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Abstract In large asexual populations, clonal interfer-

ence, whereby different beneficial mutations compete

to fix in the population simultaneously, may be the

norm. Results extrapolated from the spread of individ-

ual mutations in homogeneous backgrounds are found

to be misleading in such situations: clonal interference

severely inhibits the spread of beneficial mutations.

In contrast with results gained in systems with just

one mutation striving for fixation at any one time, the

spatial structure of the population is found to be an

important factor in determining the fixation probability

when there are two beneficial mutations.
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Introduction

Recent work [1] has given us a newly thorough under-

standing of the molecular nature of mutations, applying

whole-genome sequencing to detect de novo mutations

[2] in the yeast Saccharomyces cerevisiae. They are,

overwhelmingly, nucleotide substitutions, with transi-

tions occurring approximately half as often as transver-

sions. This and other work show that mutations that

are deleterious [3–5] and advantageous [6, 7] are of

high frequency, with deleterious mutations occurring

of the order 10−8 per nucleotide, and advantageous

mutations occurring of order 10−10 per cell per division.
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Therefore, it is not the case that a single mutation

fixes on a homogeneous background, but, in fact, clonal

interference [8] is of major importance. The current pa-

per shows how clonal interference alters the probability

of a given beneficial mutation establishing (fixing) in a

population, which is a basic measure of the ability of

that population to adapt.

Generally, the probability of fixation of a single mu-

tation in a homogeneous population has been studied

[9–11]. For a number of different model population

structures (including fully connected systems, lattices

and linear chains), it has been reported that the fixation

probabilities of a mutation are the same [12], suggest-

ing that the structure of a population is unimportant

in evolutionary dynamics, a result that has been fur-

ther bolstered by similar work on the evolution of co-

operation [13] (also looking at the fixation of a single

strategy in a homogeneous population). In real asexual

populations, it is often the case that multiple advanta-

geous mutations are present: clonal interference [8] is

the term given to the process by which different asexual

lineages compete with each other to establish. Here we

demonstrate that, when multiple mutations are consid-

ered simultaneously, an extrapolation of the behaviour

seen when mutations fix sequentially is inappropriate.

Furthermore, we show that the spatial structure of the

system becomes an important factor in determining the

dynamics of the population.

In this paper, evolutionary graph theory [12] is used

to study the simulated behaviour of interfering muta-

tions in a population. This theory was invented to allow

the easy study of the fixation behaviour of mutants in

populations with differing spatial structures. The model

is an extension of the Moran model [11], which becomes

the special case of a population on a fully connected
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graph with self-loops. In fact, the same model was

used by Williams and Bjerknes [14] to study the spread

of cancer on a variety of different lattices. The Eden

model [15], which is the Williams–Bjerknes model for

the case of infinite fitness, is still actively used for

studying the growth of rough surfaces [16, 17] and is

related to the KPZ model [18, 19]. This simple model

therefore belongs to a family of closely related models

which have been found to be useful in a number of

different areas of science.

In each of the above models, there are two types of

particles (e.g. mutant/wild type, cancerous cell/healthy

cell, interface/body, etc.). They do not consider the im-

pact of clonal interference. In this paper, we therefore

consider the simplest simulation case in which there are

multiple mutants in the system: when a single beneficial

mutation has partially spread through the system, a sec-

ond mutation of the same advantage is introduced. We

demonstrate that the presence of existing mutations is

a significant fixation inhibitor for the second mutation.

Model

In evolutionary graph theory [12], a population consists

of individuals which exist at the nodes of a network.

Each individual in the population has a fitness and, on

each turn, an individual is chosen to reproduce with

probability proportional to its fitness. A clone of the

chosen individual is produced, and this is placed onto

a node connected to the parent by the network. In this

paper, we consider the simplest case where the links be-

tween nodes are unweighted, and the offspring is placed

onto any of the connected nodes with equal probability,

replacing the existing individual, so conserving popu-

lation size, N. Provided that the connectivity of each

node is the same (i.e. each node is connected to Z

other nodes: fully-connected systems and hypercubic

lattices are examples of networks with this property),

then a single mutant of fitness r placed on a background

wild-type population (each such individual having a

fitness of unity) will fix in the population (i.e. drive the

wild-type population to extinction) with probability, ρ,

where [12]:

ρ =
1 − 1/r

1 − 1/rN
. (1)

This is independent of the topology of the system,

unlike the time taken for the mutation to fix [20]. If

there is only one mutant in the system at any one time,

it is possible to derive a simple formula for the rate of

evolution, R, [12, 21] when u is the mutation rate of r-

fitness mutations,

R = Nuρ . (2)

If the fixation probability is unchanged by the presence

of other mutations in the system, then this equation will

hold even in systems with multiple mutations spreading

simultaneously. This is the case with neutral mutations

[21, 22], where a lineage has a fitness independent of the

number of neutral mutations (and the probability that

any individual will be the ancestor of the entire popu-

lation eventually is 1/N). If the fixation probability is

heavily influenced by the presence of other mutations

in the system, then its calculation on a homogeneous

background should be treated cautiously in systems

where there may be a number of lineages of different

fitnesses, and, in fact, Eq. 2 does not then hold.

Results

To investigate this, a single mutation of fitness r is in-

troduced into a simulation system originally consisting

of N wild-type individuals (each having a fitness of

unity). The number of individuals having the mutation,

m1t, will potentially increase. If and when this first

mutation has spread such that the mutant population

consists of m1 individuals, a second mutation having

the same fitness effect (so an organism having both

benefits will have a fitness of r2 compared to the wild-

type organism), is introduced into a randomly chosen

individual. The invasion dynamics, when the second

mutation occurs in a wild-type individual (Fig. 1), are

very different to those when it occurs in an organism

already carrying a beneficial mutation (Fig. 2). The

major differences in dynamics can be seen at the inter-

faces between populations. When the mutation occurs

in the wild-type population, the two mutant populations

(black and red populations in Fig. 1) have the same

fitness and the interface between them is dominated by

drift. When an organism exists with both benefits (blue

population in Fig. 2), the interface is characterized by

the selective advantage of the double mutants (blue

population) and their higher fitness, which leads to

a higher fixation probability of double mutants. The

double mutants are able to spread quickly through both

wild-type and single mutant populations.

The probability that the second mutation fixes can

be investigated numerically. Figure 3 shows two key

results: (i) that the fixation probability deviates sub-
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Fig. 1 Visualisation of the
spread of a second invading
mutant on a square lattice,
initially starting outside the
resident mutant population.
The snapshots are taken
at successive time points
of a single simulation to
demonstrate representative
stages in the invasion. The
black cells are the resident
mutant population (m1t

individuals); the red cells

are the second invasion
(m2t individuals). In (a),
m1t = 10, 000, m2t = 8, 63.
In (b), m1t = 18, 000,
m2t = 2, 476. In (c),
m1t = 26, 000, m2t = 4, 756.
In (d), m1t = 35, 000,
m2t = 5, 000. The system is
a 200 × 200 square lattice
(N = 40, 000) with periodic
boundary conditions; all the
mutants have fitness r = 2.
The wild types (white) have
fitness r = 1

stantially from being independent of m1 (the proba-

bility ρ predicted in Eq. 1 is found when m1 = 0 or

m1 = N, i.e. ρ(m1 = 0) = ρ(m1 = N) = (1 − 1/r)/(1 −

1/rN)); (ii) the spatial structure plays an important

role in determining the level of clonal interference

(i.e. the shape of the curve for ρ(m1)), particularly

as r increases. So, the presence of existing beneficial

mutations in the system substantially inhibits the spread

of other mutations, and the level of this inhibition is

dependent on the structure (topology) of the system

and thus Eq. 2 no longer holds.

The probability, ρ(2), that a (second-wave) mutation

fixes in a population in which another mutation with

the same beneficial advantage is spreading can be ap-

proximately evaluated. Indeed, the probability of the

second-wave mutation fixing is the probability, pWTP,

that the second mutant occurs in the wild-type popu-

lation (WTP), multiplied by the probability, ρ
(2)

WTP, that

it fixes, given that it occurred in a wild-type individual,

added to the probability, pRMP, that it occurred in an

organism carrying the resident mutation, multiplied by

the probability, ρ(2)

RMP, that it fixes, given that it occurred

in a member of the resident mutant population (RMP).

This can be written as:

ρ(2)
= pWTPρ

(2)

WTP + pRMPρ
(2)

RMP . (3)

The probabilities pWTP = (N − m1)/N and pRMP =

m1/N are known, and are the same for all networks.

Estimates of the conditional fixation probabilities,

ρ
(2)

WTP and ρ
(2)

RMP can be obtained using several approx-

imations. The first is that, once a substantial advanta-

geous mutant population has built up, it is likely that

the wild-type population will be driven to extinction.

However, the likelihood of this depends on r. In the

following analysis, it will be assumed that the wild-type

population will be driven to extinction. This relies on

r and m1 being reasonably large (a small population

of very fit mutants, or a large population of slightly

advantageous mutants, will almost certainly fix).

For the linear chain, it is possible to derive an ap-

proximation for ρ
(2)

WTP. If the second-wave mutation

survives initial drift (probability ≃ 1 − 1/r for N ≫ 1,
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Fig. 2 Visualisation of the
spread of a second invading
mutant on a square lattice,
with the second mutation
occurring in an individual
already possessing the first
advantageous mutation.
The snapshots are taken
at successive time points
of a single simulation to
demonstrate representative
stages in the invasion. The
black cells are the resident
mutant population (m1t

individuals); the blue cells

are the second invasion
(m2t individuals). In (a),
m1t = 5, 717, m2t = 1, 000.
In (b), m1t = 5, 998,
m2t = 4, 000. In (c),
m1t = 5, 467, m2t = 10, 000.
In (d), m1t = 3, 854,
m2t = 28, 000. The system is
a 200 × 200 square lattice
(N = 40, 000) with periodic
boundary conditions. The
mutants have fitness r = 2

(such that the blue
individuals, which possess
both mutations, have a fitness
quadruple (r2 = 4) that of the
white wild types (r = 1))

which follows from Eq. 1), then it can be expected

that it will travel at the same speed as the resident

mutant population (as both have the same fitness and

necessarily the same interface; see [20]). It can then be

considered what m1t and m2t will be when there are

no wild-type mutants left. The two mutant populations

will each, on average, have taken half of the wild-type

positions (initial population is of size N − m1). When

there are no wild types left, all mutations are compara-

tively neutral, and the probability that the second-wave

mutation fixes is just the percentage of the nodes that

second-wave mutants occupy. The probability that it

fixes, given that it occurred in the wild-type population,

can be written as:

ρ
(2)

WTP = (1 − 1/r)
N − m1

2N
. (4)

If the second-wave mutation occurs in the resident

mutant population, then it is likely that the second-

wave mutation will never see a wild-type individual

(given a substantial value of m1 ≫ 1). The interface of

the resident mutants will pass through the wild types

at the same rate that a growing second-wave mutant

interface would pass through the resident mutant pop-

ulation, so that

ρ
(2)

RMP = (1 − 1/r) . (5)

If there is only a small resident mutant population, i.e.

the inequality m1 ≫ 1 is violated, then this approxi-

mation will break down, underestimating the fixation

probability, as the probability that the second-wave mu-

tation occurs close to the wild-type boundary increases.

Using these approximate relations for conditional

probabilities, we obtain the following estimate of the

fixation probability for a second-wave mutation,

ρ
(2)

1D =
m1

N
(1 − 1/r) +

(N − m1)
2

2N2
(1 − 1/r) . (6)

Note that this equation has a minimum, whose value is

given by:

ρ
(2)

1D,min =
1

2

(

1 −
1

r

)

, (7)
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Fig. 3 Probability of a mutant fixing in a population when
another mutant is already spreading. In (a), r = 1.1; in (b), r = 2.
The population size is N = 196. Each data point was obtained
from simulations on 500,000 initially wild-type populations. The
dashed-dotted line is a plot of Eq. 9, and the dashed line is a plot
of Eq. 6

which occurs at m1 = 0. The curves obtained by using

Eq. 6 are plotted in Fig. 3 and they agree well with

the results of simulations. As expected, the analytical

approximations work best for substantial r, and break

down when m1 is very small (so the wild-type popula-

tion sometimes fails to succumb, causing a break-down

of the approximations used). It is noticeable that the

minimum of the formula is independent of N (though

it relies on the assumption that N is large). In fact, if

Eq. 6 is re-scaled so that the independent variable is

the proportion (m1/N) of the population that has been

conquered by the resident mutant, it is N-independent.

Indeed, this behaviour can be seen for large N in Fig. 4.

For the fully-connected system, if the second-wave

mutation falls outside the resident mutant population, it

will have the same probability of fixing as any member
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Fig. 4 Probability that a second mutant fixes, depending on the
initial resident mutant population and the size of the population.
In (a), the population network was a linear chain; in (b), it was
fully connected. Mutant fitness is r = 2. Each data point was
obtained from simulations on 500,000 initially wild-type popu-
lations, except for some of the N = 900 points for the linear
chain, for which 50,000 runs were used due to computational
constraints. The lines are guides for the eye. The circles in (b)
are the theoretical predictions of the positions of the minima
from Eq. 9

of the resident mutant population. Therefore, ρ
(2)

WTP =

1/(m1 + 1) (making the same approximation as for the

linear chain that the wild-type population will succumb

to the mutants).

If the second-wave mutation falls in the resident

mutant population, the effects of competition with the

wild-type population must be included in the fully-

connected system (even if the wild types eventually

succumb). Growth into the wild types can grant the

second-wave mutation stability before it competes with

just single mutants.
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On the very first turn, once the second-wave mu-

tant has been introduced, it is possible to consider the

probability that the second-wave mutant population

will increase versus the probability that it will decrease.

The probability that it will increase is r2/J, where J =

r2 + (m1 − 1)r + (N − m1) × 1. The probability that the

second-wave population will decrease is the sum of two

terms: the probability that the resident mutants will

increase by replacing the second-wave mutants, and the

probability that the wild types will do so. This probabil-

ity is (m1 − 1)r/[J(N − 1)] + (N − m1) × 1/[J(N − 1)].

Provided that N ≫ 1, the ratio of the probability that

the population will decrease to the probability that it

will increase can be written as [N + (r − 1)m1]/Nr2.

This ratio can be put into the original formula for the

fixation probability in evolutionary graph theory (see

Eq. 1), to give:

ρ
(2)

RMP = 1 −
N + (r − 1)m1

Nr2
. (8)

This must be an overestimate: as time continues,

the fraction of the population that is wild type will

decrease, and so the probability that the second-wave

mutation population grows will decrease. It is worst at

intermediate values of m1 (when the growth of the resi-

dent mutant population at the expense of the wild-type

population would be expected to be fastest, see [20]).

Putting these approximations together, the probability

of the second-wave mutation fixing in a fully-connected

system can be written as:

ρ
(2)

FCG =
N − m1

N

1

m1 + 1
+

m1

N

(

1 −
N + (r − 1)m1

Nr2

)

.

(9)

Again, the approximation is good for high r, and breaks

down for small values of m1. The minimum of ρ
(2)

FCG is

now N-dependent, with the minimum decreasing with

increasing population size. The positions of the minima

for different values of N given by Eq. 9, and found

numerically, agree well with the numerical results from

simulations (see the circles in Fig. 4). A square-lattice

system also exhibits a deeper minimum for larger pop-

ulations (not shown).

It should also be noted that, even when there is

only one beneficial mutation in the system at any in-

stant, the presence of clonal lineages with differing

deleterious mutational loads will create diverse popu-

lations as backgrounds for the production and spread

of beneficial mutations. Therefore, even in populations

with very low beneficial mutation rates, the background

diversity of the population should be taken into account

when calculating fixation probabilities.

Conclusions

To conclude, we have demonstrated that, in biologi-

cal populations with two mutations present simultane-

ously, the simple expressions for the mutation fixation

probability and the rate of evolution given by Eq. 1

and Eq. 2, respectively, break down, along with the

conclusion that the fixation probability is largely inde-

pendent of spatial structure. The presence of an existing

beneficial mutant population acts as an inhibitor to

the spread of other advantageous genes. As there are

usually multiple mutations in real biological systems at

any one time, as suggested by the experimental results

described above, the rate of adaptation in asexual pop-

ulations may be expected to be significantly slower than

would be predicted theoretically by considering only a

single mutation.
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