τ2`1 +τ5`1)+γ12(s34+τ2`1−τ1`1 +2[s15+τ1`2−τ2`2 ])

+γ45(τ4`2−τ5`2)−γ35(s34−τ3`2 +τ5`2)+γ34(s12+τ3`2−τ4`2 +2[s45+τ4`1−τ3`1 ])
]
,

N (d,e,f)= γ12s45−
1

4

[
2γ12+γ13−γ23

]
s12 , (2.6)

where we follow the notation of ref. [24] and define

sij = (ki + kj)
2 = 2ki · kj , τi`j = 2ki · `j , (2.7)

and the various permutations of the function

γ12 ≡ γ12345 ≡ i
[12]2[34][45][35]

[12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41]
= i

[12]2[34][45][35]

tr5
. (2.8)

The γijklm are totally symmetric in the last three labels. Therefore, every γ-function can

be uniquely specified by its first two indices, in which it is antisymmetric, γij = −γji.
Five-point massless amplitudes depend on five independent Mandelstam invariants, which

can be chosen to be s12, s23, s34, s45 and s51, and on the parity-odd tr5 defined in eq. (2.3).
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A drawback of the BCJ representation in eq. (2.6) is the introduction of spurious

poles that cancel in the final amplitude. For instance, from eq. (2.8) we see that the

various γij-terms introduce poles at tr5 = 0, which are known to be spurious in N =

4 SYM. In ref. [65], detailed knowledge of the Yang-Mills leading singularities was valuable

for efficiently computing the two-loop five-point N = 4 SYM amplitude. This warrants

the study of supergravity leading singularities in order to follow the same approach in

N = 8. More precisely, we are going to use this information to identify a minimal set of

(linearly independent) rational coefficients relevant to the two-loop five-point amplitude in

N =8 SUGRA.

3 Leading singularities

All known amplitudes in N =4 SYM and N =8 SUGRA share the common feature of being

functions of uniform transcendental (UT) weight [31, 36, 37, 79, 85]. Whether this property

persists at higher numbers of loops or legs is an outstanding open question which the present

work touches on. Following common ‘integrand lore’ [16, 86] that logarithmic singularities

imply uniform transcendentality of amplitudes, one expects that four point amplitudes in

N = 8 SUGRA remain uniformly transcendental through three loops. Starting at four

loops, however, there are known pieces in the integrand [85] that have non-logarithmic

poles at infinity, which are expected to cause a transcendentality drop. Whether such

contributions cancel in the final amplitudes — similar in spirit to enhanced cancellations

of UV divergences (see e.g. ref. [87]) — remains an interesting open problem. Staying at two

loops but increasing the number of external legs shows a similar behavior. Starting at seven

particles, non-logarithmic singularities appear in individual terms [79], again signaling the

potential for a transcendentality drop. Nonetheless, for the two-loop five-particle amplitude

under consideration here, these complications are absent and we therefore expect a uniform

transcendental result.

Furthermore, from general considerations [88, 89], it can be shown that there are no

virtual collinear divergences in a gravitational scattering amplitude. In the absence of UV

divergences, at each loop order one only finds (potentially overlapping) soft divergences,

leading to one pole in ε per loop. Concretely, this means that the two-loop five-point

amplitude in N =8 SUGRA, cf. eq. (2.4), can be schematically written as

M
(2)
5 =

4∑
k=2

1

ε4−k

∑
j

rj f
(k)
j +O(ε) . (3.1)

Here, the f
(k)
j are pure functions given by Q-linear combinations of polylogarithmic func-

tions of weight k.2 We used the fact that from the analysis of the four-dimensional integrand

in ref. [79] it is clear that there are only logarithmic poles, implying a maximal uniform

weight result according to common expectations [16]. That is, if we assign weight −1 to ε,

2It is well known that all master integrals for two-loop five-point massless amplitudes can be written

in terms of polylogarithms, as can be seen for instance from their recent explicit calculation at symbol

level [65, 67].
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every term in eq. (3.1) is expected to be of weight 4. The rj are in general (d-independent)

algebraic functions of the kinematic data. Using a convenient parametrization of massless

five-point kinematics, such as the one obtained from momentum-twistor variables [90] in

ref. [91] (cf. appendix A.2 for details), we can guarantee that the rj are rational functions.

These rational functions are (linear combinations of) the leading singularities we shall be

discussing in this section.3

3.1 Leading singularities in four dimensions

As we mentioned in the introduction, a Grassmannian representation for on-shell diagrams

in N = 4 SYM [16] has been exploited to show that all leading singularities (maximal

codimension residues of the loop integrand, see e.g. ref. [74]) are given by certain linear

combinations of Parke-Taylor factors [75]. In N = 4 SYM, all these leading singularity

analyses were based on inherently 4-dimensional arguments. While the understanding of

leading singularities in N =8 SUGRA is much less developed, it is nevertheless reasonable

to assume that at least a subset of the rational functions ri in eq. (3.1) are also linear combi-

nations of 4-dimensional N =8 SUGRA leading singularities. We will start by investigating

these types of rational functions.

We note that there now exists a very elegant and efficient way for computing these

leading singularities in gravity via the Grassmannian duality [76, 77]. For gravity on-shell

diagrams (on-shell functions that are given solely as products of three-point amplitudes)

there is an efficient alternative method. Because the BCJ double-copy is trivial at the level

of three-point amplitudes, we can compute a gravity on-shell diagram as the square of the

respective Yang-Mills one, multiplied by a Jacobian factor originating from the fact that

propagators do not get squared in the double-copy procedure. For readers more familiar

with the BCJ representation in terms of cubic graphs, this double-copy structure of on-

shell diagrams is equivalent to the statement that maximal cuts of cubic graphs always

double-copy. The simplest two-loop five-point example is the planar on-shell function,

LSSYM =
1

〈12〉〈23〉〈34〉〈45〉〈51〉
,

LSSUGRA =
[12][23][45]2

〈12〉〈23〉〈34〉〈45〉〈51〉〈13〉
,

(3.2)

which we compute both in N = 4 SYM and in N = 8 SUGRA (suppressing coupling

constants and super-momentum conserving delta functions). Evaluating the residue where

all inverse propagators ρi are put on-shell, ρi = 0, introduces a Jacobian J , and completely

localizes the eight degrees of freedom of the two 4-dimensional loop momenta `j . The on-

shell Jacobian is

J = det
∂ρi
∂`j

∣∣∣∣
ρi=0

=
〈12〉〈23〉〈34〉〈45〉〈51〉[12][23][45]2

〈13〉
. (3.3)

3In the context of correlation functions, the connection between leading singularities and rational func-

tions was pointed out in ref. [92].
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It is now easy to see that the gauge and gravity leading singularities are related in the

prescribed way

LSSUGRA = LS2
SYM × J . (3.4)

For two-loop five-point scattering, the relevant N =8 SUGRA leading singularities are all

permutations of the following basic structures:

d =
[12][23][45]2

〈12〉〈23〉〈34〉〈45〉〈51〉〈13〉

=
[12][23][45]2

〈12〉〈23〉〈14〉〈34〉〈35〉〈51〉

(3.5)

=
[24][34][12]2

〈13〉〈25〉〈34〉〈35〉〈45〉〈51〉
+ (1↔ 3, 2↔ 4)

=
[12][34][45][51]

〈12〉〈13〉〈24〉〈25〉〈34〉〈35〉

(3.6)

These on-shell diagrams are not all independent but satisfy a number of linear relations due

to residue theorems, see e.g. ref. [79]. Taking all 120 permutations of the on-shell functions

in eqs. (3.5) and (3.6), we find 40 linearly independent terms. They can be chosen, for

example, from the set of 60 inequivalent permutations of the on-shell diagrams (c2). If all

rational factors ri in eq. (3.1) could be identified with 4-dimensional on-shell diagrams, we

would conclude that the space spanned by the ri is 40-dimensional, in the same way that

the six independent five-point Parke-Taylor factors were found from 4-dimensional on-shell

diagrams in N =4 SYM [75].

To verify whether the set of 40 independent leading singularities is really adequate

for the decomposition in eq. (3.1), it is sufficient to numerically reduce the amplitude in

eq. (2.4) via IBP relations onto a basis of master integrals, e.g. the one introduced in

– 8 –
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Figure 2. The double-box diagram.

ref. [65]. Since the ri are rational functions, the efficiency of the reduction can be improved

by using finite-field techniques. We will describe the reduction procedure in more detail in

section 4.2. For now we simply note that by reducing the amplitude on sufficiently many

kinematic points (more than 45), we find that the space spanned by the coefficient functions

ri is actually 45-dimensional. This observation is confirmed by analyzing the amplitude

on a so-called univariate slice, which, following the procedure introduced in ref. [72], can

be used to completely determine the denominators of the ri. Indeed, we find that there

are new coefficients with poles at tr5 = 0, which are inconsistent with the results obtained

from the 4-dimensional leading singularities.

3.2 Leading singularities in d dimensions

In order to find the missing rational structures we relax the condition of working strictly in

4 dimensions, and compute leading singularities in d dimensions. This extension is natural

given that the amplitude is not well defined in exactly 4 dimensions, and it is expected

that pieces that vanish in strictly d = 4 potentially become important in the context of

dimensional regularization. To further motivate the need for d-dimensional leading singu-

larities, we note that they are already necessary for one-loop five-point amplitudes beyond

ε0. Indeed, while the scalar pentagon in 4 dimensions is trivially reducible to boxes, the

leading singularity of the massless scalar pentagon integral in d = 6−2ε dimensions, which

contributes to the amplitude at order ε [34], is precisely given by 1/tr5, see e.g. ref. [93].

In order to compute the d-dimensional leading singularities, we use the Baikov rep-

resentation [94–97] for the topologies in the N = 8 SUGRA integrand given in eq. (2.4).

To explain our approach to these calculations in a simple setting, we first consider the all-

massless planar double-box integral in figure 2 with numerator N and perform an analysis

similar to that of ref. [67]. The kinematic variables for the double box are s = (k1 + k2)
2

and t = (k2 + k3)
2. The inverse propagators ρ1, ρ2, . . . , ρ7 are labelled in figure 2, and we

complete them by the irreducible numerators

ρ8 = (`1 + k4)
2, ρ9 = (`2 + k1)

2 . (3.7)

By integrating out “angular” variables, we rewrite the loop integral in terms of the Baikov

variables ρ1, ρ2, . . . , ρ9, introducing a Jacobian from the change of variables. Omitting

– 9 –
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constant normalization factors, the integral is

Idbox[N ] =

∫
dρ1dρ2 . . . dρ9

N
ρ1ρ2 . . . ρ7

G(k1, k2, k3)
ε

G(`1, `2, k1, k2, k3)1+ε
, (3.8)

where we use G(q1, q2, . . . , qr) to denote the Gram determinant of the set of vectors

{q1, . . . , qr}, which is given by det(2qi · qj), 1 ≤ i, j ≤ r. Since there is a linear map

between the Baikov ρ variables and scalar products involving the loop momenta `i, the

Gram determinants are polynomial in the Baikov variables ρ1, ρ2, . . . , ρ9 and the dot prod-

ucts of external momenta. The Baikov polynomial P (ρi) is defined as

P (ρi) ≡ G(`1, `2, k1, k2, k3) . (3.9)

The leading singularities correspond to evaluating codimension nine residues where all

nine ρi variables are fixed. Correspondingly, this fixes nine degrees of freedom for the

loop-momenta `i. In strictly d = 4 dimensions, the system would be over constrained as

the space of loop-momenta only has eight degrees of freedom. At leading order in the

Laurent-expansion in ε, we can thus compute the d-dimensional leading singularities of the

double box in eq. (3.8) by evaluating the global residues of the nine-form Ω defined by4

∫
Ω ≡

∫
dρ1dρ2 . . . dρ9

N (ρi)

ρ1ρ2 . . . ρ7 P (ρi)
. (3.10)

To proceed, we first take residues at ρ1 = ρ2 = · · · = ρ7 = 0, i.e. we impose the maximal-cut

conditions, upon which the Baikov polynomial only depends on the irreducible numerators

and external kinematics,

Pmax-cut = 2s ρ8ρ9 [(s+ ρ8)ρ9 + s(ρ8 − t)] . (3.11)

On the maximal cut, we obtain a two-form in the two variables ρ8 and ρ9,

Ωmax-cut =
dρ8dρ9N

2s ρ8ρ9 [(s+ ρ8)ρ9 + s(ρ8 − t)]
. (3.12)

We can now take further residues of Ωmax-cut at ρ8 = ρ08 and then at ρ9 = ρ09, for all possible

choices of ρ08 and ρ09. More precisely, we calculate

Res
ρ9=ρ09

[
Res
ρ8=ρ08

N
2s ρ8ρ9 [(s+ ρ8)ρ9 + s(ρ8 − t)]

]
. (3.13)

4We stress here the difference between maximal cuts and leading singularities, as discussed in e.g.

refs. [93, 98]. The former are a property of the integral which can be interpreted as some iterated dis-

continuity. Computing them requires specifying an integration contour and residues are not taken at the

Jacobian poles. The latter are a property of the integrand, and correspond to some residue at a global pole,

with no interpretation as discontinuities in general. Evaluating the global residues requires setting ε = 0 in

eq. (3.8) to remove branch-cut ambiguities.
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For illustration purposes, consider the scalar double-box integral with N = 2s2t. It is easy

to see that eq. (3.13) evaluates to ±1 for any of the four different choices of singularities,

ρ08 = 0, ρ09 = 0,

ρ08 = 0, ρ09 = t,

ρ08 =
s(t− ρ9)
(s+ ρ9)

, ρ09 = 0,

ρ08 =
s(t− ρ9)
(s+ ρ9)

, ρ09 = t.

(3.14)

In other words, the integral Idbox[2s2t] has unit leading singularities in d dimensions. In

fact, this property can be made manifest by a change of variables to recast the two-form

Ωmax-cut into a “dlog-form”,

Ωmax-cut =
s2t dρ8dρ9

s ρ8ρ9 [(s+ ρ8)ρ9 + s(ρ8 − t)]
= d log

ρ8 − t
ρ8

∧ d log
ρ9

(s+ ρ8)ρ9 + s(ρ8 − t)
.

(3.15)

We stress again that the above formalism is inherently d-dimensional, with integration

variables and integration measures differing from the 4-dimensional case. In particular, the

leading singularities computed are sensitive to components of the loop momenta beyond 4

dimensions. For example, consider the numerator N = P (ρi) = G(`1, `2, k1, k2, k3), which

vanishes identically for 4-dimensional loop momenta due to anti-symmetrization over more

than 4 momenta in the Gram determinant. Such a numerator is “undetectable” by 4-

dimensional leading singularities, but will contribute to double poles at ρ8 = ∞, ρ9 = ∞
in eq. (3.12) when considering d-dimensional residues.

Let us now return to two-loop five-point topologies. To find the full space of rational

prefactors ri in the N =8 SUGRA amplitude (3.1), which, as we have established, has five

extra elements beyond the 40-dimensional space of 4-dimensional leading singularities, we

first compute the d-dimensional leading singularities of the planar top-level diagram (a)

in figure 1. In this case, the original Baikov representation is not the most convenient.

Instead, we follow the method of ref. [67] to compute leading singularities using the loop-

by-loop Baikov representation of ref. [97]. We define the Baikov variables for the planar

pentabox, consisting of eight inverse propagators ρ1, ρ2, . . . , ρ8, followed by three irreducible

numerators ρ9, ρ10, ρ11,

ρ1 = `21, ρ2 = (`1 − k1)2, ρ3 = (`1 − k1 − k2)2, ρ4 = (`1 + k4 + k5)
2,

ρ5 = (`2 − k4 − k5)2, ρ6 = (`2 − k5)2, ρ7 = `22, ρ8 = (`1 + `2)
2,

ρ9 = (`2 − k3)2, ρ10 = (`2 − k1)2, ρ11 = (`1 + k5)
2 . (3.16)

We first consider the pentagon sub-loop on the left of diagram (a), with loop momen-

tum `1 and outgoing external momenta k1, k2, k3, k4 + k5− `2, `2. The numerator in the

BCJ integrand is [N (a)]2, as defined in eqs. (2.5) and (2.6). Performing standard one-loop

tensor reduction for this sub-loop, we eliminate all `1 dependence in [N (a)]2 and produce

an expression Ñ which is nonlocal in `2. This step removes all dependence on ρ11 in the
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integrand. The remaining numerators can all be expressed in terms of the irreducible nu-

merators ρ9 and ρ10 of eq. (3.16), as well as the inverse propagators which are set to zero

on the maximal cut.

As discussed above for the two-loop double box, we then change the integration vari-

ables of the pentagon sub-loop from `µ1 to the five inverse propagators of the pentagon,

which are among the Baikov variables in eq. (3.16). Up to constant factors, we have∫
dd`1 ∝

∫
dρ1dρ2dρ3dρ4dρ8G(`2, k1, k2, k3)

1/2+ε

G(`1, `2, k1, k2, k3)1+ε
, (3.17)

where we again used the Gram determinant notation introduced after eq. (3.8).

Finally, we also change the integration variables `µ2 of the remaining triangle sub-loop

to the three inverse propagators, ρ5, ρ6, ρ7 and the two `2-dependent irreducible numerators

ρ9, ρ10, ∫
dd`2 ∝

∫
dρ5dρ6dρ7dρ9dρ10G(k1, k3, k4, k5)

1/2+ε

G(`2, k1, k3, k4, k5)1+ε
. (3.18)

The (d−5) remaining “angular” variables of the `2 integration have been trivially integrated

over, because after `1-integration, the pentagon sub-loop produces an expression which

depends only on ρ5, ρ6, . . . , ρ10. Now the differential form associated to the pentabox

contribution to the amplitude is written as (up to constant factors)

Ωpenta-box ∼

(∏10
i=1 dρi

)
Ñ G(`2, k1, k2, k3)

1/2+εG(k1, k3, k4, k5)
1/2+ε

G(`1, `2, k1, k2, k3)1+εG(`2, k1, k3, k4, k5)1+ε
, (3.19)

where all the Gram determinants are expressed in terms of the Baikov variables ρ1 through

ρ10. Recall that Ñ is obtained from the original BCJ numerator [N (a)]2 via tensor reduction

for the `1 sub-loop, and is a rational function of the Baikov variables. As in the double-box

example, we neglect ε in the exponents, and obtain leading singularities by successively

computing residues in the 10 Baikov variables.

To complete the example and explicitly compute one of the leading singularities, we

cut the 8 propagators ρ1 through ρ8, then take the residue of ρ10 = (`2 − k1)2 at 0, and

finally take the residue of ρ9 = (`2 − k3)2 at s45 − s12. The leading singularity obtained in

this way is, up to a constant,

LSpenta-box
SUGRA ∼ s12[12][23][34][45][51]

tr5 〈12〉〈23〉〈34〉〈45〉〈51〉
. (3.20)

This expression turns out to be enough to identify the remaining five rational functions

needed for the decomposition in eq. (3.1), which means we do not need to study the leading

singularities of diagrams (b) and (c) in figure 1. Indeed, the above expression and its images

under permutations of external legs produce exactly the five extra rational prefactors in

the amplitude which were not captured by the 4-dimensional leading singularities discussed

in the previous subsection. We note that this rational function has a single pole at tr5 = 0,

which is consistent with the behavior expected from analyzing the amplitude on a univariate

slice. Furthermore, since all the eight propagators are cut in the above calculation, the
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d-dimensional leading singularity we computed for N = 8 SUGRA is again a double copy

of the N = 4 SYM counterpart, due to the trivial double-copy property of the three point

amplitudes in arbitrary dimensions.5

In summary, we find that for N = 8 SUGRA the 4-dimensional leading singularities

are not sufficient to determine all rational functions and a genuine d-dimensional analysis

is required. Relevant for the remainder of this work, we choose the following leading

singularities (and permutations thereof)

d = 4:
[12][34][45][51]

〈12〉〈13〉〈24〉〈25〉〈34〉〈35〉
+ 39 perms. (3.21)

general d :
s12[12][23][34][45][51]

tr5〈12〉〈23〉〈34〉〈45〉〈51〉
+ 4 perms. (3.22)

as the basis of 45 rational coefficients ri required to expand the two-loop five-point ampli-

tude inN =8 SUGRA in eq. (3.1). The explicit choice of all ri is given in the supplementary

file ri to brackets.txt.

One might have already expected the necessity for considering d-dimensional cuts given

that the amplitude is not defined in strictly 4 dimensions. This observation highlights once

more the very special properties of N =4 SYM, where the 4-dimensional leading singulari-

ties were sufficient. However, the fact that we are able to construct all rational coefficients

of the amplitude from a cut analysis is very encouraging, and has a large potential for ap-

plications outside maximally supersymmetric theories. In fact, we envision that a similar

analysis can help organize QCD computations in a clean and systematic manner.

4 Construction of the amplitude

In the previous section we discussed the fact that two-loop five-point N =8 SUGRA ampli-

tudes are of uniform transcendental weight, i.e., at each order in ε they can be written as

kinematically-dependent linear combinations of pure transcendental functions, see eq. (3.1).

Here, we will start by further characterizing the pure functions f
(k)
j . They are Q-linear

combinations of polylogarithms of weight k, which can be written as iterated integrals over

so-called “d log-forms”. That is, they can be written as

f
(k)
j =

∑
α1,...,αk

cjα1,...,αk

∫
d logWα1 · · · d logWαk

, (4.1)

where the weight corresponds to the number of integration kernels and the cjα1,...αk are

rational numbers. In equation (4.1) there is an implicit integration contour, but a large

amount of the analytic properties of the functions is contained in the k-fold d log integrand,

which is a differential form on the space of external kinematics. As such, in the remainder

of this paper we will work at the level of the so-called symbol [5–7], denoted S
[
f
(k)
j

]
, and

given by:

S
[
f
(k)
j

]
=

∑
α1,...,αk

cjα1,...,αk
[Wα1 , . . . ,Wαk

]. (4.2)

5In this case, the double copy relation eq. (3.4) involves a different Jacobian from eq. (3.3), computed

from the Baikov representation. This new Jacobian is the source of tr5 in the denominator of eq. (3.20).
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Here, we use square brackets to indicate a formal tensor product of the symbol letters Wα.

Although we will often omit the map S, from now on we consider all transcendental func-

tions at the symbol level.

In equations (4.1) and (4.2), the Wα are algebraic functions of the external kinematics.

The full set is referred to as an alphabet, and each Wα as a letter. For massless five-point

scattering at two loops, the symbol alphabet is given by a set of 31 letters [63] which we

summarize in appendix A for convenience. Most letters correspond to permutations of the

four-point one-mass two-loop alphabet, and only 6 letters are truly five-point. They can

be graded according to their parity, i.e., their transformation under complex conjugation

〈·〉 ↔ [·] or, equivalently, under tr5 → −tr5 with tr5 as defined in eq. (2.3). Five letters are

parity-odd (α∈{26,. . . , 30}), and can be expressed as ratios of spinor-brackets, see eq. (A.4)

in appendix A. The parity-even letter (α= 31) is tr5. All letters with α∈{1,. . . , 25} are

even under parity because they do not depend on tr5. With this grading, the amplitude is

naturally split into parity-even and parity-odd parts. At symbol level, the parity grading

can be found from the number of parity-odd letters, W26, . . . ,W30, in a given symbol tensor.

Returning to the N =8 SUGRA two-loop five-point amplitude, it can then be decom-

posed as

M
(2)
5 =

4∑
k=2

1

ε4−k
M

(2)
5,k +O(ε), (4.3)

where

S[M
(2)
5,k ] =

31∑
α1=1

· · ·
31∑

αk=1

45∑
j=1

cjα1,...,αk
rj × [Wα1 , . . . ,Wαk

] , k = 2, 3, 4 . (4.4)

The coefficients rj are the 45 rational functions identified in the previous section and the

cjα1,...,αk ∈ Q are rational numbers. Computing the symbol of the amplitude amounts to

computing these rational numbers.

4.1 Pure basis of master integrals

The first step in computing the symbol of the N =8 SUGRA amplitude is the calculation

of the symbol of a complete set of master integrals, on which we can then project the

representation in eq. (2.4) using IBP relations. In this section, we review the approach we

recently used to perform this calculation [65].

A powerful method for computing master integrals is through differential equations,

especially when written in canonical form [57]. If we denote a set of master integrals

by {Ia}, then their differential equation with respect to the external kinematic variables

xi is said to be canonical if it has the form

∂xiIa ≡
∂Ia
∂xi

= ε
∑
α

∂ logWα

∂xi
Mab
α Ib , (4.5)

where the index α runs over the letters of the alphabet and the indices a and b run over

all master integrals in the set {Ia}. Importantly, the dimensional regulator ε factorizes

and the matrix Mab
α consists solely of rational numbers. Conjecturally, there is a one-to-

one correspondence between the basis of master integrals being pure and their differential

equation being in canonical form.
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Even when a pure basis is known, the conventional way to construct the differential

equations suffers from the computational bottleneck of IBP reduction when the number

of kinematic invariants and masses is large. Indeed, the large number of variables makes

the size of analytic expressions swell up to an often unmanageable size. In ref. [64], a new

method of constructing the differential equations was presented that builds on the prior

knowledge of the symbol alphabet and of a basis of pure master integrals. The matrix

Mab
α in eq. (4.5) is then determined by performing IBP reduction on a small number of

numerical phase-space points, avoiding large intermediate analytic expressions in the IBP

reduction. For the amplitude we are concerned with, the symbol alphabet is known [63]

and, in order to apply the procedure of ref. [64], we simply need to discuss how we identified

the pure bases for topologies (a), (b) and (c) in figure 1.

The pure bases of master integrals for the planar pentabox and nonplanar hexabox,

i.e. diagrams (a) and (b) in figure 1, and their sub-topology integrals are known in the

literature [58–62, 64, 66, 99]. Here we review how we identified the nine pure integrals for

the nonplanar double pentagon [65].6 To find a parity-even pure integral, we start from

the four-dimensional pure integral with numerator N
(a)
1 identified in ref. [99] and rewritten

with the labels of figure 1,

N
(a)
1 = 〈15〉〈24〉

[
[24][15]

(
`7 +

[43]

[24]
λ3 λ̃2

)2(
`6 −

(k1 + k2)·λ̃5 λ̃1
[15]

)2

−[14][25]

(
`7 +

[43]

[14]
λ3 λ̃1

)2(
`6 −

(k1 + k2)·λ̃5 λ̃2
[25]

)2
]
, (4.6)

where we refer the reader to appendix A for the definition of the λi and λ̃i. The notation

`6, `7 for the loop momenta is from ref. [99], and is related to our labels by

`6 = `1, `7 = k3 + k4 − `2 . (4.7)

This integral has a hidden symmetry [100–102] which is a nonplanar generalization of dual

conformal symmetry for planar diagrams. In ref. [100], the numerator N
(a)
1 is rewritten in

terms of spinor traces to make the symmetry manifest,

N
(a)
1 = −tr

[
1− γ5

2
/k5/k1/k2/k4(/k4 − /̀2)(/̀1 − /̀2 + /k3 + /k4)/̀1(/k3 + /k4)

]
− `21`22 tr

[
1− γ5

2
/k5/k1/k2/k4

]
. (4.8)

Removing the projector (1−γ5)/2 from the two traces, we obtain twice the parity-even part,

2N
(a)
1

∣∣
even

=−tr
[
/k5/k1/k2/k4(/k4 − /̀2)(/̀1 − /̀2 + /k3 + /k4)/̀1(/k3 + /k4)

]
− `21`22tr [/k5/k1/k2/k4] .

(4.9)

6An alternative basis is given in ref. [67].
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Figure 3. The six parity-odd (6−2ε)-dimensional master integrals and their normalization factors.

The integrals have no numerators. A red dot indicates that the propagator is “doubled” i.e. raised

to a squared power.

By elementary Dirac-matrix manipulations, the above traces evaluate to an expression in

terms of Lorentz dot products involving both internal and external momenta, without any

explicit d dependence. This numerator gives a d-dimensional pure integral. Using the

Z2 × Z2 symmetry of the nonplanar double-pentagon diagram, including a horizontal and

a vertical flip, we obtain two more similar pure integrals.

Naively, one could also obtain parity-odd integrals by anti-symmetrizing over the

spinor-trace expressions of ref. [100] and their complex conjugates. The result is sim-

ply eq. (4.9) with γ5 inserted into both Dirac traces. However, the integral fails to be a

pure integral in d dimensions (if one tries to use them as master integrals, the differential

equation is not in the form of eq. (4.5)). Instead, our basis of six parity-odd pure inte-

grals consists of the (6 − 2ε)-dimensional scalar integrals shown in figure 3. Each of the

integrals has one squared propagator, denoted by a red dot, as well as a normalization

factor which is written next to each diagram. These integrals in (6−2ε) dimensions can be

converted to (4 − 2ε)-dimensional integrals by dimension-shifting identities [55, 103–105].

We find it more convenient to use the dimension-shifting procedure outlined in appendix B

of ref. [106], using the (global) Baikov representation of Feynman integrals. In terms of the

Baikov variables ρi, a (6− 2ε)-dimensional integral with a squared propagator 1/ρ2a is pro-

portional to 1/(d−4) times a (4−2ε)-dimensional integral without any squared propagator,

but with a numerator which is the derivative of the Baikov polynomial with respect to ρa.

The purity of the nine nonplanar double-pentagon integrals we just discussed can be

confirmed by evaluating the differential equations at numerical phase-space points and

checking the factorization of the dimensional regulator ε. For this topology, there are 31

letters (1 ≤ α ≤ 31) and 108 master integrals (1 ≤ a, b ≤ 108). The 31 square matrices

of rational numbers Mab
α are determined by performing numerical IBP reductions on a

sufficient number of rational phase-space points in a finite field. Details of the reduction

procedure will be discussed in the next section, as we used the same implementation for

computing the differential equations as we did for reducing the amplitude to the basis of

master integrals.
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Figure 4. A spanning set of cuts for performing IBP reduction for the nonplanar double pentagon

diagram. A cut propagator is indicated by a red line. There are 11 cuts in total, from applying

diagram symmetries to the 4 representative cuts shown here.

Once the differential equation has been computed, we obtain the symbol of the master

integrals by evaluating a single trivial integral to leading order in ε, which fixes the overall

normalization of the functions, and imposing the first-entry condition [107]. Explicit results

for the master integrals we use can be found in the supplementary files of ref. [65]. They

satisfy the conjectured second-entry condition [63].

4.2 Numerical reduction and analytic reconstruction

Having discussed the evaluation of the master integrals from their differential equations,

we now describe the final step in computing the symbol of the N = 8 SUGRA amplitude:

the reduction of the representation in eq. (2.4) to our basis of master integrals. Both this

step and the calculation of the differential equation discussed above require performing

numerical IBP reductions. We now discuss our implementation.

We perform IBP reduction in terms of unitarity cuts and computational algebraic

geometry [44–48]. Once more, we focus on the most challenging topology, the nonplanar

double-pentagon in diagram (c) of figure 1. The reduction is performed on a set of 11

spanning cuts, which are the cuts shown in figure 4 and their images under the Z2 × Z2

symmetry of the diagram (horizontal and vertical flip). Merging the reductions on each of

the 11 spanning cuts, we recover the complete IBP reductions for the uncut topology. (A

more detailed description of our implementation can be found in ref. [64].)

Unitarity cuts are most natural in the absence of doubled (squared) propagators. How-

ever, doubled propagators are present in conventional IBP relations,

0 =

∫
dd`1

∫
dd`2

2∑
A=1

∂

∂`µA

vµA
ρ1ρ2 . . . ρN

, (4.10)

because the derivatives can act on the propagator 1/ρi. This problem is avoided by choosing

vectors vµA that satisfy the condition [44]

2∑
A=1

vµA
∂ρi
∂`µA

= fi ρi , (4.11)
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where both vµA and fi are required to have polynomial dependence on the components of the

loop and external momenta. Finding a full set of vµA satisfying eq. (4.11) is a problem that

can be solved by computational algebraic geometry. State-of-the-art algorithms to solve this

equation can be found in refs. [47, 48, 64], following many earlier devolopments [44–46, 101,

106, 108, 109]. Avoiding doubled propagators drastically reduces the number of integrals

that are present in the linear system of IBP relations, and reduces the computational

resources needed for solving the linear system via Gaussian elimination. Further speed-up

is achieved by performing IBP reduction in a finite field [48, 50–53] whose modulus is a

10-digit prime number, at numerical rational phase-space points.

We now focus our discussion on the reduction of the amplitude, but exactly the same

strategy applies to the construction of the differential equation. IBP reduction is performed

separately for each of the top-level topologies (a), (b) and (c) in figure 1 and the associated

“tower” of sub-topologies. Each diagram in the representation of the amplitude given

in eq. (2.4) is separately reduced to master integrals via IBP reduction. We add the

six diagrams and their permutations after replacing the master integrals by their values

in terms of symbols. For each of the rational phase-space points where we perform the

reduction of the amplitude, the final result of the procedure takes the form,

S[M
(2)
5,k ] =

31∑
α1=1

· · ·
31∑

αk=1

bα1,...,αk
× [Wα1 , . . . ,Wαk

] , k = 2, 3, 4 , (4.12)

where the coefficients bα1,...,αk
take numerical values in the finite field. Comparing with

eq. (4.4), it is clear that the bα1,...,αk
are kinematically dependent, as they depend on the

rational functions rj .

To finish our calculation, we must extract the coefficients cjα1,...,αk in eq. (4.4) from IBP

reductions at sufficiently many phase-space points. Generating the numerical data is the

most computationally-intensive part of the calculation, which is nevertheless much more

efficient than analytic IBP reduction, for the reasons already highlighted when discussing

the construction of differential equations. Since the space of rational functions rj is 45-

dimensional, solving the linear system to determine the coefficients cjα1,...,αk from numerical

evaluations is simple. We first obtain the coefficients in the finite field, and since they are

very simple rational numbers this information is sufficient to map them to the field of

rational numbers.

We finish with a comment on the application of this procedure to compute the differen-

tial equation. The equivalent of the rational functions rj are now the d log-forms d logWα

in eq. (4.5), which form a 31-dimensional space. The equivalent of the coefficients cjα1,...,αk

are the entries of the matrices Mab
α . They are determined in the same way and, as for the

amplitude, we find they are simple enough that only a single finite field is necessary. We

note that the IBP reductions required for the differential equations are harder to obtain

than the ones for the N = 8 SUGRA amplitude: the former require reducing integrals

with numerators of at least degree 3 in the loop momentum, while the latter only involve

integrals with numerators of degree 2.
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5 Validation

Scattering amplitudes in gauge and gravity theories obey many well understood factor-

ization formulae that are given in terms of simpler quantities. For example, in special

kinematic configurations such as soft and collinear limits, the analytic form of the ampli-

tude can be expressed in terms of universal factors and lower-point amplitudes. Similarly,

the divergence structure of loop amplitudes (i.e., the poles in ε) can be written in terms

of lower-loop amplitudes and universal factors. These degenerations onto simpler configu-

rations provide powerful checks for any new calculation. In the following we shall discuss

how our analytic result satisfies all these conditions.

5.1 Divergence structure

On general grounds, the divergences of a scattering amplitude can be broadly separated

into two classes — ultraviolet (UV) and infrared (IR). In recent years, understanding the

UV structure of supergravity theories has received considerable attention and was partially

stimulated by the open question about the potential UV finiteness of N = 8 SUGRA in 4

dimensions, which would clearly impact our understanding of quantum gravity on a more

fundamental level. The critical dimension in which N =8 SUGRA diverges has now been

explicitly calculated through five loops [23, 28, 35, 110–112]. In 4 dimensions, there are

various arguments that rule out UV divergences up to at least seven loops [113–119]. The

important aspect for our work here is the fact that the two-loop five-point amplitude only

has IR divergences. In comparison to gauge theory, the IR divergence structure of gravity

is rather muted. It has been known for a long time that there are no virtual collinear

divergences in any quantum theory of gravitation [88]. Furthermore, it can be shown that

the structure of the soft divergences in gravity is completely controlled by the one-loop

result, which contains a 1/ε pole. Specifically, it can be shown that the one-loop divergence

exponentiates [36, 88, 89, 120–123]. In the case of two-loop four-point amplitudes this was

explicitly demonstrated in ref. [38].

In order to check the divergence structure of the two-loop five-point amplitude, we

therefore begin by recalling the one-loop result [34],

M
(1)
5 =

1

2

∑
S5

(
1

4
β123(45) I

d=4−2ε
123(45) −

1

10

[12][23][34][45][51]

〈12〉〈23〉〈34〉〈45〉〈51〉
(−2ε)Id=6−2ε

12345

)
, (5.1)

where the rational factors of 1/4 and 1/10 inside the S5 permutation sum remove over-

counting, and

β123(45) = − [12]2[23]2[45]

〈14〉〈15〉〈34〉〈35〉〈45〉
. (5.2)

Id=4−2ε
123(45) is the one-mass scalar box integral in 4−2ε dimensions, and Id=6−2ε

12345 is the massless

pentagon integral in 6− 2ε dimensions normalized as follows:

Id=4−2ε
123(45) = eεγE

∫
d4−2ε`

iπ2−ε
1

`2(`− k1)2(`− k1 − k2)2(`+ k4 + k5)2
, (5.3)

Id=6−2ε
12345 = eεγE

∫
d6−2ε`

iπ3−ε
1

`2(`− k1)2(`− k1 − k2)2(`+ k4)2(`+ k4 + k5)2
. (5.4)
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The box integral is known to all orders in ε [103] and the symbol of the pentagon integral

can be computed to any order in ε with the techniques of [124, 125] or by direct integration

with HyperInt [126]. In supplementary files, we provide symbols for the pure functions

(I) obtained by normalizing these integrals by their leading singularities,

Id=4−2ε
123(45) ≡ s12s23I

d=4−2ε
123(45) , Id=6−2ε

12345 ≡ −tr5 I
d=6−2ε
12345 . (5.5)

Despite the presence of 1/ε2 soft-collinear divergences in individual box integrals, they

cancel in the sum to give

M
(1)
5 =

1

ε

 5∑
i<j=1

sij log sij

M (0)
5 +M

(1),0
5 +O(ε), (5.6)

where M
(1),0
5 is the O(ε0) term in the one-loop amplitude. Finally, at two loops, the

divergent pieces are dictated by exponentiation in terms of the square of the one-loop

amplitude:

M
(2),div
5 =

1

2

[
M

(1)
5

M
(0)
5

]2
×M (0)

5

∣∣∣∣∣∣
pole-terms

. (5.7)

Inserting the symbols of the relevant one-loop integrals and comparing against the diver-

gences of our two-loop result we find perfect agreement. The factor predicting the pole

structure permits many natural extensions that include different finite pieces. What the

“ideal” choice is an interesting question which we will discuss in section 6.

5.2 Soft factorization

Gravity amplitudes, similarly to gauge amplitudes, have a universal factorization property

when a single graviton becomes much softer than the remaining gravitons. At tree level,

the general factorization when the nth graviton becomes soft, kn → 0, is [84, 88],

M (0)
n (1, . . . , n− 1, n±)

kn→0
=⇒ S±n ×M

(0)
n−1(1, . . . , n− 1) , (5.8)

where the positive-helicity soft factor is

S+n =
−1

〈1n〉〈nn− 1〉

n−2∑
i=2

〈1i〉〈i n− 1〉[in]

〈in〉
. (5.9)

Naively, the definition of the soft factor S+n seems to pick out two further special legs,

n−1 and 1. One can however show that this term is independent of that particular choice,

which will become important momentarily. In ref. [34] it was shown that there are no loop

corrections to the leading soft factorization for gravity. That is,

M (1)
n (1, . . . , n− 1, n±)

kn→0
=⇒ S±n ×M

(1)
n−1(1, . . . , n− 1) , (5.10)

M (2)
n (1, . . . , n− 1, n±)

kn→0
=⇒ S±n ×M

(2)
n−1(1, . . . , n− 1) . (5.11)

We will test our result for the five-point amplitude against eq. (5.11) for n = 5.
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First, we determine the soft behavior of the 31 symbol letters in eq. (A.4). We

parametrize the approach to the k5 → 0 soft limit with a parameter δ → 0. We then

rewrite the xi momentum-twistor parametrization of ref. [91] (see appendix A for more

details) as

x1 = s, x2 = sx, x3 = − sx

1− z
,

x4 = 1 + δ
x+ z

1− z
, x5 = 1 + δ

[
1 +

x+ z

1− z

]
,

(5.12)

where s = s12, x = s23/s12, z = 〈14〉〈35〉/(〈34〉〈15〉), and z = [14][35]/([34][15]) at leading

order in the δ → 0 limit. The set of 14 letters obtained in this limit are

{s, x, 1 + x} ∪ {δ, z, 1− z, x+ z, z, 1− z, x+ z}
∪ {x+ z + z − zz, x(z + z − 1) + zz, x+ zz, z − z} .

(5.13)

In the soft limit of the two-loop five-point N = 8 supergravity amplitude, it follows from

eq. (5.11) that only the subset {s, x, 1 + x} should appear, after taking into account the

behavior of the rational prefactors. In the soft limit of the two-loop five-point N = 4

super-Yang-Mills amplitude, the second set of letters can also appear in subleading-color

terms, and is consistent with a computation of two-loop soft-gluon emission using Wilson

lines [127].

To analyze the soft limit of our five-point amplitude, we perform the substitution (5.12)

within the symbol entries, and refactorize the symbol on the set of letters in (5.13). Then

we consider the soft behavior of the rational prefactors.

In the case we are interested in, n = 5, the soft factor (5.9) has only two terms,

S ≡ S+5 = P2
14 + P3

14 , (5.14)

where

P ijk ≡ −
〈ji〉〈ki〉[i5]

〈j5〉〈k5〉〈i5〉
. (5.15)

In the soft limit, the little group transformation properties imply that all the rational factors

rj in eq. (3.1) are either nonsingular or become proportional to the four-point amplitude

multiplied by one of these partial soft factors P ijk. Because (5.15) is symmetric in j and

k, and i, j, k ∈ {1, 2, 3, 4}, there are 12 such factors. However, they sum in six pairs to the

soft factor,

P i1jk + P i2jk = S, (5.16)

where i1,2 6∈ {j, k, 5}. Equation (5.16) reflects the fact that any two gravitons can play the

role of gravitons 1 and n− 1 in (5.9).

There is one more useful identity among the partial soft factors,

s13(P3
24 − P4

13) = s12(P4
12 − P2

34)− (s15 + s45)P1
23 (5.17)

plus all equations obtained by permuting legs {1, 2, 3, 4}. The second term on the right-

hand side can be dropped in the soft limit.

– 21 –



J
H
E
P
0
3
(
2
0
1
9
)
1
2
3

Using the identities (5.16) and (5.17), and the symbol substitutions mentioned above,

we find that all letters except {s, x, 1 + x} drop out of the soft limit. Furthermore, the

limit is proportional to the symbol of the four-point N = 8 supergravity amplitude given

in ref. [38] (see also refs. [36, 37]). That is, the five-point amplitude precisely satisfies the

soft limit (5.11).

5.3 Collinear factorization

The behavior of gravity amplitudes as two gravitons a and b become collinear is also

universal and well established [128],

M (0)
n (1, . . . , a, b, . . . , n)

ka||kb
=⇒ Splitgrav(τ, a, b)×M (0)

n−1(1, . . . , P, . . . , n) . (5.18)

In eq. (5.18) we define the common momentum kP = ka + kb, and write ka ≈ τkP ,

kb ≈ (1− τ)kP with the splitting fraction τ for the longitudinal momentum. In contrast to

the case of gauge theory, for real collinear kinematics, the amplitude does not diverge in

the limit. Rather, Splitgrav(τ, a, b) is a pure phase, containing dependence on the azimuthal

angle as the two nearly-collinear gravitons are rotated around the axis formed by the sum

of their momenta. This behavior stems from a factor of [ab]/〈ab〉 in the amplitude (or

〈ab〉/[ab], depending on the helicity configuration) as legs a and b become collinear.

At tree level, the form of the gravitational collinear splitting factor can be understood

from the KLT relations [129] to originate from a product of two singular gauge-theory

splitting amplitudes and a factor of sab in the numerator [34],

Splitgrav−2λ(τ, a2λa , b2λb) = −sab × [SplitYM
−λ (τ, aλa , bλb)]2 . (5.19)

Here λa and λb are the helicities of the two external gluons for both of the gauge copies.

The sums of their helicities, 2λa and 2λb, are the external graviton helicities, and similarly

for the intermediate helicities λ and 2λ.

For the five-point amplitude in N = 8 supergravity, it is convenient to take all collinear

helicities to be positive, λa = λb = λ = +, and we obtain,

Splitgrav− (τ, a+, b+) = − 1

τ(1− τ)

[a b]

〈a b〉
. (5.20)

As in the case of soft factorization, there are no loop corrections to the splitting

amplitude [34], so the one- and two-loop amplitudes behave as,

M (1)
n (1, . . . , a, b, . . . , n)

ka||kb
=⇒ Splitgrav(τ, a, b)×M (1)

n−1(1, . . . , P, . . . , n) , (5.21)

M (2)
n (1, . . . , a, b, . . . , n)

ka||kb
=⇒ Splitgrav(τ, a, b)×M (2)

n−1(1, . . . , P, . . . , n) . (5.22)

We will test the collinear behavior of the two-loop five-graviton amplitude against (5.22),

with splitting amplitude (5.20). Since the (super-)amplitude is Bose symmetric, it does not

matter which two legs we take to be parallel. For convenience we discuss the same limit

we studied for the two-loop five-point N = 4 SYM amplitude [65], k2||k3, i.e. a = 2 and
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b = 3. The two-loop four-point N = 8 supergravity amplitude [36–38] should be evaluated

with momenta (k1, kP , k4, k5).

The analysis of the symbol proceeds exactly as in ref. [65]. Employing the xi variables

of ref. [91], we let

x1 7→ sτ , x2 7→ csδ , x3 7→ r2csδ , x4 7→ δ , x5 7→ −
1

cδ
, (5.23)

where s = s45 and r2 = s15/s45 characterize the four-point kinematics, c ∼ [23]/〈23〉
corresponds to an azimuthal phase, and δ =

√
s23/(s c) vanishes in the collinear limit.

We expand the 31 letter alphabet in the collinear limit to leading order in δ, finding 14

multiplicatively independent letters in the collinear limit: 7 physical letters {δ, s, τ, 1 −
τ, r2, 1 + r2, c} and 7 spurious letters that are in neither the splitting amplitude nor the

four-point amplitude; hence they must not contribute to the universal limit.

After refactorizing the amplitude on these symbol letters, we choose numerical kine-

matics near the collinear limit, and take the difference between evaluations at two different

points corresponding to an azimuthal rotation of the two collinear gravitons. Taking this

difference removes non-universal terms that would otherwise be of the same order, and

the results are numerically consistent with the expected factorization (5.22). Alternatively,

one can use complexified momenta and perform two non-overlapping BCFW shifts [130],

e.g. λ2 → λ2 + zλ4, λ̃4 → λ̃4 − zλ̃2 and λ5 → λ5 + wλ3, λ̃3 → λ̃3 − wλ̃5 and then solve

〈23〉 = ε1 , [23] = ε2 in terms of z and w. Expanding around ε1 = 0 then allows one to

check that the pole term is proportional to ε2, which was used as an independent check of

the collinear factorization property of our result.

6 Structure of results

The purpose of this section is to provide some insight into the structure of the amplitude

we have computed. First we define a prescription for removing the infrared divergences,

which also cleans up the finite hard remainder. Then we write the remainder R
(2)
5 in a

manifestly symmetric form, which requires only summing over permutations of a single

rational structure, multiplied by a single weight 4 function h. We note that the finite

quantity h cannot be written only in terms of the classical polylogarithms log, Li2, Li3 and

Li4, but also requires the function Li2,2 (this can be checked with the procedure described

in ref. [5]). We characterize the properties of h in terms of its final entries and the weight-3

odd parts of its derivatives. We go on to characterize the full space of 45 functions in the

(unsubtracted)N =8 SUGRA amplitude, and compare it with its cousin, the corresponding

N =4 SYM amplitude, also at the level of their derivatives (coproducts). In the course of

doing this, we discovered linear relations between components of the N =4 SYM five-point

amplitude at one and two loops.

One interesting “global” property of the N = 8 SUGRA amplitude is that the letter

W31 does not appear at all, neither in the unsubtracted amplitude nor in the subtracted

hard function to be described shortly. It does appear in the N =4 SYM amplitude [65, 73],

but this appears to be linked solely to its contribution to the O(ε2) part of the (6 − 2ε)-
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dimensional pentagon integral, which is required at two loops for infrared subtractions in

N =4 SYM, but not in N =8 SUGRA because of the milder IR divergence structure.

6.1 A symmetric form of the hard remainder R
(2)
5

As mentioned around eq. (5.7), in order to remove the infrared divergences from the two-

loop amplitude, one could simply subtract the full square of the one-loop amplitude. That

is, one could define

R̃
(2)
5 ≡M

(2)
5 − 1

2

[
M

(1)
5

M
(0)
5

]2
×M (0)

5

= M
(2)
5 − 1

2

1

ε

∑
i<j

sij log sij

+
M

(1),0
5

M
(0)
5

+ ε
M

(1),1
5

M
(0)
5

2

×M (0)
5 + O(ε)

= M
(2)
5 −

∑
i<j

sij log sij

×
 1

2ε2

∑
i<j

sij log sij

M
(0)
5 +

1

ε
M

(1),0
5 +M

(1),1
5


−

[
M

(1),0
5

]2
2M

(0)
5

+ O(ε),

(6.1)

where M
(1),0
5 and M

(1),1
5 are theO(ε0) andO(ε1) terms in the one-loop amplitude. However,

doing this full subtraction would enlarge the space of rational structures required. The

issue is with the final term. The tree amplitude M
(0)
5 is proportional to tr5, see eq. (2.2),

and appears in the denominator. Within the square of M
(1),0
5 , the products of different

permutations of the box coefficient (5.2), after dividing by M
(0)
5 , cannot be expressed in

terms of the 45 rational structures of eqs. (3.21) and (3.22). Instead, we simply omit this

last term and define

R
(2)
5 ≡M

(2)
5 −

∑
i<j

sij log sij

×
 1

2ε2

∑
i<j

sij log sij

M
(0)
5 +

1

ε
M

(1),0
5 +M

(1),1
5

 . (6.2)

The O(ε) terms in the one-loop amplitude induce a shift in the finite terms of the two-loop

amplitude. In particular, there is a factor of tr5 in the denominator of the coefficient of the

d = 6 pentagon integral, which cancels precisely against the 1/tr5-containing contributions

to the bare two-loop amplitude. After this cancellation, there are only 40 linearly inde-

pendent rational structures, multiplied by 40 linearly independent weight 4 transcendental

functions.

We remark that this cancellation of more complicated structures, which are associated

with d-dimensional cuts rather than 4 dimensional ones, is reminiscent of what was observed

for the six-point amplitude in planar N = 4 SYM [131]. In that case, integrals containing

µ2 factors (extra-dimensional components of the loop momentum) appeared at two loops

and at O(ε) in the one-loop amplitude, but cancelled out from the remainder function.

The physical importance of the finite remainder at two loops has also been stressed in the
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context of constructing finite cross sections [132]. The conclusion is that the 1/tr5 rational

structures, originating from d-dimensional leading singularities, see eq. (3.22), should be

thought of as unphysical and dependent on the use of dimensional regularization.

The 40 linearly independent rational structures appearing in the hard function do not

fall into nice orbits under S5. Consider for example, the structure

r0 =
[23][34][45][51]

〈13〉〈14〉〈15〉〈23〉〈24〉〈25〉
. (6.3)

It is invariant under the Z2 symmetry that exchanges 1↔ 2 and 3↔ 5. So the action of S5
on r0 generates 120/2 = 60 similar structures, only 40 of which are linearly independent.

In order to provide a symmetric form for the hard remainder R
(2)
5 , we find a linear

combination h of the 40 weight 4 functions which is symmetric under the same Z2 as r0,

and write R
(2)
5 as a sum over the 60 permutations in S5/Z2,

R
(2)
5 =

∑
σ∈S5/Z2

r0(σ)h(σ). (6.4)

Requiring that R
(2)
5 be the same as in the original linearly-independent 40-term represen-

tation leaves a 6 parameter space of solutions. We pick a particular solution in this space

in order to simplify h, as we shortly explain. The symbol of h contains 26,012 terms and

is provided in the supplementary file remainder_h.txt.

We can characterize h via its derivative, or more technically the {3, 1} component of its

coproduct, in much the same way that we characterized the pure function gDT
234 appearing

in the double-trace coefficient of the N =4 SYM amplitude [65]. We first remark that the

parity odd part of h, like the odd part of gDT
234, has vanishing final entries for all letters of

the form sij − skl (letters 6 to 15 and 21 to 25, see appendix A.1). In addition, the weight

3 odd functions appearing in the {3, 1} coproduct component are all linear combinations

of permutations of the pure d = 6 pentagon integral, the Id=6
5 defined in eq. (5.5), whose

symbol we give in a supplementary file (we use the same conventions as in ref. [65]).

However, in contrast to gDT
234, h does not contain letter 31 at all. By an appropriate choice

of solution in the 6 parameter space, we find that the final entries for letters 17 and 19

vanish as well, for the odd part, hodd. We write the parity-odd part of its derivative as,

∂xi

[
hodd

] ∣∣
odd

=
12∑
j=1

∑
α1

Id=6
5 (Σj) mjα1

∂ logWα1

∂xi
, (6.5)

where j labels the 12 inequivalent permutations of the d = 6 pentagon integral,

Σj ∈ {{12543}, {12453}, {13524}, {12534}, {13254}, {12354},
. {14325}, {13425}, {14235}, {12435}, {13245}, {12345}},

(6.6)

and α1 ∈ {1,. . . ,5} ∪ {16,. . . ,20} ∪ {31} are the nonzero final entries for gDT
234.
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In these conventions, the matrix mjα1 corresponding to hodd is

mjα1
=

1

12



−3 −2 2 2 −2 1 0 1 0 1 0

3 1 −1 −3 0 1 0 −1 0 0 0

−3 −2 0 0 −2 1 0 5 0 1 0

3 0 −3 −1 1 0 0 −1 0 1 0

3 0 0 −2 4 −3 0 −3 0 1 0

−3 −1 1 3 0 −1 0 1 0 0 0

−3 2 −1 3 −3 2 0 3 0 −3 0

3 4 −2 0 0 1 0 −3 0 −3 0

3 −1 0 0 −1 2 0 −5 0 2 0

−3 0 3 1 −1 0 0 1 0 −1 0

−3 −3 3 −1 2 −3 0 3 0 2 0

3 2 −2 −2 2 −1 0 −1 0 −1 0



. (6.7)

This matrix has rank 5, so the derivative contains only five independent combinations of

final entries, and five independent combinations of d = 6 pentagon permutations.

Similarly, we expand the odd part of the derivative of the parity even part of h as,

∂xi [heven]
∣∣
odd

=

12∑
j=1

∑
α2

Id=6
5 (Σj) njα2

∂ logWα2

∂xi
, (6.8)

where α2 ∈ {26, . . . , 30} runs only over the five odd letters. The matrix njα2 for heven is
given by

njα2
=

1

12



0 1 0 1 1

0 −1 0 0 1

0 1 0 −1 −1

0 −1 0 1 0

0 −1 0 −1 1

0 1 0 0 −1

0 1 0 1 0

0 −1 0 1 −1

0 −1 0 0 0

0 1 0 −1 0

0 1 0 0 1

0 −1 0 −1 −1



. (6.9)

This matrix has rank 3, corresponding to the vanishing of the final entries 26 and 28.

6.2 Counting functions for N =8 SUGRA and N =4 SYM

It is interesting to compare the spaces of transcendental functions for N = 8 SUGRA and

N = 4 SYM. Before doing so for the two-loop five-point case of interest, we review the

situation for lower numbers of loops and/or legs, concentrating on the order O(ε0) terms

of weight 2 at one loop and weight 4 at two loops.
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For the one-loop four-point amplitudes in both theories [133], the space is three-

dimensional, and very simple in terms of the Mandelstam variables s, t, u (omitting factors

of log µ2):

{log s log t, log t log u, log u log s} . (6.10)

The finite part of the leading-color one-loop five-point N =4 SYM amplitude contains only

logarithms [134]

V5 =
5∑
j=1

[
−1

2
log2 sj,j+1 + log

(
sj,j+1

sj+1,j+2

)
log

(
sj+2,j−2
sj−2,j−1

)
+ ζ2

]
. (6.11)

The function is invariant under the dihedral D5 symmetry of planar amplitudes. In the full-

color amplitude, it appears in 12 nontrivial permutations labeled by S5/D5. Subleading-

color contributions are also obtained from particular permutations of this function [135].

The linear span of the 12 permutations of eq. (6.11) is an 11-dimensional space. Thus there

is one linear relation among the 12 permutations of V5,

V5[12345] + V5[12453] + V5[13254] + V5[13425] + V5[14235] + V5[14352]

−V5[12435]− V5[12354]− V5[13245]− V5[13452]− V5[14325]− V5[14253] = 0,
(6.12)

corresponding to the totally antisymmetric combination of the twelve functions. This rela-

tion also holds for the 1/ε pole terms as well. It can be derived by representing V5 as a cyclic

sum of one-mass box integrals, and using the Z2×Z2 symmetry of each such box integral.

What about the one-loop five-point N = 8 SUGRA amplitude? From eq. (5.1), the

amplitude contains a sum over one-mass box integrals, so it might be expected to contain

the dilogarithms present in the box integral [103]. On the other hand, the same could be

said for the N = 4 SYM amplitude, where from eq. (6.11) they have long been known to

cancel. We find that the dilogarithms all cancel from the one-loop five-point N =8 SUGRA

amplitude as well. (As far as we know, this feature was not recognized before, even though

this amplitude has been available for over 20 years [34].) In fact, of the 30 permutations

of the box coefficient β123(45) in eq. (5.2), only 10 are linearly independent. The coefficient

of one of these 10 rational structures is,

1

2
log2

(
s41
s52

)
− 1

2
log2

(
s51
s24

)
+ log s12 log

(
s52s41
s51s24

)
+ log

(
s34
s35

)
log

(
s51s41
s52s24

)
. (6.13)

Its images under the 30 permutations in S5/(Z2 ×Z2) span a 10 dimensional space, which

is entirely contained within the 11-dimensional space provided by the V5 functions for

N =4 SYM.7 So by this measure, N =8 SUGRA is slightly simpler than N =4 SYM.

Next we turn to the two-loop four-point amplitude. How many functions should we

expect in N =4 SYM? For a given color ordering, there is one planar amplitude, because

only a single Parke-Taylor factor appears at leading color. There are 3 distinct orderings of a

single trace, so there are really 3 planar functions. In the full-color amplitude, group theory

7Note that eq. (6.13) is representative of the 10 pure functions, but it does not correspond to a term in

a symmetrized form like eq. (6.4).
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implies that the subleading-color single-trace coefficients can be traded for the double-trace

coefficients, or vice versa, and only two of the three of these are independent [136]. Also,

there are two Parke-Taylor structures in the four-point case, given the one Kleiss-Kuijf

(U(1) decoupling) relation [137]. So we expect 2 × 2 = 4 nonplanar functions, for a total

of 3 + 4 = 7. Inspecting the actual N = 4 SYM answer [36, 138], there are 7 independent

functions. So there are no mysterious relations like eq. (6.12) at two loops and four points.

There are 3 functions associated with the N = 8 SUGRA two-loop four-point amplitude,

with relative prefactors s2, t2, u2 (or st, tu, us). These three functions are contained within

the space of N = 4 SYM functions. This property was anticipated by a relation found in

ref. [36] between subleading-color N = 4 and N = 8 amplitudes, although there are still

rational factors inhabiting this relation.

Finally, we turn to the two-loop five-point amplitudes. We need forty-five linearly

independent rational structures rj to describe the full unsubtracted amplitude M
(2)
5 in

N = 8 supergravity. The weight-4 functions that multiply these 45 structures at O(ε0)

are all linearly independent. As discussed in the previous subsection, if we perform the

infrared subtraction defined in eq. (6.2) to remove the pole terms that are proportional to

“s log s” times the one-loop amplitude, and if we also include in this subtraction the O(ε)

terms in the one loop amplitude, then the O(ε0) terms in the amplitude are shifted. This

remainder function has only 40 rational structures, and the corresponding 40 functions are

linearly independent.

We can also compare the functions for N =8 SUGRA with the corresponding number

for N = 4 SYM [65, 73]. First, we need to understand how many functions there are in

the latter amplitude. Naively, there are 72 such functions. The counting is as follows:

the planar (BDS) amplitude has a single pure function MBDS multiplying a single Parke-

Taylor factor. As the coefficient of a single trace structure, tr[T a1 · · ·T a5 ]− tr[T a5 · · ·T a1 ],

MBDS is invariant under a 10-element dihedral symmetry group, D5. Thus the sum of

MBDS over S5 permutations is really over the coset S5/D5, which gives rise to 120/10 = 12

planar functions. In the nonplanar sector, the Edison-Naculich relations [139] show that the

subleading-color terms in the single-trace color structure, ASLST, are linear combinations

of the planar amplitude and the coefficients of the double-trace structure ADT [65]. These

latter coefficients can in turn be expanded as Parke-Taylor factors times pure functions,

and in this case all 6 Parke-Taylor factors (after applying Kleiss-Kuijf identities [137])

contribute. Their corresponding pure functions were called gDT
σ(2),σ(3),σ(4) in ref. [65]. The

double-trace color structure, tr[T a1T a5 ] (tr[T a2T a3T a4 ]− tr[T a2T a4T a3 ]), is invariant under

a 12-element Z2 × S3 symmetry group. Thus there should be 6 × 10 = 60 nonplanar

functions, plus 12 planar functions, for a total of 60 + 12 = 72.

However, the total number of linearly independent N = 4 SYM functions at weight 4

is actually 52, not 72. Therefore there must be 20 separate linear relations between the

transcendental functions. These relations come in two sets of 10. The first set only involves

permutations of the function g ≡ gDT
2,3,4. One such equation is

g[12345] + g[12453] + g[12534] + g[21345] + g[21453] + g[21534]

−g[12435]− g[12543]− g[12354]− g[21435]− g[21543]− g[21354] = 0.
(6.14)
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The arguments of g indicate the permutation that is to be applied to gDT
2,3,4. The other 9

equations in this set can be found by permuting the labels further in this equation. The

second representative equation also involves the planar functions M ≡MBDS,

6M [12345]− 6M [13254] + 2g[23145] + 2g[25413]− 2g[32154]

+ g[12354] + g[32451] + g[42531] + g[32541] + g[52314] + g[42513] + g[25431]

+ g[41235] + g[31245]− g[12345]− g[52431]− g[52413]− g[42315]− g[21453]

− g[21543]− g[23451]− g[24531]− g[23541]− g[51234]− g[31254] = 0.

(6.15)

Again the other 9 equations in this set can be found by permuting the labels further. These

equations all hold, not only at O(ε0) or weight 4, but also for the 1/ε pole components,

which have lower weight.

It would be very interesting to understand the origin of eqs. (6.14) and (6.15). They

generalize eq. (6.12) to two loops. Do they reflect some hidden generalization of dual

conformal invariance to the nonplanar sector [85, 99–102]? Could they represent some

integrated version of color-kinematics duality (see e.g. [140, 141])?

In any event, now that we know that there are 52 independent functions for N =4 SYM,

we can ask, at O(ε0) or weight 4, how different are the 45 (or 40) N =8 SUGRA functions

from them? To address this question, we take the linear span of the 45 unsubtracted N =

8 SUGRA functions and the 52 N = 4 SYM functions and find 62 independent functions.

That is, only 10 of the N = 8 SUGRA functions are “new”, with respect to those in

N =4 SYM. (Or to turn it around, only 17 of the 52 N =4 SYM functions are “new” with

respect to N =8 SUGRA.) Thus there is a large overlap between the two sets of functions.

On the other hand, if we take the span of the 40 subtracted N = 8 SUGRA functions

and the 52 (unsubtracted) N =4 SYM functions, we find 92 independent functions, i.e. they

are all independent. The large concordance between the two sets of unsubtracted functions

is lost, when one set is subtracted.

We can also project the sets of (unsubtracted) functions into the parity-even and parity-

odd sectors and repeat the exercise. First of all, the number of independent functions in

the even and odd sectors is equal to the number before projection. The one exception to

this rule is that 5 of the 45 N =8 SUGRA functions, the ones with 1/tr5 in their rational

function coefficients, are pure parity-odd, so there are only 40 independent parity-even

functions. For the parity-even part, the 40 N = 8 functions and the 52 N = 4 functions

have a span with dimension 56. For the parity-odd part, the 45 N = 8 functions and the

52 N = 4 functions have a span with dimension 62.

Because the parity-even overlap involves only 4 additional functions, and because the

parity-even sector has a lot of “simple” functions containing no odd letters, we also ask

how many of the even functions require odd letters in their symbol (two at a time, of

course, by parity and the first entry condition). The part of the weight-4 parity-even space

requiring odd letters is 40 dimensional for both N = 4 SYM and N = 8 SUGRA; however

the two spaces are not identical because their span has dimension 44. In other words, the

extra 4 parity-even functions required by N = 8 SUGRA all require odd letters. It would
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functions {1, 1, 1, 1} {2, 1, 1} {3, 1} weight 4

P odd space 0 9 111 1191

no. from N = 8 0 9 11 45

no. from N = 4 0 9 12 52

no. from both 0 9 12 62

P even space 10 70 505 3736

no. from N = 8 10 70 285 40

no. from N = 4 10 70 362 52

no. from both 10 70 367 56

P even with odd letters 0 0 45 711

no. from N = 8 0 0 40 40

no. from N = 4 0 0 40 40

no. from both 0 0 40 44

Table 1. Table of dimensions of coproducts of the weight 4 functions for the N = 8 SUGRA and

N =4 SYM twoloop five-point amplitudes. By weight 2 they span the full function space with the

second entry condition.

be interesting to investigate further the 52− 40 = 12 functions in N = 4 that have no odd

letters, and see just how simple they are.

The right column of table 1 displays the dimensions of the weight-4 N = 8 SUGRA,

N = 4 SYM and combined spaces, relative to the full function space proposed in ref. [63],

which includes the 31 letters, plus an empirical constraint on the first two entries. This

constraint is satisfied by all functions needed to build both amplitudes, simply because it

is satisfied by all master integrals.

The dimensions in the columns toward the left in table 1 correspond to the number of

independent functions found by repeated differentiation of the respective weight 4 functions.

More technically, given a weight n function F , we extract the {n − 1, 1} components Fα

for all 31 letters α via the formula,

∂xiF =
31∑
α=1

Fα
∂ logWα

∂xi
. (6.16)

At the level of the symbol, Fα is constructed from F by setting all symbol terms in F to

zero unless they have Wα as their last letter, in which case that letter is clipped off.

Note that parity-even functions can be generated from odd functions at one weight

higher (by clipping off an odd letter), and vice versa. At weight two and lower, the ampli-

tudes’ coproducts saturate the full space. However, at weight 3 they occupy a remarkably

small fraction of the nontrivial part of the function space.

In particular, for weight 3 parity odd functions, only 12 of the 111 possible func-

tions are required: the 12 permutations of the d = 6 pentagon, Id=6
5 (Σj). In the case of

N =8 SUGRA, one of the 12 combinations does not appear, and that is the totally sym-

metric sum,
∑12

j=1 Id=6
5 (Σj). We can verify its absence for the (subtracted) hard function
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h by observing that the sum of all column entries vanishes, for all columns in both the

matrix mjα1 in eq. (6.7) and njα2 in eq. (6.9). Of course there are many other vertical

combinations that vanish, since the matrices have ranks 5 and 3 respectively. However, the

total sum corresponds to a symmetric combination that also vanishes for any permutation

of h. (The functions appearing in the subtraction term, coming from the O(ε) term in the

one-loop amplitude also obey this property, and so it is true for the unsubtracted ampli-

tude as well.) Thus in N =8 SUGRA, as in N =4 SYM [65], the d = 6 pentagon integrals

provide a key to a lot of the structure of the final result.

Another key consists of the weight-3 even functions containing odd letters. At low

weights, most of the even functions do not contain any odd letters. The bulk of these

functions are simply products of logarithms and dilogarithms whose arguments are rational

in the sij invariants. More interesting are the even functions that have two odd letters in

some of their symbol terms. (They need two odd letters because of parity, and at weight

4, since an odd letter cannot be in the first entry, they cannot have four odd letters in

any term.) We count these functions in the bottom rows in the table. We observe that

the {3, 1} coproducts of both N = 8 SUGRA and N = 4 SYM live in exactly the same

40-dimensional space.

In summary, starting at weight 3, N =8 SUGRA and N =4 SYM utilize a remarkably

small fraction of the “interesting” available pentagon-function space. Also, there is a

surprising degree of similarity between the two sets of functions, despite the fact that the

two sets of integrals required for the two-loop five-point amplitude are different: linear in

the loop momentum for N =4 SYM and quadratic for N =8 SUGRA (in the BCJ/double

copy representation). It would be interesting to know whether these features have further

implications for higher loops or other processes.

7 Outlook

In this work we have computed the symbol of the two-loop five-particle scattering am-

plitude in N = 8 SUGRA, extending the analytic knowledge of supergravity amplitudes

beyond the two-loop four-point examples of ref. [38]. Our computation relies on reduc-

ing the known supergravity integrand [24] to the available pure master integrals for all

massless two-loop five-point amplitudes [65, 67]. This step has been significantly simplified

and made possible by two key ideas. First, we employed insights from methods based on

generalized unitarity to identify the relevant space of rational kinematic prefactors which

the amplitude spans. All such structures can be identified by 4- as well as d-dimensional

leading singularities, i.e. maximal codimension residues of the loop integrand that localize

all internal loop degrees of freedom. Second, we used modern integration-by-parts meth-

ods based on generalized unitarity and computational algebraic geometry, together with

efficient numerical finite-field methods, to perform the integral reduction. This purely nu-

merical approach avoids the prohibitive explosion of the size of intermediate expressions

associated with the complexities of the five-point multi-scale problem. A priori knowledge

of the analytic form of the rational prefactors then allows us to efficiently reconstruct the

analytic result from finite-field numerics.
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We have verified our result by checking the universal infrared pole structure as well as

matching to known factorization formulae in the soft and collinear limits. We also point

out a number of interesting analytic properties of the supergravity symbol and compare it

with the recently computed Yang-Mills counterpart [65, 73]. Like the N = 4 SYM result,

we find that the two-loop five-particle supergravity amplitude is uniformly transcendental.

Clearly, N = 8 SUGRA must be the “simplest quantum field theory” [142] since its two-

loop five-point amplitude requires 7 fewer functions compared to the other contender for

the title, N = 4 SYM with full color dependence. Furthermore, neither its un-subtracted

nor subtracted amplitude requires the letter W31 = tr5. A further interesting observation

is that all pieces related to the d-dimensional leading singularities cancel in a suitably

defined IR-subtracted remainder function R
(2)
5 . This observation is reminiscent of earlier

observations in the context of planar N =4 SYM [131].

Where do we go from here? On a formal level, it would be interesting to investigate

if there is any imprint of BCJ duality on full amplitudes. This is known to be the case

in the different context of half-maximal supergravity in 5 dimensions, where “enhanced

cancellations” of two-loop UV divergences can be explained by the duality [143]. As we

have discussed in section 3, all supergravity leading singularities are direct double copies of

their super-Yang-Mills counterparts, but besides rational factors, are there any indications

in the transcendental functions that originate from the fact that supergravity integrands

are the square of super-Yang-Mills? The two-loop five-point example presented here seems

like an ideal laboratory to investigate this question, since this is a situation where the BCJ

representation of the integrand involves nontrivial loop-momentum dependent numerators.

On a practical level, given the usefulness of the d-dimensional leading singularity

method in systematically identifying the rational functions that appear in the supergravity

amplitude from a relatively simple loop-integrand analysis, it is quite natural to wonder

if similar techniques may help to identify the relevant rational structures of QCD ampli-

tudes before integration. Just as in the construction of simple forms of loop integrands

using generalized unitarity, recyling information from tree-like objects could dramatically

simplify otherwise complicated amplitudes.
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A Kinematics

In this appendix, we summarize various aspects of the kinematics of massless five-particle

scattering for the benefit of the reader, without breaking the exposition in the main text.

More concretely, we first reproduce the pentagon alphabet of ref. [63]. Then we discuss the

momentum-twistor parametrization of ref. [91], which rationalizes the symbol alphabet and

allows us to use powerful finite-field methods in numerical calculations. For the validation of

the amplitude in section 5, we discuss the soft- and collinear limits of five-point scattering.

These kinematic limits can also be implemented at the level of the twistor parameters in a

straightforward manner, as explained in the main text.

A.1 Symbol alphabet

Before discussing details of the five-point kinematics, we reproduce the symbol alphabet

for five-particle scattering first conjectured in ref. [63], which is relevant for our discussion

in section 4. Here, we first follow the kinematic notation of ref. [63], and subsequently

discuss a few simplifications for the 31 letters of the alphabet.

Scattering amplitudes for massless five-point processes depend on the five massless

external momenta ki, involved in the process, subject to the on-shell constraints k2i = 0

and momentum conservation
∑5

i=1 ki = 0. The kinematic dependence is given in terms of

five independent Mandelstam invariants vi. In ref. [63], the following notation is introduced,

vi = si,i+1 = 2ki · ki+1 , ∆ = tr25 = det(2ki · kj)
a1,2,3,4 = tr[/k4/k5/k1/k2] = v1v2 − v2v3 + v3v4 − v1v5 − v4v5

(A.1)

where tr5 = tr[γ5/k1/k2/k3/k4] = [12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41] as defined in eq. (2.3).

With these definitions, we can now discuss the 31 letters Wα of the alphabet relevant for

the massless five-particle scattering problem. These letters can be grouped according to

spacetime parity, which corresponds to flipping the sign of tr5 → −tr5, or, equivalently,

conjugating the spinor-bracket expressions 〈·〉 ↔ [·]. The parity-even letters are given as

the five cyclic images (the index i runs over 1, . . . , 5) of the following basic structures,

Wi = vi = si,i+1 , W5+i = vi+2 + vi+3 ,

W10+i = vi − vi+3 , W15+i = vi + vi+1 − vi+3 , (A.2)

W20+i = vi+2 + vi+3 − vi − vi+1 , W31 =
√

∆ = tr5 .

The five parity-odd letters are given by the five cyclic images of

W25+i =
ai,i+1,i+2,i+3 −

√
∆

ai,i+1,i+2,i+3 +
√

∆
. (A.3)

For real Minkowski momenta ki, complex conjugation is realized as (
√

∆)∗ = −
√

∆ so that

the odd letters invert under complex conjugation (Wj)
∗ = W−1j for j ∈ {26, . . . , 30}.

We can use momentum conservation and spinor-trace identities to write the alphabet

in a more compact way that also eliminates the square root in the parity-odd letters, at
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the cost of having expressions that are manifestly spinor-helicity valued and not written in

terms of the five independent Mandelstam variables vi alone. For concreteness, we write

the full list of 31 letters in this form:

Wα =

{
s12, s23, s34, s45, s15,

s34 + s45, s15 + s45, s12 + s15, s12 + s23, s23 + s34,

s12 − s45, s23 − s15, s34 − s12, s45 − s23, s15 − s34,
− s13,−s24,−s35,−s14,−s25,
− s23 − s35,−s14 − s34,−s25 − s45,−s13 − s15,−s12 − s24,
〈12〉〈45〉[15][24]

〈15〉〈24〉[12][45]
,
〈15〉〈23〉[12][35]

〈12〉〈35〉[15][23]
,
〈12〉〈34〉[14][23]

〈14〉〈23〉[12][34]
,

〈23〉〈45〉[25][34]

〈25〉〈34〉[23][45]
,
〈15〉〈34〉[13][45]

〈13〉〈45〉[15][34]
, tr5

}
.

(A.4)

We note that letters W6, . . . ,W10 and W21, . . . ,W25 can also be written in the form sij−skl.
For instance, W6 = s34 + s45 = s12 − s35.

A.2 Twistor parametrization and rationalization of the alphabet

We have seen in the previous subsection, especially in eq. (A.3), that, if one chooses five

independent Mandelstam variables sij as kinematic variables, the pentagon alphabet con-

tains the square root of the Gram determinant
√

∆. From a practical point of view, it is

often very desirable to rationalize the symbol alphabet. For a recent systematic study of

rationalizing various roots, see ref. [144]. Since momentum twistors [90] give a set of uncon-

strained variables that automatically generate momentum-conserving on-shell kinematics,

it has been well established that choosing such variables is extremely useful in the context

of rationalizing alphabets, see e.g. ref. [91] for the application to five-point massless kine-

matics. We now summarize the parametrization established in appendix A.2 of ref. [91],

which we employ in our calculation. For the convenience of the reader, we also derive the

spinor-helicity variables that allow us to evaluate all spinor-bracket expressions, such as

the alphabet in eq. (A.4). The twistor matrix can be parameterized by five independent

variables xi in the following way,

Z(5) =
(
Z1 Z2 Z3 Z4 Z5

)
=


1 0 1

x1
1
x1

+ 1
x2

1
x1

+ 1
x2

+ 1
x3

0 1 1 1 1

0 0 0 x4 1

0 0 1 1 x5
x4

 . (A.5)

From the momentum twistor parametrization in eq. (A.5) there exists a straightforward

map to the more familiar spinor-helicity variables, see e.g. ref. [90] or section 2 of ref. [145]

for more details on this map. For the five-particle case at hand, this map gives the following
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spinor-helicity variables,

λ(5) =
(
λ1 λ2 λ3 λ4 λ5

)
=

(
1 0 1

x1
1
x1

+ 1
x2

1
x1

+ 1
x2

+ 1
x3

0 1 1 1 1

)
,

λ̃(5) =
(
λ̃1 λ̃2 λ̃3 λ̃4 λ̃5

)
=

(
−1 0 −x2x4 x3 (x4 − 1) + x2x4 x3 (1− x4)
−x5
x4
−x1 x1 x3

(
1− x5

x4

)
x3

(
x5
x4
− 1
)) .

(A.6)

From these helicity-spinors, all bracket expressions can be evaluated with

〈ij〉 ≡ det({λi, λj}) , [ij] ≡ det({λ̃j , λ̃i}) , sij = 〈ij〉[ji] , (A.7)

where det({λi, λj}) (det({λ̃j , λ̃i})) is the instruction to compute the 2 × 2 determinant

obtained by selecting columns i and j from the 2 × 5 matrix λ(5) (λ̃(5)). As an example,

we get for instance that 〈23〉 = −1/x1. Furthermore, the five independent Mandelstam

invariants are rationally mapped to the five xi variables according to

s12 = x1 , s23 = x2x4 , s34 = x1

(
x4 −

x3 (1− x4)
x2

)
+ x3 (x4 − x5) ,

s45 = x2 (x4 − x5) , s51 = x3 (1− x5) .
(A.8)

In the xi variables, it is clear that the parity-odd letters W26,...30 turn into rational functions

of the xi as the letters are rational in the spinor brackets and each of the spinors is rationally

parameterized, e.g.

W26 =
〈12〉〈45〉[15][24]

〈15〉〈24〉[12][45]
=
x1 (x5 − 1) (x3 (x4 − 1) + x2x4)

x3 (x1 + x2) (x4 − x5)
. (A.9)

Similarly, since tr5 is a rational function of spinor brackets, it is also a rational function of

the xi. Finally, we would like to emphasize once more that twistor variables allow us to

generate rational kinematics by choosing rational values for the xi variables.
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