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The Two-prime Analogue of
the Hecke C*-algebra of Bost and Connes

NADIA S. LARSEN, IAN F. PUTNAM ¢ IAIN RAEBURN

ABSTRACT. Let p and q be distinct odd primes. We analyse a
semigroup crossed product C*(Gy 4) X N? similar to the semi-
group crossed product which models the Hecke C*-algebra of
Bost and Connes. We describe a composition series of ideals in
C*(Gp,q) ¥ N2, and show that the structure of one of the sub-
quotients reflects interesting number-theoretic information about

the multiplicative orders of g in the rings 2/p ‘2.

In (3], Bost and Connes introduced and studied a Hecke C*-algebra Cq
which has many fascinating connections with number theory. It was shown in
[11] that Cg can be realised as a crossed product C*(Q/Z) xx N* by an endo-
morphic action « of the multiplicative semigroup N* of positive integers, and
this realisation gives a great deal of insight into the Bost-Connes analysis (see [9]).
Here we fix two odd primes p and g, and analyse the semigroup crossed product
C*(Gp ) 2 N? associated to the subgroup Gp 4 := {n/p*a’ | n€2}/ZofQ/Z
and the restriction of « to the subsemigroup {p*q’} c N*, which is isomorphic
to the additive semigroup N2. This crossed product still exhibits rich connections
with number theory, though of a somewhat different nature: it has a subquotient,
for example, whose ideal structure encodes the multiplicative orders of g in the
rings 2/p'z.

We begin our analysis by passing to the Fourier transform of our dynamical
system, which involves the algebras of continuous functions on the spaces of p-
adic and g-adic integers. We describe our dynamical system (C*(Gpq), N2, &)
and its Fourier transform in Section 1. Next we construct a composition series for
C*(Gpy) Xa N? using general results about invariant ideals and tensor products
of semigroup crossed products which have been worked out in [13]. Our main
structure theorem is Theorem 2.2, which is proved in Section 2 and Section 3.
Theorem 3.1, which gives a detailed description of an ordinary crossed product
C(U(Z,)) x Z arising in our analysis, is interesting in its own right: it shows, for
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172 NADIA S. LARSEN, IAN F. PUTNAM ¢ IAIN RAEBURN

example, that C(U(Z,)) ¥ Z is simple if and only if g is a primitive root modulo
p! for all £, which happens if and only if it is primitive modulo p? for any single
¢ > 1 (see Remark 3.8). In the last section, we describe the topology on the
primitive ideal space of C*(Gp,) xx N2, thus completely determining its ideal
structure.

1. THE DYNAMICAL SYSTEM AND ITS FOURIER TRANSEORM

Let p and g be distinct odd primes. We consider the additive group
Zlp~la 1= (rp~*q | r k¢ € 7)

and its quotient Gp 4 = Z[p~',q"']/Z. We write o for the action of N? by
endomorphisms of the group C*-algebra C* (Gp,q) which is characterised on the
canonical generating unitaries {8, | ¥ € Gpgq} by

1
p'h‘lqn

5s§

{seG,,‘qlp'"q"s:r}

(1.1) K (6y) =

we can see that there is such an action either by modifying [11, Proposition 2.1]
or by applying the general method of [14, Section 1] to the action of N? on Z
defined by Ny (k) = pMgik (sce (14, Example 1.2]). As in {10, Proposition
2.1}, the action satisfies

(1.2) (Xk,(’(l)(xm,n(l) = O‘kvm,l‘vn”)-

A covariant representation of the dynamical system (C* (Gp.g), N2, &) consists
of a nondegenerate representation 71 of C* (Gp,q) and a representation V of N2 by
isometries on the same space such that

(1.3) m(amn(@)) = V@)V, forae C*(Gp,y) and (m, n) € N?;

the relation (1.2) then implies that the isometric representation V is Nica covari-
ant, in the sense that Vit VE eV Vin = Vium. tun Viium evn- One can see that
the system has nontrivial covariant representations by modifying the construc-
tions in [11], or by applying [14, Lemma 1.7]. Thus there is a crossed product
(C*(Gp,q) ¥aN?,i4,is), which is a universal C*-algebra for covariant representa-
tions of the system (see [10, Proposition 2.1]). (To avoid complicated notation, we
always write i4 and ig for the algebra and semigroup components of the universal
covariant representation.) This crossed product carries a dual action & of T2 which
leaves 1A(C*(Gp4)) invariant and satisfies &y z(is(m,n)) = wmzhig(m,n).
To compute the Fourier transform of the system, we need a description of the
dual group Gp4. Note that with Gp :=Z[p~'1/Z, the map (r,s) — r + s is an
isomorphism of G, x G4 onto G 4, and, dually, we have G, , = G, x Gy To
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describe Gp, note that Z[p =Upp 7, so Gp = (U p~tZ)/Z has a natural
descrlptlon as a direct limit lﬂl ptz/z, and Gp is an inverse limit lim(p~ tz12y

of finite groups. The usual pairing (t,n) = exp 2mitn of Z with R/Z induces an
isomorphism of Z/p?Z onto (p“)Z/Z)‘, and it is easy to check that the dual of
the inclusion p=¢2/Z — p=+17/Z is the map of Z/p**'Z onto Z/p*Z given by
reduction mod p’. Thus G, is naturally identified as a compact group with the
inverse limit ljr_r_x Z/p‘)l.

Each Z/p'Z is a ring, and the reduction maps are ring homomorphisms, so
l.iLnZ/p’Z is a compact topological ring Z,, which is called the ring of p-adic

integers; in the previous paragraph, we identified G, with the additive group of
Zp. However, the multiplicative structure of Z,, plays a crucial role in our analysis,
for two reasons. First, we can use it to describe the action a: the reduction maps
Z - 7/p*Z induce an embedding of Z in Z,, and &m,n is, loosely speaking,
division by p™q" (see Lemma 1.1 below). Second, the group U(Z},) of units in
Zy (the multdplicatively invertible elements) appears in our theorems. We need
to know that there is a natural identification of U(Z,) with lim UZ/piT), and

that an integer M is a unit in Z, precisely when m is coprime to p. For these and
other properties of Z,, we refer to [16, Chapter II].

We are now ready to describe the Fourier-transform system. The dual of G 4
18 2y X Zy; if T denotes the canonical map of Z,, onto Z/ptz, then the pairing is
gtven by

(1L4) (¥ +5,(x,%) = exp2mi(rmp(x) + smyp(y)) forr e Zlp™'],
s€Z[q '], and ¥ large.

Lemma 1.1. The Fourier tmmfbrm C*(Gpq) = C(Zp X Ly) carries the action
defined by (1.1) into the action given by

if x € p™q"Zp and
Mgy pTMmg-hy)
(15) ol f)(x,y) = Sfp™™q pIaY) ) e pmgny,,
0 otherwise.

Proof. We aim to apply [13, Proposition 4.5]. To do this, note that ot »
is defined by averaging over the solutions s of Bm n(s) = r, where B n is the
endomorphism of Gp 4 defined by B0 (s) = p™q"s. From the pairing (1.4), we
see that the endomorphism Buan of Z, X Zy is given in terms of the ring structure
by 3m 2 (X, ) = (p"a"x, p™q"y). Thus the Lemma follows directly from [13,
Proposmon 4.5]. C
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2. THE STRUCTURE THEOREM

Our main theorem describes the structure of C* (G 4) X N>—or, equivalently, of
the crossed product C(Z), x Z4) xa N? of the Fourier-transform system described
in Lemma 1.1. To state it, we need a number-theoretic lemma. If k and m are
coprime integers, so that m is a unic in Z/kZ, we write oy (m) for the order of m
inU(Z/k2).

Lemma 2.1. Let p and q be distinct odd primes. Then there is a positive integer
L= Ly(q) such that

0p(q) iflsfl<I,
2.1) 0pe(q) =

pl-to,(q) ifl>1.

This lemma is presumably well-known; certainly some of its immediate con-
sequences are (see Remark 3.8). We are not going to prove it now, because we
shall prove a slightly more general result in Theorem 3.1. However, we waat to
use the integers L, (q) from this lemma in the statement of our main theorem.

Theorem 2.2. Let p and q be distinct odid primes. Then there are &-invariant
tdeals Iy and I in C* (Gpq) Xoa N? such that I, C I,

2.2) I = K(P(NY)) ® C(UZ,) x U(Zy)),
(2.3) L/ = (KN 8 C) e (K(£2(N)) ® D),  and
(2.4) (C*(Gpg) ¥aN?) /I = C(T?),

where C is the direct sum of (p ~ 1)p"»'1"110,/(q) Bunce-Deddens algebras with
supernatural number 0,(q)p™ and D is the direct sum of (q — 1)@" P~ 1/o,(p)
Bunce-Deddens algebras with supernatural number 0,(p)q>.

The algebra C*(Gp 4) = C(Z, x2,) decomposes as a tensor product C(Z,,) ®
C(Zy), and the action & given by (1.5) decomposes as a tensor product of two
actions of N%. At this point, we cannot separate the actions of the two copies of
N (as Bost and Connes say, the two primes interact), but there is a large invariant
ideal Co(Zp \ {0}) in C(Z,) where the action does split as a tensor product of two
actions of N. The ideals I, and I, will be crossed products of different invariant
ideals in C(Zp) ® C(Z4) built from Co(Zp \ {0}) and its twin.

For ordinary crossed products A x G by group actions, invariant ideals in A
give rise to short exact sequences

0 —=IXG—AXG— (A/)xG — 0.

For semigroup crossed products A xS, one has to know thar the ideal I is ex-
tendibly invariant, in the sense that each endomorphism o extends to endomor-
phisms of M(I) and M(A) in such a way that & (1a)) = & (1arca)) as mul-
tipliers of I (see [1, 13]). Since the endomorphism x — p™Mq"x of 7, leaves
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both Zp, \ {0} and {0} invariant, it follows from Lemma 1.1 and [13, Theorem
4.3) that I := Co(Zp \ 10}) and J := Co(Zy \ {0}) are extendibly invariant ideals
in A := C(Zp) and B := C(Z,). We can therefore apply [13, Theorem 3.1] to
deduce that the ideals I, ;= I ® J) xN2and L := I® B+ A® J) x N2 form a
composition series in which

(2.5) Iz (I®J) %y N2,
(2.6) Lih=z{A/D®J)xN?e (U ®(B/J)) N2, and
2.7) (A®B) xa N2/Ih = ((A/]) ® (B]])) x N2

Notice that because the ideals are crossed products, they are &-invariant. To prove
Theorem 2.2, therefore, we have to identify the subquotients.

We begin by noting that the maps f — f(0) induce isomorphisms A/I = C
and B/J = C,s0 (A/I) ® (B/]J) = C® C = C. Thus (2.7} is C x;y N2. When the
action is unital, as the identity action id certainly is, the covariance relation (1.3)
implies that the isometries are all unitary; thus € x4 N? is the universal C*-algebra
generated by a unitary representation of Z2. In other words, € g N2 = C*(Z2) =
C(T?), and we have proved (2.4).

For the other two parts, we need the promised decomposition of the action of
N*on 1= Cy(2p \ {0}).

Lemma 2.3. The map (n,x) — p"x is a homeomorphism of N X U(Zp) onto
Zp \ {0}.

Proof. Since every nonzero p-adic number can be uniquely written as a power
of p times a unit (by Proposition 2 of [16, Chapter 1I], for example), the map is
a bijection. It is 2 homeomorphism because it carries the basic open sets {n} x V
for the topology on N x U(Z,) into the basic open sets p"V for the topology on
Zp \ {0}. O

The lemma implies that I = Co(Zp, \ {0}) = ¢p(N) ® C(U(Zp)). To describe
what happens to the action o under this isomorphism, we need some notation.
We let T denote the action of N on ¢y (N) by forward shifts; if we think of elements
of ¢4(N) as functions on N, then

) ffk-m) itk=m
Tm (k) = {O ik < m.

Since (g, p) = 1, ¢ is a unit in Zp, and division by powers of g defines an action
0 = gP4 of Z by automorphisms of C(U(Zp)): 0 (f)(x) = f(g7"x). We now
have the following immediate corollary of Lemma 2.3:

Corollary 2.4. The isomorphism Co(Zp \ {0}) = co(N) ® C(U(Zp)) induced
by the homeomorphism of Lemma 2.3 carries K into the tensor product action T ® O :
(}n, }’l) hand T)n ® ()-n.
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Lemma 2.5. There is an isomorphism

(2.8) L/L = (K(£2(N)) ® (C(U(Zp)) Xgra 7))
& (K(£7(N)) ® (C(U(Zy)) Xgar T)).

Proof. First, recall that A/I = C and B/J = C, so from (2.6) we have
(2.9) LN = (I xy N?) @ (] 3y N2).

Next, we use the decomposition of Corollary 2.4 and [13, Theorem 2.5 (which
applies because our action satisfies (1.2)), to see that

(2.10) I' 3o N? = (co(N) X7 N) @ (C(UZp)) Xgra N).

Because 077+ consists of automorphisms, the isometries in any covariant represen-
tation of (C(U(Z,)),N, o) are unitary, and C(U(Z,)) x4 N is the usual crossed
product C(U(Zy)) x4 Z.

To handle the other factor in (2.10), recall that ¢ xr N = By X N is the
Toeplitz algebra, and cq(N) X1 N is the ideal of compact operators. More precisely,
let M denote the representation of ¢ by multiplication operators on #2(N), and
let S be the unilateral shift on £2(N). Then (M,S) is a covariant representation
of (¢,N, T) such that M x S is an isomorphism of ¢ X+ N onto the C*-algebra
generated by S. (This formulation of Coburn’s Theorem is described in 2], for
example.) It is easy to check that M x S carries the ideal ¢y X7 N onto K (£2(N)).
Thus (2.10) implies that I xq N2 = K @ (C(U(Zp)) %4 7). Swapping p and gq
gives an analogous description of J x4 N2, and the Lemma follows from (2.9). O

The description of I/, in (2.3) will follow from this lemma and Theorem
3.1.

To describe I) := (I ® J) x4 N2, we use two applications of Corollary 2.4 to
get an isomorphism

I'®J =ColZp \ {0}) ® Co(Zg \ {0}) = Co(N x N x U(Zp) x U(Zy))

which carries the endomorphism a4, into T, ® Th ® 07 @ o7, We now
borrow another idea from the theory of ordinary crossed products: recall that
(Co(G) ® A) Xrep G = (Co(G) X7 G) ® A for any action . Because q € U(Z,)
and p € U(Z,), the endomorphism @ of Co(N x N x U(Zp) x U(Zy)) defined by
QKL x,y) = fk ¥ q°x, p¥y) is an automorphism. A quick calculation
shows that p o (T, @ T, ® 079 ® ol =TpneT,0ide id, so @ induces an
isomorphism

I®J) X N = (co(N X N) Xrgr (N X N)) @ C(UZ,) x UZy)).
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To finish off the proof of (2.2), either note that

Co(N?) Xrgr N2 = (co X7 N) ® (co X1 N)
= K(£2(N)) ® K(H*(N)) = K(£*(N?)),

or check directly that the natural covariant representation of By: X+ N? on £2(N?)
restricts to an isomorphism of ¢o(N?) X N? onto K (£2(N?)).

To prove Theorem 2.2, therefore, it remains to prove Lemma 2.1 and to iden-
tify C(U(Zp)) o Z with the appropriate number of Bunce-Deddens algebras. We
do this in Theorem 3.1.

3. THE CROSSED PRODUCTS C(U(Zp)) Xy Z

Our analysis of C(U(Zp)) Mgra Z does not require that ¢ is prime, only that it is
coprime to p. We therefore fix an odd prime p and an integer m coprime to p,
and consider the action 0 = 07" of Z on C(U(Z,)) defined by

3.1) o™ (f)(x) = fFim"x).

Theorem 3.1. Suppose that p is an odd prime and (m, p) = 1, and denote by
0, (M) the order of m in U(Z/p'T). Then there is a positive inveger L such that

0p(m) fl<f<L
(3.2 Opw(m) =

pt-lo,(m) ifl>1L,

and C(U(Zp)) Ngrm I is the direct sum of p"~'(p — 1)/0,(m) Bunce-Deddens
algebras with supernatural number 0, (m)p™.

We begin by establishing the number-theoretic statements. Because U(Z/p?Z)
is cyclic of order (p — 1)p?~! (see Theorem 2 of [8, Chapter 4], for example), we
can apply the following elementary lemma about cyclic groups.

Lemma 3.2. Suppose that (n,p) = 1 and G, H are cyclic groups of orders p'n,
pi-in, respectively. If 1 : G — H is a surjective homomorphism and g is a generator
of G, then the order of T1(g") is given by

IGl/(r,|G])  if p'divides ¥

o(mr(g")) = {|G|/p(7’,|G|) if p does not divide »

Proof. Since T1(g) is a generator of H, we have

L . HI |G|
o(m(g")) =o(mt(g)") = (r,|H)) p HD
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If p¢ divides , say v = sp’, then
P HD = p(p's,p""'n) = pl(ps,n) = p(s,n) = (r.p'n) = (r,1G)),

as claimed. If p? does not divide v, then (v,|G|) = (v, ptn) = r,p''n) =
(r,|HJ). r

Corollary 3.3. Suppose p is prime and (p, m) = 1. Then

0,01 (M) if p does not divide 0,4, (m)
Ope(m) =477 . ) ’
P Opea(Mm)/p if p does divide Opeer (M),

Proof’ Since a number is coprime to p? iff it is coprime to pf*1, the reduc-
tion map 7 is a homomorphism of U(Z/p**'Z) onto U(Z/p'Z), and Lemma
3.2 applies. Indeed, there is a generator g such that m = g” where r :=
(p - l)pp/opm(m). Then

Opesilm) —if p? divides (p — 1)p¢/0,01 (m),

Opr(m) =o(m(g")) = 0,00 () if p¢ does not divide
plet P - Dptio,ei(m),

which translates into what we want, O
Corollary 3.4. There is a positive integer L such thar (3.2) holds.

Proof We first note that the sequence {op/v(m) I £ € N} must be un-
bounded: for fixed N, m" is eventually less than p?, and then 0,c(m) > N,
In particular, {0,/(m)} is certainly not constant. Let I be the first integer such
thar Opt(M) < 0pr(m). Then Ope(m) =o0p(m) forl < € < L, and by Corol-
lary 3.3, we have 0yt (m) = po,(m), and p divides 0,11 (m). Since 0,11 (m)
divides Opr(m) for all € > L, it follows that p divides 0pc(m) forall £ > I,
and ¢ ~ L applications of Corollary 3.3 show that 0pe(m) = ptLo, (m) =
pt-lo,(m). r

Remark 3.5. The referee has pointed our that one can also deduce Corollary
3.4 from the isomorphism of U(Z/pZ) x pZ, onto U(Zyp) provided by sending
clements of U(Z/pZ) to their Teichmiiller representatives and the exponential
isomorphism of the additive group pZ, onto 1 + pZy, (see [7, Corollary 4.5.10],
for example). This isomorphism is compatible with the inverse limit decomposi-
tions of U(Z) and pZ};, and hence it suffices to prove the analogous properties
of additive orders in pZ,.

Let H be the closed subgroup of U(Z,) generated by m. Then H is invariant
under multiplication by powers of m, and the formula (3.1) also defines an action
0 of Z on C(H). This is where the Bunce-Deddens algebras come from:
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Proposition 3.6. The crossed product C(H) X Z is a Bunce-Deddens algebra
with supernatural number 0, (M) p®.

The Bunce-Deddens algebras were originally defined to be the C*-algebras gen-
erated by certain weighted shifts on €2 [5, Section V.3], but we shall recognize
them as crossed products associated to odometer actions. Let {1y} be a sequence
of integers each of which is at least 2, and let X} = {0,1,..., ny — 1}. The odonie-
ter action T of Z on [[i., Xk is given by addition with carry over: let Ny = 1,
Ni:=Tlicxn; fork > 1, and then

4 !
Tn({ak}) = {br}, where > DyNp:=n+ > axNy (mod Ny, ).
k=1 k=1

The crossed product C([Tgs; Xi) X+ Z is then a Bunce Deddens algebra with
supernatural number [y, 1k [5, Theorem VIIL.4.1]. In general, Bunce-Deddens
algebras are simple {5, Theorem V.3.3], and are determined up to isomorphism
by their supernatural number [5, Theorem V.3.5].

Proof. Write d for 0y, (m), and let
O:={0,1,...,d -1} x{0,1,...,p - 1}N
For € > L, we define hp: © — U(Z/p?Z) by
he(lan}) = mvrdayvdpay+---+dpt-ta, (mod p"Z);

because the order of m in W(Z/p'Z)is dp'~t, the maps hy satisfy hy,, ({an}) =
he({an}) (mod p’Z). Since the hy are continuous by definition of the product
topology, they induce a continuous map h : © — U(Z,) = lim U(Z/pl7), which

is an injection because hy({ay}) determines do, ..., ap-; uniquely. The range
of h is a compact subgroup, and contains the positive powers of m, which are the
Images of the sequences in ® which are eventually zero; since such sequences are
Flense in O, their images generate the range. In other words, h is a continuous
injection of O onto H, and is therefore a homeomorphism. Since h(T{a,}) =
mh({a,}) forall {a,}, we deduce that the Bunce-Deddens algebra C(0) x; Z is
isomorphic to C(H) X, Z. C

To finish the proof of our theorem, we need to decompose the dynamical
system (C(U(Zp)),Z, o) as a sum of copies of (C(H),Z, o). This needs a simple
group-theoretic lemma.

Lemma 3.7. Suppose G = lim G, is a compact group which is the inverse limit

of finite groups Gy, and suppose that the canonical maps Ty : G — Gy are surjective.
IfH is a closed subgroup of G and there is an integer k such that |G /T, (H)| = k
Jor all n, then |G/H| = k.
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Proof’ Certainly |G/H| > ITtw (G) /Tty (H) | = k. Suppose g\H, ..., gi. H
are cosets in G/ H; we shall prove that two must be the same. The hypothesis im-
plies that for each n, two of Tn(giH) coincide. Since there are only finitely
many possibilities, we can assume by passing to a subsequence that the same
two coincide in each G, /1, (H); say n(g1H) = m,(g:H) for all n. Then
(g9, € m,(H); say Tn(9197") = mu(hy). By definition of the topol-
ogy on the inverse limir, we have hn = g195" in G, so that 919y € H and
gi1H = g,H. C

End of the proof of Theorem 3.1. Since e (H) is the subgroup of U(Z/p!7)
generated by m, we have :

U@ p'D) f1rp(H)) = (9 ~ 1P 10,0 (m)
= -Dp"Yo,(m) forall €= 1.

We can therefore apply Lemma 3.7 o U(Zp) = lim(UZ/p’2), € > L) to deduce

that H has index N := (p — l)pL‘I/op(m) in U(Z,p).

Next, note that because H is a closed subgroup of finite index, it is also open:
its complement is the finite union of cosets of H, and hence closed. Since H
is by definition invariant under multiplication by powers of m, it follows that
U(Zp) is the disjoint union of N open and closed invariant sets of the form xH,
and C(U(Zp)) is the direct sum of o-invariant ideals of the form C(xH). The
dynamical systems (C(xH),Z,o) are all conjugate to (C(H),Z,0). Thus the
Theorem follows from Proposition 3.6. O

Remark 3.8 An integer m which generates U(Z/p?Z) is called a primitive
root modulo p*. If m is a primitive root modulo p? for one £ > 1, then (3.2)
implies that L,,(m) = 1 and Op{m) = p -1, and hence that m is a primitive root
modulo p* for all k. (This is known; see [6, Section 17, Exercise VI1.4], for exam-
ple.) Theorem 3.1 gives a curious C*-algebraic characterisation of primitive roots:
m is primitive modulo p! for all £ if and only if C(U(Z,)) x4 Z is simple. More
generally, the cardinality of Prim C(U(Zp)) X Z determines the orders 0,0(m) of
min U(Z/p’7).

The relations (3.2) are the only restrictions on the possible values of op(m).
Indeed, given an odd prime p, a divisor d of p~1,and an integer L > 1, there are
infinitely many primes g with 0p(q) =dand L,(q) = L. To see this, choose k
such that 0,141 (k) = pd. Then every integer 4 in the arithmetic progression k +
np'*'haso,(q) = d and Opt-1(q) = pd, and it follows from (3.2) that 0,(q) =
p'dforall ¢ > L. Now our assertion follows from Dirichlet’s Theorem: every
arithmetic progression k + nv with (k,7) = 1 contains infinitely many primes [8,
Section 16.1].
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4. THE PRIMITIVE IDEAL SPACE

Since Prim C(X, K) is homeomorphic to X [15, Example A.24] and Bunce-
Deddens algebras are simple [5, Theorem V.3.3], Theorem 2.2 gives us a setwise
description of the primitive ideal space of the algebra C(Z, xZ4) X« N?. It consists
of a copy {Ixy} of U(Zy) x U(Zy) embedded as an open subset, a copy {L, >} of
T2 embedded as a closed subset, and two finite sets {Jxu,}, {Kyn,} parametrised
by the quotients U(Z,)/Hy = UZy) /42 and UZ,)[Hy = U(Zy) [ PT whose
cardinalities determine the number of Bunce-Deddens algebras in the subquo-
tients. The topology on Prim(C(Z, x Z;) X N?) is then given by:

Theorem 4.1. The maps (x,y) — Ixy, xHp ~ Jxn,, YHq = Jyn, and
(W,z) — Ly, ; combine to give a bijection of the disjoint union

(4.1) (U(Zp) x U(Zy)) UUZp) /% U UZy) [PT U T

onto Prim(C(Zp X Zg) XaN?). Write 11, for the map U(Zp) X U(Zy) — U(Zp) —
U(Zy) L. Then the hull-kernel closure of @ nonempty subset F of (4.1) is

@) the usual closure of F in T2 if F C T%;

(b) FuT?ifF c W(Zp)/qZ LUZ,) /P

(0) the usual closure of F in U(Zp) x U(Z,) together with 0y (F) U, (F) U T2 if
FCUzy) x U(Zy,).

We prove this by finding irreducible representations of C(Z X Z;) X N
realising each of these primitive ideals, identifying their kernels as crossed products
of invariant ideals in C(Z,, x Z,,) using results from [13], and then reading off the
topology from standard properties of the topology on Z,, x Z,.

The ideals Ly, ; are lifted from the quotient (C(Zp x Zgq) XN?)/I; = Cxijg N2,
and are the kernels of the characters y,,, : (m,n) — w™z"; more precisely,
Ly, = ker(€9.0 X Yw.z), where £0.0(f) := £(0,0). Because Prim(C xiq N?) is a
closed subset of Prim(C(Z, x Z4) x N?), this also proves part (a) of Theorem 4.1.

The ideals Jxn, are inverse images under the map (id ®&g)* of C(Z, X Zy) x
N onto C(Z,) «N? induced by id @€y : C(Z, xZ4) ~ C(Zp), and are determined
by the intersections of their images with the ideal Cy(Z, \ {0}) x4 N2. Recall that
the homeomorphism hp, : (k,x) ~ p*x induces an isomorphism

(4.2) hy : Co(Zp \ {0}) X N? = C(U(Z,), co(N) X7 N) Xgaid Z.

Because M x T is an isomorphism of ¢y (N) X+ N onto K (£?(N)) and Z acts freely
on U(Zp) = Prim C(U(Zp), K), the primitive ideals of the right-hand side of
(4.2) are induced from the ideals ker(M x T) o &y. In particular, we have

JXII,, n (C()(Zp \ {0}) x Nz) = ker((lndﬁ)} (M X T) o Ex) o h; o (ld ®EO)*)
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We can now use the standard form 7 x A of the induced representation to see that
the ideal Jxn, is the kernel of the representation Py X (T & A) of C(Z, x Zy) X N?
on £2(N x Z), where (py (f)E) (k, ¥) := f(pkq'x, 0)E(k,£). Similarly, with oy,
C(Z, x Zy) — B(£*(Z x N)) defined by

(03 (FIE)(k, £) = f(0, p*q’y)E(k, ),

we have ker(0y x (A ® T)) = Ky, .

The ideals Ix,y are determined by their intersection with I, and I, N I
is pulled back under the isomorphism (2.2) from the kernel of the evaluation
map éxy : C(U(Zp) X U(Zy), K) ~ K. This isomorphism is induced by the
homeomorphism h:{kx,y) — pkq‘)(x,y) of N2 x U(Zp) x U(Zy) onto
(Zp\{0})x(Z4\{0}), and the Toeplitz representation M x T of ¢y (N?) X+ NZ onto
K(L?(N?)). The representation (1, (£)E) (k, ) = Sp*alx, pkqaty)Ek, ¢)
satisfies Ty [€o((2,1(01) x (241 (0})) = Moégyx yo(h™1)*, and it follows that (T3, T)
Is a covariant representation of (C(Zp x Z4),N?, x) with Iy = ker(mmy, x T).

To identify the kernels of these representations, we shall use the following
analogue of the standard characterisations of faithful representations.

Lemma 4.2. Let (n,T) be a covariant representation of a semigroup dynamical
system (A, NK, o) with extendible endomorphisms. Suppose that ker ny is an extendibly
O-invariant ideal, and and W is a unitary representation of T such thar (n x T, W)
is @ covariant representation of the dual system (A x N, T%, &). Then

ker(n x T) = (kern) x NX
=span{is(m)“is(@)is(n) | m, n e NK, a € kern}.

Proof. We know from [13, Theorem 1.8] that (kern) x N¥ is naturally iso-
morphic to the ideal

span{is(m)*is(a)is(n) | m, n e N¥, a € kern} c A x N,

and that the quotient map 1 : A — A/ (kern) induces a homomorphism 1 x id
of A x N¥ onto (A/kern) x N* with kernel (kern) x NX. There is a faithful
tepresentation L of A/ kern such that n = C o1, and then (T, T)and (T xT,W)
are covariant. It suffices to prove that £ % T is faithful, for then NXT =(CxT)eo
(rr x id), and

ker(n X T) = ker(T x T) o (11 x id) = ker(1r x id) = (kern) x N,

To prove T x T faithful, we follow the standard procedure of (4, Lemma 2.2].
Write C = A/ kern, and let @ : C x N¥ — C 3 N be the expectation obtained by
averaging over the dual action & on C x N¥, which is faithful on positive elements
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by [10, Remark 3.6]. Because S = N¥ is abelian, C x N¥ is spanned by the
elements is(m)*ic(c)ig(n) [13, Lemma 1.3], and hence 8(C »x N¥) is spanned
by the elements is(m)*ic(c)is(m); because every finite set of elements in N¥
has an upper bound, we can imitate the proof of [2, Lemma 1.5] to see that £ x T
is faithful on 0(C x N¥). Now we can use the covariance of (€ x T, W) to get an
estimate

I x ol = | L wz@xiipiw. dz]

sj IW2T x T(/)W. 1 dz
n’k
12 xTHI,

and follow the argument of {4, Lemma 2.2] to see that £ x T is faithful. O

The ideal ker 11y ), consists of the functions which vanish on the closure of
the orbit pNgN(x, ¥); to check that ker Tx,y is extendibly invariant, we need to
know exactly what this closure is.

Lemma 4.3. Let (x,y) € Zp X L. Then qNx has the same closure in I as
a%x, and the closure of PNaN(x,y) inZ, x L4 is

(4.3) pNgM(x,v) u (pNgZx x {0}) U ({0} x pZgNy).

Proof- Since q € U(Zp), multiplication by g is a homeomorphism of U(Z, ),
and defines a free and minimal action of Z on qZx. The sequence {a*x | k € N}
has a convergent subsequence, g*"x — xo, say, and then a%xy = qZx by mini-
mality. Thus every element of gZx can be approximated first by 4" xp, and then
by elements g"**»x of gNx. Thus gNx = qZx. This argument also shows that
every element of gZx is the limit of a sequence ™" x in which m, — .

Since (0,0) = lim, p"g™(x,y), it certainly belongs to the orbit closure.
Suppose pknglnx — s and s # 0. Write s = p'sy for o € U(Zp). Then
P U(Z,) is an open neighbourhood of s, so k,, = i for large n, and al"x — p~is.
As observed above, we may as well suppose £, — oo; but then af"y — 0, and
prnqln(x,y) — (s5,0). Thus pNgZx x {0} is contained in the orbit closure, and,
by symmetry, so is {0} x pZgNy.

For the other inclusion, suppose (w,z) € Z, x Zz and p""q‘)"(x,y) -
(w, z). It is obvious that (w, z) belongs to (4.3) if one of w or z is 0, so suppose
w and z are both nonzero. We can write (w, z) = (p'wy, ¢’ 20) for units wy, zo
and i, j € N, and then p'U(Z,) x q¢/U(Z,) is a neighbourhood of (w, z). Thus
(ky, £y) = (i, j) for large n, and (w,z) = p'q’(x,y) belongs to pNaN(x, v),
as required. r

Lemma 4.4. Let (x,v) € U(Zp) x U(Zy). Then
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@) Jxr, =5pan{is(i, ))*ia(fis(m,n) | f = 0 on pVglx x {0},
(b) Kyu, =spaniis(i, j)*ia(f)is(m,n) | f =0 on {0} x pLaNy}; and
() In,y = span{is(i, j)*ia(f)is(m, n) | f=00npNgN(x, )}

Proof. For part (a), we want to apply Lemma 4.2 with n = pPx, and we
therefore need to know that ker py is extendibly invariant. We have p(f) = 0
iff f = 0on pNgNx x {0}, which is equivalent by Lemma 4.3 to f = 0 on
pNgZx x {0}. Thus it is enough by [13, Theorem 4.3] to prove that pNgNx x {0}
and its complement are invariant under multiplication by p*q. This is trivially
true for pNgNxx {0}. Suppose (w,z) ¢ pNgNxx {0}. Ifz £ 0, then rkal(w, z)
is certainly not in pNgNx x {0}. So we consider the case z = 0, and suppose
p*atrx — pkqlw. Since w cannort be 0, we can write w = plwyg for wy €
U(Zp). Eventually pknginx e pYIUZ,), so kny = k + i for large n, and
qfw = lim pkn-kgtn x belongs to p'(qNx). Since gNx = q%x, this implies that
w € p'(qNx), and hence that (w,z) € pNgNx x {0}, which is a contradiction.
So p*kqt(w,z) ¢ pNgNx x {0} for all k, £ € N, and we have shown that ker py
is extendibly invariant.

Next we observe that W, ,E(k, €) := wkz?E(k, £) defines a unitary represen-
tation W of T? on £2(N x Z) such that (py x (T ® A), W) is covariant for the dual
action. Thus we can deduce from Lemma 4.2 that Jxu, =ker(py X (T ® A)) has
the required form. This gives (a), and of course (b) is exactly the same.,

For (c), we apply the same argument to

kertx ) = {f € C(Zp x Zy) | f = 0 on PNGV(x, 1) };

as above, the crux is to prove that if p*q(w, z) is in the closure of pNgN(x,y),
then so is (w, z). So suppose (w, z) € ZpXZyand p*ngln(x,y) - pkqt(w, z2).
Ifw or z is 0, we are in the situation covered by the first paragraph. So suppose
w and z are both nonzero: say w = p'wg and z = g/z, for units wy, zp. By
Lemma 4.3, we must have pXgf(w, z) = p™q"(x,y) forsome m, n € N. Then
pkrigtw, = p™qtx and pkqftiz, = p™q"y. The first of these equations
implies that k + i = m, so k < m, and the second that ¢ < n. Thus (w,z) =
pmkgn-t(x, y) belongs to pNgN(x, v). This proves that ker 1y ,, is extendibly
invariant. Part (c) follows from an application of Lemma 4.2 with W given by the
same formula as before. r

Proof of Theorem 4.1. We have already observed that (a) is easy. For (b), no-
tice that for any x € U(Zy), the spanning elements is(i, j)*is(f)is(m,n)
of Jxn, go to f(0,0)is(i, j)*ig(m,n) in the quotient € x;q N2, and hence
Jxn, C Ly forall (w,z) e T2,

For (c), we observe that F n (U(Zp) x U(Zy)) is the usual closure because
(x,¥) = I,y is a homeomorphism of U(Zy) x U(Zy) onto the open set Prim 1.
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That the closure contains the other points follows from Lemma 4.4: f € ker 1ty
implies f € ker py, so all the generators for Iy described in Lemma 4.4 belong
to Jxn,, and (x,y) € F implies

Jerr, € F = [P € Prim(C(Z, x Z4) xN*) | () Q c P}.
QeF

To see that Jy,1, does not belong to F when xoHp ¢ T, (F), let Fy be the union
of the cosets in 7T, (F). Choose g € C(U(Zp)) such that g(x¢) = land g =0
on Fy, extend g to a continuous function on Z, by taking it to be zero outside
U(Zp), and define f(x,y) = g(x). Now we can see from Lemma 4.3 that f
vanishes on the closure of pNgN(x,y) for every (x,¥) € F, and hence i5(f)
belongs to N{I«,, | X, € F} but not to Jx,u,. Thus F nU(Z,)/Hp is precisely
Ty, (F), and part (c) follows from (b). O

Remark 4.5. It is interesting to compare our description of Prim C*(Gp 4) X
N2 with that obtained for the Bost-Connes algebra Cq in [12]. In Prim Cq, the
finite sets coming from Prim I;/I; do not appear; loosely speaking, we believe this
happens because Cq contains all the primes, and some of these will act minimally
on any given U(Zy) (see Remark 3.8). So the numbers 0,:(q) cannot be recov-
ered from Prim Cq. Of course this information is still buried somewhere in Cq:
it follows from {14, Theorem 2.1] that the inclusion of Gp 4 in Q/Z induces an
isomorphism of C* (G, 4) ¥ N? into C*(Q/Z) x N* = Cq.
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