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The two-phase model for calculating thermodynamic properties
of liquids from molecular dynamics: Validation for the phase diagram
of Lennard-Jones fluids

Shiang-Tai Lin, Mario Blanco, and William A. Goddard IIIa)

Materials and Process Simulation Center, Beckman Institute, 139-74 California Institute of Technology,
Pasadena, California 91125

~Received 6 February 2003; accepted 12 September 2003!

We propose a general approach for determining the entropy and free energy of complex systems as
a function of temperature and pressure. In this method the Fourier transform of the velocity
autocorrelation function, obtained from a short~20 ps! molecular dynamics trajectory is used to
obtain the vibrational density of states~DoS! which is then used to calculate the thermodynamic
properties by applying quantum statistics assuming each mode is a harmonic oscillator. This
approach is quite accurate for solids, but leads to significant errors for liquids where the DoS at zero
frequency,S(0), remains finite. We show that this problem can be resolved for liquids by using a
two phase model consisting of a solid phase for which the DoS goes to zero smoothly at zero
frequency, as in a Debye solid; and a gas phase~highly fluidic!, described as a gas of hard spheres.
The gas phase component has a DoS that decreases monotonically fromS(0) and can be
characterized with two parameters:S(0) and 3Ng, the total number of gas phase modes@3Ng

→0 for a solid and 3Ng→3(N21) for temperatures and pressures for which the system is a gas#.
To validate this two phase model for the thermodynamics of liquids, we applied it to pure
Lennard-Jones systems for a range of reduced temperatures from 0.9 to 1.8 and reduced densities
from 0.05 to 1.10. These conditions cover the gas, liquid, crystal, metastable, and unstable states in
the phase diagram. Our results compare quite well with accurate Monte Carlo calculations of the
phase diagram for classical Lennard-Jones particles throughout the entire phase diagram. Thus the
two-phase thermodynamics approach provides an efficient means for extracting thermodynamic
properties of liquids~and gases and solids!. © 2003 American Institute of Physics.
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I. INTRODUCTION

Entropy and free energy as a function of temperature
pressure are essential in describing the phase diagram o
uids of materials. It would be most valuable to extract t
information from atomistic classical and quantum simu
tions. However, the need for extensive sampling of the av
able energy states makes it a challenge to determine t
quantities accurately. Techniques that extend the Widom
ticle insertion or thermodynamic integration methods to e
ciently and accurately determine the phase equilibria o
wide variety of systems include the Gibbs ensemble, m
tiple histograms, configuration biased samplings.1 In prin-
ciple, these techniques provide rigorous thermodyna
quantities of complex systems; however, the large amoun
sampling needed makes such methods impractical for m
systems of interest. Thus, it is highly desirable to find wa
to obtain fast and accurate estimates of the entropy and
energy from simple molecular dynamics simulations.

One possibility is to apply quantum statistics to the n
mal vibrational modes of a system, e.g., the Debye theor
crystals.2 For crystals, the vibrational modes can be cons
ered as harmonic and the thermodynamic properties ca
expressed as integrals of functionals over the vibratio
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wag@wag.caltech.edu
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density of states. This method requires knowledge only
the vibrational density of state~DoS!; however, the extension
to fluids is nontrivial. Figure 1 shows the typical density
state distribution,S(y), for a gas, a liquid, and a solid as
function of frequencyy. For a solid@Fig. 1~a!# the general
form hasS(0)50 with S(y) going through a maximum a
finite y, and then decaying for higher frequencies. For a
@Fig. 1~b!#, S(0).0 and decays monotonically. The DoS
liquids @Fig. 1~c!# also hasS(0).0, and generally leads to
local minimum at low frequency and a solidlike maximum
higher frequency followed by decay for higher frequenc
interspersed with broadened peaks due to local vibrations
discussed below, the zero frequency intensityS(0) corre-
sponds to the diffusive modes of the system. Since the
monic oscillator has infinite entropy aty50, the direct ap-
plication of quantum statistics to gases and liquids wo
result in an infinite entropy because of the nonzero va
S(0). Furthermore, the low frequency vibrations are usua
quite anharmonic and the use of the simple harmonic
proximation breaks down at this limit. These properties
fluids @nonzeroS(0) and anharmonicities# will be referred to
as fluidic effects hereafter.

Despite these problems, the vibrational density of sta
has been used to study the thermodynamic properties
some important systems. Berenset al.3 applied both quantum
and classical statistics of a harmonic oscillator~HO! to the
il:
2 © 2003 American Institute of Physics
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FIG. 1. Typical density of state distribution~DoS! of a
solid ~a!, gas ~b!, and liquid ~c!. ~d! shows that the
liquid phase DoS can be a supposition of a gas an
solid DoS.
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s,
vibrational density of state~determined from the Fourie
transform of the velocity autocorrelation function! and deter-
mined the quantum corrections to the thermodynamics
water. They showed that the method is useful because q
tum effects are small at low frequencies where anharmo
effects are large, and are significant at high frequenc
where anharmonicities are negligible.

Karplus and Kushick4 proposed a quasiharmonic metho
that uses the covariance matrix of atomic position fluct
tions to determine the vibrational frequencies, and arg
that therelativeconfigurational entropy differences of a fle
ible macromolecule in two different conformations can
determined from the logarithm of the ratio of the determin
of the covariance~Hessian! in the two conformations. Since
anharmonic effects are not explicitly considered, the succ
of their method may largely be a result of cancellation
errors, due to anharmonicities, in the two conformatio
More recently, Schlitter5 proposed to apply a modified quan
tum statistical harmonic oscillator model to the quasih
monic frequencies from the covariance matrix to obtainab-
solute entropies. Although the modified formula is a
approximation to the exact quantum statistics of HO,6 Schä-
fer and co-workers have used Schlitter’s method to exp
the entropic driving force in protein folding.7,8 Schäfer et al.7

performed limited tests of the Schlitter’s method for the a
harmonic effects and found 17% error in entropy for an id
gas and only 5% error for Lennard-Jones~LJ! gases. They
concluded that anharmonic effects are small in most ca
Andricioaei and Karplus6 later re-examined the LJ calcula
tion and found that the entropy obtained by Scha¨fer et al.7

was not converged and the error increased with the sim
tion time. Since the fluidic effects~anharmonicity and diffu-
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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sion! are not properly handled, we do not expect to obtain
accurate entropy value from Schlitter’s method.

In this paper, we address this problem by proposin
two-phase model in which the DoS is decomposed into a
phase component~described in terms of a hard sphe
model! and a solid phase, whose density of states goe
zero at zero frequency. This is motivated by the observa
that the shape of the DoS of a liquid is a simple supposit
of that of a gas and a solid@Fig. 1~d!#. The gas componen
mostly contributes in the low frequency regime and conta
all the fluidic effects, whereas the solid component, loca
at higher frequencies, has no fluidicity but can possess str
quantum effects. To test this two-phase thermodyna
~2PT! model, we calculated the thermodynamic properties
Lennard-Jones systems over a range of temperatures
pressures that includes gas, liquid, crystal, metastable,
unstable phases. We show that the standard one-phase m
overestimates the entropy for dilute gases and underestim
the entropy for liquids due to fluidic effects. In 2PT, the g
phase component is characterized with two parameters,
fraction of the modes in the gas phase andS(0), both of
which are determined from the same molecular dynam
simulation. Applying the proper statistical weighting fun
tions for each component leads to accurate thermodyna
properties. The time scale necessary for accurate therm
namic properties is;20 ps ~assuming that the system
equilibrated!, making this a practical approach for comple
systems. We find that 2PT leads to results in good agreem
with Monte Carlo calculations for the thermodynamic pro
erties of LJ fluids over a range of conditions including ga
liquid, solid, and metastable regions.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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II. THEORY

A. The density of state function

The density of state~DoS! function S(y) is defined as
the distribution of vibrational normal modes of a system3

The number of modes, i.e., effective vibration intensity, o
system at some frequencyy is calculated as the sum of con
tributions from all atoms in the system,

S~y!5
2

kT (
j 51

N

(
k51

3

mjsj
k~y!, ~1!

wheremj is the mass of atomj. The spectral densitysj
k(y) of

atom j in the kth coordinate (k5x, y, andz in the Cartesian
coordinate! is determined from the square of the Four
transform of the velocities as

sj
k~y!5 lim

t→`

u*2t
t v j

k~ t !e2 i2pytdtu2

*2t
t dt

5
uAj

k~y!u2

lim
t→`

*2t
t dt

5 lim
t→`

1

2t U E2t

t

v j
k~ t !e2 i2pytdtU2

, ~2!

wherev j
k(t) is thekth velocity component of atomj at time

t, and

Aj
k~y!5 lim

t→`
E

2t

t

v j
k~ t !e2 i2pytdt. ~3!

The density of state function can also be obtained fr
the Fourier transform of the velocity autocorrelation functi
~VAC!. The total velocity autocorrelation functionC(t) is
defined as the mass weighted sum of the atom velocity
tocorrelation functions

C~ t !5(
j 51

N

(
k51

3

mjcj
k~ t !, ~4!

wherecj
k(t) is the velocity autocorrelation of atomj in thek

direction

cj
k~ t !5 lim

t→`

*2t
t yj

k~ t81t !v j
k~ t8!dt8

*2t
t dt8

5 lim
t→`

1

2t E2t

t

v j
k~ t81t !v j

k~ t8!dt8. ~5!

Applying the Wiener–Khintchine theorem,2 the atomic spec-
trum densitysj

k(y) is simply the Fourier transform ofcj
k(t),

sj
k~y!5 lim

t→`

1

2p U E
2t

t

v j
k~ t !e2 i2pytdtU2

5 lim
t→`

1

2t E
2t

t E
2t

t

v j
k~ t !v j

k~ t1t8!dt8e2 i2pytdt

5 lim
t→`

E
2t

t

cj
k~ t !e2 i2pytdt. ~6!

Therefore,S(y) defined in Eq.~1! can also be obtained from
the Fourier transform ofC(t),
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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S~y!5
2

KT (
j 51

N

(
k51

3

mjsj
k~y!

5
2

kT
lim
t→`

E
2t

t

(
j 51

N

(
k51

3

mjcj
k~ t !e2 i2pytdt

5
2

kT
lim
t→`

E
2t

t

C~ t !e2 i2pytdt. ~7!

B. Properties of the density of state function

It is useful to outline the important properties of th
density of state function, most of which have been pre
ously discussed by Berenset al.3 First of all, the value of
S(y) represents the density of normal modes at frequency,

S~y!5(
i 51

3N

@d~y2y i
n!1d~y1y i

n!#, ~8!

where y i
n are the normal mode frequencies of the syste

Equation~8! can be shown to be true by substituting in Eq
~4!, ~5!, and ~7! the normal mode velocities from the tim
derivative of the normal coordinatesqi , e.g., qi

5Ai sin(2py i
n1q i), with Ai andq i being the amplitude and

phase of thei th degree of freedom.3

Furthermore, the integration ofS(y) over positive fre-
quencies gives the total number of degrees of freedom (3N)
of the system,

E
0

`

S~y!dy5
1

2 E2`

`

S~y!dy

5
1

kT (
j 51

N

(
k51

3

mjE
2`

`

sj
k~y!dy

5
1

kT (
j 51

N

(
k51

3

mjv j
k~ t !2

5
1

kT (
j 51

N

(
k51

3

kT53N, ~9!

where the Parseval’s theorem @*2`
` uAj

k(y)u2dy
5*2`

` v j
k(t)2dt# is used to relate the integration ofsj

k(y) to
the average of the square of the velocity,

E
2`

`

sj
k~y!dy5 lim

t→`

1

2t E2t

t

uAj
k~y!u2dy

5 lim
t→`

1

2t E2`

`

v j
k~ t !2dt5v j

k~ t !2. ~10!

The last equality in Eq.~10! is a result of the equipartition
theorem in the classical limit, i.e.,mjv j

k(t)25kT.
The density of states at zero frequencyS(0) is related to

the self-diffusion coefficientD in pure fluids. The diffusion
coefficient is related to the velocity autocorrelation functi
as2
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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D5
1

3 E0

`

c~ t !dt5
1

6 E2`

`

c~ t !dt5
1

6mNE
2`

`

C~ t !dt,

~11!

whereN is the number of particles andm is the mass of the
particles. By setting the frequencyy to zero in Eq.~7! we
have

S~0!5
2

kT E2`

`

C~ t !dt5
12mND

kT
. ~12!

Finally, any properties derived fromS(y) can be easily
broken down to atomic contributions since the totalS(y) is
determined from the sum of the atomic spectral densi
@Eq. ~1!#. For example, one can study the diffusion of ea
individual atom or for a subcollection of atoms in the syste
This property ofS(y) also provides a natural way of part
tioning the thermodynamic properties, such as entropy~de-
tailed in Secs. II C and II D! into atom or atomic group con
tributions, an intriguing prospect for molecular analysis
significantly higher detail than any prior efforts.

C. Thermodynamic properties and quantum
corrections from the density of state function:
The one-phase model

Assuming that all the vibrations are independent~uncor-
related! harmonic motions, the partition functionQ of the
system can be calculated from the partition functionqHO(y)
of a harmonic oscillator as the following:

ln Q5E
0

`

dyS~y!ln qHO~y!. ~13!

The energyE, entropyS, and Helmholtz free energyA of the
system can then be determined as

E5V01Tb21S ] ln Q

]T D
N,V

5V01b21E
0

`

dyS~y!WE~y!,

~14a!

S5k ln Q1b21S ] ln Q

]T D
N,V

5kE
0

`

dyS~y!Ws~y!, ~14b!

A5V02b21 ln Q5V01b21E
0

`

dyS~y!WA~y!. ~14c!

Substituting in these equations the quantum harmonic p
tion function

qHO
Q ~y!5

exp~2bhy/2!

12exp~2bhy/2!
,

gives the quantum weighting functions,

WE
Q~y!5

bhy

2
1

bhy

exp~bhy!21
, ~15a!

WS
Q~y!5

bhy

exp~bhy!21
2 ln@12exp~2bhy!#, ~15b!

WA
Q~y!5 ln

12exp~bhy!

exp~2bhy/2!
, ~15c!
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
s

.

f

ti-

whereb51/kT andh is the Planck’s constant. These weigh
ing functions constitute the quantum-corrected one-ph
thermodynamic model, 1PT~Q!.

If instead we use a classical harmonic oscillator w
qHO

C (y)51/bhy, the weighting functions would take the fo
lowing form:

WE
C~y!51, ~16a!

WS
C~y!512 ln~bhy!, ~16b!

WA
C~y!5 ln~bhy!. ~16c!

The use of these classical weighting functions in Eq.~14!
gives the classical one-phase thermodynamic model, 1PT~C!.

The reference energyV0 @in Eqs.~14a! and~14c!# is the
potential energy of the system when all the ‘‘oscillators’’ a
at standing still. This energy is determined by equating
total energyEMD from a MD simulation to the energyEC of
a set of classical harmonic oscillators@Eqs.~14a! and~16a!#,

V05EMD2b21E
0

`

dyS~y!WE
C~y!5EMD2b213N.

~17!

The quantum effects~or quantum corrections! of a system
can be determined from the differences between the quan
and classical properties, i.e.,

DEQC5b21E
0

`

dyS~y!@WE
Q~y!2WE

C~y!#, ~18a!

DSQC5kE
0

`

dyS~y!@WS
Q~y!2WS

C~y!#, ~18b!

DAQC5b21E
0

`

dyS~y!@WA
Q~y!2WA

C~y!#. ~18c!

Therefore, the quantum effects can be completely determ
for a given density of state distribution. The quantum corr
tions are zero at zero frequency and increase with increa
frequency3 making them most important for system contai
ing high frequency vibrations.

D. Density of states decomposition for the correction
of fluidicity effects: The two-phase model

The harmonic approximation described above has b
widely used in the study of thermodynamic properties
crystals because the harmonic assumption is reasonab
the solid phase. However, a direct extension to amorph
liquids and gases may be inappropriate since the entrop
dominated by low frequency modes where the effects of
idicity are important. In particular, the entropy of a harmon
oscillator has a singularity~positive infinity! at zero fre-
quency, which corresponds to the diffusion mode in flu
@Eq. ~12!#.

To resolve this problem, we propose aTwo-Phase Ther-
modynamic „2PT… model in which the density of stateS(y)
of the system with 3N degrees of freedom are partitione
into a gas and a solid like component

S~y!5Sg~y!1Ss~y!, ~19!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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wherethe gaslikediffusive componentSg(y) corresponds to
3Ng53 f N degrees of freedom withf being the gas fraction
and the remainder,Ss(y), describes asolidlike component
~non-diffusive! in which S(0)50 ~that is no diffusion!. Thus
there are 3Ns53N23Ng53N(12 f ) ‘‘solidlike’’ degrees
of freedom. The thermodynamic propertiesP of the system
are determined from weighting the individual density of st
~DoS! component with proper functions

P5E
0

`

dySs~y!WP
HO~y!1E

0

`

dySg~y!WP
g ~y!, ~20!

whereWP
HO(y) is the weighting function of a harmonic os

cillator @Eq. ~14! or ~15!# andWP
g (y) is the weighting func-

tion corresponding to the choice of the gas component.
The 2PT model is uniquely specified by the form

Sg(y), which by subtracting determines the form ofSs(y).
We find that a particularly suitable form forSg(y) is to de-
scribe the gaslike component as a hard sphere fluid.
velocity autocorrelation functioncHS(t) of a hard sphere ga
decays exponentially2

cHS~ t !5cHS~0!exp~2at !5
3kT

m
exp~2at !, ~21!

wherea is the Enskog friction constant related to the co
sions between hard spheres. The DoS distribution is der
from the Fourier cosine transform of Eq.~21!,

SHS~y!5
4

kT E0

`

(
j 51

Ng

(
k51

3

mjcj
k~ t !cos~2pyt !dt

5
4

kT E0

`

3NgkT exp~2at !cos~2pyt !dt

5
12Nga

a214p2y2 , ~22!

whereNg5 f N is the number of effective hard sphere pa
ticles in the system andf is the fraction of hard sphere com
ponent in the overall system. This fraction factor is a m
sure of the ‘‘fluidicity’’ of the system and should depend o
both the temperature and density. Using the zero freque
value, i.e.,

SHS~0!5s05
12f N

a
, ~23!

Eq. ~22! can be rewritten as

Sg~y!5SHS~y!5
s0

11Fps0y

6 f N G2 . ~24!

Therefore,the DoS for the gas component is completely
determined with two parameters: s0 and f. It is straight-
forward to determines0 since it is just the zero frequenc
DoS value for the total systemS(0). This guarantees that th
solid component has no contribution to the diffusivity,

s05SHS~0!5S~0!, Ss~0!50. ~25!

The only remaining question in defining 2PT theory
how to define the exact value of ‘‘fluidicity’’ factorf that
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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determines the conceptual partition of the whole system
tween solid and gas components. We wantf to satisfy two
limiting conditions:

~1! In the high temperature and/or low density limit, the sy
tem behaves like hard spheres, thereforef 51, i.e., no
solid component.

~2! In the high density limit where the system is a solid, w
expectf 50, i.e., no gas component.

Thus we propose to definef as proportional to the diffu-
sivity, which automatically satisfies the two above con
tions. Thus we find it convenient to write

f 5
D~T,r!

D0
HS~T,r;sHS!

, ~26!

whereD is the self-diffusivity of the system determined fro
Eq. ~12!, andD0

HS is the hard sphere diffusivity determine
in the zero pressure limit~the Chapman–Enskog result!2

D0
HS~T,r;sHS!5

3

8

1

rsHS2 S kT

pmD 1/2

. ~27!

Tying our theory to hard sphere theory might seem limitin
but we show below that all parameters can be fully deriv
from the actual interatomic potentials describing the r
atom of our system.

From Eq.~27! to completely determinef, we need only
define the hard sphere diametersHS. We do this by requiring
the diffusivity of the gas component~at temperatureT and
density f r) to agree with that predicted by the Ensko
theory,2 which we believe gives the best transport propert
for dense hard sphere fluids. The diffusivity of the gas co
ponent is determined from the VAC defined in Eq.~21!,

DHS~T, f r!5
1

3 E0

`

cHS~ t !dt5
kT

ma
5

kTs0

12m f N
, ~28!

where Eq.~23! is used fora. The Enskog theory predicts th
deviation of diffusivity for a dense hard sphere fluid from
zero pressure limit as

DHS~T, f r!5D0
HS~T, f r;sHS!

4 f y

z~ f y!21
, ~29!

wherez is the compressibility, which can be obtained fro
the accurate Carnahan–Starling equation of state9 for hard
spheres

z~y!5
11y1y22y3

~12y!3 ~30!

and y is the hard sphere packing fraction defined asy

5(p/6)rsHS3
. For a given value off, Eqs.~28! and~29! can

be used to solve fory, and thussHS. However, sincef in Eq.
~26! is also a function ofsHS, Eqs.~26!, ~28!, and~29! must
be solved simultaneously for bothf andsHS.

We use the following procedure to solve forf. First we
combine Eqs.~12!, ~23!, and ~28!, to obtain DHS(T, f r)
5D(T,r)/ f . That is, the diffusivity of the gas component
1/f times larger than the real system. Further, accord
to Eq. ~27! we know that in the zero pressure lim
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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D0
HS(T, f r)5D0

HS(T,r)/ f . Using these two identities an
Eqs.~26!, ~29!, and~30!, we obtain a cubic equation forf in
terms ofy,

2y3f 32~y16y2! f 21~216y! f 2250. ~31!

Thus Eq.~31!, which is system independentdetermines the
fluidicity f solely from the hard sphere packing fractiony
for any system. Equation~31! leads immediately tof→1
~no solid component! asy→0, f→0 ~no gas component! as
y→`, andf decreases monotonically with increasingy. An-
other useful relationship is obtained by substituting Eq.~27!
in Eq. ~26! and rewriting the resultant equation in terms ofy,

f 5D~T,r,m,s0!y2/3, ~32!

where the normalized diffusivity constantD is unitless and is
a function of material properties

D~T,r,m,s0!5
2s0

9N S pkT

m D 1/2

r1/3S 6

p D 2/3

. ~33!

TheD is proportional to the system diffusivity, which unde
lies many transport properties of the system. It includes
fects of temperature, density, and different material cha
teristics~mass and diffusivity!. Substituting Eq.~32! into Eq.
~31!, we obtaina universal expression forf in terms of D,

2D29/2f 15/226D23f 52D23/2y7/216D23/2f 5/212 f 2250.
~34!

Figure 2 shows the fluidicity factorf ~solid curve! as a func-
tion of the normalized diffusivityD, where we see thatf
→0 asD→0 andf→1 asD→`. Thus for a given value of
D, Eq. ~34! gives a unique value off within 0 and 1. Figure
2 also shows the changes of the hard sphere packing fra
fy of the gas component~dotted curve! as a function ofD.
For largeD ~high temperature, low density, or highly diffu
sive! fy approaches 0, indicating that the whole system
be represented as a dilute gas. At smallD values~low tem-
perature, high density, or nondiffusive! fy approaches 1
which means that small fraction of the hard sphere gas c

FIG. 2. Dependence of the fluidicity factoryf and the packing fractionfy for
the gas component on normalized diffusivityD @defined in Eq.~33!#.
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ponent is very dense.Therefore the normalized diffusivity
D, which contains only the state condition~T,V,N! and the
result from MD simulations (s0), uniquely determines the
fluidicity factor f of a system and is the key parameter
that determines the gas–solid partition .

To complete the 2PT model, we need to determine
weighting functions for the gas phase component~hard
sphere diffusive fluid!

WE
g~y!5WE

HS~y!50.5, ~35a!

WS
g~y!5WS

HS~y!5
1

3

SHS

k
, ~35b!

WA
g~y!5WA

HS~y!5WE
HS~y!2WS

HS~y!. ~35c!

The excess entropy for a hard sphere fluid is determi
from the packing fractiony as expressed by the Carnahan
Starling equation of state,9 which in our model becomes

SHS

k
2

SIG

k
5 ln@z~ f y!#1

f y~3 f y24!

~12 f y!2 , ~36!

whereSIG is the ideal gas contribution calculated at the sa
temperature and density. Finally the reference energy fr
Eq. ~17! is modified as

V05EMD2b21E
0

`

dy@Ss~y!WE
HS~y!1Sg~y!WE

g~y!#

5EMD2b213N~120.5f !, ~37!

where we used Eq.~35a!. The simplicity of the above expres
sions arises from the frequency independence of the wei
ing functions for hard spheres. This allows us to obtain a
lytic expressions for the various quantities, showing t
advantage of our definition of the gas phase as a hard sp
system.

Quantum effects in 2PT are included through the use
proper weighting function for the solid component in E
~20!. Using classical statistics of a harmonic oscillator@Eq.
~16!# for WP

HO(y) leads to classical thermodynamic prope
ties, the 2PT~C! model, whereas quantum statistics@Eq. ~15!#
gives the quantum-corrected properties, 2PT~Q!. We show
later that quantum effects are small for LJ systems~,4%!
but could be important for more complex molecular syste
such as hydrocarbons and DNA.

In this paper, we develop and validate the approach
decomposing the DoS for pure Lennard-Jones fluids. La
work will extend the 2PT to mixtures and polyatomic sy
tems.

III. COMPUTATIONAL DETAILS

The thermodynamic properties of Lennard-Jones~LJ!
gas, liquid, and solid are used to examine the two-ph
thermodynamic~2PT! model described in Sec. II D. The in
teraction potentialV between two LJ particles is describe
through the standard LJ-12-6 equation

V54«F S s

r D 12

2S s

r D 6G , ~38!
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wherer is the separation distance between two particles,
« and s are two parameters characterizing the strength
interaction and the size of the LJ particles. In this work,
parameters of argon («50.238 kcal/mol,s53.405 Å3, and
massm539.948 g/mol) are used in the actual MD simul
tions. To remain general the results are then presente
reduced units: densityr* 5rs3, temperatureT* 5kT/«,
pressureP* 5Ps3/«, energyE* 5E/«, entropyS* 5S/k,
Helmholtz free energyA* 5A/«, Gibbs free energyG*
5G/«, and diffusivityD* 5D(m/«)1/2/s).

We consider a range of 5 densities and 4 temperat
~Fig. 3! including:

~1! 3 stable solid phases;
~2! 3 stable liquid phases;
~3! 1 stable gas phase;
~4! 8 supercritical fluid phases;
~5! 1 metastable solid phase;
~6! 1 metastable liquid phase;
~7! 1 metastable gas phase;
~8! 2 unstable fluid phases;

for a total of 20 state points to cover the phase diagra
CERIUS2~Ref. 10! was used for all MD simulations. Consta
volume, temperature, and number of particle~NVT! simula-
tions are performed at each state point. Table I lists the
tails of the MD runs which ranged from a total of 160
~solids! to 640 ps~gas!. @We will show later~Table IV! that it
would have been possible to achieve similar accuracy w
MD runs ~after equilibration! of only 20 ps ~gas! to 5 ps
~solid and liquid!.# Long-range interactions are included u
ing the Ewald sum method ~Accuracy Bounded
Convergence11 with accuracy parameter 0.001! and the
Nosé–Hoover thermostat~time constant of 0.05 ps! is used
to control the temperature.

FIG. 3. Phase diagram of Lennard-Jones systems. The open circles rep
the states studied in this work. The solid curves indicate the phase boun
~bimodal lines! and the dashed curves are the stability limits~spinodal lines!
for liquid–gas equilibrium. Labels are added next to the open circles to
identify the thermodynamic state of each point~s for solid, l for liquid, g for
gas,m for metastable, andu for unstable!. For clarity, points in the super-
critical regime are not labeled.
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The simulation results are analyzed by calculating
velocity autocorrelation function and its Fourier transform
obtain the density of state distribution functionS(y). The
zero frequency valueS(0) leads to self-diffusion coefficien
D via Eq. ~12!. To determine thermodynamic properties u
ing the 2PT model, the constantD is first calculated from Eq.
~33! @wheres05S(0)] with the results for the 20 state poin
studied here listed in Table II. The fluidicity factorf is then
solved from Eq.~34! ~using Newton’s method, results liste
in Table II!. Having S(0) andf, the DoS of gas componen
Sg(y) is completely determined@Eq. ~24!#. The solid compo-
nentSs(y) is obtained by subtractingSg(y) from theS(y) of
the real system. The thermodynamic properties are then
termined from Eq.~20! with the gas and harmonic weightin
functions given in Eqs.~15!, ~16!, and~35!.

IV. RESULTS AND DISCUSSIONS

A. Pressure, energy, and quantum effects

The pressure and energy for Lennard-Jones syst
from our MD simulations are compared to the literature12,13

equation of state~EOS! predictions in Table III and Fig. 4
For the fluid phase, the modified Benedict–Webb–Ru
~MBWR! EOS developed by Johnsonet al.12 is used while

sent
ary

lp

TABLE I. Simulation conditions for systems studied in this work.

r* T* N Equilibration
steps

Sampling
steps

Step
size ~fs!

0.05 0.9, 1.1, 512 10 000 80 000 8
0.40 1.4, 1.8 512 10 000 20 000 8
0.70 512 10 000 20 000 8
0.85 512 10 000 20 000 8
1.10 500a 10 000 40 000 4

aFace centered cubic lattice is used.

TABLE II. The normalized diffusivityD calculated from Eq.~33! and the
‘‘fluidicity’’ fraction factor f determined from Eq.~34! for the 20 state points
studied in this work.

r*

D
T*

1.8 1.4 1.1 0.9

0.05 10.125 8.612 7.812 6.399b

0.40 2.024 1.886 1.653a 0.973a

0.70 0.964 0.781 0.703 0.667b

0.85 0.529 0.428 0.378 0.307
1.10 1.2331023b 1.0931023 8.0531024 7.5231024

r*

f
T*

1.8 1.4 1.1 0.9

0.05 0.936 0.921 0.911 0.889b

0.40 0.690 0.675 0.647a 0.535a

0.70 0.534 0.491 0.470 0.460b

0.85 0.417 0.379 0.358 0.326
1.10 0.0163b 0.0152 0.0128 0.0123

aUnstable states.
bMetastable states.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE III. Comparison of properties of Lennard-Jones systems calculated from different methods.

PressureP*

r* Methoda

T*

1.8 1.4 1.1 0.9

0.05
MD 0.08260.004 0.06060.004 0.04260.004 0.02960.004

MBWR EOS 0.083 0.061 0.043 0.031

0.40
MD 0.53760.098 0.19560.084 20.03460.080 20.08260.085

MBWR EOS 0.541 0.205 20.038 20.181

0.70
MD 2.45760.244 1.27960.201 0.34360.174 20.32460.151

MBWR EOS 2.482 1.291 0.345 20.315

0.85
MD 6.02460.334 4.09560.301 2.50060.234 1.36360.201

MBWR EOS 6.050 4.100 2.521 1.372

1.10
MD 15.98960.490 12.74260.393 10.28760.316 8.62460.256

van der Hoef EOS 16.005 12.755 10.292 8.627

EnergyE*

r* Methoda

T*

1.8 1.4 1.1 0.9

0.05
2PT~Q! 2.338 1.702 1.186 0.768

MD 2.33860.035 1.70260.024 1.18560.027 0.76660.052
MBWR EOS 2.351 1.715 1.213 0.847

0.40
2PT~Q! 0.111 20.652 21.429 22.639

MD 0.10560.052 20.66060.050 21.44260.080 22.66460.072
MBWR EOS 0.101 20.656 21.324 21.928

0.70
2PT~Q! 21.698 22.522 23.153 23.583

MD 21.71960.068 22.54660.053 23.18160.042 23.61560.034
MBWR EOS 21.717 22.544 23.169 23.608

0.85
2PT~Q! 22.358 23.297 24.026 24.520

MD 22.39560.102 23.34060.078 24.07560.050 24.57660.041
MBWR EOS 22.402 23.340 24.051 24.570

1.10
2PT~Q! 23.420 24.519 25.338 25.880

MD 23.50860.129 24.62160.088 25.45660.064 26.01660.047
van der Hoef EOS 23.945 24.611 25.449 26.010

EntropyS*

r* Methoda

T*

1.8 1.4 1.1 0.9

0.05

1PT~Q! 18.136 17.267 16.419 15.155
2PT~Q! 14.167 13.748 13.205 12.730
2PT~C! 14.167 13.748 13.204 12.729

MBWR EOS 14.071 13.671 13.267 12.900
0.40 1PT~Q! 11.685 10.979 10.033 8.372

2PT~Q! 11.303 10.739 10.021 8.882
2PT~C! 11.301 10.736 10.016 8.868

MBWR EOS 11.138 10.662 10.122 9.513

0.70

1PT~Q! 9.191 8.576 7.972 7.465
2PT~Q! 9.697 9.168 8.620 8.145
2PT~C! 9.691 9.159 8.607 8.127

MBWR EOS 9.510 8.990 8.487 8.046

0.85

1PT~Q! 8.034 7.378 6.741 6.215
2PT~Q! 8.776 8.159 7.548 7.019
2PT~C! 8.766 8.144 7.526 6.988

MBWR EOS 8.582 7.992 7.420 6.899

1.10

1PT~Q! 6.090 5.435 4.801 4.282
2PT~Q! 6.174 5.512 4.865 4.344
2PT~C! 6.150 5.476 4.812 4.269

van der Hoef EOS 6.226 5.525 4.851 4.288

Helmholtz free energyA*

r*
Methoda

T*

1.8 1.4 1.1 0.9

0.05

1PT~Q! 230.300 222.473 216.871 212.924
2PT~Q! 223.162 217.544 213.338 210.689
2PT~C! 223.162 217.544 213.339 210.690

MBWR EOS 222.977 222.977 213.381 210.762
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TABLE III. ~Continued.!

0.40 1PT~Q! 220.907 216.008 212.450 210.156
2PT~Q! 220.232 215.681 212.448 210.628
2PT~C! 220.235 215.685 212.455 210.641

MBWR EOS 219.948 219.948 212.458 210.489
0.70 1PT~Q! 218.211 214.502 211.900 210.280

2PT~Q! 219.136 215.346 212.628 210.909
2PT~C! 219.146 215.358 212.642 210.924

MBWR EOS 218.834 218.834 212.505 210.850
0.85 1PT~Q! 216.777 213.593 211.413 210.088

2PT~Q! 218.129 214.704 212.319 210.831
2PT~C! 218.148 214.725 212.344 210.858

MBWR EOS 217.849 217.849 212.214 210.779
1.10 1PT~Q! 214.369 212.118 210.610 29.727

2PT~Q! 214.526 212.232 210.687 29.788
2PT~C! 214.570 212.283 210.746 29.856

van der Hoef EOS 214.702 214.702 210.785 29.869

Gibbs free energyG*

r* Methoda

T*

1.8 1.4 1.1 0.9

0.05 1PT~Q! 228.656 221.286 216.030 212.356
2PT~Q! 221.522 216.351 212.495 210.102
2PT~C! 221.522 216.351 212.496 210.103

MBWR EOS 221.318 216.215 212.518 210.142
0.40 1PT~Q! 219.584 215.521 212.537 210.361

2PT~Q! 218.889 215.195 212.535 210.834
2PT~C! 218.892 215.199 212.541 210.847

MBWR EOS 218.595 215.070 212.553 210.941
70 1PT~Q! 214.701 212.675 211.410 210.743

2PT~Q! 215.626 213.519 212.138 211.371
2PT~C! 215.637 213.531 212.152 211.387

MBWR EOS 215.288 213.286 212.012 211.299
0.85 1PT~Q! 29.690 28.776 28.472 28.484

2PT~Q! 211.042 29.887 29.378 29.227
2PT~C! 211.061 29.908 29.403 29.255

MBWR EOS 210.732 29.706 29.248 29.165
1.10 1PT~Q! 0.167 20.534 21.258 21.887

2PT~Q! 0.009 20.648 21.334 21.948
2PT~C! 20.035 20.699 21.394 22.016

van der Hoef EOS 20.152 20.751 21.429 22.027

Self-diffusion coefficientD*

r* Methoda

T*

1.8 1.4 1.1 0.9

0.05 S(0) 0.253 0.190 0.153 0.113
Ruckenstein and Liu 0.248 0.201 0.160 0.131

0.40 S(0) 0.203 0.166 0.129 0.069
Ruckenstein and Liu 0.197 0.159 0.128 0.105

0.70 S(0) 0.140 0.100 0.080 0.069
Ruckenstein and Liu 0.136 0.106 0.083 0.067

0.85 S(0) 0.087 0.062 0.049 0.036
Ruckenstein and Liu 0.089 0.065 0.047 0.036

1.10 S(0) 0.000 0.000 0.000 0.000
Ruckenstein and Liu

aMD, molecular dynamics results. MBWR EOS, modified Benedict–Webb–Rubin~MBWR! equation of Johnsonet al. ~Ref. 12!; van der Hoef EOS, work of
van der Hoef for the Lennard-Jones solid~Ref. 13!. 1PT~Q!: using harmonic approximation to DoS@Eq. ~15!#. 2PT~C!: DoS decomposition@Eq. ~20!# with
classical harmonic statistics@Eq. ~16!# applied to the solid part. 2PT~Q! DoS decomposition@Eq. ~20!# with quantum harmonic statistics@Eq. ~15!# applied
to the solid part.S(0): Eq. ~12!. Ruckenstein and Liu: work of Ruckenstein and Liu~Ref. 14!.
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the recent work of van der Hoef13 is chosen for the solid
phase. These equations of state were parameterized to e
sive, high quality MD or Monte Carlo~MC! simulations and
can be taken as the best available theoretical values. We
that our results agree well with the literature values, with
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exception of the two thermodynamically unstable poin
(r* 50.4, T* 51.1 and 0.9!. For ther* 50.4, T* 50.9 un-
stable point we find that phase segregation has already
curred within the 240 ps simulation. For the three metasta
states (r* 50.05, T* 50.9; r* 50.7, T* 50.9; and r*
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51.10,T* 51.8) no obvious phase segregation was obser
and we find good agreement with the literature EOS.

The quantum effects in the LJ systems can be de
mined from the difference between the quantum statist
energy@2PT~Q! in Table III# and the MD energy.@Note that
MD energy is equivalent to the classical energy, i.
2PT~C!.# Quantum effects are in general small: essentia
zero for LJ gases, about 1% in energy for the liquids, and
for the crystals studied here.

B. Velocity autocorrelation and density
of state distribution

The velocity autocorrelation~VAC! as a function of time
for LJ particles at temperatureT* 51.1 and different densi-
ties is shown in Fig. 5 and some of the corresponding vib
tional density-of-state~DoS! distributions ~representatives
for gas, liquid, and solid! are presented in Fig. 6. For a ga
the VAC ~Fig. 5, r* 50.05) decays slowly and monoton
cally with time, resulting in a rapid and monotonic decay

FIG. 4. The pressure~a! and energy~b! for Lennard-Jones systems. Th
curves are based on high quality equations of state~Refs. 12, 13! ~solid,
T* 51.8; dot-dot-dashed,T* 51.4; dashed,T* 51.1; dot-dashed,T*
50.9) the open diamonds are from our MD simulation, and the open cir
are quantum corrected energies.
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S(y) with frequency@Fig. 6~a!#. This is expected since th
mean free path is much larger then the particle diameter f
LJ gas, leading to a collision probability that decreases r
idly with the number of collisions per unit time, proportion
to the vibrational frequency.@For a true ideal gas, i.e., n
collisions, the VAC would remain constant and the Do
would be a delta function aty50.] For a crystal, the VAC
~Fig. 5,r* 51.10) oscillates around zero with the amplitud
decreasing with time. The oscillation of the VAC is a res
of the incoherent vibration of the particles at their equili
rium positions.~For a single particle vibrating in a harmon
potential, the VAC is a cosine function and the DoS is a de
function.! The corresponding DoS has zero intensity aty
50 and increases gradually with frequency~asy2 according
to Debye theory! @Fig. 6~c!#. The DoS of a LJ crystal has
several peaks, reflecting the structured nature of crystals.
an amorphous solid~or glass!, the distribution ofS(y) is
expected to be smooth. The VAC~Fig. 5,r* 50.85) and DoS
@Fig. 6~b!# of a LJ liquid have characteristic of both ga
phase and amorphous solids: The VAC oscillates aro
zero, and theS(y) is finite aty50 and goes through a max
mum before it monotonically decays to zero. This spec
characteristic shape of the liquid state DoS provides
foundation of the DoS decomposition described in Sec. II

The decomposition ofS(y) based on the DoS distribu
tion of a hard sphere gas is also presented in Fig. 6. In
low density and high temperature limit@Fig. 6~a!#, the expo-
nential decay of the velocity autocorrelation function for
hard-sphere gas results in aSg(y) closely resembling that o
the true LJ gas. This is reasonable since the effects of
attractive part of LJ potential decays with increasing te
perature. Consequently the repulsive part dominates at
temperatures and a LJ gas behaves much like a hard-sp
gas. In the case of a crystal@Fig. 6~c!#, there is an insignifi-
cant amount of diffusive motion andSg(y) is essentially
zero. For LJ liquids@Fig. 6~b!# the proposed decompositio
scheme nicely partitions the overallS(y) into a gaslike and a
solidlike component.

s

FIG. 5. The velocity autocorrelation~VAC! function for Lennard-Jones sys
tems atT* 51.1 and different densities:r* 50.05 gas,r* 50.40 unstable
fluid, r* 50.70 liquid,r* 50.85 liquid, andr* 51.10 crystal.
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The integrated area underneath each DoS distributio
equal to the number of degrees of freedom@Eq. ~9!#. There-
fore, the ratio of the areas from the diffusive modes and
overall system leads to the factorf, i.e.,

FIG. 6. The density of state distribution of LJ~a! gas (r* 50.05,T*
51.1), ~b! liquid (r* 50.85,T* 51.1), and~c! fcc crystal (r* 51.10,T*
51.1). The total density of state distributionS(y) is shown in black line, the
gas componentSg(y) determined with a hard sphere fluid in dot-dashed lin
and the nondiffusive, solidlike componentSs(y) in the dotted line.
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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*0
`Sg~y!dy

*0
`S~y!dy

. ~39!

From Fig. 6 and Table II the percentage ofSg(y) increases
with decreasing densities and increasing temperatures
other words, there is more gaslike component in a system
the temperature increases and/or as the density decre
Since the factorf increases monotonically with the norma
ized diffusivity D ~Fig. 2!, both parameters are a good me
sure of the ‘‘fluidicity’’ of a system. The proposed decomp
sition is not only reliable and stable, but is also physica
meaningful.

C. Entropy and free energies: Fluidicity
and quantum effects

The usefulness of the DoS decomposition method in
duced here depends on the accuracy in calculating the t
modynamic properties. Figure 7~a! shows the entropy deter
mined from the one-phase model with quantum statist
1PT~Q!. For the crystalline phase (r* 51.10) the entropy is
calculated quite accurately, but for low-density fluids (r*
50.05,0.40) it is overestimated while for high-density flui
(r* 50.70,0.85) it is underestimated. In contrast, the 2
method leads to a much more accurate entropy for all de
ties @Fig. 7~b!# regardless of the use of classical@2PT~C!# or
quantum@2PT~Q!# statistics for the solid component.

Table III lists the numerical values of the calculated e
tropy from different methods. The problem with applying th
harmonic approximation to the whole DoS, i.e., 1PT meth
can be understood by examining theS(y) in Fig. 6 and the
weighting function in Fig. 8. At low densities, e.g.,T*
51.1 and r* 50.05 ~hard sphere packing fractionf y
50.036), most vibrational modes are located belowy
54 cm21 @Fig. 6~a!#. In this region, the HO weighting func
tion ~either quantum or classical! is much higher than that o
the hard sphere~HS!. Since in this condition the LJ gas be
haves like a HS gas, the HO description overestimates
entropy.

The situation is somewhat different for liquids. The di
tribution of S(y) is broadened: For example, atT* 51.1 and
r* 50.85 (f y50.309) theS(y) extends to more than 10
cm21 and has a maximum at around 20 cm21 @Fig. 6~b!#. The
HO description underestimates the entropy for this liqu
case because the HO weighting is too small in the ra
between 4–100 cm21. This is also evidence for anharmon
effects in the liquid phase. The decomposition of the Do
2PT, allows us to separate the harmonicSs(y) and fluidic
Sg(y) components in the system to provide appropri
weights to each contributions. This leads to accurate va
of entropy.

The quantum corrections to the entropy can be obtai
by comparing the quantum and the classical entropies@open
and closed circles in Fig. 7~b!#. Similar to the energy, the
quantum effects are generally small and increase with
creasing density or decreasing temperature. Roughly, q
tum corrections in entropy are essentially zero for LJ g
0.5% for LJ liquid and, 1.8% for LJ crystals. The small qua
tum corrections in LJ systems can be understood as s
differences between the entropy weighting functions

,
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FIG. 7. Entropies determined from the density of state methods.~a! One-
phase quantum 1PT~Q! model; ~b! two-phase classical, 2PT~C! and quan-
tum, 2PT~Q!, models. The curves are based on equations of state predic
~Refs. 12, 13! ~solid, T* 51.8; dot-dot-dashed,T* 51.4; dashedT* 51.1;
dot-dashed,T* 50.9).

FIG. 8. Comparison of the entropy weighting function for a classical h
monic oscillator~HO!, a quantum harmonic oscillator~QHO!, and a hard
sphere~HS! fluid at T* 51.1 with gas phase packing fractionf y50.036 and
T* 51.1 with f y50.309.
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
quantum and classical HO~Fig. 8! within the range ofy
,150 cm21. For molecular system with strong interaction
e.g., covalent and hydrogen bonds, quantum effects will
more significant.

Figures 9 and 10 and Table III compare the calcula
Helmholtz (A* 5E* 2T* S* ) and Gibbs (G* 5A*
1P* /r* ) free energies. Due to the inaccuracy in determ
ing the entropy, the 1PT method underestimates the free
ergies at low densities and overestimates them at high d
sities. The 2PT method overall gives very good agreem
with the EOS values. It is interesting to note that the cal
lated properties in the metastable regime also agree well
EOS. Consequently the 2PT method should be useful
studying the thermodynamic driving forces for nucleati
and the viscosity of metallic glasses. It should also be us
for dynamical systems involving time scales and transp
coefficients, including in phase transitions, that may not
accessible to Monte Carlo methods.

ns

-

FIG. 9. Helmholtz free energies determined from the density of state m
ods.~a! One-phase quantum 1PT~Q! model,~b! two-phase classical, 2PT~C!,
and quantum, 2PT~Q!, models. The curves are based on equations of s
predictions~Refs. 12, 13! ~solid,T* 51.8; dot-dot-dashed,T* 51.4; dashed,
T* 51.1; dot-dashed,T* 50.9).
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



lf-
by

ve
an
use
-

om
m-

at

l-
ed
12
ries

he
D

in

sta-
ffi-
of
S,
er-

ion

d to

od

ta

d er-

11804 J. Chem. Phys., Vol. 119, No. 22, 8 December 2003 Lin, Blanco, and Goddard
FIG. 10. Gibbs free energies determined from the density of state meth
~a! One-phase quantum 1PT~Q! model and~b! two-phase classical, 2PT~C!,
and quantum, 2PT~Q!, models. The curves are based on equations of s
predictions~Refs. 12, 13! ~solid,T* 51.8; dot-dot-dashed,T* 51.4; dashed,
T* 51.1; dot-dashed,T* 50.9).

FIG. 11. Reduced diffusivity~multiplied by reduced density! determined
from the zero frequency value of the DoS@Eq. ~12!#. The curves are base
on the work of Ruckenstein and Liu~Ref. 14! ~solid, T* 51.8; dot-dot-
dashed,T* 51.4; dashed,T* 51.1; dot-dashed,T* 50.9).
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D. Self-diffusion coefficient

We compare in Fig. 11 and Table III the calculated se
diffusion coefficients with a model recently developed
Ruckenstein and Liu.14 Their model was fitted to various
simulations results at conditions ranging fromT* 50.72 to
10.0 andr* 50.00 to 1.12, and is considered by us to gi
good ‘‘averaged’’ literature values. We find that there is
excellent agreement with the literature values. Thus the
of S(0) gives very reliable values for self-diffusion coeffi
cients in liquids. Our calculated values tend to deviate fr
Ruckenstein and Liu’s values for dilute gases at low te
perature, as their model may have larger relative errors
low temperatures.14

E. Convergence efficiency

A particularly attractive feature of the 2PT model deve
oped here is that it is quite efficient for obtaining converg
thermodynamic properties, especially for liquids. Figure
compares the entropy values calculated from MD trajecto
of different lengths~from 2.5 ps to 2.5 ns! for a LJ gas
(r* 50.05,T* 51.8) and a liquid (r* 50.85,T* 50.9). The
numerical values are listed in Table IV. The entropy for t
gas phase system converges to within 0.2% with 2500 M
steps~20 ps! and for the liquid phases converges to with
1.5% with 2500 MD steps~20 ps!. Thus the 2PT method is
much more computationally efficient than test particle~TP!
or thermodynamic integration~TI! techniques, where mil-
lions of samplings are usually necessary to obtain good
tistics. The reason for the efficiency of 2PT is the very e
cient use of trajectory information. In 2PT, the evolution
velocities fromall the particles are used to establish the Do
which is later used to determine the thermodynamic prop
ties. In contrast, other methods~TP, TI, etc.! usually use only
oneprobe particle to build up the statistics at each simulat
step. Therefore, we expect the 2PT method to beN times~N
being the number of particles in the system! more efficient
than other methods. This makes 2PT an attractive metho
study thermodynamic properties for complex systems.

s.

te

FIG. 12. Calculated entropy from the 2PT method with trajectory of diff
ent lengths for a LJ gas (r* 50.05,T* 51.8) and liquid (r* 50.85,T*
50.9). One MD step corresponds to 8 fs (10215 s).
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TABLE IV. Convergence of the 2PT method for LJ gas (r* 50.05,T* 51.8) and liquid (r* 50.85,T* 50.9).

MD steps 313 625 1250 2500 5000 10000 20000 40000 80000 160000 32
time ~ps! 2.5 5 10 20 40 80 160 320 640 1280 256
No. samples 1024 512 256 128 64 32 16 8 4 2

r* 50.05,T* 51.8 ~gas!
2PT~Q! 13.444 14.040 14.224 14.274 14.234 14.225 14.237 14.248 14.270 14.242 1
deva 0.020 0.015 0.015 0.025 0.050 0.072 0.080 0.059 0.113 0.067
2PT~C! 13.442 14.040 14.224 14.274 14.234 14.225 14.237 14.248 14.270 14.242 1
deva 0.020 0.015 0.015 0.025 0.050 0.072 0.080 0.059 0.113 0.067
MBWR
EOSb

14.071

r* 50.85,T* 50.9 ~liquid!
2PT~Q! 6.980 7.004 6.989 6.989 6.991 6.989 6.987 6.991 6.992 6.991 6
deva 0.056 0.046 0.038 0.028 0.019 0.016 0.009 0.008 0.006 0.004
2PT~C! 6.946 6.972 6.957 6.958 6.960 6.958 6.957 6.960 6.961 6.960 6
deva 0.057 0.046 0.038 0.028 0.020 0.017 0.009 0.008 0.006 0.004
MBWR
EOSb

6.899

aStandard deviation.
bModified Benedict–Webb–Rubin~MBWR! equation of Johnsonet al. ~Ref. 12!.
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V. CONCLUSIONS AND OUTLOOK

This work develops the 2 phase thermodynamics~2PT!
approach for calculating the thermodynamic properties
fluids from single molecular dynamics simulation trajec
ries. The 2PT method makes use of the vibrational densit
states extracted from MD trajectories. Other approaches h
been suggested for determining thermodynamic prope
from the MD derived vibrational density of states or from t
normal modes of the system. The 2PT method is uniqu
that explicit consideration of fluidicity effects at low freque
cies is made together with quantum corrections. The 2
DoS decomposition scheme provides an analytic separa
of the diffusive, fluidic component in the DoS. This allows
separate treatment of harmonic, fluidic, and quantum effe
resulting in an accurate description of the thermodyna
properties.

Attractive features of the 2PT method for calculati
entropy and free energy include:

~1! Thermodynamic and transport properties are determi
simultaneously.

~2! Only short simulation times~20 ps! are needed to obtain
high accuracy. For a system withN particles, we expec
2PT to beN times faster than methods such as parti
insertion and thermodynamic integration.

~3! The efficiency of 2PT doesnot deteriorate with increas
ing density ~a severe limitation in most other tech
niques!.

~4! The properties are obtained under fully equilibrated c
ditions ~no perturbation in the simulation itself!.

~5! Zero point energy and corrections for quantum effe
are included.

~6! 2PT can be used to determine the properties in m
stable and unstable regimes.

~7! 2PT could also be used for nonequilibrium systems
estimate effects of transient effects, reaction, and ph
transitions, since it is only necessary to have stabilit
over time scales of;20 ps.
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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In this paper we validated the 2PT method for pure
fluids, but the method applies with no modification to ge
eral force fields. We expect that the 2PT method provides
necessary information for calculating such other transp
properties as viscosity and thermal conductivity.
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Seung Soon Jang, Dr. Prabal Maiti, Dr. Valeria Molinero, a
Peng Xu for many useful discussions. This research was
tially supported by the NSF~CHE 99-85774, CTS-0132002!
and NIH ~1R01-GM62523-01!. The facilities of the MSC
used in this research are also supported by grants from D
~ASCI and FETL!, ARO ~MURI and DURIP!, ONR ~MURI
and DURIP!, IBM-SUR, General Motors, ChevronTexac
Seiko-Epson, Asahi Kasai, Beckman Institute, and Toray

1D. Frenkel and B. Smit,Understanding Molecular Simulation From Algo
rithms to Applications~Academic, New York, 2002!.

2A. A. McQuarrie, Statistical Mechanics~Harper & Row, New York,
1976!.

3P. H. Berens, D. H. J. Mackay, G. M. White, and K. R. Wilson, J. Che
Phys.79, 2375~1983!.

4M. Karplus and J. N. Kushick, Macromolecules14, 325 ~1981!.
5J. Schlitter, Chem. Phys. Lett.215, 617 ~1993!.
6I. Andricioaei and M. Karplus, J. Chem. Phys.115, 6289~2001!.
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