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of Lennard-Jones fluids
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We propose a general approach for determining the entropy and free energy of complex systems as
a function of temperature and pressure. In this method the Fourier transform of the velocity
autocorrelation function, obtained from a sh®0 p9 molecular dynamics trajectory is used to
obtain the vibrational density of staté®oS) which is then used to calculate the thermodynamic
properties by applying quantum statistics assuming each mode is a harmonic oscillator. This
approach is quite accurate for solids, but leads to significant errors for liquids where the DoS at zero
frequency,S(0), remains finite. We show that this problem can be resolved for liquids by using a
two phase model consisting of a solid phase for which the DoS goes to zero smoothly at zero
frequency, as in a Debye solid; and a gas plihgghly fluidic), described as a gas of hard spheres.

The gas phase component has a DoS that decreases monotonicallySf@mand can be
characterized with two parameteiS(0) and 39, the total number of gas phase mod&?

—0 for a solid and 819—3(N—1) for temperatures and pressures for which the system is]a gas

To validate this two phase model for the thermodynamics of liquids, we applied it to pure
Lennard-Jones systems for a range of reduced temperatures from 0.9 to 1.8 and reduced densities
from 0.05 to 1.10. These conditions cover the gas, liquid, crystal, metastable, and unstable states in
the phase diagram. Our results compare quite well with accurate Monte Carlo calculations of the
phase diagram for classical Lennard-Jones particles throughout the entire phase diagram. Thus the
two-phase thermodynamics approach provides an efficient means for extracting thermodynamic
properties of liquidgand gases and solids © 2003 American Institute of Physics.

[DOI: 10.1063/1.16240857

I. INTRODUCTION density of states. This method requires knowledge only of

] the vibrational density of stai®o0S); however, the extension
Entropy and freg energy as.a_functlon of temperature ar??o fluids is nontrivial. Figure 1 shows the typical density of
pressure are essential in describing the phase diagram of ligz_. distributionS(v), for a gas, a liquid, and a solid as a
uids of materials. It would be most valuable to extract this;function of frequencyw. For a solid[Fig. 1(a)] the general
information from atomistic classical and quantum simula-¢ hasS(0)=0 With.S(v) going throm.Jgh 4 maximum at
tions. However, the need fof extensive sampling of th_e avalinite v, and then decaying for higher frequencies. For a gas
able energy states makes it a challenge to determine theF :

guantities accurately. Techniques that extend the Widom pa -'g'g' b)), §(0)>0 and decays monotonically. The DoS of

ticle insertion or thermodynamic integration methods to effi- iquids [Fig. 1(c)] also has5(0)>0, and generally leads to a

ciently and accurately determine the phase equilibria of Ao_cal minimum at low frequency and asolidlike maximum_at
wide variety of systems include the Gibbs ensemble, mulligher frequency followed by decay for higher frequencies
tiple histograms, configuration biased samplihda. prin- interspersed with broadened peaks due to local vibrations. As

ciple, these techniques provide rigorous thermodynamigliscussed below, the zero frequency intensi{) corre-
quantities of complex systems; however, the large amount gthonds to the diffusive modes of the system. Since the har-
sampling needed makes such methods impractical for marfjionic oscillator has infinite entropy at=0, the direct ap-
systems of interest. Thus, it is highly desirable to find waysPlication of quantum statistics to gases and liquids would
to obtain fast and accurate estimates of the entropy and frg@sult in an infinite entropy because of the nonzero value
energy from simple molecular dynamics simulations. S(0). Furthermore, the low frequency vibrations are usually
One possibility is to apply quantum statistics to the nor-quite anharmonic and the use of the simple harmonic ap-
mal vibrational modes of a system, e.g., the Debye theory ofroximation breaks down at this limit. These properties of
crystals? For crystals, the vibrational modes can be considluids [nonzeroS(0) and anharmonicitigsvill be referred to
ered as harmonic and the thermodynamic properties can k&s fluidic effects hereafter.
expressed as integrals of functionals over the vibrational Despite these problems, the vibrational density of states
has been used to study the thermodynamic properties of

. 3 .
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a) solid b) gas
S(v) S(v)
v v FIG. 1. Typical density of state distributidiDoS) of a
solid (a), gas(b), and liquid (c). (d) shows that the
liquid phase DoS can be a supposition of a gas and a
— solid DoS.
¢) liquid d) 2PT

S(v) S(v) solid-like

gas-like

vibrational density of statddetermined from the Fourier sion) are not properly handled, we do not expect to obtain an
transform of the velocity autocorrelation functjcend deter- —accurate entropy value from Schlitter's method.
mined the quantum corrections to the thermodynamics of In this paper, we address this problem by proposing a
water. They showed that the method is useful because quatwo-phase model in which the DoS is decomposed into a gas
tum effects are small at low frequencies where anharmonighase componentdescribed in terms of a hard sphere
effects are large, and are significant at high frequenciepode) and a solid phase, whose density of states goes to
where anharmonicities are negligible. zero at zero frequency. This is motivated by the observation
Karplus and Kushickproposed a quasiharmonic method that the shape of the DoS of a liquid is a simple supposition
t_hat uses the C(.)variance. maFrix of atomic position fluctuasf that of a gas and a solicFig. 1(d)]. The gas component
tions to determine the vibrational frequencies, and argueghostly contributes in the low frequency regime and contains
that therelative configurational entropy differences of a flex- | the fluidic effects, whereas the solid component, located

ible macromolecule in two different conformations can be pigher frequencies, has no fluidicity but can possess strong
determined from the logarithm of the ratio of the determlnantquamum effects. To test this two-phase thermodynamic

of the covariancéHessian in the two conformations. Since 2PT) model, we calculated the thermodynamic properties of
anharmonic effects are not explicitly considered, the Succeﬁ(_sennard-\]or;es systems over a range of temperatures and

of their method may largely be a result of cancellation of . -
errors, due to anharmonicities, in the two conformationsP' c>ou & that includes gas, liquid, crystal, metastable, and

More recently, Schlittérproposed to apply a modified quan- unstable phases. We show that the standard one-phase model

tum statistical harmonic oscillator model to the quas;ih‘,ir_overestlmates the entropy for dilute gases and underestimates

monic frequencies from the covariance matrix to obtalin the entropy for quuids due to f'%“dic effects. In 2PT, the gas
solute entropies. Although the modified formula is an phase component is characterized with two parameters, the

approximation to the exact quantum statistics of Hggha  fraction of the modes in the gas phase @(@), both of
fer and co-workers have used Schlitter's method to explaifVhich are determined from the same molecular dynamics
the entropic driving force in protein foldingf Schder et al” ~ Simulation. Applying the proper statistical weighting func-
performed limited tests of the Schlitter’s method for the an-tions for each component leads to accurate thermodynamic
harmonic effects and found 17% error in entropy for an ideaProperties. The time scale necessary for accurate thermody-
gas and only 5% error for Lennard-Jongs)) gases. They Nhamic properties is~20 ps (assuming that the system is
concluded that anharmonic effects are small in most casegquilibrated, making this a practical approach for complex
Andricioaei and KarplLFslater re-examined the LJ calcula- systems. We find that 2PT leads to results in good agreement
tion and found that the entropy obtained by ehatal’  with Monte Carlo calculations for the thermodynamic prop-
was not converged and the error increased with the simuleerties of LJ fluids over a range of conditions including gas,
tion time. Since the fluidic effect@nharmonicity and diffu- liquid, solid, and metastable regions.
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Il. THEORY
A. The density of state function

The density of stat€DoS) function S(v) is defined as
the distribution of vibrational normal modes of a system.

The number of modes, i.e., effective vibration intensity, of a

system at some frequeneyis calculated as the sum of con-
tributions from all atoms in the system,

2 N 3
>

S=17 2 2

A mJ S:(( U) ’ (1)

wherem; is the mass of aton The spectral densitsjk(v) of
atomj in the kth coordinate k=X, y, andz in the Cartesian

coordinate is determined from the square of the Fourier

transform of the velocities as

/7 wi(te 2™t

k o
sj(v)=lim It
Af@I> 1| (e izt ]
T M 7| | el @

wherev}‘(t) is thekth velocity component of atorpat time
t, and
Af(v)= lim J vi(te 2t (3)

T— 0
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)

B. Properties of the density of state function

It is useful to outline the important properties of the
density of state function, most of which have been previ-
ously discussed by Bereret al2 First of all, the value of
S(v) represents the density of normal modes at frequency

3N

5(“)121 [8(v— )+ 8(v+ )], (8)

where o' are the normal mode frequencies of the system.
Equation(8) can be shown to be true by substituting in Egs.
(4), (5), and (7) the normal mode velocities from the time
derivative of the normal coordinatesy;, e.g., q;
=A sin(2mv+ 9;), with A; and9; being the amplitude and
phase of theéth degree of freedorh.

Furthermore, the integration &(v) over positive fre-
quencies gives the total number of degrees of freedoN) (3

The density of state function can also be obtained fronof the system,

the Fourier transform of the velocity autocorrelation function

(VAC). The total velocity autocorrelation functio@(t) is

defined as the mass weighted sum of the atom velocity au-

tocorrelation functions
N 3

C(ty=2>, > mick), (4)
j=1 k=1

wherecﬁ-((t) is the velocity autocorrelation of atojrin the k

direction

I7 YN+ ook dr
JT.dt’

ci(t)=lim

T— 0

N N K
= lim >- v (t"+to;(t")dt’. (5)

Applying the Wiener—Khintchine theorefithe atomic spec-
trum densitysi‘(v) is simply the Fourier transform af(t),

1 4 : 2
k L k —i2mut
so=im o] [ stwe e

1 (7 (T -
:T“an_T fﬁfJ’ﬂv;‘(t)v:‘(t—i—t’)dt’e 12mitgt

= lim J ci(tye 2™t (6)

T—

Therefore S(v) defined in Eq(1) can also be obtained from
the Fourier transform o€(t),

f:S(v)dF%fLS(u)du

1 N 3 .
= k_T]Zl .Zl m [ si(vdv
1 N 3 —
- k_T,Zl gl mju(t)
1 N
= k—T]Z,l k};,l kT=3N, (9)
where the Parseval's theorem [fcfx,|A|]—((v)|2dv

= vi(t)?dt] is used to relate the integration sf(v) to
the average of the square of the velocity,

© 1 T
k 0 k
f xsj(v)dv—lm _ZTLT'A"(U)lZdU

1 o
= lim Z—J vi(H)2dt=v{(t)% (10

The last equality in Eq(10) is a result of the equipartition
theorem in the classical limit, i.emjv}‘(t)zsz.

The density of states at zero frequergy) is related to
the self-diffusion coefficienD in pure fluids. The diffusion
coefficient is related to the velocity autocorrelation function

ag
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D—:LJ‘OG tdt—lfoo tdt——l foo C(t)dt
=3 OC() =5 _xC() ~5mN | . (t)dt,

(11)
whereN is the number of particles and is the mass of the

particles. By setting the frequenayto zero in Eq.(7) we
have

2 (= 12mND
S(O):ﬁf_ C(t)dt=

kT (12

Finally, any properties derived froi(v) can be easily
broken down to atomic contributions since the t@éb) is
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whereB=1/kT andh is the Planck’s constant. These weight-
ing functions constitute the quantum-corrected one-phase
thermodynamic model, 1RD).

If instead we use a classical harmonic oscillator with
qﬁo(u) =1/Bhv, the weighting functions would take the fol-
lowing form:

WE(v)=1, (163
WS(v)=1—In(Bhv), (16b)
WS (v)=In(Bhv). (160

The use of these classical weighting functions in Egf)

determined from the sum of the atomic spectral densitie@ives the classical one-phase thermodynamic model(@PT

[Eq. (1)]. For example, one can study the diffusion of each
individual atom or for a subcollection of atoms in the system

The reference energy, [in Egs.(149 and(140] is the

‘potential energy of the system when all the “oscillators” are

This property ofS(v) also provides a natural way of parti- 5 standing still. This energy is determined by equating the

tioning the thermodynamic properties, such as entr@mgy

total energyEMP from a MD simulation to the energg® of

tailed in Secs. 11 C and Il Dinto atom or atomic group €on- 5 set of classical harmonic oscillatdigs. (148 and(163)],

tributions, an intriguing prospect for molecular analysis of

significantly higher detail than any prior efforts.

C. Thermodynamic properties and quantum
corrections from the density of state function:
The one-phase model

Assuming that all the vibrations are independe@mtcor-
related harmonic motions, the partition functio of the
system can be calculated from the partition functipg(v)
of a harmonic oscillator as the following:

In QZJ dvS(v)Inqyo(v). (13

0
The energyE, entropyS, and Helmholtz free energ of the
system can then be determined as

adln ®
E=V0+TB‘1((9—TQ)N,V=VO+B‘1JO dvS(v)We(v),
(149
. [dInQ o
S=kInQ+p 1(3—T)N’V:kJ0 dvS(v)Wy(v), (14b)
A=V,—B 1 InQ=V,+ ﬁ*lfmde(u)WA(u). (140
0

Vo= EMD—,B’lfmde(v)Wg(v)=EMD—B’13N.
0
(17)

The quantum effect$or quantum correctionsof a system
can be determined from the differences between the quantum
and classical properties, i.e.,

2E%=p [Causw@-wEw], (8

A=k | dus(mWE () - W), (18b)
0

AAchﬁflf:dUS(v)[w,?(u)—Wﬁ(v)]- (189

Therefore, the quantum effects can be completely determined
for a given density of state distribution. The quantum correc-
tions are zero at zero frequency and increase with increasing
frequency making them most important for system contain-
ing high frequency vibrations.

D. Density of states decomposition for the correction
of fluidicity effects: The two-phase model

The harmonic approximation described above has been

Substituting in these equations the quantum harmonic partiwidely used in the study of thermodynamic properties of

tion function

9 3 exp(— Bhv/2)
W0l = T~ exp(— ghui2)

gives the quantum weighting functions,

h h
wEw =50 exp(zhz)—l’ (153
Bhv
Wg(v)=W—ln[l—exr(—,8hv)], (15b
1- h
WR(v)=In %m (159

crystals because the harmonic assumption is reasonable in
the solid phase. However, a direct extension to amorphous
liquids and gases may be inappropriate since the entropy is
dominated by low frequency modes where the effects of flu-
idicity are important. In particular, the entropy of a harmonic
oscillator has a singularitypositive infinity) at zero fre-
quency, which corresponds to the diffusion mode in fluids
[Eqg. (12)].

To resolve this problem, we propos@ao-Phase Ther-
modynamic (2PT) modelin which the density of statg(v)
of the system with Bl degrees of freedom are partitioned
into a gas and a solid like component

S(v)=S%(v)+ S (v), (19
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wherethe gaslikediffusive componeng9(v) corresponds to determines the conceptual partition of the whole system be-

3N9=3fN degrees of freedom withbeing the gas fraction tween solid and gas components. We whit satisfy two

and the remaindei$°(v), describes aolidlike component  limiting conditions:

(non—dﬂ'fusw?_m which Sg(f)zo (that 'f no dl_ffu?on)l. Thus (1) In the high temperature and/or low density limit, the sys-

there are BI>=3N—-3N9=3N(1-f) “solidlike” degrees ; )
. . tem behaves like hard spheres, therefbrel, i.e., no

of freedom. The thermodynamic propertiesf the system

; T L ; solid component.
are determined from weighting the individual density of state(z) In the higE density limit where the system is a solid, we
(DoS) component with proper functions '

expectf =0, i.e., no gas component.

P=J des(U)W';o(v)Jrf dvS(v)Wi(v), (20) Thus we propose to defirfeas proportional to the diffu-
° 0 sivity, which automatically satisfies the two above condi-
whereW'So(v) is the weighting function of a harmonic os- tions. Thus we find it convenient to write
cillator [Eq. (14) or (15)] and W(v) is the weighting func-
tion corresponding to the choice of the gas component. _ D(T.p)
: : " =——e (26)
The 2PT model is uniquely specified by the form of DT, p;0MS)
S9(v), which by subtracting determines the form $%v).
We find that a particularly suitable form f&%(v) is to de-
scribe the gaslike component as a hard sphere fluid. Th
velocity autocorrelation function"S(t) of a hard sphere gas

decays exponentiaffy 3 1

DoXT.p;0™9) =2
0 8 pO.HSZ

whereD is the self-diffusivity of the system determined from
Ea. (12, and D{'S is the hard sphere diffusivity determined
in the zero pressure limithe Chapman—Enskog res@lt

kT 1/2

(27)

3KkT
cMS(t)=c"S(0)exp( — at) = — exp(— at), (21)
m Tying our theory to hard sphere theory might seem limiting,
where« is the Enskog friction constant related to the colli- but we show below that all parameters can be fully derived
sions between hard spheres. The DoS distribution is deriveiom the actual interatomic potentials describing the real

from the Fourier cosine transform of E@1), atom of our system.
From Eq.(27) to completely determing we need only

Ng 3 . . . ..
© define the hard sphere diametetS. We do this by requiring
HS ) — k
SV =T o 1241 g’l m;cj(t)cos 2mut)dt the diffusivity of the gas componertat temperaturd and
density fp) to agree with that predicted by the Enskog
4 (= theory? which we believe gives the best transport properties
= — g — ’
kT Jo SNKT exp(— at)cog2amut)dt for dense hard sphere fluids. The diffusivity of the gas com-
; ponent is determined from the VAC defined in Eg1),
12N9%«
-, 22) 1 (= KT kT
a’+ 47 ( HS = _f HS, .
DRT fp)= 3 | c™Sndt= = o (28)

whereN®=fN is the number of effective hard sphere par-
ticles in the system antlis the fraction of hard sphere com- Where Eq(23) is used fora. The Enskog theory predicts the
ponent in the overall system. This fraction factor is a meadeviation of diffusivity for a dense hard sphere fluid from its
sure of the “fluidicity” of the system and should depend on zero pressure limit as
both the temperature and density. Using the zero frequency

. 4fy
lue, i.e., HS —pHs . - HS
value, i.e DHS(T,fp)=D{X(T,fp;0 )z(fy)—l’ (29
12fN
SHS(0)=s,= , (23)  wherez is the compressibility, which can be obtained from
@ the accurate Carnahan—Starling equation of tite hard
Eqg. (22) can be rewritten as spheres
So 1+y+y?—y3
g — cHS — -_ 7 7 7
SU(v)=5"(v) sl (24 =7 (30
6fN and y is the hard sphere packing fraction defined yas

Therefore,the DoS for the gas component is completely =(7r/6)pcr”§’. For a given value of, Egs.(28) and(29) can

determined with two parameters s, and f. It is straight-  be used to solve foy, and thusoHS. However, sincé in Eq.

forward to determines, since it is just the zero frequency (26) is also a function ofr"S, Egs.(26), (28), and(29) must

DoS value for the total syste®(0). This guarantees that the be solved simultaneously for boftand oS,

solid component has no contribution to the diffusivity, We use the following procedure to solve fb;l;irst we

 GHS Ay S s combine Egs.(12), (23), and (28), to obtain D™(T,fp)

$=5"(0)=5(0), $¥(0)=0. @y D(T,p)/f. That is, the diffusivity of the gas component is
The only remaining question in defining 2PT theory is1/f times larger than the real system. Further, according

how to define the exact value of “fluidicity” factof that to Eq. (27) we know that in the zero pressure limit
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FIG. 2. Dependence of the fluidicity factofyand the packing fractiofy for
the gas component on normalized diffusivity{defined in Eq.(33)].

DHS(T,fp)=DES(T,p)/f. Using these two identities and

Egs.(26), (29), and(30), we obtain a cubic equation fdin
terms ofy,

2y3f3—(y+6y?)f2+(2+6y)f—2=0. (31)

Thus EQq.(31), which is system independedéetermines the
fluidicity f solely from the hard sphere packing fractiony
for any system Equation(31) leads immediately td—1
(no solid componentasy—0, f—0 (no gas componenas
y—oo, andf decreases monotonically with increasingAn-
other useful relationship is obtained by substituting &)
in Eg. (26) and rewriting the resultant equation in termsypf

sz(Tlprmsz)y2/3! (32)

where the normalized diffusivity constafitis unitless and is
a function of material properties

112 213
2sg ( wkT) 1/3( 6) .

A(T,p,m,So):m —_— —

m - (33

Two-phase model for thermodynamic properties 11797
ponent is very densd&.herefore the normalized diffusivity
A, which contains only the state condition(T,V,N) and the
result from MD simulations (), uniquely determines the
fluidicity factor f of a system and is the key parameter
that determines the gas-solid partition .

To complete the 2PT model, we need to determine the
weighting functions for the gas phase componénard
sphere diffusive fluig

WE(v)=Wg%(v)=0.5, (353
1 SHS

WE(v) =We(v) = 5 (35b)

WR(v) = WiS(v) = We(v) — WEX(w). (350

The excess entropy for a hard sphere fluid is determined
from the packing fractiory as expressed by the Carnahan—
Starling equation of statewhich in our model becomes

sis g6 fy(3fy—4)

K w Cnz(fy)]+ TA—fy)Z
whereS'® is the ideal gas contribution calculated at the same
temperature and density. Finally the reference energy from
Eq. (17) is modified as

(36)

Vo=EMP— g1 f A S(0)WES(v) + S () WE(v)]
0

=EMP— B~13N(1-0.5f), (37

where we used Eq353. The simplicity of the above expres-
sions arises from the frequency independence of the weight-
ing functions for hard spheres. This allows us to obtain ana-
lytic expressions for the various quantities, showing the
advantage of our definition of the gas phase as a hard sphere
system.

Quantum effects in 2PT are included through the use of
proper weighting function for the solid component in Eq.
(20). Using classical statistics of a harmonic oscillaftiqg.
(16)] for W';O(u) leads to classical thermodynamic proper-
ties, the 2PTC) model, whereas quantum statistj&gy. (15)]
gives the quantum-corrected properties, @T We show

The A is proportional to the system diffusivity, which under- later that quantum effects are small for LJ systerig%)
lies many transport properties of the system. It includes efbut could be important for more complex molecular systems
fects of temperature, density, and different material characsuch as hydrocarbons and DNA.

teristics(mass and diffusivity Substituting Eq(32) into Eq.
(31), we obtaina universal expression forf in terms of A,
2A79/2f15/2_ 6A73f5_ A73/2y7/2+ 6A73/2f5/2+ 2f—2=0.
(34)
Figure 2 shows the fluidicity factdr(solid curve as a func-
tion of the normalized diffusivityA, where we see that

—0 asA—0 andf—1 asA—o. Thus for a given value of

A, Eq.(34) gives a unique value dfwithin 0 and 1. Figure

In this paper, we develop and validate the approach for
decomposing the DoS for pure Lennard-Jones fluids. Later
work will extend the 2PT to mixtures and polyatomic sys-
tems.

Ill. COMPUTATIONAL DETAILS

The thermodynamic properties of Lennard-Jore$)

2 also shows the changes of the hard sphere packing fracti%s, liquid, and solid are used to examine the two-phase

fy of the gas componer{dotted curve as a function ofA.

thermodynamid2PT) model described in Sec. 11 D. The in-

For largeA (high temperature, low density, or highly diffu- teraction potentiaV between two LJ particles is described
sive) fy approaches 0, indicating that the whole system Cahrough the standard LJ-12-6 equation

be represented as a dilute gas. At srdalalues(low tem-

perature, high density, or nondiffusivdy approaches 1,
which means that small fraction of the hard sphere gas com-

12
V=4¢

o 6

s
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2.0 TABLE I. Simulation conditions for systems studied in this work.
Lennard-Jones Phase Diagram
| p* T N Equilibration Sampling Step
1810 © © © m steps steps size (fs)
1.6 F SUPER CRITICAL FLUID 0.05 0.9, 1.1, 512 10 000 80 000 8
0.40 1.4,1.8 512 10 000 20000 8
o o o 0.70 512 10 000 20000 8
—_ eritcal poih Os 0.85 512 10000 20000 8
1.10 500 10000 40000 4
Os % ace centered cubic lattice is used.
SOLID
Os . . .
The simulation results are analyzed by calculating the
velocity autocorrelation function and its Fourier transform to
' . . . . obtain the density of state distribution functi®iv). The
0.0 0.2 04 0.6 0.8 1.0 1.2 zero frequency valu§(0) leads to self-diffusion coefficient
o D via Eq.(12). To determine thermodynamic properties us-

FIG. 3. Phase diagram of Lennard-Jones systems. The open circles represm% the 2PT model, the constaitts first calculated from Eq.

the states studied in this work. The solid curves indicate the phase bounda ) _[Wheresof S(O)_] with the results f(_)r_the 20 State points
(bimodal lines and the dashed curves are the stability lingitsinodal lines ~ studied here listed in Table Il. The fluidicity factbis then
for liquid—gas equilibrium. Labels are added next to the open circles to helgolyed from Eq.(34) (using Newton’s method, results listed
identify the thermodynamic state of each pdmfor solid, | for liquid, g for - -
gas, m for metastable, and for unstable. For clarity, points in the super- In Tab,le 1. Having S(O) ar,]df’ the DoS of gas _component
nentS’(v) is obtained by subtracting®(v) from theS(v) of
the real system. The thermodynamic properties are then de-

) ) ) ) termined from Eq(20) with the gas and harmonic weighting
wherer is the separation distance between two particles, ang|, ., tions given in Eqs(15), (16), and (35).

e and o are two parameters characterizing the strength of

interaction and the size of the LJ patrticles. In this work, the

parameters of argore 0.238 kcal/mol,c=3.405 A%, and  IV. RESULTS AND DISCUSSIONS

r_nassm=39.94é_3 g/mol) are used in the actual MD simula- A. Pressure, energy,

tions. To remain general the results are then presented in

reduced units: density* =po®, temperatureT* =kT/e, The pressure and energy for Lennard-Jones systems

pressureP* =P¢3/s, energyE* =E/s, entropyS* =Sk,  from our MD simulations are compared to the literatére

Helmholtz free ener‘gy'A"‘:,A\/g7 Gibbs free energﬁ* equation of StatéEOS predictions in Table Ill and F|g 4.

=Gle, and diffusivity D* = D(m/e) Y% o). For the fluid phase, the modified Benedict—Webb—Rubin
We consider a range of 5 densities and 4 temperatureédBWR) EOS developed by Johnset al.*? is used while

(Fig. 3) including:

and quantum effects

(1) 3 stable solid phases; TABLE Il. The normalized diffusivityA calculated from Eq(33) and the

(2) 3 stable liquid phases; “fluidicity” fraction factor f determined from Eq(34) for the 20 state points

(3) 1 stable gas phase; studied in this work.

(4) 8 supercritical fluid phases; A

(5) 1 metastable solid phase; T*

(6) 1 metastable liquid phase; .

(7) 1 metastable gas phase; P 18 14 1 09

(8) 2 unstable fluid phases; 0.05 10.125 8.612 7.812 6.399

0.40 2.024 1.886 1.683 0.973

for a total of 20 state points to cover the phase diagram?-70 0.964 0.781 0.703 0.667

CERIUS2(Ref. 10 was used for all MD simulations. Constant 0.85 0'5253% 0'42§3 0'37_84 0'393
X X 1.10 1.2% 10 1.09x 10 8.05x 10 7.52x10

volume, temperature, and number of partid®/T) simula-

tions are performed at each state point. Table | lists the de- f*

tails of the MD runs which ranged from a total of 160 ps T

(solids to 640 ps(gas. [We will show later(Table IV) that it p* 1.8 1.4 1.1 0.9

would have been pgssib!e to achieve similar accuracy witrg).05 0.935 0.921 0.911 0.859

MD runs (after equilibration of only 20 ps(ga9 to 5 ps 4o 0.690 0.675 0.647 0.538

(solid and liquid.] Long-range interactions are included us- 0.70 0.534 0.491 0.470 0.4%0

ing the Ewald sum method (Accuracy Bounded 0.85 0.417 0.379 0.358 0.326

ConvergencE with accuracy parameter 0.00land the 1.10 0.0163 0.0152 0.0128 0.0123

Nose-Hoover thermostattime constant of 0.05 pds used  ajnswble states.

to control the temperature. PMetastable states.
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TABLE Ill. Comparison of properties of Lennard-Jones systems calculated from different methods.

PressureP*
T*
p* Method! 18 14 11 0.9
0.05 MD 0.082+0.004 0.060-0.004 0.042-0.004 0.029-0.004
MBWR EOS 0.083 0.061 0.043 0.031
0.40 MD 0.537+0.098 0.195-0.084 —0.034+0.080 —0.082+0.085
MBWR EOS 0.541 0.205 —0.038 —-0.181
0.70 MD 2.457+0.244 1.2790.201 0.3430.174 —0.324-0.151
’ MBWR EOS 2.482 1.291 0.345 —-0.315
085 MD 6.024+0.334 4.0950.301 2.506-0.234 1.3630.201
’ MBWR EOS 6.050 4.100 2.521 1.372
110 MD 15.989+0.490 12.7420.393 10.28%0.316 8.624-0.256
’ van der Hoef EOS 16.005 12.755 10.292 8.627
EnergyE*
T*
p* Method' 1.8 1.4 1.1 0.9
2PT(Q) 2.338 1.702 1.186 0.768
0.05 MD 2.338+0.035 1.702-0.024 1.185:0.027 0.766:0.052
MBWR EOS 2.351 1.715 1.213 0.847
2PT(Q) 0.111 —0.652 —1.429 —2.639
0.40 MD 0.105+0.052 —0.660+0.050 —1.442+0.080 —2.664+0.072
MBWR EOS 0.101 —0.656 —1.324 —1.928
2PT(Q) —1.698 —2.522 —3.153 —3.583
0.70 MD —1.719+0.068 —2.546+0.053 —3.181+0.042 —3.615-0.034
MBWR EOS -1.717 —2.544 —3.169 —3.608
0.85 2PT(Q) —2.358 —3.297 —4.026 —4.520
’ MD —2.395+-0.102 —3.340+0.078 —4.075-0.050 —4.576+-0.041
MBWR EOS —2.402 —3.340 —4.051 —-4.570
2PT(Q) —3.420 —4.519 —5.338 —5.880
1.10 MD —3.508+0.129 —4.621+0.088 —5.456+0.064 —6.016+0.047
van der Hoef EOS —3.945 —-4.611 —5.449 —6.010
Entropy S*
T*
p* Method® 1.8 1.4 1.1 0.9
1PT(Q) 18.136 17.267 16.419 15.155
0.05 2PT(Q) 14.167 13.748 13.205 12.730
’ 2PT(C) 14.167 13.748 13.204 12.729
MBWR EOS 14.071 13.671 13.267 12.900
0.40 1PTQ) 11.685 10.979 10.033 8.372
2PT(Q) 11.303 10.739 10.021 8.882
2PT(C) 11.301 10.736 10.016 8.868
MBWR EOS 11.138 10.662 10.122 9.513
1PT(Q) 9.191 8.576 7.972 7.465
0.70 2PT(Q) 9.697 9.168 8.620 8.145
’ 2PT(C) 9.691 9.159 8.607 8.127
MBWR EOS 9.510 8.990 8.487 8.046
1PT(Q) 8.034 7.378 6.741 6.215
0.85 2PT(Q) 8.776 8.159 7.548 7.019
’ 2PT(C) 8.766 8.144 7.526 6.988
MBWR EOS 8.582 7.992 7.420 6.899
1PT(Q) 6.090 5.435 4.801 4.282
110 2PT(Q) 6.174 5.512 4.865 4.344
’ 2PT(C) 6.150 5.476 4.812 4.269
van der Hoef EOS 6.226 5.525 4.851 4.288
Helmholtz free energp*
T*
P*
Method' 1.8 1.4 1.1 0.9
1PT(Q) —30.300 —22.473 -16.871 —12.924
0.05 2PT(Q) —23.162 —17.544 —13.338 —10.689
’ 2PT(C) —23.162 —17.544 —13.339 —10.690
MBWR EOS —22.977 —22.977 —13.381 —10.762
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TABLE Ill. (Continued)

0.40 1PTQ) —20.907 —16.008 —12.450 —10.156
2PT(Q) —20.232 —15.681 —12.448 —10.628
2PT(C) —20.235 —15.685 —12.455 —-10.641

MBWR EOS —19.948 —19.948 —12.458 —10.489

0.70 1PTQ) —-18.211 —14.502 —11.900 —10.280
2PT(Q) —19.136 —15.346 —12.628 —10.909
2PT(C) —19.146 —15.358 —12.642 —10.924

MBWR EOS —18.834 —18.834 —12.505 —10.850

0.85 1PTQ) —-16.777 —13.593 —11.413 —10.088
2PT(Q) —18.129 —-14.704 -12.319 -10.831
2PT(C) —18.148 —14.725 —12.344 —10.858

MBWR EOS —17.849 —17.849 —12.214 —-10.779

1.10 1PTQ) —14.369 —12.118 —10.610 —-9.727
2PT(Q) —14.526 —-12.232 —10.687 —9.788
2PT(C) —-14.570 —12.283 —10.746 —9.856

van der Hoef EOS —14.702 —14.702 —10.785 —9.869
Gibbs free energy*
T*
p* Method 1.8 1.4 1.1 0.9

0.05 1PTQ) —28.656 —21.286 —16.030 —12.356
2PT(Q) —21.522 —-16.351 —12.495 —10.102
2PT(C) —21.522 -16.351 —12.496 —10.103

MBWR EOS —21.318 —16.215 —12.518 —10.142

0.40 1PTQ) —19.584 —15.521 —-12.537 —10.361
2PT(Q) —18.889 —15.195 —12.535 —10.834
2PT(C) —18.892 —15.199 —12.541 —10.847

MBWR EOS —18.595 —15.070 —12.553 —10.941

70 1PTQ) —-14.701 —-12.675 —11.410 —10.743
2PT(Q) —15.626 —13.519 —12.138 —-11.371
2PT(C) —15.637 —13.531 —12.152 —11.387

MBWR EOS —15.288 —13.286 —-12.012 —11.299

0.85 1PTQ) —9.690 —8.776 —8.472 —8.484
2PT(Q) —11.042 —9.887 —-9.378 —9.227
2PT(C) —11.061 —9.908 —9.403 —9.255

MBWR EOS —-10.732 —-9.706 —9.248 —-9.165

1.10 1PTQ) 0.167 —0.534 —1.258 —1.887
2PT(Q) 0.009 —0.648 -1.334 —1.948
2PT(C) —0.035 —0.699 —-1.394 —2.016

van der Hoef EOS —-0.152 —0.751 —1.429 —-2.027
Self-diffusion coefficienD*
T*
p* Method 1.8 1.4 1.1 0.9

0.05 S(0) 0.253 0.190 0.153 0.113

Ruckenstein and Liu 0.248 0.201 0.160 0.131

0.40 S(0) 0.203 0.166 0.129 0.069

Ruckenstein and Liu 0.197 0.159 0.128 0.105
0.70 S(0) 0.140 0.100 0.080 0.069

Ruckenstein and Liu 0.136 0.106 0.083 0.067
0.85 S(0) 0.087 0.062 0.049 0.036

Ruckenstein and Liu 0.089 0.065 0.047 0.036
1.10 S(0) 0.000 0.000 0.000 0.000

Ruckenstein and Liu

3D, molecular dynamics results. MBWR EOS, modified Benedict—Webb—RWBIWR) equation of Johnsoet al. (Ref. 12; van der Hoef EOS, work of
van der Hoef for the Lennard-Jones salRef. 13. 1PT(Q): using harmonic approximation to D4&q. (15)]. 2PT(C): DoS decompositiofiEq. (20)] with
classical harmonic statisti¢&q. (16)] applied to the solid part. 2RQ) DoS decompositiofEg. (20)] with quantum harmonic statisti¢gq. (15)] applied
to the solid partS(0): Eq.(12). Ruckenstein and Liu: work of Ruckenstein and ((Ref. 14.

the recent work of van der Ho€fis chosen for the solid exception of the two thermodynamically unstable points
phase. These equations of state were parameterized to extdp* =0.4, T*=1.1 and 0.9 For thep*=0.4, T*=0.9 un-
sive, high quality MD or Monte CarloMC) simulations and  stable point we find that phase segregation has already oc-
can be taken as the best available theoretical values. We firairred within the 240 ps simulation. For the three metastable
that our results agree well with the literature values, with thestates p*=0.05, T*=0.9; p*=0.7, T*=0.9; and p*
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FIG. 5. The velocity autocorrelatiaivAC) function for Lennard-Jones sys-

b) Total Energy ter_ns atT* :1.1_an_d different dz_ens_itiesp* =0.05 gas,p* =0.40 unstable
2 o MD fluid, p* =0.70 liquid, p* =0.85 liquid, andp* =1.10 crystal.
O  2PT(Q)
1 L
o S(v) with frequency[Fig. 6@]. This is expected since the
1t mean free path is much larger then the particle diameter for a
E*, L 18 _LJ gas, leading to a coIIisi(_)n probability that decrease_s rap-
@ N \‘\@\ ' idly with the number of collisions per unit time, proportional
3r ! 8 el o to the vibrational frequency.For a true ideal gas, i.e., no
4t \em\.:\e\‘ m collisions, the VAC would remain constant and the DoS
A 2 would be a delta function at=0.] For a crystal, the VAC
S -9 (Fig. 5,p* = 1.10) oscillates around zero with the amplitudes
-6 TEOB-—Q;'/ decreasing with time. The oscillation of the VAC is a result
7 , . , , . of the incoherent vibration of the particles at their equilib-
0.0 0.2 0.4 0.6 0.8 1.0 1.2 rium positions.(For a single particle vibrating in a harmonic
p* potential, the VAC is a cosine function and the DoS is a delta

function) The corresponding DoS has zero intensityuat

FIG. 4. The pressuréa) and energy(b) for Lennard-Jones systems. The _ - ; 2 ;
curves are based on high quality equations of stRefs. 12, 13 (solid, 0 and increases gradually with frequeries” according

T*=1.8; dot-dot-dashedT*=1.4; dashed,T*=1.1; dot-dashed,T* to Debye theory[Fig. 6(c)]. The DoS of a LJ crystal has
=0.9) the open diamonds are from our MD simulation, and the open circleseveral peaks, reflecting the structured nature of crystals. For
are quantum corrected energies. an amorphous solidor glass, the distribution ofS(v) is
expected to be smooth. The VAEig. 5,p* =0.85) and DoS
Q:ig. 6(b)] of a LJ liquid have characteristic of both gas

_ . . .

1'10’T. 1.8) no obvious pha;e segrggatlon was ObserVephase and amorphous solids: The VAC oscillates around
and we find good agreement with the literature EOS. g = )
zero, and thé&(v) is finite atv=0 and goes through a maxi-

. The quantum_effects in the LJ systems can be .de.terr'num before it monotonically decays to zero. This special
mined from the difference between the quantum statistical - T .
energy[2PT(Q) in Table I11] and the MD energyiNote that characteristic shape of the liquid state DoS provides the

ay ; . oY . foundation of the DoS decomposition described in Sec. 1l D.
MD energy is equivalent to the classical energy, e, The decomposition 08(v) based on the DoS distribu-
2PT(C).] Quantum effects are in general small: essentially

. . ion of a hard sphere gas is also presented in Fig. 6. In the
fc)err?hf:rcl;;s?;llzesst,u?dti);;jthleor/;m energy for the liquids, and 2(%)ow density and high temperature linjfig. 6(a)], the expo-

nential decay of the velocity autocorrelation function for a
hard-sphere gas results irSd(v) closely resembling that of
the true LJ gas. This is reasonable since the effects of the
attractive part of LJ potential decays with increasing tem-
The velocity autocorrelatiofVAC) as a function of time  perature. Consequently the repulsive part dominates at high
for LJ particles at temperatufB* =1.1 and different densi- temperatures and a LJ gas behaves much like a hard-sphere
ties is shown in Fig. 5 and some of the corresponding vibragas. In the case of a crystdfig. 6(c)], there is an insignifi-
tional density-of-state(DoS) distributions (representatives cant amount of diffusive motion an8%v) is essentially
for gas, liquid, and solidare presented in Fig. 6. For a gas, zero. For LJ liquiddFig. 6(b)] the proposed decomposition
the VAC (Fig. 5, p* =0.05) decays slowly and monotoni- scheme nicely partitions the over&v) into a gaslike and a
cally with time, resulting in a rapid and monotonic decay of solidlike component.

B. Velocity autocorrelation and density
of state distribution

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



11802  J. Chem. Phys., Vol. 119, No. 22, 8 December 2003

1200

1000

800 r

S(v) [em]

400

200

30

S(v) [em]

35

30

25 ¢

S(v) [em]

107

FIG. 6. The density of state distribution of L&) gas (*=0.05T*
=1.1), (b) liquid (p*=0.85T*=1.1), and(c) fcc crystal p*=1.10T*
=1.1). The total density of state distributi®jv) is shown in black line, the
gas componer$%(v) determined with a hard sphere fluid in dot-dashed line,
and the nondiffusive, solidlike compone&t(v) in the dotted line.
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From Fig. 6 and Table Il the percentage $fv) increases
with decreasing densities and increasing temperatures. In
other words, there is more gaslike component in a system as
the temperature increases and/or as the density decreases.
Since the factof increases monotonically with the normal-
ized diffusivity A (Fig. 2), both parameters are a good mea-
sure of the “fluidicity” of a system. The proposed decompo-
sition is not only reliable and stable, but is also physically
meaningful.

C. Entropy and free energies: Fluidicity
and quantum effects

The usefulness of the DoS decomposition method intro-
duced here depends on the accuracy in calculating the ther-
modynamic properties. Figurddj shows the entropy deter-
mined from the one-phase model with quantum statistics,
1PT(Q). For the crystalline phasep{ =1.10) the entropy is
calculated quite accurately, but for low-density fluigs* (
=0.05,0.40) it is overestimated while for high-density fluids
(p*=0.70,0.85) it is underestimated. In contrast, the 2PT
method leads to a much more accurate entropy for all densi-
ties[Fig. 7(b)] regardless of the use of classi¢aPT(C)] or
guantum[2PT(Q)] statistics for the solid component.

Table 11l lists the numerical values of the calculated en-
tropy from different methods. The problem with applying the
harmonic approximation to the whole DoS, i.e., 1PT method,
can be understood by examining t8év) in Fig. 6 and the
weighting function in Fig. 8. At low densities, e.gT*
=1.1 and p*=0.05 (hard sphere packing fractioriy
=0.036), most vibrational modes are located belaw
=4 cm ! [Fig. 6@]. In this region, the HO weighting func-
tion (either quantum or classigak much higher than that of
the hard spheréHS). Since in this condition the LJ gas be-
haves like a HS gas, the HO description overestimates the
entropy.

The situation is somewhat different for liquids. The dis-
tribution of S(v) is broadened: For example, Bt =1.1 and
p*=0.85 (fy=0.309) theS(v) extends to more than 100
cm ! and has a maximum at around 20 ¢hiFig. 6(b)]. The
HO description underestimates the entropy for this liquid
case because the HO weighting is too small in the range
between 4-100 cit. This is also evidence for anharmonic
effects in the liquid phase. The decomposition of the DoS,
2PT, allows us to separate the harmoBiv) and fluidic
SY%(wv) components in the system to provide appropriate
weights to each contributions. This leads to accurate values
of entropy.

The quantum corrections to the entropy can be obtained
by comparing the quantum and the classical entrofmpsn
and closed circles in Fig.()]. Similar to the energy, the
quantum effects are generally small and increase with in-
creasing density or decreasing temperature. Roughly, quan-

The integrated area underneath each DoS distribution isim corrections in entropy are essentially zero for LJ gas,

equal to the number of degrees of freeddsq. (9)]. There-

0.5% for LJ liquid and, 1.8% for LJ crystals. The small quan-

fore, the ratio of the areas from the diffusive modes and theum corrections in LJ systems can be understood as small
overall system leads to the facthri.e.,

differences between the entropy weighting functions of
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FIG. 7. Entropies determined from the density of state meth@lOne-
phase quantum 1R®) model; (b) two-phase classical, 2RT) and quan-
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a) Helmholtz Free Energy — 1PT
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b) Helmholtz Free Energy — 2PT
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FIG. 9. Helmholtz free energies determined from the density of state meth-

tum, 2PTQ), models. The curves are based on equations of state predictiongys. () One-phase quantum 1RJ) model,(b) two-phase classical, 2RT),

(Refs. 12, 13 (solid, T* =1.8; dot-dot-dashedl* =1.4; dashed* =1.1;
dot-dashedT* =0.9).

and quantum, 2RA), models. The curves are based on equations of state
predictions(Refs. 12, 13(solid, T* = 1.8; dot-dot-dashed;* = 1.4; dashed,

T*=1.1; dot-dashedl* =0.9).

Weighting Function for Entropy

w (v)

60 90 150

v[em™]

FIG. 8. Comparison of the entropy weighting function for a classical har-
monic oscillator(HO), a quantum harmonic oscillat¢®HO), and a hard
sphergHS) fluid at T* = 1.1 with gas phase packing fractiép=0.036 and
T*=1.1 with fy=0.309.

quantum and classical HQFig. 8 within the range ofv
<150 cm !, For molecular system with strong interactions,
e.g., covalent and hydrogen bonds, quantum effects will be
more significant.

Figures 9 and 10 and Table Il compare the calculated
Helmholtz A*=E*-T*S*) and Gibbs G*=A*
+P*/p*) free energies. Due to the inaccuracy in determin-
ing the entropy, the 1PT method underestimates the free en-
ergies at low densities and overestimates them at high den-
sities. The 2PT method overall gives very good agreement
with the EOS values. It is interesting to note that the calcu-
lated properties in the metastable regime also agree well with
EOS. Consequently the 2PT method should be useful for
studying the thermodynamic driving forces for nucleation
and the viscosity of metallic glasses. It should also be useful
for dynamical systems involving time scales and transport
coefficients, including in phase transitions, that may not be
accessible to Monte Carlo methods.
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5 7 D. Self-diffusion coefficient
a) Gibbs Free Energy — 1PT %
S
g s
s
m

We compare in Fig. 11 and Table Il the calculated self-
diffusion coefficients with a model recently developed by
Ruckenstein and Lit* Their model was fitted to various
simulations results at conditions ranging froffi=0.72 to
10.0 andp* =0.00 to 1.12, and is considered by us to give
good “averaged” literature values. We find that there is an
excellent agreement with the literature values. Thus the use
of S(0) gives very reliable values for self-diffusion coeffi-
cients in liquids. Our calculated values tend to deviate from
Ruckenstein and Liu’'s values for dilute gases at low tem-
perature, as their model may have larger relative errors at
A 1PT(Q) low temperatured?

-30 . : . . :
00 02 04 06 08 10 12

E. Convergence efficiency

A particularly attractive feature of the 2PT model devel-
oped here is that it is quite efficient for obtaining converged
thermodynamic properties, especially for liquids. Figure 12
compares the entropy values calculated from MD trajectories
of different lengths(from 2.5 ps to 2.5 nsfor a LJ gas
(p*=0.05T*=1.8) and a liquid p* =0.85T*=0.9). The
numerical values are listed in Table IV. The entropy for the
gas phase system converges to within 0.2% with 2500 MD
steps(20 p9 and for the liquid phases converges to within
1.5% with 2500 MD step$20 p9. Thus the 2PT method is
much more computationally efficient than test partiClé’)
or thermodynamic integratiofiTl) techniques, where mil-

25 L o 2PT(Q) lions of samplings are usually necessary to obtain good sta-
*  2PT(C) tistics. The reason for the efficiency of 2PT is the very effi-
-30 L " . L : cient use of trajectory information. In 2PT, the evolution of
0.0 0.2 0.4 0.6 0.8 1.0 1.2 velocities fromall the particles are used to establish the DoS,
s which is later used to determine the thermodynamic proper-

FIG. 10. Gibbs free energies determined from the density of state methody.es' In contrast, other methodEP, Tl, etc) usually use only

(a) One-phase quantum 1RJ) model and(b) two-phase classical, 2RT), oneprobe particle to build up the statistics at each simulation

and quantum, 2RD), models. The curves are based on equations of statestep. Therefore, we expect the 2PT method tdNkenes (N

piedictions(Refs. 12, 1*$(solid,T*:1.8; dot-dot-dashed;* =1.4; dashed, being the number of particles in the sysbemore efficient

T"=1.1; dot-dashed™ =0.9). than other methods. This makes 2PT an attractive method to
study thermodynamic properties for complex systems.

0.30
Self-Diffusivity
15.5
0.25 O DoS Convergence of Entropy: 2PT
: 145}
0.20 Rl B -0 2PT(Q)
D*p* 125} * 2PT(C)
p - . MBWR EOS
0.15 | $* 115
105 gas (p=0.05 T'=1.8)
0.10
95} liquid (p'=0.85 T"=0.9)
0.05 8.5 |
s 75+t
0.00 ; : . . o e b
0.0 0.2 0.4 0.6 0.8 1.0 1.2 6.5 . , ,
o 100 1000 10000 100000 1000000

MD steps
FIG. 11. Reduced diffusivitymultiplied by reduced densitydetermined
from the zero frequency value of the D@Bq. (12)]. The curves are based FIG. 12. Calculated entropy from the 2PT method with trajectory of differ-
on the work of Ruckenstein and Li(Ref. 14 (solid, T*=1.8; dot-dot- ent lengths for a LJ gasp{=0.05T*=1.8) and liquid p*=0.85T*
dashedT* =1.4; dashedT* =1.1; dot-dashedl* =0.9). =0.9). One MD step corresponds to 8 fs (1Ds).
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TABLE IV. Convergence of the 2PT method for LJ gas* & 0.05,T* =1.8) and liquid p* =0.85,T*=0.9).

MD steps 313 625 1250 2500 5000 10000 20000 40000 80000 160000 320000
time (ps) 25 5 10 20 40 80 160 320 640 1280 2560
No. samples 1024 512 256 128 64 32 16 8 4 2 1
p*=0.05T*=1.8(gas

2PTQ) 13.444 14.040 14.224 14.274 14.234 14.225 14.237 14.248 14.270 14.242 14.286
dev 0.020 0.015 0.015 0.025 0.050 0.072 0.080 0.059 0.113 0.067
2PT(C) 13.442 14.040 14.224 14.274 14.234 14.225 14.237 14.248 14.270 14.242 14.286
de 0.020 0.015 0.015 0.025 0.050 0.072 0.080 0.059 0.113 0.067
MBWR 14.071
EOS

p*=0.85,T*=0.9 (liquid)
2PTQ) 6.980 7.004 6.989 6.989 6.991 6.989 6.987 6.991 6.992 6.991 6.995
de? 0.056 0.046 0.038 0.028 0.019 0.016 0.009 0.008 0.006 0.004
2PT(C) 6.946 6.972 6.957 6.958 6.960 6.958 6.957 6.960 6.961 6.960 6.965
de 0.057 0.046 0.038 0.028 0.020 0.017 0.009 0.008 0.006 0.004
MBWR 6.899
EOS

aStandard deviation.
PModified Benedict—Webb—RubifMBWR) equation of Johnsoat al. (Ref. 12.

V. CONCLUSIONS AND OUTLOOK In this paper we validated the 2PT method for pure LJ
) fluids, but the method applies with no modification to gen-
This work develops the 2 phase thermodynaniZ®T) o5 force fields. We expect that the 2PT method provides the

approach for calculating the thermodynamic properties ofgcessary information for calculating such other transport
f!UIdS from single molecular dynamics s!mulgtlon trale?to'properties as viscosity and thermal conductivity.

ries. The 2PT method makes use of the vibrational density of

states extracted from MD trajectories. Other approaches have

been suggested for determining thermodynamic properties

from the MD derived vibrational density of states or from the
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