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Abstract 

The paper gives an overview of the nested relational model and its two roles in 
the Darmstadt Database System (DASDBS) project, which was started in 1982 to 
develop an extensible database architecture supporting a variety of application spe­
cific front-ends with a common kernel system. In its first role the nested relational 
model serves as a model for the kernel interface describing hierarchical storage clus­
ters. In its second role the nested relational algebra appears as a basic language 
for a KL-ONE-oriented semantic data model at an object-oriented layer upon the 
kernel. 

1 DASDBS: A Project Beyond Relational Databases 

In the beginning of the 1980s a significant direction in database research was established: 
various extensions to the relational model were proposed to enrich the rather poor seman­
tics of the model [Cod79], and to open the model to better meet the requirements imposed 
by a new type of applications, the so-called "Non-Standard Database Applications". 

Among the proposals for the enhancement of relational systems towards the new re­
quirements are on-top solutions, like e.g. [HL82, LKM+85], where explicit links between 
relations were introduced, and also several attempts at a more fundamental extension of 
the model. The latter approaches are characterized by the preservation of the relation 
as the basic data structure, while relaxing the first normal form condition. Tradition­
ally, relations are required to obey 1NF which means that the values of all attributes 
of a tuple must be atomic, i.e. undecomposable by the DBMS. Already Makinouchi in 
[Mak77] observed that the assumption of 1NF is not a neccessary precondition for the 
relational theory to be applied. In the early 80s a number of groups came up with "un­
normalized", "non-first-normal-form (NF2)", or "not necessarily normalized" relations 
[FT83, BRS82, JS82, SP82]. In the sequel we will use the term Nested Relations for 
the characterization of the extended relational model, since it is both rather precise and 
neutral. 

The motivation behind these proposals has been twofold: first, from the modelling 
point of view, simple tables of atomic components were considered inappropriate for the 
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representation of e.g. text [SP82]. Exploiting the capabilities of the concept "relation" 
by applying it repeatedly-"relations with relation-valued attributes" [SS86J-was the 
rationale behind this. Secondly, originating from the poor performance of the first rela­
tional systems, some efficient storage structures for relations were needed. For instance, 
VERSO relations were defined as a model in [AB84]' while earlier they have been used 
in the database machine project as a storage structure [BRS82]. Also [FT83] considered 
unnormalized relations as promising internal structures for a conceptually flat relational 
database. Our own motivation for the development of the model comprised both aspects 
(cf. [SP82j on the modelling aspect and [SS83] on the other). 

The Darmstadt Database System (DASDBS) project at the Technical University of 
Darmstadt was started in late 1982. It was expected that no single DBMS could be 
developed that covers all the different needs of the various new applications looking for 
DBMS support. Rather, a kernel that integrates the common features of a rather low­
level storage component, but allows efficient and flexible front-ends tailored to specific 
application classes, was pursued. Thus the kernel with its several front-ends forms a family 
of database systems. The current members of the family are shown in figure 1. For details 
of the DASDBS project and system architecture the reader is refered to [DOP+85, SW86, 
PSS+87]. 

Figure 1: The DASDBS family of database systems 

While the implementation of the DASDBS kernel [pSS+87, SPS87] clearly aimed at 
the efficiency issues related to more powerful storage structures, a novel approach to the 
data modeling aspect is covered in this paper as the second role of nested relations: it is 
shown how the step from flat relations with their simple but powerful query languages to 
nested relations can be carried over even one step further to general network structures. 
Nested algebras or SQL-type languages can be applied to non-hierarchical data too. We 
discuss this extension using KL-ONE as an example of a semantic net. 

In this paper we first summarize the nested relational model as introduced in [SS83, 
SS86j in section 2. The first role of nested relations as a model for storage structures 
is only briefly described in section 3, while the new aspect of allowing recursive nested 
relations-and so supporting main constructs from semantic data modeling-is explained 
in some more detail in section 4. This is the second role of nested relations in DASDBS. 
A "user-friendly" version of nested SQL is also presented in section 4 and the idea of how 
to utilize this language for recursive queries is sketched. 



52 

2 The Nested Relational Model 

2.1 Data Structure 

Disregarding the first normal form condition for relations allows for a variety of extensions. 
We could have chosen to allow general structures known from programming languages 
as attribute values, for instance records, arrays, lists. While some proposals in fact 
allow such arbitrary domains (cf. [PA86, PT86]), the nested relational model in its pure 
sense is restricted to the constructor "relation", i.e. set of tuples. When describing the 
modelling power of the relational model by means of programming language constructs 
with a Pascal-like syntax, we could use set of record as shown in figure 2 where each of 
the atomic-typei's is a basic type like integer, real, or string. 

type relation-type == set of record 
attr-namel : atomic-typel; 

attr-name.. : atomic-type.. 
end; 

Figure 2: Flat relation as a Pascal-like type 

The idea of the nested relational model is simply to allow relations at any place 
where attributes occur. Hence, attribute values may either be atomic or relations. This 
(hierarchical) nesting of relations may be repeated for an arbitrary (but fixed, see below) 
number of levels. Again applying the Pascal-like syntax, an example is given in figure 3 
where the nesting in attr-namej may continue to an arbitrarily deep level. 

type nested-relation-type set of record 

attr-name; : atomic-type;; 

attr-namej : set of record 

end; 

end; 

Figure 3: Nested relation as a Pascal-like type 

From a semantic modelling point of view (see e.g. [LS87]), the construct "relation" 
corresponds to the application of one aggregation (tuple constructor) followed by one as­
sociation (set constructor) to a collection of primitives (the underlying atomic domains). 
Thus nested relations can be constructed by repeatedly applying the sequence aggrega­
tion-association to a collection of primitives or composite objects obtained by previous 
applications of this rule. 
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Figure 4: Sample nested relation: schema tree and value table 

Since formal definitions of nested relations can be found in [SS86], we will only summa­
rize our notations in this paper. The key issue in our formalization is a two-part view of 
a relation: schema and value. The former is a description of the structure, that gives the 
names of the attributes and comprises the assignment of domains to these attributes­
also called "intension" of the relation-, while the latter is the set of tuples belonging to 
the "extension" of the relation at a certain point in time. Usually schemata are given by 
a parenthesized list of attribute names preceeded by the relation name. For instance, 

EMPLOYEE(ENO, ENAME, SALARY, DNO) 

is the schema of the famous employee relation having four attributes, viz. employee number 
(the key), employee name, salary, and department number. In most cases an explicit 
assignment of domains to the attributes is omitted. Values are shown as tables having 
attribute names as column headings and tuples one in a row. 

When defining nested relations where attributes may be relation valued, obviously the 
'flat' definitions become recursive. A schema now is a set of (attribute) descriptions each 
of which consists of an attribute name and an attribute schema. Iff an attribute schema 
is empty (as a set), then this attribute is an atomic one, otherwise the schema describes 
the relations contained in the attribute values. Accordingly, the domain of an attribute 
is either a set of primitives (for an atomic attribute) or the powerset of the Cartesian 
product of the domains of the subattributes. Hence, every valid value of a non-atomic 
attribute is a set of tuples over the corresponding domains, which reflects the idea of 
"nested" relations. Schemata of nested relations can be represented by trees and values 
by nested tables. A linear notation of the schema in figure 4 is 

DEPT(DNO, DNAME, BUDGET, EMP(ENO, ENAME, SALARY)) 

As can be seen in the example, the usual notion of a key can easily be applied in the 
nested case. Unlike other authors [AB84, FT83, RKS84], we do not require the existence 
of atomic keys, or even atomic attributes on each level of a nested relation, nor the 
disjointness of subrelations. Most of these criteria seem to be suitable for "good" nested 
relational databases, but they can be expressed as additional constraints, leading into the 
area of normal forms for nested relations [OY85, RK87]. 
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2.2 Operations 

In the design of a language for the manipulation of nested relations we followed a simple 
idea: whenever a relation is encountered at some place in the language, we wanted to 
allow the application of queries expressed in that language. As our focus was not on user 
interfaces but rather conceptual and implementation-oriented, we decided not to look into 
'high level languages', like a nested relational SQL [PA86, PT86, RKB87]. The relational 
algebra provides a flexible formal language that is better suited for optimization issues, 
for instance. Thus, we extended the algebra (see, e.g. [Mai83, U1l82]) to cope with nested 
relations. 

The Flat Relational Algebra 

The power of the algebra is obtained by five basic operators: union(U), difference(\), 
relational product ( x), projection( 1r), selection( 0-), and the ability to compose expressions 
from these operators. Every operator can be regarded as a (generic) function mapping 
one (or two) relatione s) into another relation. Hence, complex queries can be formulated 
by functional composition of algebraic operators. The following recursive rules define the 
relational algebra: 

1. If R is a relation (name), then it is an algebraic expression. 

2. If El , Ez are algebraic expressions, then so are El U Ez, El \ Ez, and El x EZ.l 

3. If E is an algebraic expression, then so are 1r[L](E) and o-[F](E). 
L, the projection-list, is a list of attribute names contained in the schema of E, and 
F, the selection-formula, is a formula made up from logical connections (A,V,.) of 
(arithmetic) comparisons between attributes in the schema of E and constants. 

Nest and Unnest 

The first two operations that came along with the first publications on nested relations 
deal with the transformation between flat and nested relations and vice versa: Nest (v) 
and Unnest(tt) [FT83, JS82]. Nesting achieves an effect similar to what is intended by 
the SQL "GROUP BY"-clause, except that the SQL-clause goes beyond the relational 
model, while nest, of course, stays within the (nested relational) model. The effect of 
nesting can be undone by unnesting. While unnest is always inverse to nest, the opposite 
is not true in general [JS82, FT83]. For the schema part, an example of nest and unnest 
is given below: 

NESTEDDEPT(DNO, DNAME, BUDGET, EMP(ENo, ENAME, SALARY)) := 

V[(ENO, ENAME,SALARY) EMP] 

(FLATDEPT(ENO, ENAME, SALARY, DNO, DNAME, BUDGET)) 

FLATDEPT(ENO, ENAME, SALARY, DNO, DNAME, BUDGET) := 

tt[EMP](NESTEDDEPT(DNO, DNAME, BUDGET, EMP(ENO, ENAME,SALARY))) 

Ifor the set operations (U and \) to apply, El and E2 must be "union compatible" , i.e. have identical 
schemata-at least up to renaming. 
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Notice that nesting, besides decomposition (projection), is a way of obtaining "better" 
relational schemata during database design, because it also removes redundancy. This is 
the reason why nested relations can be considered appropriate in the design of a database 
schema in some "normal form", see e.g. [OY85, RK87]. 

The Nested Relational Algebra 

For the data structure of nested relations we allowed nesting relations into relations in 
place of attributes. Similarly, we can nest algebraic expressions into algebraic expressions 
in place of attributes. This way, we obtain a doubly nested algebra: the first way of 
nesting is the usual one, viz. functional composition (see above), the second one is new. 
At any place where attributes occur in the flat algebra, i.e. in the projection-list and the 
selection-formula, we can now use algebraic expressions. For instance, if in the result ND 
we want to see only the department names and employee names from the above nested 
DEPT relation, we apply a projection to DEPT (we only want DNAME and something 
from EMP) and inside this projection another projection on EMP retaining only EN AME, 
yielding NE: 

ND := 1l'[DNAME, NE:= 1l'[ENAME](EMP)](DEPT). 

The schema of the resulting relation is ND(DNAME, NE(ENAME)). 
To obtain a characterization of our nested algebra from the flat algebra described 

above, we only have to modify two points: 

• L, the projection list: 
may now contain algebraic expressions, Ni := Ei, instead of just attribute names. 
A subrelation Ni of the result of the projection is defined to take as value the result 
of evaluating Ei. 

• F, the selection formula: 
may now involve set comparison predicates 0 and algebraic expressions Ei0Ej • 

Examples of such nested algebra expressions are the following queries: 

1. Give all departments, that have 'Computer Science' as their name and at least one 
employee making more than 30,000.-: 

O'fDNAME = "Comp. Sc." A O'[SALARY > 30000](EMP) =1= 0](DEPT). 

2. Give all departments with name "Computer Science", and from these departments 
all employees making more than 30,000.-, called RE ("rich employees"): 

1l'[DNO, DNAME, BUDGET, RE:= O'[SALARY > 30000](EMP)] 
(O'[DNAME = "Comp. SC."](DEPT) 

3. Similar to the previous one, but now ("CS" -) department tuples should be discarded, 
if there is no employee making more than 30,000.-: 

O'[RE =1= 0](1l'[DNO, DNAME, BUDGET, RE:= O'[SALARY > 30000](EMP)] 
(a[DNAME = "Comp. Sc."](DEPT)) 



56 

Notice, that the additional selection ("a[RE =I- 0]") refers to the result of the inner 
selection. 

It is interesting to notice the correspondence between the third nested relational query 
and the flat relational select-project-join query 

a[DNAME = "Comp. SC."J(DEPT) ~ a[sALARY > 30000](EMP) 

on the equivalent flat relational schemata. There the departments without employees 
making more than 30,000.- are discarded automatically by the join. The equivalent flat 
expression for the second nested query can be obtained by using an outer join instead of 
the natural join. 

The above examples should illustrate that in typical nested relational algebra queries, 
in general, arbitrary expressions (not only selections and projections) can be nested inside 
a projection (or selection). The crucial point is to define what the valid arguments to 
such "inner" operations are. To understand the idea of our solution, we start with the 
usual algebraic expressions: such an expression is a (composite) function applied to the 
database. Thus, valid arguments to the function are the objects in the database, viz. the 
relations. The relations known within the database form the scope of the expressions on 
the outermost level. Now consider an expression applied within a projection list: the 
outer relations of the database are still within the scope, but in addition, the attributes 
of the expression to which we apply the projection are added to the scope. Hence, outer 
relations and the attributes may become arguments to the inner expression. In general, 
descending one level in the nesting hierarchy of a relation enlarges the scope of expressions 
by the attributes of this new level. 

The phenomenon of using higher level (in the schema tree) attributes within deeply 
nested algebra expressions has been called "Dynamic Constants" in [SS86]. This concept 
has proven very powerful, since nesting, difference, and relational product (and thus 
join) can be defined using only nested selection and projection with dynamic constants 
[Sch87, Sch88]. Consider a very simple example: selecting from the subrelation employees 
for each department tuple the manager's subtuple (assuming an attribute MNO of DEPT): 

7r[DNO, DNAME, a[ENO = MNO](EMP)](DEPT). 

Here MNO is a "dynamic constant" in the scope of the inner selection applied to EMP. 

We have also defined update operations for nested relations in a notation similar to the 
query algebra, see [Sch85b, Sch88]. They are also nested. We can, for instance, change 
a tuple by inserting a subtuple into a subrelation, e.g. change a department by hiring a 
new employee. 

Thus the algebra provides a powerful set of operations on the hierarchical structure 
of nested relations. In order to manipulate subrelations deep down in the hierarchy 
of a nested relation, the corresponding algebraic expression is nested inside projections 
and/or selections. In particular, this algebra avoids having to unnest a relation, apply flat 
algebraic operations and renesting in such cases. Therefore it is more than a theoretical 
tool, it may serve as the operational interface of an efficient DBMS kernel providing nested 
relational storage structures. 
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3 Static Nested Relations as Storage Structures in 
the DASDBS Kernel 

3.1 Hierarchical Clustering in the DASDBS Kernel 

The kernel has two main layers: the Stable Memory Manager (SMM) is a set-of-pages 
oriented layer that includes buffering and supports classical transaction management 
for page-level operations. The next layer supports hierarchically structured "Complex 
Records" as primitive Complex Objects. Complex records are the implementation of 
nested tuples according to the nested relational model. A Complex Record is stored in as 
few pages as possible. The set of pages occupied by one Complex Record is called "Stor­
age Cluster". Sets of Complex Records can be retrieved, inserted, updated, or deleted, 
thus set-orientation is achieved on the record and the page level. All kinds of higher 
level objects, including geo-objects, flat relations, or frames-like objects are mapped to 
these kernel objects by the corresponding front-ends. The kernel structures are used by 
the front-ends as storage clusters, i.e. selecting a data representation on the kernel level 
corresponds to physical database design. 

The following two propositions motivated our choice of the nested relational model for 
the description of such internal database layouts: 

1. one can do better than just storing tuples of a relation one by one as records into a 
file; i.e. flat relations as storage structures are too poor, 

2. external storage devices provide a (virtual) block-structured linear address space. 
Hierarchies are the most general structures that can be linearized (without intro­
ducing redundancy or using "pointers"), i.e. nested relations are general enough. 

Of course, one can apply sophisticated storage schemes for flat relations too, our point is 
just that then these structures cannot be described by that model. Rather the physical 
schema is usually determined by a collection of parameters on a different (lower) level of 
abstraction. With nested relations on the other hand, all relevant physical design tech­
niques can be described by means of the model. Denormalization [SS80, SS81] by joins, 
nested denormalizations by a nested relations (join plus nest), pointers by projections of 
"address attributes" that can be used as a reference mechanism in other relations (access 
paths or tuples from joining relations, "link fields"). A detailed discussion of the various 
alternatives is contained in [SPS87], [Sch88] investigates their description by our nested 
relational algebra, and [Pau88] analyzes the cost of the variants in the context of the 
DASDBS imlementation. Figure 5 gives a summary of alternatives for the internal repre­
sentation of many-to-many relationships. Obviously, those cannot be implemented sym­
metrically by nested relations without introducing redundancy. Thus either we use only 
references (pointers, addresses) to support these relationships or we decide to maintain 
(even more, viz. in the actual data) redundant storage structures. The choice, however, 
has to be guided by the workload that is to be optimized, i.e. mainly retrieval-to-update 
ratios in this example. 
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Figure 5: Some alternative storage schemes for n : m-relationships 
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3.2 Kernel Interface: Single Scan Operations on Nested Rela­
tions 

An important problem in the implementation of DASDBS was the decision, how much 
of the complex query facilities of the nested algebra to implement within the kernel. 
A coarse characterization is: allow as powerful operations as possible, but keep them 
linear. Linear means that a kernel query must be evaluable in a single hierarchical 
scan over the data. This criterion obviously excludes joins, for instance. However, in 
our case of nested expressions single scan processible is harder to define than just re­
quiring "single table" queries like in the RSS component of the System R prototype 
[ABC+76j: on every hierachical nesting level of a single scan query there may only occur 
projections and selections. The selections must not include other set comparisons than 
"(something}(cop) 0" , with (cop) "=" or "=1-". Other set comparisons, e.g. equality of two 
sets (of subtuples), would introduce join complexity. The notion of single scan operations 
is discussed in [Sch85a, Sch86, PSS+87] and defined formally in [Sch88]. Interestingly, 
a similar notion and characterization has been found in the VERSO database machine 
project [BRS82, A +86J. 

3.3 Algebraic Optimization in the Flat Relational Front-End 

One of the appLications for a nested relational kernel system that has guided our project 
from the beginning and that also had a significant influence on the design of the algebra is 
a flat relational front-end. The underlying idea is performance-oriented: by using nested 
relations as internal representation for a conceptually flat relational (e.g. 4NF) database, 
we can precompute some of the most frequently issued join operations and store the 
result of the join without introducing redundancy. This idea is based on a proposal by 
Schkolnick [SS80, SS81] to "denormalize" or "materialize" joins in order to save query 
processing time. Of course, the differing conceptual (flat) and internal (nested) database 
layout must be hidden from the user. This can be achieved by a transformation step 
controlled by the DBMS. 

The key issue of the flat relational front-end is algebraic optimization: as both lev­
els are described (nested) relation ally, the transformation can be defined via the nested 
algebra, and substituting the corresponding definitions into conceptual-level queries is a 
trivial way of transforming the queries to the internal level. However, to actually remove 
the redundant (join) operations from the user query, an algebraic optimization step is 
necessary. This problem has been solved in its theoretical aspects [Sch86], the main result 
is that select-project-join queries on the conceptual level, that do not require any join 
internally-as all joins are materialized-can efficiently be optimized and are mapped to 
single scan queries at the internal level. (This is another justification for the appropri­
ateness of this subset of algebraic expressions for the kernel.) Again a similarity to the 
VERSO project: [Bid85] characterizes VERSO "superselections"-a kind of queries that 
corresponds to a combination of our nested projection and selection-by flat relational 
select-project-join queries. 
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4 Recursive Nested Relations in the DASDBS Data 
Model 

4.1 Motivation and Example 

Almost immediately after the first investigations on nested relations have been published 
in the years 1982 and 1983, controversial discussions started. Among the objections 
that were raised it was claimed that the does not support shared subobjects or n : m­
relationships or recursive data structures. 

In fact, it is true that types of hierarchically organized data are obtained if a tuple 
constructor and a set constructor repeatedly are allowed for the construction of complex 
object types. The real question, however, is what kind of operations we allow on these 
types. As it could be seen from the previous section we extended the high-level set­
oriented operations on relations to any set-of-tuple type which is obtained by the type 
constructors. This is the important difference, compared to the old world of hierarchical 
data models. 

With regard to the second concern let us consider the question of n:m relationships 
and recursive data. In fact, if we elevate the static view we had for the storage structure 
also for the data modelling layer, we are unable to model symmetrically n:m relationships, 
apart from introducing redundancy or using references for symmetry. 

Fortunately there is no reason why we should keep a static nested relational schema 
definition for this layer. In fact, in the DASDBS object layer the starting point is recursive 
definitions of nested relational schemata with net-structured instances. This is the key to 
deal with n:m relationships and shared objects in a symmetric way. Static nested relations 
then appear quite naturally as result of operations on such nets. Such structures are 
called "dynamically nested relations" in [LS88]. In the following we will explain this role 
of nested relations by an example. Take the following type definitions in a hypothetical 
Pascal++ language 

type project = record 
pno : integer; 
pn : name; 
members: set of employee; 
produces: set of part; 

end; 
type employee = record 

eno : integer; 
ename : name; 
assignmts : set of projects inverse members; 
education: set of course; 
manages: set of employee; 

end; 
type part = record 

pname : name; 
produced_by: set of project inverse produces; 

end; 
type course = record 

cname : name; 

end; 
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Figure 6: Example of a KL-ONE semantic network 

type projects = set of project; 
type employees = set of employee; 
type parts = set of part; 

Apparently this is not standard Pascal because-as mentioned-set of "structured" type 
is not allowed (the first +). More importantly, recursively defined types occur (the second 
+). Recursion not only occurs because of the manages component in employee which is 
defined by the employee type again in the manages component, but, more generally, due 
to the description of one object by means of others and vice versa. For example, project 
is described by its members which are employees and employees are described by their 
project assignments and it is required that they are inverse to the members component. 

4.2 KL-ONE 

Those who are familiar with Brachman's KL-ONE semantic network for knowledge rep­
resentation [BS85] will have recognized that the view we have taken is the same as in 
KL-ONE. In fact the previous type definitions in Pascal++ are not hypothetical. They 
directly correspond to the definition of KL-ONE "generic concepts". Project in this ter­
minology is a generic concept with "roles" pno, pn, members, and produces. The roles 
pno and pn have to be filled with at most one value from some primitive concepts while 
members is filled with a set of values from a generic concept employee and produces is 
filled with a set of parts. So everything in our previous example can be expressed in 
KL-ONE's terminology definition (called T-Box there). Roles and their inverses model 
properly the symmetry of (n:m) relationships. A corresponding graphical representation 
is shown in figure 6. 

4.3 Examples of Nested Relational Views on the KL-ONE Net 

The symmetric view taken in KL-ONE, i.e. the recursive type definitions, are the reason 
why we are not able to assign a static nested relational schema equivalent to the type 
definitions. Nevertheless we see that, basically, tuples (projects, employees, parts) appear 
which have relation valued attributes (components). The interesting fact is that many 
different nested relational schemata are contained in the previous definitions. We could 
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(1) projects (pno, pn, members (eno, ename)) 

or, symmetrically we may see 

(2) employees (eno, ename, assignmts (pno, pname)) 

Either projects are the top-level relation with their employees as a sub-relation, or, vice­
versa, we see employees at the root of the schema tree and their projects as descendants. 
More interestingly, we could also take a cyclic view, like 

(3) parts (pname, 
produced-by (pno, 

members (eno) , 
produces (pname))), 

which gives a nested relation where for each part we find by which projects it is pro­
duced and for each such project we see the employees (by their number eno, in members) 
in this project and all parts which are produced there (by their name pname in produces). 

In order to look into the manages hierarchy, we could use 

(4) employees(eno, manages (eno)) 

The principle we applied in all these examples is straightforward: We decided which 
object type should be the root and selected a subset of its components. For each selected 
component which is a set type we again selected which components of the children we 
wanted to see and so on. Thus, after having defined recursive nested relations with our 
Pascal++ language, we are now looking for a (view definition) language to dynamically 
define nested relational views on this network structure. 

4.4 Nested Algebra or Nested SQL for KL-ONE 

The exciting fact now is that such a language already exists: we can apply the nested 
relational algebra [8886] or nested 8QL [PA86, RKB87] without any change. We are able 
to express all previous examples by regular nested algebra expressions or by nested 8QL 
in a very simple way as shown by the following examples 

(SI) select pno, pn, (AI) 71'[pno,pn, 
(select eno, ename from members) 71'[eno, ename](members)](projects) 

from projects 

We omitted renaming here, i.e. we called the resulting objects "projects" with their at­
tributes pno, pn, and members. The symmetric case, also without renaming, is 

(S2) select eno, ename, (A2) 71'[eno, ename, 
(select pno, pn from assignmts) 71'[pno, pn] (assignmts )l( employees) 

from employees 

Notice the wellknown role of the select clause (or the 7r in the algebra) as a type construc­
tor. As in usual 8QL the result of the select statement is a set of tuples with components 
as designated by the select list. The following examples are expressed as easily as the 
previous ones 
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(select eno from members), 
(select pname from produces), 

from produced_by) 
from parts 

Also a recursive type is simply handled 

(A3) 1I'[pname, 
1I'[pno, 

1I'[enoJ( members), 
1I'[pnameJ (produces)] 

(produced..by)] 
(parts) 

(84) select eno, (select eno from manages) (A4) 1I'[eno,1I'[enoJ(manages)](employees) 
from employees 

The previous examples have shown how the schema of a nested relation is defined dy­
namically by a query. At the same time the instances are defined. Up to now we have 
applied projection which selects a subset of attribute values in each tuple as usually. But 
we may apply selection too. We may restrict the instances by some predicates as usually. 
If, for example we were interested in all projects but only the member with name 'Smith' 
we would write 

(81') select pno, pn, 
(select eno from members 
where ename='Smith ') 

from projects 

Note that an empty set would be returned if a project has no 'Smith' among its members. 
In order to see people reporting directly to 'John' we would write 

(84') select eno, 
(select eno from manages) 

from employees 
where ename='John' 

While this already looks quite elegant there are two concerns which we will discuss in the 
sequel. The first one is ease-of-use, the second is the subject of recursive queries. 

4.5 Sequences of Flat SQL Statements 

Fortunately there is a proposal which may be an answer to both concerns at the same 
time. The idea is to apply simple, flat SQL-like statements and to connect them via 
names [LS88]. Complex queries get confusing using nested expressions and indentation 
as shown above. Splitting them into smaller pieces defined in several steps gives more 
evidence as we see by rewriting some of the previous examples. 

(Fl) begin select 
select pno, pn, M from projects 
M: select eno, ename from members 

end select 

(F3) begin select 
select pname, P from parts 
P: select pno, X, Y from produced_by 
X: select eno from members 
Y: select pname from produces 

end select 
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We introduced names in the select clauses as placeholders and define them later step 
by step. In the second example we know that we want to see pname together with 
something we abbreviate P for every part. P is defined later as a set of tuples calculated 
from produced-by which is a set-valued component of part, the element type of paris. 
Within P, in turn, we select pno and two things called X and Y defined later for every 
element in produced-by which as we know is of type project. The value pno is a component 
of a basic type in project whereas X or Yare computed from the set-valued components 
members or produces of project respectively. The simple rule is that we specify by select 
what we want to see if a set-valued component (object or subobject) is encountered. In 
other words, a "select *" as a default for selecting everything must be applied more 
carefully. 

This "trick" with names allows us to handle the recursively defined types in a way as 
simple as the nonrecursive ones. The manages example is one: 

(F4') begin select 
select eno, Down from employees 

where ename='!ohn' 
Down: select eno from manages 

end select 

In a similar way we could get people reporting directly to John and those at the next 
lower level under John 

(F4") begin select 
select eno, Downl from employees where ename='!ohn' 
Downl: select eno, Down2 from manages 
Down2: select eno from manages 

end select 

Also aggregate functions can be used easily as in 

begin select 
select pname, P from parts 
P: select pno, C from produced_by 
C: select count(*) from members 

end select 

which gives us for every part the pname and the set of tuples consisting of the project 
number pno and the number C of employees working in this project for all projects 
producing the current part. 

4.6 Recursive Queries 

While the previous examples still can be handled with standard operations of the nested 
relational model we have to extend the model for real recursive queries, e.g. if we want 
to see the complete hierarchy under John. The difference is that in all previous examples 
we can determine the type of the result, i.e. the schema of the resulting nested relation 
by parsing the select statements without execution. In other words, given the recursive 
type definition in Pascal++ and given the query specification, the type of the result can 
be determined at compile time just by inspecting the select-lists. For example in F4" the 
type is 
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Q(eno, downl (eno, down2(eno))) 

This is no longer possible for John's complete hierarchy as we don't know in advance how 
many levels will be obtained by this computation. However, it is simple to express these 
kinds of queries. The utilization of names within SQL expressions becomes crucial now 
and is not only "syntactic sugar". For instance, consider the employee hierarchy below 
'John': 

(F4*) begin select 
R: select eno, Down from employees where ename='John'j 
Down: select eno, Down from manages 

end select 

As in the previous examples the result R is the set of "John" tuples consisting of eno and 
Down, defined in the next statement. This defines Down recursively: the result is of a 
recursive type 

type R = set of record 
eno: integer; 
Down: R 

end 

equivalent to the following recursive 'nested relation' 

R(eno, Down(R)). 

Its instances may have an arbitrary depth. As soon as the manages component is empty, 
the result is empty, the recursion terminates, and an empty set is returned to the next 
higher layer indicating that we arrived at an employee who is not manager. 

5 Summary 

A brief overview on the nested relational model, its basic concepts, the operations, and 
the implementation and utilization within the Darmstadt Database System (DASDBS) 
project was given. The first role of nested relations is the formal description of hierarchical 
clustering techniques. Here a nested relational schema is the result of a physical database 
design process which, for instance, utilizes this structure for materializing an important 
(i.e. frequent) join operation. The second, and more innovative role of the nested relational 
model is to give up static schema definitions but rather to allow recursive ones. We 
showed how a nested algebra or SQL-type language can be used on such a general network 
shaped structure without any change. The idea basically consists in dynamically taking 
hierarchical views of the net with the "current" node as the root. 

It should be mentioned that while this easily applies for retrieval operations on network 
structures, some more care has to be taken for the update operations. Variations of 
nested relational update operations have to reflect the fact that subobjects may now be 
shared between different hierarchical views. Therefore one has to distinguish, for instance, 
whether or not a change of such a shared subobject should be propagated to the other 
hierarchical views too. One of the new projects in the context of the DASDBS family will 
study this new direction of migrating the nested relational paradigm to this more general 
data model. This will also include extensibility features like externally defined basic types 
and attached procedures. 
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