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1. Introduction 

On an open bounded connected set n C R 2 we consider 

-~u = >..pu, inn, ulan = 0, 

where the density pis chosen from the class 

ad= {ax+ ,8(1 - x) : x is the characteristic 

function of a subset of n with area 1 }. 

(1.1) 

Here a and ,8 are the known (constant) densities of two given materials in respective 
volume fractions 1 /lfll and 1 - 1 /lfll. We assume that a < ,8. Krein [7] considered 
the minimization of p I---* >..1(p), the least eigenvalue of (1.1), over ad in the case 
where n is a disc. He argued that the minimum was obtained by placing the 
material of greater density in a concentric disc, the remaining annulus to then be 
filled with the material of lesser density. Friedland [2] found that p I---* >..1 (p) indeed 
attains its minimum over ad for any open bounded connected n. The question of 
uniqueness has yet to be resolved. As p I---* 1/ >..1 (p) is convex and functions and 
their reciprocals share level sets one finds {p E L00 

: >..1 (p) ~ c} to be convex for 
each c E R. Quasiconcave functions need not possess unique minimizers. Denoting 
a minimizer by p, Cox and McLaughlin [1] established the existence of an R > 0 for 
which 

V ( ) = { a if u( x) < R 
P x f3 if u( x) > R, (1.2) 

for almost every x E n, where u is an eigenfunction corresponding to )q (p). This u is 
a positive superharmonic element of the Sobolev space W 2,P(fl) for each p < oo and 
satisfies (1.1) almost everywhere. The optimal distribution of mass is completely 
determined by its level set, 

r = u <--( R) = { x E n : u ( x) = R}. 

This work is an investigation of the shape, smoothness, and computation of the 
interface r. The success of this study derives from the fact that the optimality 
condition (1.2) overdetermines the equilibrium equation (1. 1) to such a degree that 
one can read off important information about the optimal design. In particular, it 
will be shown under natural geometric assumptions on fl that r is analytic. The 
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geometric hypotheses are needed to reach r E C 1 , from which point the standard 
regularity theory applies. The use of rearrangements in §2 suggests a simple ap­
proach to the computation of r. An algorithm is formulated in §3 with the results 
of its use discussed in §4. 

2. Symmetry and Regularity 

An open set n in the plane is said to be Steiner symmetric about the line L 
when (i) it coincides with its reflection across L and (ii) its intersection with each 
line perpendicular to Lis either connected or empty. The Steiner symmetrization of 
n with respect to the line Lis the set nL such that, for every line L1- perpendicular 
to L, either Ll_ n n = 0 and LJ_ n nL = 0, or Ll_ n n -=I= 0 and LJ_ n nL is a closed 
segment with center on Land ILJ_ n nLJ = JLJ_ n nJ. Observe that n = nL if and 
only if n is Steiner symmetric with about L. 

This symmetrization induces a corresponding rearrangement of functions de­
fined on n. In particular, for u : n-+ R we consider UL : nL -+ R, 

uL(x) = sup{c ER: x E (u,._[c,+oo)l}. 

Of the numerous properties enjoyed by u 1------+ uL recall (Kawohl [5]), 

(uL)-(c,+oo) is Steiner symmetric about L Ve ER, 

VcE R, 

(2.1) 

(2.2) 

if u, v, w E L1 (!1) then [ uvw dx :S [ ULVLWL dx, and (2.3) 
ln lnL 

if u E HJ then [ 1VuJ2 dx 2 [ IVuLl2 dx. (2.4) Jn lnL 
On assuming n to be Steiner symmetric with respect about L and denoting, as 
above, the minimizer of p 1------+ >.1 (p) by p, we find, as a consequence of (2.2) that 
pL E ad. Moreover, on rearranging the u of (1.2) we find, as a consequence of 
Rayleigh's Principle, (2.3-4), and !1 = nL, that 

' - - In IVul2 dx > In IVuLl2 dx L A1(p) - ----'-',---- _cc:...._ ___ >_ >-1(P- ). 
f --2d - f -L1-Ll2d Jn pu x Jn p u x 

Hence, we may assume without loss that j5 = j5L and u = uL. It now follows 
immediately from (2.1) that 

Theorem 1. If n is Steiner symmetric about a line L through the origin then 
(i) p,._(/3) is Steiner symmetric about L. 

(ii) (e · x)(e · Vu(x)) :SO for each x En where e is normal to Lat the origin. 

When n is a disk this result vindicates Krein's belief in a circular r and radial 
ii. In addition, it suggests an approach to the question of the regularity of r. This 
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set is smooth except at those points where 'vu vanishes. For sufficiently symmetric 
domains one may expect u to be stationary nowhere save the center of symmetry. 

Theorem 2. If n is Steiner symmetric about two independent lines then r is 
analytic. 

Proof: Without loss we assign the center of symmetry to be the origin in our (x1, x2) 
coordinate system and assume that n is Steiner symmetric about the x2 axis. We 
shall establish that r is (a) rectifiable, (b) C1, and finally ( c) analytic. 

(a) Every bounded planar set that is Steiner symmetric about two independent lines 
has a rectifiable boundary. The proof of this elementary fact will later facilitate the 
construction of an explicit bound on the length of r. Denote by L 1 the x2 axis and 
by L2 the second line of Steiner symmetry. Let q; denote the angle that L2 makes 
with the x 1 axis and, for convenience, assume 0 ~ q; ~ 1r /2. We consider f', the 
restriction of r to the sector lying between L 1 and L2 , i.e., 

r' - r n {(r, 0) : 0 ~ r, q; ~ 0 ~ 1r /2}. 

By symmetry r can be recovered by reflecting r' across L 1 and L2 no more than 
seven times. It remains then to show that r' is rectifiable. Given ( x 1 , x2 ) E r', 
convexity of u+-(l!, +oo) with respect to lines perpendicular to L 1 and L2 requires 
that 

see Figure 1. It follows that r' is the graph of a monotone (Lipschitz in case q; =/= 0) 
function and hence rectifiable. 

(b) The gradient of u can vanish nowhere save the origin. Consequently, every level 
set of u is as smooth as u itself, i.e., C 1 . 

We denote the preimage u+-(0, c) by !1c and its characteristic function by Xe· 
As !1c has been shown to be of finite perimeter we may exploit the fact that 'vxc is 
a vector Radon measure supported on r U an. The subscript x 1 will denote partial 
differentiation with respect to x 1 • In the interest of showing Ux 1 to be subharmonic 
when x1 > 0 we select a nonnegative q; E Cgo(x En: x1 > 0) and compute 

i Ux1 ~q; dx = - i u~q;X1 dx = i 'vu• 'v (px1 dx 

= jl L puq;x1 dx = _jl L (pu)x1 </>dx 

= _jl L f)Ux1</>dx - jl L Px1u</>dx 

By part (ii) of Theorem 1, Ux 1 ~ 0 on the support of q;, and so the first term 
is nonnegative. Regarding the second, note that Px 1 = (axe+ ,B(l - xc))x 1 = 
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( a - ,B)x~
1

. Now xt is a measure supported on r U an, u = £ on r and ¢> has 
compact support in n, so the second term is precisely 

We proceed to show that fr ef>x~l :::: 0. That u E C 00(nc) for c < £ follows from the 
fact that u satisfies a constant coefficient elliptic partial differential equation there. 
Consequently, Sard's theorem reveals a sequence {Ej}~1, Ej < 0, Ej j Osuch that 
each£- Ej is a regular value of u. As 0,£-e; has a smooth boundary the divergence 
theorem takes the form 

where vi-e; is the x1 component of the interior normal to 0,£-e; and dr{ denotes 
one-dimensional Hausdorff measure. Integrating by parts on 0,£-e; gives 

Hence, as E j -----+ 0, 

As a result, 

L ilx 1 ~¢>dx:::: 0 for all nonnegative ¢> E C~(x En: x1 > 0). 

As Ux 1 is nonpositive and subharmonic in { x E n : x1 > O} we conclude from 
the maximum principle that it must be either strictly negative or vanish identically 
there. As the latter would require u itself to vanish on all of n we find that Ux 1 < 0 
on {x E n : x1 > O}. By symmetry with respect to L 1 we have ilx 1 > 0 on 
{x E n : X1 < O}, and so 'Ux1 =/- 0 on n \ L1. Repeating this argument with L2 

rather than L 1 yields Vu· e =/- 0 on n \ L 2 , where e is a unit vector orthogonal to 
L2 • Combining these observations produces Vu =/- 0 on n \ { 0}. In particular, £ is a 
regular value of u, and hence r is a closed one-dimensional submanifold of n with 
regularity that of u, i.e., C 1 . 

( c) The function v = u - £ satisfies a constant coefficient elliptic problem on each 
side of the C 1 curve r on which it vanishes but possess a nonzero normal derivative. 
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In particular, VE C2 (ne Ur) n C2 ((n \ ne) Ur) n C 1 (n) satisfies 

~v + '5..1/3v + '5..1/3f = 0 1n n \ ne 

~v + -\10:v + -\10:f = 0 1n ne (2.5) 

V = 0, av-/= - 0 
av 

on r. 

One now constructs a parametrization of r that by (2.5) forms one component of 
the solution of a quasilinear elliptic system with analytic coefficients and coercive 
boundary conditions. From this it follows, see Kinderlehrer et. al. [6, 3.1'], that r 
is analytic. 1 

When n is a regular n-sided polygon one can obtain explicit bounds on the 
length of the interface, denoted r n for convenience. As r n encloses a region of area 
lnl-, the isoperimetric equality renders 2-/rr(lnl - ,) ::; If nl- Regarding an upper 
bound the argument that lead to Fig. 1 implies that f' is shorter than one half the 
perimeter of its bounding parallelogram. This observation, after some elementary 
plane geometry, produces 

The upper bound is sharp in the sense that it decreases to the lower bound as 
n --+ oo. Evaluating these bounds with n = 4 and 1n1 = 1, the case to considered 
in §4, produces 3.545~ ::; If 41 ::; 4.686~. 

From the proof of Theorem 2 it is obvious that the two directions of symmetry 
guarantee the absence of stationary points of u at points other than the center. That 
two directions are actually necessary is perhaps most easily seen by considering a 
barbell shaped drum, i.e., a drum composed of two disks joined by a long thin 
rectangle. One expects u to be large in the disks and small in the rectangle, and 
consequently to admit a local maximum in each disk and a saddle in the rectangle. 
One can now tune I so that r contains the saddle point. 

Friedland [2] actually found that each eigenvalue of (1.1) attains its minimum 
on ad. In [1] it was shown that the interface in the two phase drum with the 
deepest second eigenvalue is the level set of a second eigenfunction in each of its 
nodal domains. To establish regularity of this interface one first needs to establish 
symmetry of the nodal domains. This issue also arises in Friedland's analysis [3] of 
the associated problem on surfaces; Given a compact two-dimensional Riemannian 
manifold M find that manifold, conformal to M ( with the ratio of their metrics lying 
between o: and /3) and of prescribed area, with the least first nonzero eigenvalue. 
When M is a sphere Friedland finds in [3] the analog of Krein's solution, i.e., the 
metric is /3 on two antipodal caps and o: in the complementary band about the 
equator. 
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3. An Algorithm 

Upon discretizing n = Ud~i : i = 1, ... , n we approximate the membrane's 
displacement by members of then-dimensional space Wn C Wl·2(n) and its density 
by members of adn C ad. The choice of Wn will be determined by the particular 
discretization while adn will always correspond to those piecewise constant functions 
that are either identically a or /3 on individual 6i. 

We address the computation of Pn, the minimizer of p 1--1- ,\1 (p) over adn where 
,\1 (p) is now the least eigenvalue of 

Ku= ,\M(p)u. (3.1) 

Here K and M(p) are the respective stiffness and mass matrices that follow from 
ones choice of Wn. Recalling that Pn and its corresponding eigenvector, Un, satisfy 

R(f>n, Un) = inf inf R(p, u ), 
pEadn uEWn 

we propose a simple alternating search. From (pk, uk) E adn x Wn choose 

l. u k+ 1 to minimize u 1--1- R(l, u) over W n. 

2. pk+l to minimize p 1--1- R(p, uk+l) over adn. 

3. If pk+l =/= pk then repeat. 

Here uk+l, the first eigenvector of the discrete drum of density pk, is approximated 
via Sorensen's implicitly restarted Arnoldi method [8]. The jth step of the Arnoldi 
method produces the partial factorization 

KV.- - M(pk)V.-H · - r -e7.' J J J - J J 

where Hj is Hessenberg and ej is the last column in the identity matrix. Unlike the 
standard Arnoldi method where the column dimensions of Hj and Vj increase with j 
this variant succeeds in capping these dimensions by a value on the order of the num­
ber of desired eigenvalues. The norm of the residual r j indeed approaches zero as j 
becomes large and hence the eigenvalues of Hj approach those of (K, M(pk)) while 
the image of Hj's eigenvectors under½ approach the eigenvectors of (K, M(l)). 

Now pk+l is nothing but a rearrangement of pk. It takes a below and /3 above 
a level set of u k+ 1 , so chosen to respect the constraint I { x E n : pk+ 1 ( x) = a} I = 1 . 
We implement this as follows 

2.1 Compute ui, the average of uk+I over 6i. 

2.2 Find an£ for which l{i: Ui < R}ll6il ~ ,. 

2.3 Set 
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In step 2.2 we have followed the suggestion of Goodman et. al. [4) in using the 
Quickfind algorithm of Hoare [9]. 

Clearly, steps 1 and 2 yield a numerically stable procedure, i.e., 

In addition, if (p, u) is a fixed point of the algorithm then necessarily, u is a first 
eigenvector of (I<, M(p)) and p changes phase across a level set of u. It is not hard 
to see in the I-dimensional case, e.g., n = (0, 1), that these conditions are actually 
sufficient, and hence that stationary points of our algorithm are minimizers. In 
particular, if u is the first eigenfunction of the string with density 

p(x) = { p if u(x) < R, 
if u(x) > R, 

for some R, then in fact p must be /3 on an interval ( a, b ), for u can not admit a 
positive local minimum. Matching conditions at a and b then require that 

for some integer m. But l(a + b - l)J>.1(p)al < J>.1(p)a < J>.1(a)a = 7r, so 
m = 0, i.e., a= l - b. With the fact that b - a= l - 1 this gives a= ,/2 and 
b = l - 1 /2 in agreement with Krein. 

In R 2 such an argument is not available. What can be said is that p r-+ >-1 (p) 
is a quasiconcave function over the convex hull of ad. As a result, regardless of the 
algorithm we choose, we can not be assured of reaching a global minimum. 

4. Numerical Results 

The algorithm was tested on a square drum with bilinear elements approximat­
ing its transverse displacement. A random number generator was used to construct 
each initial mass distribution. Regardless however of the initial configuration, the 
algorithm successfully terminated at the same drum after fewer than twenty it­
erations. The result on a 256-by-256 grid with a = 1, /3 = 9, and 1 = 1/2 is 
depicted in Figure 2. The least eigenvalue of this drum is 2.325 compared with 
27r2 /5 ~ 3.948 produced by the homogeneous drum of the same mass. The deepest 
bass note was found in [1] to be a continuous strictly increasing function of 1 . Figure 
3 provides a comparison of the least eigenvalue of the homogeneous drum of mass 
11 + 9(1 - 1 ) and the least eigenvalue of the two phase drum of densities 1 and 9 
in volume fractions I and 1 - 1 produced by the algorithm of §3. These results are 
easily interpreted in light of the optimality conditions, (1.2). In particular, adding 
low density material to the drum should produce little change in the deepest bass 
note for the optimal design relegates such material to a neighborhood of the drum's 
boundary where the displacement is small, hence the negligible slope near 1 = 0 in 
Fig. 3. Just the opposite is true when the high density material is introduced, for 
the optimal design pushes it to the drum's center where the displacement is greatest 
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and so produces a marked decrease in fundamental tone, hence the large slope near 

1 = l in Fig. 3. 
On applying this algorithm to the minimization of the drum's higher frequen­

cies convergence was observed for only the second eigenvalue. Hence, recalling the 
remarks made at the close of §2, the numerical scheme breaks down at the point at 
which the analysis also fails, the culprit in each case being an insufficient number 
of nodal domains. Regarding the minimization of the second eigenvalue, by judi­
cious choice of starting point the algorithm could be made to rest at one of four 
possible mass distributions. These four consist of two pair, the elements of a pair 
being rotations of one another by 7r /2. Figures 4 and 5 give the two distinct rest 
points on a 200-by-200 grid with again a = 1, /3 = 9, and 1 = 1/2. The nodal 
line of the associated second eigenfunction is in each case indicated by dashes. The 
second eigenvalue of the drums in Figures 4 and 5 are respectively 5. 795 and 5.665 
compared with 1r2 ~ 9.869 produced by the homogeneous drum of the same mass. 
Recalling that a drum's second eigenvalue is the first eigenvalue of each of its nodal 
domains and that the first eigenvalues of the unit mass homogeneous rectangle with 
sides 1 and 1/2 and the right triangle with sides 1, 1, and -J2 coincide, this example 
suggests that among homogeneous rectangular and triangular drums of equal mass 
and first eigenvalue, the triangle achieves the deeper bass note when another phase 
in prescribed fraction is introduced. 
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Figure 1. r' is the graph of a decreasing function. 
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