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The two loop soliton solution of the Vakhnenko equation
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Abstract. An exact two loop soliton solution to the Vakhnenko equation is found. The key step
in finding this solution is to transform the independent variables in the equation. This leads to a
transformed equation for which it is straightforward to find an exact explicit 2-soliton solution
by use of Hirota’'s method. The exact two loop soliton solution to the Vakhnenko equation
is then found in implicit form by means of a transformation back to the original independent
variables. The nature of the interaction between the two loop solitons depends on the ratio of
their amplitudes.

PACS number: 0340Kf

1. Introduction

In [1] Vakhnenko discussed the nonlinear evolution equation
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which governs the propagation of waves in a relaxing medium [2]. Hereafter (1.1) is
referred to as the Vakhnenko equation (VE). Vakhnenko [1] derived two families of periodic
travelling-wave solutions to the VE corresponding to propagation in the positive and negative
x-direction respectively. In the former case the solutions comprise periodic loops, and there
is also a travelling-solitary-wave solution comprising a single loop. Parkes [3] showed
that all the aforementioned solutions are stable to long-wavelength perturbations of small
amplitude.

Vakhnenko [1] also considered the nonlinear interaction between two solitary waves.
However, his formulation of the interaction was in error. The aim of this paper is to revisit
this problem; we derive an exact two loop soliton solution to the VE. The key step in finding
this solution is to transform the independent variables. This leads to an equation for which
it is straightforward to find an exact explicit 2-soliton solution by use of Hirota’s method.
The exact two loop soliton solution to the VE is then found in implicit form by means of
a transformation back to the original independent variables.

The problem discussed in this paper is closely related to work on another equation,

namely
dx Ve
Yt + sgn(d—s> [—(1 = y)?)w]m =0 (1.2)
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which describes waves propagating along a stretched rope. esethe transverse
displacement of the rope anddenotes arc length measured along the solution curve from
some reference point on the rope. The inverse scattering method has been used to obtain
the one loop soliton solution [4] and two loop soliton solution [5] to (1.2) in implicit form.
Ishimori [6] found a transformation of the dependent and independent variables in (1.2)
which leads to an mKdV equation in potential form. By use of the known multisoliton
solution to the mKdV equation, a multiple loop soliton solution to (1.2) may be constructed
[7, 8]. In particular the details of the implicit two and three loop soliton solutions to (1.2)
are given explicitly in [8]. The method used in this paper is similar, although here it is
only the independent variables that are transformed, and the construction of the loop soliton
solutions is more straightforward.

In section 2 the VE is transformed into an equation that has a Hirota form. The
previously known one loop soliton solution to the VE is recovered in section 3. The two
loop soliton solution to the VE is derived in section 4 and is discussed in section 5; it is
found that the nature of the interaction between the loop solitons depends on the ratio of
their amplitudes.

2. Transformation of the Vakhnenko equation

We introduce new independent variablésT defined by
X

x=0(X,T) :=T+/ UX', T)dX' + xo t =X, (2.2)

whereu(x,t) = U(X, T), andxo is a constant. From (2.1) it follows that
ad d d d ad

— = — — =¢— 2.2

ox _ar " lox’ TS (2:2)
where

X

$(X,T) = 1+/ Ur dX’ (2.3)
so that

¢x = Ur. (2.4)
From (1.1) and (2.2) we obtain

Uxr +¢U =0. (2.5)
By eliminating¢ between (2.4) and (2.5) we obtain the transformed form of the VE, namely

UUxxr — UxUxr + U?Ur = 0. (2.6)

In order to find soliton solutions to (2.6) by using Hirota’'s method [9] we need to
express (2.6) in Hirota form. First we introdudg defined byWy = U and assume that
W and its derivatives vanish & — —oco. Then¢ = 1+ W7 and (2.5) becomes

Wyxxr + WxWr + Wx =0. (2.7)
Equation (2.7) is equivalent to (2.6). By taking
W =6(n f)x, (2.8)
we find that
3D%f - 3D:D3f-
Wx = Xf f and Wxxr + WxWp = T—Xff, (29)

f? f?
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where D is the Hirota operator [9], so that (2.7) may be written as the bilinear equation
F(Dx,Dr)f - f =0, (2.10)
where
F(Dyx, Dr) := Dy D3 + D2, (2.11)

The solution procedure for the VE is as follows. We solve (2.10)fdny using Hirota’'s
method and hence find the solutiéh(X, T) to (2.6) by using (2.8). The solution to the
VE is then given in parametric form by

ulx,t) =U(@,T), x=0@t,T)), (2.12)
where

0(X,T)=T 4+ W(X,T) + xo. (2.13)

3. The one loop soliton solution of the Vakhnenko equation

The solution to (2.10) corresponding to one soliton is given by
f=1+¢", wheren = kX — 0T +«, (3.1)

andk, w anda are constants. The dispersion relationFi€k, —2w) = 0 from which we
find thatw = 1/4k and then

n=k(X—cT)+a with ¢ = 1/4k>. (3.2
Substitution of (3.1) into (2.8) gives

W (X, T) = 6k(1+ tanhp) (3.3)
so that

U(X,T) = 6k*secl . (3.4)

The one loop soliton solution to the VE is given by (2.12) with (3.3) and (3.4). From (2.13)
with v = 1/c we have

x —vt = —v(X — cT) 4+ 6k(1+tanhk (X — cT) + «]) + xo. (3.5)

Clearly, from (3.4) and (3.5)/ (X, T) andx — vt are related by the paramet&r— ¢T so
thatu(x, t) is a soliton that travels with speedn the positivex-direction. That this soliton
is a loop may be shown as follows. From (2.2) we haye= ¢~'U; which, together with
(2.3), (3.2) and (3.4), yields

u, = —cUyx/(1—cU). (3.6)

Thus, asX — ¢T goes from+o0 to —oo in (3.5), so thatv — vr goes from—oo to +o0, Uy
changes sign once and remains finite whereagiven by (3.6) changes sign three times
and goes infinite twice.

If we require symmetry inK—T space, i.eU(X,T) =U(—X, —T), we takew =0 in
(3.2) and then, for symmetry in— space, we takeg = —6k in (2.13). In this case the
one loop soliton solution may be written in terms of the parametes X — ¢T as

U= 3 sech <ﬁc> , X — vt = 3ﬁtanh(@) — e (3.7)

2 2
with v(> 0) arbitrary. (3.7) is essentially the one loop soliton solution given in [1, 3].
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4. The two loop soliton solution of the Vakhnenko equation

The solution to (2.10) corresponding to two solitons is given by
f =1 + eznl + eZ"Z + bZeZ(r]l-H]z)’ Wheren,- = k,X - (L),'T + «;, (41)
2 Fl2(ky — ko), —2(w1 — w2)] 4.2)
F[2(ky + k), —2(w1 + )]’ .
andk;, w; andqa; are constants. The dispersion relationfig2k;, —2w;) = 0 from which
we find thatw; = 1/4k; and then
n=k(X —cT)+a with ¢; = 1/4k?. (4.3)

Without loss of generality we may take > k; and then

ky—ky [k2 4 k2 — kik
p— 2 1 é+ g 1 2’ (4.4)
ko + k1 kT + k5 + kiko
so that O< b < 1. Substitution of (4.1) into (2.8) give® (X, T'). Following Hodnett and
Moloney [10], we may writeW (X, T) in the form

W = Wi+ Wy, where W, = 6k; (1 + tanhg;) (4.5)
and
1 1+ b%ePr 1 1+ b%em
X, T)= —In| ——1, X, T)= —In{——1. 4.6
g1( ) 771+2 |:1+e2"2:| g2( ) T)2+2 |:1+e2'71] (4.6)
It follows that U may be written
agi
U= U+ U, whereU; = 6k,-% seck g;. 4.7

The two loop soliton solution to the VE is given by (2.12) with (4.5) and (4.7).

5. Discussion of the two loop soliton solution

We now consider in more detail the two loop soliton solution found in section 4. First it is
instructive to consider what happensXa-T space.
AS c¢1 > ¢, we have

X — T - +0 asT — +oo with X — 1T fixed, (5.1)
and

X — 1T - Foo asT — +oo with X — T fixed. (5.2)
From (4.6) and (4.7) with (5.1) it follows that, with — ¢, T fixed,

Uy ~ 6kZ sech ny asT — —oo, 5.3)

Uy ~ 6k? secR(y1 + Inb) asT — +oo. '
Similarly, from (4.6) and (4.7) with (5.2), witlk — ¢,T fixed,

U, ~ 6k5 secl(nz + Inb) asT — —oo, 5.4)

U, ~ 6k2 sech n, asT — 4oo. '

Hence it is apparent that, in the limils — +o00, U; andU, may be identified as individual
solitons moving with speeds andc; respectively in the positivl-direction. In contrast
to the familiar interaction of two KdV ‘sech-squared’ solitons [11], here it is the smaller
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soliton that overtakes the larger one. The shiffs, of the two solitonsU; and U, in the
positive X -direction due to the interaction are

Ay =—(nb)/ky and Ay = (Inb)/ky (5.5)

respectively. As Ib < 0, the smaller soliton is shifted forwards and the larger soliton is
shifted backwards. Since the ‘mass’ of each soliton is giverfﬁg U; dX = 12;, where
we have used (4.7), and the shifts satisfyA1 + kA2 = 0, ‘momentum’ is conserved.

Let r := k1/ko and recall that here we are assuming that0- < 1. (From (5.3)
and (5.4),r2 is the ratio of the amplitudes of the individual smaller and larger solitons.)
Note thatUxx (Xint, Tint) = O for r = R = 0.538 62, whergXint, Tint) is the centre of the
interaction. (If the condition (5.9) is satisfied théf; = 0 andTj, = 0.) FOorR <r < 1,
we haveUxx(Xint, Tint) > 0 and the 2-soliton solution itk—T space always has two
peaks; during interaction the two humps exchange amplitudes. kowrO< R, we have
UxxXint, Tint) < 0 and the two humps of the individual solitons coalesce into a single
hump for part of the interaction; the smaller hump appears to pass through the larger one.

Now let us consider what happensairs space. From (2.13) with; = 1/¢; we have

x—vit =—v;(X —¢T)+ WX, T) + xo. (5.6)

Note that in (5.3) taking the limit§ — +oco with X —¢1 T fixed is equivalent to taking the
limits X — +oo with X — 1T fixed; also note thak = ¢ from (2.1). Accordingly from
(5.3) and (5.6) with = 1 we see that in the limits — doco with X — 1T fixed, U1(X, T)
andx — vyt are related by the parametgrc¢, 7. Similarly, from (5.4) and (5.6) with = 2,
in the limitst — +oo with X —¢,T fixed, U>(X, T) andx —v,t are related by the parameter
X — ¢,T. It follows that in the limitst — +o00, u; andu, may be identified as individual
loop solitons moving with speeds andwv, respectively in the positive-direction, where
u;(x,t) = U;(X,T). As v, > vy, the larger loop soliton overtakes the smaller loop soliton.
This is in contrast to the two loop soliton solution to (1.2) in which the smaller loop soliton
overtakes the larger one [5].

The shifts, §;, of the two loop solitonsu; and u;, in the positive x-direction due
to the interaction may be computed from (5.6) as follows. From (5.3)T as —oo,
Uy = Uimax = 6kf whereX —c;T = —a3/k1; thenW; = 6k; and, by use of (5.1)W, = 0.
Similarly, asT — 00, Uy = Uimax = 6k? whereX —c1T = —(a1+Inb)/ki; thenWy = 6k,
and W, = 12k,. Use of these results in (5.6) with= 1 gives

81 = 4kq Inb + 12k,. (57)
By use of (5.2), (5.4) and (5.6) with= 2, a similar calculation yields
S8 = —4ko Inb — 12%,. (58)

Plots of8,/k, andd,/ k. as functions of- with 0 < r < 1 are shown in figure 1. It may be
seen that, > 0 so that the larger loop soliton is always shifted forwards by the interaction.
However, fors; we find that:

(a) forr = r., wherer. = 0.888 67 is the root of ld + 3/r = 0, §; = 0 so the smaller
loop soliton is not shifted by the interaction;

(b) for 0< r < r¢, 81 > 0 so the smaller loop soliton is shifted forwards;

(c) forr. <r < 1,81 < 0 so the smaller loop soliton is shifted backwards.
At first sight it might seem that the behaviour in (a) and (b) contradicts conservation of
‘momentum’. That this is not so is justified as follows. By integrating (1.1) with respect to
x we find thatfj’oOo udx = 0; also, by multiplying (1.1) by and integrating with respect
to x we obtain/*_xudx = 0. Thus, inx— space, the ‘mass’ of each soliton is zero, and
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Figure 1. The quantitiessi/k> (curve 1) andéy/kz (curve 2), given by (5.7) and (5.8)
respectively, as functions of

-10 -5 o 5 10

Figure 2. The interaction process for two loop solitons with= 0.9 andk, = 1 so that- = 0.9
ands; < 0.

‘momentum’ is conserved whatevér andé, may be. In particulas; andé, may have the
same sign as in (b), or one of them may be zero as in (a).
For the interaction to be centred &t= 0, T = 0 we require

o] = 0y = —%Inb (59)
and then, for the interaction to be centredvat 0, t = 0 we require
X0 = —6k1 - 6k2. (510)

We have used (5.9) and (5.10) in the computation of figures 2—4.

We have already seen that the shifts given by (5.7) and (5.8) depend upon the ratio
The behaviour of the solution during the interaction process also dependsTdrere are
three characteristic cases:

(1) for r, < r < 1, wherer, = 0.75968, the two loops exchange their amplitudes
during the interaction but never overlap;

(2) forr, < r < ry, wherer, = 0.556 76, the two loops exchange their amplitudes
during the interaction and, for part of the interaction, the loops overlap;
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Figure 3. The interaction process for two loop solitons with = 0.65 andkz = 1 so that
r = 0.65 andé§, > 0.

~10 5 0 5 10

Figure 4. The interaction process for two loop solitons with= 0.5 andk, = 1 so that- = 0.5
andé; > 0.

(3) for 0 < r < r,, the larger loop catches up the smaller loop which then travels
clockwise around the larger loop before being ejected behind the larger loop.

Cases (1)—(3) are illustrated in figures 2—4 respectively; in each of these figlses
plotted againsk — (v1 + v2)t/2 at several equally spaced values of

6. Conclusion

We have found the two loop soliton solution to the VE by using a blend of transformations
and Hirota’s method. The procedure can also be used taMitabp soliton solutions with

N > 2. This, together with a detailed investigation of the case= 3, will be reported
elsewhere. It should be possible to find loop soliton solutions by use of the inverse scattering
transform method [11]. This is currently under investigation.
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