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	,(&�� &-�Back�arc extension in the Aegean, which was driven by slab rollback since 45 Ma, 26 

is described here for the first time in two stages. From Middle Eocene to Middle Miocene, 27 

deformation was localized leading to i) the exhumation of high�pressure metamorphic rocks 28 

to crustal depths, ii) the exhumation of high�temperature metamorphic rocks in core 29 

complexes and iii) the deposition of sedimentary basins. Since Middle Miocene, extension 30 

distributed over the whole Aegean domain controlled the deposition of onshore and offshore 31 

Neogene sedimentary basins. We reconstructed this two�stage evolution in 3D and four steps 32 

at Aegean scale by using available ages of metamorphic and sedimentary processes, geometry 33 

and kinematics of ductile deformation, paleomagnetic data and available tomographic models. 34 

The restoration model shows that the rate of trench retreat was around 0.6 cm/y during the 35 

first 30 My and then accelerated up to 3.2 cm/y during the last 15 My. The sharp transition 36 

observed in the mode of extension, localized versus distributed, in Middle Miocene correlates 37 

with the acceleration of trench retreat and is likely a consequence of the Hellenic slab tearing 38 

documented by mantle tomography. The development of large dextral NE�SW strike�slip 39 

faults, since Middle Miocene, is illustrated by the 450 Km�long fault zone, offshore from 40 

Myrthes to Ikaria and onshore from Izmir to Balikeshir, in western Anatolia. Therefore, the 41 

interaction between the Hellenic trench retreat and the westward displacement of Anatolia 42 

started in Middle Miocene, almost 10 Ma before the propagation of the North Anatolian Fault 43 

in the North Aegean.  44 

�!".$�#(- Hellenic subduction, slab rollback, trench retreat, Aegean back�arc extension 45 

46 
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�/(�0/- L’extension égéenne, mue par le recul de la subduction Hellénique, est un processus 47 

qui, depuis 45 Ma, montre une évolution en deux stades. De l’Eocène moyen au Miocène 48 

moyen, la déformation localisée est matérialisée par i) l’exhumation de roches 49 

métamorphiques de haute pression, ii) l’exhumation de roches de haute température dans des 50 

“core complexes” et iii) le dépôt de bassins sédimentaires Paléogènes. Depuis le Miocène 51 

moyen, l’extension est distribuée dans tout le domaine égéen contrôle le développement de 52 

bassins sédimentaires Néogènes. Cette évolution en deux stades à l’échelle de l’ensemble du 53 

domaine égéen est reconstruite en utilisant les âges des processus métamorphiques et 54 

sédimentaires, la cinématique de la déformation ductile, les données paléomagnétiques 55 

existantes et les modèles tomographiques les plus récents. Le modèle de restauration montre 56 

que la vitesse de recul de la subduction, de 0,6 cm/an pendant les premiers 30 Ma, s’est 57 

accélérée au Miocène moyen pour atteindre 3.2 cm/an au cours des derniers 15 Ma. La 58 

transition localisée�distribuée de l’extension au Miocène moyen, corrélée avec l’accélération 59 

du recul de la fosse, est probablement une conséquence de la déchirure du panneau de 60 

lithosphère subductée. Le développement de grands décrochements dextres orientés NE�SW 61 

pendant le deuxième stade d’extension indique que l’interaction entre le recul de la 62 

subduction Hellénique et le déplacement vers l’Ouest de l’Anatolie a débuté au Miocène 63 

moyen, 10 Ma avant l’arrivée de la Faille Nord Anatolienne dans le Nord de l’Egée. �64 

65 
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�&�$#� &'$��66 

The Aegean Tertiary tectonic history corresponds to back�arc extension driven by slab 67 

rollback (Royden 1993; Jolivet and Faccenna 2000; Faccenna et al. 2003, 2014, Brun and 68 

Faccenna 2008). Extension started around 45 Ma ago (Brun and Sokoutis 2010) and 69 

accommodated up to 600 km of trench retreat (Jolivet and Brun, 2010; Jolivet et al. 2013). 70 

Extension followed the closure of Vardar and Pindos oceanic domains in Cretaceous�Eocene 71 

(Dercourt et al. 1993; Channell and Kozur 1997; Robertson 2004) that led to the stacking of 72 

three continental blocks: Rhodopia, Pelagonia and Adria, from top to base (Fig. 1). 73 

Tomographic models of the underlying mantle image a single slab (Wortel and Spakman 74 

2000; Piromallo and Morelli 2003; Widiyantoro et al. 2004) indicating that the convergence 75 

of continental blocks, now separated by two suture zones, has been accommodated by a single 76 

subduction (Faccenna et al. 2003).  77 

The first plate kinematic models of eastern Mediterranean (McKenzie 1972, 1978; Le 78 

Pichon and Angelier 1981) and the present�day displacement field from satellite geodesy 79 

(McClusky et al. 2000; Hollenstein et al. 2008; Müller et al. 2013) show that the active 80 

pattern of extension combines the effects of the southwestward retreat of the Hellenic trench 81 

and the westward displacement of Anatolia along the North Anatolian Fault (NAF). The 82 

geological record shows that this interaction between two strongly oblique components of 83 

boundary displacement started during Middle Miocene (Dewey and Mengör 1979; Mengör et 84 

al. 2005; Philippon et al. 2014), around 10 My before the NAF reached the Aegean (Armijo et 85 

al. 1999; Hubert�Ferrari et al. 2003; Mengör et al. 2005). On the other hand, the coeval 86 

extensional exhumation of high�pressure metamorphic rocks in the Cyclades and high�87 

temperature metamorphic rocks in the Rhodope (Brun and Sokoutis 2007; Brun and Faccenna 88 

2008) started in Middle Eocene (see review of data in Jolivet and Brun 2010 and Philippon et 89 

al. 2012). This brief summary of the extension history during a large part of the Tertiary 90 
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indicates a process that has not been continuous, neither in time nor in space. This is 91 

illustrated by a striking difference in the distribution of Paleogene and Neogene sedimentary 92 

basins at Aegean scale (Fig. 2) suggesting that a major change in the dynamics of extension 93 

occurred in Middle Miocene, more 30 My after its onset. 94 

The present article describes back�arc extension in the Aegean, in two main stages 95 

localized from Middle Eocene to Middle Miocene and distributed since Middle Miocene, and 96 

their most significant large�scale features in terms of sedimentation, deformation and 97 

metamorphism. Then, it presents a 3D restoration of the extensional displacements in four 98 

steps since Middle Eocene. It is shown that the transition in the mode of extension from 99 

localized (core complex) to distributed (wide rift), during Middle Miocene, is coeval with an 100 

acceleration of trench retreat. Finally, it is argued that this acceleration i) likely resulted from 101 

the tearing of the Hellenic slab documented by mantle tomography and ii) was coeval with the 102 

onset of Anatolia westward displacement. 103 

 104 

�&�1!�2-���*!$1!�!�,�('�(���#�#� &'*!�!3)�0�&'$��$4�0!&�0$�+)' ��$ %(�105 

The first stage of extension, from Middle Eocene to Middle Miocene is recorded in the 106 

deposition of sedimentary basins and in the exhumation of high�temperature metamorphic 107 

core complexes and high�pressure metamorphic belts.    108 

����������	�
��
 that mostly contain Middle Eocene and/or Oligocene sediments are 109 

located i) on top of the Rhodopia block (Trace Basin: Görür and Okay 1996; Siyako and 110 

Huvaz 2007; Kilias et al. 2013); Vardar�Thermaikos Basin: Roussos 1994; Carras and 111 

Georgala 1998) and ii) on top of Pelagonia (Mesohellenic Trough: Doutsos et al. 1994; 112 

Ferrière et al. 2004) (Fig. 2a). The Thrace Basin that started subsiding in Early Eocene 113 

contains sedimentary rocks from Lower�Middle Eocene to Pleistocene, reaching a thickness 114 

up to 9000 m. The sedimentary units are dominantly marine�prodelta organic�rich shales and 115 
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turbidites. The transition from Eocene to Lower Oligocene outcrops in the Lemnos Island 116 

(Maravelis and Zelilidis 2011). The Thrace Basin has recorded only moderate tectonic events. 117 

The initial subsidence controlled the deposition of Middle�Eocene to Oligocene sediments. 118 

Early Miocene sediments deposited during an event of inversion/folding are unconformably 119 

sealed by Middle to Late Miocene deposits. The Mesohellenic Through (MHT) extends over 120 

300 Km with a mean width of 40 km from Albania to Greece along a NNW�SSE trend along 121 

the northern side of the Pindos suture zone (Doutsos et al. 1994; Ferrière et al. 2004). Its 122 

sedimentary fill also ranges from the Late Eocene to Middle Miocene. A first megasequence 123 

is composed, from base to top, of Late Eocene tectonic breccia, mass transport deposits, 124 

turbidites, fluvial conglomerates and deltaic plain sediments at the transition with the 125 

Oligocene.  A second megasequence is characterized by Oligocene carbonates at the base. 126 

This platform is rapidly drowned by a rapid subsidence with the deposition of hundred meters 127 

of sands and silts organized in deltaic lobes. � �  128 

The ��
������ �������� ����� ������� (SRCC) (Fig. 3) (Dinter and Royden 1993; 129 

Sokoutis et al. 1993; Brun and Sokoutis 2007), located to the North of the Vardar suture zone, 130 

started to develop in Middle Eocene, around 45 Ma, and was controlled by the SW dipping 131 

Kerdylion detachment. The detachment hanging�wall is made of the metamorphic units of the 132 

Chalkidiki peninsula whose tectonic�metamorphic evolution is dominantly Mesozoic and 133 

which correspond to the western and most external part of Rhodopia (Kydonakis et al. 2015	�134 

and in press). The detachment footwall (i.e. the core) consists mostly a Hercynian basement 135 

made of orthogneisses, paragneisses and marbles dated as Permian at their base (i.e. a 136 

Pelagonian�type assemblage) affected by a high�temperature metamorphism that at many 137 

places reached partial melting in Barrovian�type metamorphic conditions (Dimitriadis 1989). 138 

To the North, the Nestos Thrust (Burg 2011; Nagel et al. 2011) separates these core units 139 

from the northern part of Rhodopia. Therefore, at regional�scale, the SRCC corresponds to a 140 
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tectonic window in which Pelagonia is exposed. Consequently, we interpret the Nestos thrust 141 

that separates northern Rhodopia from Pelagonia as the Vardar Suture Zone. Prior to the 50 142 

Ma migmatisation (Wawrzenitz and Krohe 1998), the Pelagonian core units were sheared and 143 

duplicated by SW directed thrusting (Brun and Sokoutis 2007). From Middle Eocene to 144 

Middle Miocene, the same units, as well as Oligocene and Lower Miocene granite intrusions 145 

(Kyriakopoulos et al. 1989, 1997; Kolocotroni and Dixon 1991; Dinter et al. 1995), recorded 146 

a second shearing event again toward the SW but in extension, during the exhumation of the 147 

core complex (Dinter and Royden 1993; Sokoutis et al. 1993); that extensional phase was 148 

primarily controlled by the SW�dipping Kerdylion Detachment (Brun and Sokoutis 2007). 149 

Everywhere within the exhumed units, the gneisses are mylonitic but approaching the 150 

Kerdylion Detachment they become ultramylonitic with thick cataclasites at the hanging�wall 151 

contact. Paleomagnetic data (Dimitriadis et al. 1998) indicate that the core complex exhumed 152 

during a 30° dextral rotation of the hanging�wall (Chalkidiki Peninsula) what is in agreement 153 

with the northwestward�closing triangular shape of the core complex map contours at regional 154 

scale (Brun and Sokoutis 2007). Since Middle Miocene, the exhumed core units have been 155 

segmented by two sets of normal faults trending NE�SW and NW�SE that controlled the 156 

deposition of Neogene basins (Lalechos 1986; Snel et al. 2006, Brun and Sokoutis 2007). In 157 

its largest width, to the Southeast, the bulk extensional displacement, including the brittle 158 

segmentation of the core complex, reached around 120 km. The �������� �������
� �����159 

������� (CCCC) (Philippon et al. 2012) is located the South of the Vardar Suture Zone and 160 

outcrops in the central islands of the Cyclades (Fig.3): Naxos�Paros and Mykonos�Delos�161 

Rhenia. This core complex developed entirely within the Adria crustal block. The core units 162 

display a high�temperature metamorphism reaching partial melting that was superposed to a 163 

previous stage of high�pressure metamorphism. In Paros a fast heating from 350°C to 700°C 164 

occurred between 35 and 20 Ma (Bargnesi et al. 2013). In Naxos, where the peak of high�165 
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pressure metamorphism is dated around 45�50 Ma (Duchene et al 2006; Martin et al 2006), 166 

partial melting commenced prior to 20.7 Ma (Keay et al. 2001). A characteristic PTt 167 

trajectory of Naxos migmatites is shown in Figure 3 (modified after Duchêne et al. 2006). 168 

Core units show a stretching lineation dominantly oriented N�S with an associated top N 169 

sense of shear in Naxos�Paros (Gautier et al. 1989, 1993; Urai et al. 1990; Buik 1991) and 170 

NE�SW�oriented with a top NE sense of shear in Mykonos�Delos�Rhenia (Leconte et al. 171 

2010) in agreement with a N�dipping but wavy detachment in Naxos�Paros and a NE�dipping 172 

detachment in Mykonos�Delos�Rhenia. These differences in structural and kinematic patterns 173 

are often interpreted as two separated core complexes with independent and non�connected 174 

detachments (e.g. Jolivet et al. 2010; Denèle et al. 2011). Consequently, this would imply 175 

distinct dynamics of development. The two groups of islands are separated by a regional�scale 176 

discontinuity trending NE�SW (Gautier and Brun 1994; later called “Mid�Cyclades 177 

Lineament” by Walcott and White 1998). Philippon et al. (2012) showed that the restoration 178 

of post�Middle Miocene faulting using available paleomagnetic data brings the two trends of 179 

stretching lineations into parallelism and the two groups of islands in geometrical continuity, 180 

revealing that hidden below the scattering of islands was initially a single core complex (i.e. 181 

the CCCC). The restoration also showed that the Mid�Cyclades Lineament can be interpreted 182 

as a dextral strike�slip fault, with an offset in the order of 50 km, that was called by Philippon 183 

et al. (2014) Myrthes5Ikaria fault (MIF in Fig. 3) as it transforms the post�Middle Miocene 184 

opening of the Myrthes and Ikaria basins located at its SW and NE tips, respectively. In this 185 

frame, the wavy shape of the Naxos�Paros detachment appears to result from an E�W 186 

component of shortening (as already suggested by Avigad et al. 2001 at the scale of the 187 

central Cyclades and by Urai et al. 1990 and Buik (1991) from the observation of outcrop�188 

scale folds in Naxos).��  189 

Page 8 of 54

https://mc06.manuscriptcentral.com/cjes-pubs

Canadian Journal of Earth Sciences



D
raft

 9 

��������


�������������
� (In blue in Fig. 4) affected Adria and partly Pelagonia 190 

during the closure of the Vardar and Pindos oceanic domains. Their exhumation was 191 

accommodated by extension, dominantly during “Stage 1” and partly during “Stage 2”. The 192 

Cycladic Blueschist Unit (CBU) is constituted by: i) at the base, a Hercynian basement 193 

dominantly made of granite orthogneisses, ii) a sedimentary cover where alternate marbles 194 

and schist sequences whose depositional ages range from Visean to Eocene and iii) at the top, 195 

an ophiolitic mélange made of serpentine schists with Triassic to Cretaceous metagabbro and 196 

metabasalt knockers that could represent either relicts of the Pindos Ocean itself or part of the 197 

Adria subcontinental lithospheric mantle that was partially molten during the stretching and 198 

rifting stage of the Pindos ocean. The rather similar ranges of pressure peaks in the oceanic�199 

type rocks (0.852.2 GPa) and in the sedimentary cover (0.651.8 GPa) indicate that the 200 

basement, its sedimentary cover and the oceanic�type rocks were subducted at comparable 201 

depths. The compilation of geochronological data obtained by various methods in 10 different 202 

Cycladic islands (Fig.5 in Philippon et al. 2012) shows: i) that the ages of high�pressure 203 

metamorphism range between 58 and 40 Ma and ii) that the blueschist�greenschist transition 204 

occurred in a narrow age range of 3 My between 35 and 32 Ma. This indicates that the CBU 205 

was exhuming in Late Eocene�Early Oligocene as a whole coherent unit, in agreement with 206 

the preservation, in many islands, of the superposition cover on basement with or without 207 

ophiolitic mélange at the top. In addition, nummulitic turbidites (Lutetian) are involved in 208 

thrust deformation and have recorded a metamorphic pressure of 151.2 GPa (Shaked et al. 209 

2000; Ring et al. 2007; Rosenbaum and Ring 2007). Together with the Middle Eocene age of 210 

the youngest pressure peaks, this shows that subduction�related thrusting was active until 211 

Middle Eocene. As the blueschist�greenschist transition occurred between 35 and 32 Ma, the 212 

delay between the end of subduction and the onset of exhumation has been short, more likely 213 

less than 5 My. The PTt trajectory of Tinos blueschists (Fig. 4) (Parra et al 2002; Jolivet and 214 
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Brun 2010) shows that an isobaric heating occurred during exhumation between 37 and 33 215 

Ma. As Tinos is close to the CCCC (Fig. 3) this is more likely related with the heating 216 

observed in Paros in the same range of ages (Bargnesi et al 2013). Three main events of 217 

pervasive ductile deformation that can be characterized at regional scale by stretching 218 

lineations and associated senses of shear characterize the CBU (Philippon et al. 2012): (1) 219 

prior to at least 40 Ma, a subduction�related layer�parallel shear top to SW and top to S to the 220 

NW and to the SE of the MIF, respectively (Black arrows in Fig. 4), (2) from 40 to 20 Ma, an 221 

exhumation�related layer�parallel shear of weak to moderate intensity, prior to the onset of the 222 

North Cycladic detachment, top to N or NE to the NW and to the SE of the MIF, respectively 223 

(White arrows in Fig. 4), (3) from 20 to 13 Ma and observed in the islands adjacent to the 224 

North Cycladic detachment, a top to NE shear in general of strong intensity affects the 225 

blueschists as well as high temperature rocks of the CCCC (Red arrows in Fig. 3). The������226 

���


��� ������������ 
���� ��� ���������
�� ���� ������ is characterized by an exhumation 227 

history younger than the CBU one (Fig. 4). It was still undergoing burial when the CBU�was 228 

already exhuming. Exhumation occurred in Late Oligocene�Lower Miocene without 229 

significant heating during exhumation. In this most external part of Adria, high�pressure low�230 

temperature (HP�LT) metamorphism is only recorded in the “ Phyllite5Quartzite Nappe “ 231 

(PQN) (see comprehensive review by Jolivet et al. 2010	 and references therein). The HP�LT 232 

PQN is sandwiched between two thick thrust units composed of Triassic to Eocene 233 

formations, namely the Gavrovo5Tripolitza Nappe (GTN) on top and the “Plattenkalk Nappe” 234 

below. As pointed out by Stöckhert et al. (1999), the average resistance of the PQN was much 235 

smaller than the overlying and underlying units and consequently localized a large part of the 236 

deformation during burial and exhumation. From a mechanical point of view, the PQN is 237 

therefore a décollement (i.e. dominated by layer�parallel shear) and relating its deformation to 238 

a detachment (shear zone cutting down section), as done in most published works, is rather 239 
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misleading. This is confirmed by the presence of the GTN over the whole Peloponnese�Crete 240 

region and the common outcropping of the PQN in windows of the GTN. A detachment, 241 

significant at regional�scale, should have exposed the PQN over a large domain without the 242 

GTN on top. In Peloponnese, stretching lineations related to thrusting and exhumation trend 243 

EW but with a sense of shear top to W for thrusting (black arrows in Fig. 4) and top to E for 244 

exhumation (white arrows in Fig. 4). In Crete, stretching lineations related to exhumation 245 

trend NS (white arrows in Fig. 4). The orthogonality of stretching directions related to 246 

exhumation and the convergence of associated senses of shear imply that Peloponnese and 247 

Crete have undergone a nearly 90° relative rotation after the end of ductile deformation.  248 

� In summary, the exhumation of core complexes (high�temperature metamorphism) and 249 

blueschists (high�pressure metamorphism) results from significantly different mechanisms of 250 

development, primarily controlled by temperature�dependent rheology of the crustal units. 251 

Therefore, their location in the Aegean, as well as their relative timing of development, has an 252 

important mechanical significance:  253 

�� The SRCC started to develop in Middle�Late Eocene in North Aegean when the CBU 254 

started to exhume in central Aegean,  255 

�� The CCCC developed in central Aegean in lower Miocene almost synchronous with 256 

the onset of HP�LT PQN exhumation in Peloponnese and Crete. 257 

�� The sense of shear and detachment dip in core complexes and sense of shear in high�258 

pressure rocks, is top to SW in North Aegean (SRCC), to NE in central Aegean (CBU 259 

and CCCC) and to E and N in South Aegean (HP�LT PQN). 260 

�� The part of exhumation synchronous with ductile deformation ended in Middle 261 

Miocene in all types of metamorphic rocks, either high�temperature (SRCC and 262 

CCCC) or high pressure (CBU and HP�LT PQN) and whatever age of onset. 263 

 264 
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������� The high�pressure to ultrahigh�pressure metamorphic units of the Southwest 265 

Rhodope (Kydonakis et al. 2015	) and the North Rhodope (Mposkos and Kostopoulos 2001, 266 

Liati 2005) developed during the Cretaceous, and were exhumed before Eocene, prior to the 267 

onset of back�arc extension in the Aegean (Kydonakis et al. 2014, Kydonakis et al. 2015b and 268 

2015c) controlled by the Hellenic slab rollback. Therefore, they are outside the scope of the 269 

present paper. 270 

 271 

�&�1!�6-��!$1!�!�,�('�(��(!10!�&�&'$��$4�0!&�0$�+)' ���'&(���#�#!3&��*�&���(&!�('$��*�272 

4��*&'�1�273 

The ��������	�
��
 (Fig. 2b) whose deposition started in Middle Miocene constitute 274 

one of the most striking geological features of the Aegean domain, both onshore and offshore. 275 

They emplaced on all types of rock units (Paleogene basins, high�temperature or high�276 

pressure metamorphic units, plutonic massives and volcanic buildups) of Rhodopia, Pelagonia 277 

and Adria and over around 1000 km from Crete to Rhodope. The earlier deposits are 278 

Langhian�Serravalian in some basins of the North Aegean (e.g. Prinos; Chiotis 1984; Beniest 279 

et al. 2015). Where structural data are available, field measurements or seismics, tectonic 280 

setting of most basins is extensional or transtensional (e.g. Mercier et al. 1987, 1989; Lyberis 281 

1984; Mascle and Martin 1990; Koukouvelas and Aydin 2002; Sakellariou et al. 2013). In the 282 

islands of the North Aegean and Eastern Cyclades where it can be observed, the Late Miocene 283 

corresponds to continental lacustrine and alluvial series (Lesbos and Chios: Jones 1971; 284 

Samos: Weidmann et al. 1984, Beniest et al 2015). In Samos, the sediments are dated from 10 285 

to 6 Ma by the intercalation of volcanic rocks (Weidmann et al. 1984) and mammals (Koufos 286 

et al. 2009), with a very rapid subsidence until 8 Ma (Deschamps et al. 2013). During the 287 

Messinian, a sea of brackish�water character developed between the Paratethys to the North 288 

and the Mediterranean to the South. At that time the Aegean Sea was principally fed by 289 
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surrounding rivers and/or by Paratethyan waters. The sedimentary sequence deposited is 290 

principally composed of limestone containing brackish�water Paratethyan fauna, with some 291 

intercalations with Mediterranean species indicating the re�establishment of a non�permanent 292 

Atlantic–Mediterranean connection and, thus, replenishment of marine waters (Bache et al 293 

2011). The Pliocene�Quaternary is characterized by a definitive restoration of the marine 294 

conditions in the Aegean. 295 

�� ���������
��� ����������������� ���
, obtained by various methods (apatite and 296 

zircon fission�track and U�Th/He on apatite and zircon) in high�temperature and high�297 

pressure metamorphic units, which were exhumed during the first stage of extension, are 298 

dominantly Serravalian�Tortonian, over the whole Aegean (Fig. 5). This indicates that 299 

metamorphic rocks of the SRCC, the CBU�CCCC and Peloponnese�Crete, whose onsets of 300 

exhumation were different, were reaching the surface in Middle�Late Miocene. In the core 301 

complexes and high�pressure metamorphic rocks of the Aegean these ages of exhumation are 302 

commonly considered to provide an age for the end of normal sense displacement along a 303 

detachment. But the synchronism, at the whole Aegean scale, between the first sediment 304 

deposition in Neogene basins and the final stages of metamorphic rock exhumation put this 305 

type of interpretation in question, as most Neogene basins cannot be put in relation with any 306 

major crustal�scale detachment. In the Rhodope, Serravalian�Tortonian sediments are 307 

deposited on the hanging�wall of normal faults that cut through the metamorphic rocks of the 308 

SRCC (Brun and Sokoutis 2007). Simultaneously, the footwall of these faults was uplifted, 309 

reaching altitudes up to 1000�2000m. These normal faults trend either NW�SE, almost 310 

parallel to the core complex detachment, or NE�SW, perpendicular to the detachment. 311 

Whatever the fault trend, rocks from their footwall give the same range of thermochronology 312 

ages (Fig. 5), showing that these ages are not related to the functioning of the core complex 313 

detachment but to a superposed event of faulting that segmented the core complex. The 314 
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Cyclades archipelago resulted from the segmentation by normal faults within the CBU and 315 

the CCCC (see restoration in Philippon et al. 2012). As quoted in section 2.2, the Myrthes�316 

Ikaria fault (MIF), which trends NE�SW, separated the Cyclades in two main domains (Fig. 6) 317 

(Philippon et al. 2014). To the NW of the MIF, the islands correspond to the residual reliefs 318 

remaining above the sea level from the uplift of normal fault footwalls. To the SE border of 319 

MIF, the high altitude of Paros�Naxos (up to 600 m) is likely related to upright folding of the 320 

core complex under a component of EW shortening (Avigad et al. 2001; Philippon et al. 321 

2012). Two reasons could explain the lack of Middle�Late Miocene basin remnants in the 322 

Cyclades: i) the islands represent the upper part of normal fault footwalls and ii) erosion could 323 

have removed possibly inverted basins. However, Samos to the East of the Cyclades shows 324 

Tortonian sediments that were deposited in transtension and locally reworked in compression 325 

around 9 Ma (Ring and Ochrusk 2007). The statistical distribution of thermochronology ages 326 

(Fig. 5) obtained in 10 Cyclades islands, in either the CBU or the CCCC, is Middle�Late 327 

Miocene with a strong peak in Tortonian (See data compilation in Fig.12 of Philippon et al. 328 

2012). 329 

� !�������
������
������
����� is an important part of the active Aegean fault pattern, in 330 

particular in the North Aegean, recognized through dynamic analysis of fault systems 331 

(Mercier et al 1987, 1989; Lyberis 1984; Lyberis and Sauvage 1985), structural mapping 332 

(Armijo et al. 1999; Papanikolaou et al. 2006), seismicity and earthquake focal mechanisms 333 

(Hatzfeld 1999; Taymaz et al. 1991; Goldworthy et al. 2002). Among these faults, the 1200 334 

km�long ������ "��������� #�
�� (NAF), which today accommodates the westward 335 

displacement of Anatolia, focus considerable and justified attention related to seismic risk 336 

from both societal consequences and scientific points of view. In the frame of this paper, our 337 

concern is the role, in time and space, that the NAF played in the Aegean dynamic evolution 338 

since Middle Miocene, called here stage 2 extension. Thirty�six years ago, Dewey and Mengör 339 
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(1979) recognized that the NAF had been preceded by a larger zone of displacement initiated 340 

in Late Miocene, connected to the Bitlis suture in eastern Anatolia, as the “Proto�Anatolian 341 

Transform”. More recently, Mengör et al. (2005) on the basis of quantitative arguments, 342 

derived from the study of Neogene basins in North Anatolia, showed that the NAF resulted 343 

from strain localization within the 100 km wide North Anatolian Shear Zone (NASZ). 344 

Localization in Western Turkey (Dardanelle strait) is estimated around 5 Ma (Armijo et al. 345 

1999). To the West of the Dardanelle Strait, the NAF takes a NE�SW direction and joins the 346 

SSW�NNE�trending North Aegean Through (NAT) (Lyberis et al. 1984; Koukouvelas and 347 

Aydin 2002) that is the major bathymetric depression of North Aegean (Papanikolaou et al. 348 

2002). The NAT likely originated in Paleogene as a transtensional structure to laterally 349 

accommodate the dextral rotation of the Chalkidiki block with reference to North Rhodope 350 

during the exhumation of the Southern Rhodope Core Complex. In the junction area between 351 

the NAT and the NAF, positive flower structures (Roussos and Lyssimachou 1991) suggest a 352 

reactivation of pre�existing faults of the NAT at the propagating tip of the NAF. The dextral 353 

strike�slip displacements that characterize the NAF become transtensional in the NAT with a 354 

series of North�dipping normal faults oriented WNW�ESE that branch onto the sharp and 355 

linear eastern border of the NAT (Fig. 6). The superposition of the GPS displacement field on 356 

top of the map of Neogene basins (Fig.7) shows that the NAT separates two domains where 357 

displacements are southward and low rate (< 0.5 cm/y) to the North and southwestward and 358 

medium rates (> 2.1 cm/y) to the South. Syn�sedimentation rollover geometry of Neogene 359 

basins of Southern Rhodope indicates a NE�SW direction of stretching in Pliocene (Brun and 360 

Sokoutis 2007). Kinematic analysis of faults systems in North Aegean (Lyberis 1984; Lyberis 361 

and Sauvage 1985; Mercier et al. 1987, 1989) revealed that a change in the direction of 362 

stretching from NE�SW to N�S (Fig. 8) occurred in Lower Pleistocene. This suggests that the 363 

present�day displacement pattern became fully installed rather recently, in Lower�Middle 364 
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Pleistocene. A similar change in the direction of stretching from NE�SW to N�S is also 365 

observed in the Southern Hellenides during the Pliocene (See Fig. 3 in Papanikolaou and 366 

Royden 2007). Figure 6 shows that the $�����
�%��������
�� (MIF) is the offshore extend of 367 

the onshore %
����&�����
���� ����
���� '��� (IBTZ) (Sozbilir et al. 2010; Ersoy et al. 2012; 368 

Uzel et al. 2013) (Fig. 6). Lower(?)�Upper Miocene sedimentary�volcanic basins were 369 

deposited in this transtensional corridor, located at the northwestern border of the Menderes 370 

Massif (Ersoy et al. 2012). Simultaneously, grabens developed in the Menderes, 371 

accommodating a NE�SW direction of stretching. Without entering here into the complexities 372 

of the paleomagnetic record of block rotations in IBTZ and Menderes (Uzel et al. 2015), it 373 

must be mentioned that dextral strike�slip shear in IBTZ accommodated a CCW rotation of 374 

the southern Menderes of around 30° (Pourteau et al. 2010; van Hinsbergen et al. 2010), 375 

likely comparable to the 33° CCW rotation of the Naxos�Paros block in the Cyclades (Morris 376 

and Anderson 1996) accommodated by dextral strike�slip offsets along the MIF (Philippon et 377 

al. 2012, 2014). Over 450 km, from Myrthes Basin to Balikeshir, this dextral strike�slip fault 378 

zone was active since Middle Miocene –i.e. around 10 My before the arrival of the NAF in 379 

the North Aegean. We lack of direct markers to identify when displacements ceased on this 380 

fault. We may hypothesize that it should be around 5 Ma when the NAF fully localized, 381 

reaching the western part of Marmara Sea This would be in agreement with the last 382 

exhumation ages recorded by low�temperature thermochronology (Fig. 5). The Myrthes�383 

Balikeshir fault zone accommodated the difference in amount of stretching between the two 384 

domains that it separates. Therefore it is interesting to note that, in terms of displacement, the 385 

bulk 50 km offset of dextral strike�slip along the fault that was estimated in the central 386 

Cyclades (Philippon et al. 2014) is in rather good agreement with the 50 km of NE�SW 387 

trending extension estimated in the southern part of the Menderes Massif (van Hinsbergen, 388 

2010). 389 
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In summary, the mode of extension during this second stage of back�arc extension is in 390 

strong contrast with the one that characterizes the first stage. Extension passed in Middle 391 

Miocene from the core complex mode to the wide rift mode (Buck 1991; Brun 1999), as 392 

demonstrated by the deposition of extensional or transtensional Neogene basins across the 393 

whole Aegean offshore and onshore. The interruption of ductile exhumation in Middle 394 

Miocene, in all types of metamorphic rocks (HT as well as HP) whatever their age of onset, as 395 

well as the segmentation of the metamorphic units and the deposition of Neogene basins on 396 

top of them suggest that the transition between the two modes of extension was not 397 

progressive and likely occurred in a rather short delay. 398 

�399 

�!(&$��&'$��$4�78��"�$4�,� %��� �!3&!�('$���400 

Restorations of deformation in the shallow upper crust have demonstrated the difficulties 401 

and limitations inherent to this type of exercise. At lithosphere scale, like attempted here, 402 

restoration is face to more difficulties and depends even more than at smaller scales on the 403 

interpretation that is made, prior to restoration, of i) the tectonic setting in time and space of 404 

the domain to be restored and ii) the understanding of mechanical processes involved. In other 405 

words, such a restoration cannot be expected to put in evidence something that has not been 406 

identified and understood prior to restoration, whatever the particular techniques used for 407 

restoration. However, in spite of these limitations and in a case like the Aegean whose 3D 408 

evolution is rather complex, it is the best way: i) to test the coherence of the proposed 409 

interpretations, ii) to discuss their 3D implications, and iii) to make them more easily 410 

accessible and opened to critical assessment by anyone. 411 

The 3D reconstruction of the 45 My history of back�arc extension presented in this section 412 

was carried out in two steps, in map view and then in cross�sections. It was performed 413 

manually using standard graphical techniques because a computer procedure appropriate for 414 
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restoration at lithosphere scale does not exist yet. The two�step restoration, in map view and 415 

in cross�section, was performed at 5, 15 and 45 Ma for which enough geological and 416 

geophysical data were available to satisfactorily constrain a model. An intermediate model at 417 

30 Ma was obtained by interpolation.  418 

��
����������������(�� �was carried out�using the data from references quoted in the two 419 

previous sections plus: i) Geological map of Greece at various scales (IGME), ii) offshore 420 

maps (synthesis by Mascle and Martin 1990), ii) paleomagnetic data (see compilations in: i) 421 

Kissel and Laj 1988 and Van Hinsbergen et al. 2005 at Aegean scale, ii) Dimitriadis et al. 422 

1998 for northern Greece, Morris and Anderson 1996 for the Cyclades and Kissel et al. 1993 423 

for Western Anatolia), iii) Principal directions of stretching and shear sense recorded in HT 424 

and HP metamorphic rocks during subduction (Black arrows) and extensional exhumation 425 

(White arrows)  (Figs. 3 and 4). Colors of the restored maps are the same than those of the 426 

present�day map (Fig.1). The darker blue band in Adria corresponds to the external fold and 427 

thrust belt of the Pindos Nappe. All maps show the position of Black Sea and the location of 428 

the rotation pole of Scutary�Pec (Albania) (Kissel et al. 1995) around which the Southern 429 

Hellenides and western Cyclades rotated clockwise by 50° since Oligocene (Kissel and Laj 430 

1988; Van Hinsbergen et al. 2005). The present restoration integrates more detailed 431 

restoration models dedicated to the Cyclades (Philippon et al. 2014) and to Northern 432 

continental Greece (Kydonakis et al. 2015�). 433 

The series of maps (Fig. 9) shows: i) the change in geometry and location of the Vardar 434 

and Pindos suture zones, ii) the approximate position of the trench, iii) the development of 435 

major strike�slip faults, in particular the Myrthes�Ikaria Fault (MIF) between 15 and 5 Ma and 436 

the North Anatolia Fault (NAF) since 5 Ma and iv) the location of Paleogene basins (in 437 

orange). The present�day strong obliquity between stretching directions related to ductile 438 

exhumation in Peloponnese and Crete is almost entirely restored into a single NE�trending 439 
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direction at 5Ma. At 15 Ma, the stretching directions of Peloponnese, Crete and Cyclades are 440 

all parallel and trending NNE with Crete located below the Cyclades. In northern Greece, the 441 

progressive exhumation of the Southern Rhodope Core Complex occurred during the 442 

deposition of the Thrace Basin (TB). The lateral transition between these two major 443 

geological features of the North Aegean was likely accommodated by sinistral transcurrent 444 

displacements along the North Aegean Trench (NAT), from 45 to 5 Ma. At 30 Ma, all the 445 

Paleogene basins (Mesohellenic Trough (MHT), North Aegean Trough (NAT), Xanthi Basin 446 

(XB) and Thrace Basin (TB)) are close to each other, forming a band slightly oblique to the 447 

trend of the suture zones of Vardar and Pindos. Our restoration is in a rather good agreement 448 

with the one of Royden and Papanikolaou (2011; their Fig. 15), up to lower Oligocene, but at 449 

strong variance with the one of van Hinsbergen and Schmid (2012; their Fig. 12) that requires 450 

a component of EW stretching across the whole Aegean accommodated by N�S or NE�SW 451 

trending extensional detachments, giving in the southern Aegean an arc�parallel extension up 452 

to 650 Km between 15 Ma and present (i.e. more EW displacement than the bulk amount of 453 

trench retreat). In addition, the van Hinsbergen and Schmid’s model, contrary to our model, 454 

totally ignores the kinematics of HP�metamorphic rocks exhumation, as their model implied 455 

stretching directions trending perpendicular or strongly oblique to the stretching directions 456 

recorded in rocks.   457 

��
��������� ��� ���

�
�������was done� using the following input data: i) restored maps 458 

(previous section), ii) peak pressures recorded in high pressure metamorphic rocks (see 459 

review in Jolivet and Brun 2010 and Philippon et al. 2012), iii) present�day crustal thickness 460 

(Tirel et al. 2004) and iv) present�day geometry of the top slab surface from S�wave 461 

tomography (Salaün 2011). Two parallel sections oriented NE�SW have been restored: i) 462 

from NW Peloponnese to North Rhodope (Section A) and ii) from Southeast Peloponnese to 463 

the West of Marmara Sea (section B) (Fig. 10). The present�day geometry of the slab in 464 
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section A shows a fold that passes laterally to a slab tear in section B. In section A, extension 465 

is mostly located to the North of the Vardar suture zone (Vardar�Thermaikos Gulf and 466 

SRCC). At 50 Ma, the Pelagonian crust that has been entirely subducted starts to delaminate 467 

from the underlying mantle allowing the asthenosphere to flow below the crust. As a 468 

consequence, fast and strong crustal heating, up to partial melting, strongly weakened the 469 

crust. At 45 Ma, after the subduction of the narrow Pindos oceanic domain, the Adria crust 470 

was dominantly subducted and core complex extension (SRCC) started at the back of the 471 

thrust wedge, controlled by the Kerdylion Detachment. At 15 Ma, core complex extension 472 

gave place to wide rift mode of extension with deposition of Neogene basins, the larger one 473 

being the Vardar�Thermaikos Gulf basin. Along this section, located to the West of the 474 

Corinth Gulf, trench retreat reached around 300 Km. Most of the extension was located in the 475 

North Aegean and, conversely, the Adria crust (Southern Hellenides) was only weakly 476 

extended. The section B shows the same sequence of tectonic events but with two major 477 

differences: i) trench retreat reached around 500 Km and extension affected the full Adria 478 

crustal block and ii) to the North, instead of a core complex, extension gave birth to the 479 

Thrace Basin on top of Rhodopia. The series of sections illustrates that the exhumation of 480 

high�pressure metamorphic rocks of Adria and partly Pelagonia occurred entirely in 481 

extension. Between 45 and 15 Ma, the whole initial thrust pile collapsed southward and both 482 

Pelagonia and Adria underwent a layer�parallel top to North sense of shear bringing them in a 483 

lower crustal depth. Since 15 Ma, the southern part of the extending thrust wedge that was 484 

located to the South of the slab tear, underwent a strong distributed extension that achieved 485 

the exhumation of metamorphic rocks up to surface.   486 

 487 

�'( �(('$�-��"��0' (�$4�,� %��� �!3&!�('$��'��&)!�	!1!���488 
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Back�arc extension in the Aegean occurred in two main stages, first between Middle 489 

Eocene and Middle Miocene and second since Middle Miocene. The first stage, prior to 490 

Middle Miocene, is illustrated by the deposition of Paleogene basins (Fig. 2) and the 491 

simultaneous exhumation of high�temperature and high�pressure metamorphic rocks in a core 492 

complex northward and a blueschist belt southward. This occurred in two steps: i) In Middle 493 

Eocene (45 Ma) started the exhumation of the SRCC in the Rhodope (Fig. 3) and the CBU in 494 

the Cyclades (Fig. 4) and in Lower Miocene (around 23 Ma) the exhumation of the CCCC in 495 

the Cyclades (Fig. 3) and the PQN blueschists in Peloponnese and Crete (Fig. 4). During the 496 

second stage, since Middle Miocene, the HP and HT metamorphic units exhumed during the 497 

first stage were segmented dominantly in transtension, synchronous with Neogene basin 498 

deposition.  499 

� The restoration of displacements that is well constrained in continental Greece and 500 

central Aegean by numerous paleomagnetic data, kinematic indicators in metamorphic rocks 501 

and geochronological data shows that ��� ������������� ��� ������� �������� 
������� ��� $������502 

$������ (Fig. 11). The rate of trench retreat that was rather low, around 0.6 cm.y�1, during the 503 

first stage of extension increased to around 1.7 cm.y�1 between Middle Miocene and Pliocene 504 

to reach 3.2 cm.y�1 during the last 5 Ma. This is in agreement with the “dramatic acceleration” 505 

of back�arc extension deduced by Van Hinsbergen et al. (2010) from their study of the 506 

Menderes Massif in western Anatolia. 507 

This acceleration of trench retreat (i.e. extensional boundary displacement), first by a 508 

factor 2 after Middle Miocene and then by a factor 5 after Pliocene, was likely responsible for 509 

the observed change in the mode of extension, from localized to distributed (i.e. from core 510 

complex to wide rift; Buck 1990; Brun 1999; Tirel et al. 2006, 2008; Gueydan et al. 2008; 511 

Kydonakis et al. 2015�).  Mechanical modeling of the extension of a two�layer brittle�ductile 512 

system shows that an increase in strain rate increases the strength of the ductile layer and 513 
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consequently the coupling between the brittle and ductile layers, giving a transition from 514 

localized to distributed extension (Brun 1999; Schueller et al. 2005, 2010).  515 

In addition to this major change in the style of extension, it is interesting to note that 516 

the difference in P/T ratios between the high�pressure metamorphic rocks of Cyclades and 517 

Crete agrees well with an increase in the velocity of trench retreat (Gueydan et al. 2009). 518 

 )��� ������������� ��� ������� �������� �
� ���	�	��� �������� ��� �� �������� �������� ��� ����519 

���������
��	�	��� � �
�����"��������(Brun and Sokoutis 2010; Van Hinsbergen et al. 2010) 520 

identified by P�wave tomographic models of the upper mantle (Piromallo and Morelli 2003; 521 

Biryol et al. 2011). The improved resolution of mantle structure provided by S�wave 522 

tomographic modeling (Salaün et al. 2012) allowed a mapping of the slab tear with three main 523 

trends (Salaün 2011) (Fig. 10): WNW�ESE, below the central part of North Aegean Sea, and 524 

NNW�SSE and E�W almost parallel to the two mean coastline trends of Southwest Anatolia. 525 

Section B (Fig. 10) shows the geometry of the top slab below the North Aegean. Whereas the 526 

exact timing of slab tearing is difficult to constrain, the sudden change in the mode of 527 

extension that is associated with the acceleration of slab retreat strongly supports that slab 528 

tearing should have started to develop earlier, possibly in Early Miocene, to become fully 529 

efficient from 15 Ma onward.  530 

The transtensional deformation pattern that results from the interaction between 531 

Hellenic trench retreat and Anatolia westward displacement and that is still active in the 532 

Aegean took place in Middle Miocene, showing that the westward displacement Anatolia was 533 

coeval with the acceleration of trench retreat. Whereas the North Anatolian fault plays a 534 

major role in the present�day kinematic pattern, ����$�����
�%������%&)#� �
��������
�� ������535 

��������
������
������
���'���������(����* Its location close to the Izmir�Ankara suture zone and 536 

parallel to it suggests that the suture zone was acting as weak zone able to localize 537 

displacements at the onset of Anatolia westward displacement, as illustrated in the laboratory 538 
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experiments of Philippon et al. (2014). However, this interaction between two plate boundary 539 

displacements raises a still opened fundamental issue: What is the dynamic relationship 540 

between slab tearing and Anatolia displacement? Which one controlled the development of 541 

the other? 542 

 543 
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�'1��!� �+&'$�(�929 

�930 

Fig. 1. Simplified geological map of the Aegean domain in Tertiary showing the three main 931 

continental blocks, Rhodopia, Pelagonia and Adria, separated by the Vardar and Pindos suture 932 

zones. The cross�section shows the present�day crustal�scale structure of the Aegean domain 933 

and the geometry of the Hellenic subduction. NAF: North Anatolian Fault. NAT: North 934 

Aegean Through. MIF: Myrthes�Ikaria Fault. 935 

 936 

Fig. 2. Distribution of Paleogene (a) and Neogene (b) basins in the Aegean domain. 937 

Acronyms same as in Figure 1. 938 

 939 

Fig. 3. The two core complexes (High�temperature metamorphism) of the Aegean domain. 940 

SRCC: Southern Rhodope Core Complex, which exhumed between 45 Ma and 18 Ma and 941 

whose detachment dip southwestward. CCCC: Central Cyclades Core Complex, whose 942 

exhumation history is shown by a PTt diagram from Naxos  (Numbers in circles: Time in My) 943 

(After Duchêne et al. 2006 in Jolivet and Brun 2010) and whose detachment dip 944 

northeastward to the West and Northward to the East. Red arrows: syn�metamorphic senses of 945 

shear.  Senses of shear associated to core complex extension after Sokoutis et al (1993) and 946 

Brun and Sokoutis (2007) for the SRCC and Gautier et al (1993) and Gautier and Brun (1994) 947 

for the CCCC. 948 

 949 

Fig. 4. High�pressure metamorphism in the Adria and Pelagonia blocks. PTt diagrams 950 

illustrate the exhumation history of the Cycladic Blueschist Unit in Tinos (Numbers in circles: 951 

Time in My) (After Parra et al. 2002 in Jolivet and Brun 2010) and of the “ Phyllite5Quartzite 952 

Nappe » in Peloponnese (Numbers in circles: Time in My) (After Jolivet et al. 2010�). Black 953 
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arrows: sense of shear related to subduction. White arrows: sense of shear related to 954 

exhumation. Senses of shear associated to subduction (black arrows) after Huet et al (2009) 955 

and Philippon et al (2012). Senses of shear associated to exhumation (white arrows) after 956 

Gautier and Brun (1994) for the Cyclades and Jolivet et al (2010a) for the Peloponnese and 957 

Crete. 958 

 959 

Fig. 5. Frequency distribution histograms of low�temperature thermochronology ages (apatite 960 

and zircon fission tracks (AFT and ZFT) and UTh/He on apatite and zircon) in Rhodope (data 961 

from Wuthrich 2009), Cyclades (Compilation of data: Philippon et al. 2012) and 962 

Peloponnese�Western Crete (data from  Brix et al. 2002; Marsellos et al. 2014). Numbers 963 

correspond to the number of ages within a bin.�964 

 965 

Fig. 6. Major strike�slip faults and sedimentary basins in the Aegean Sea, as displayed by 966 

bathymetry (GMRT bathymetry data from Carbotte et al. 2004). The Myrthes�Ikaria fault that 967 

connects the Myrthes and Ikaria basins (Philippon et al. 2012, 2014) is the offshore extend of 968 

the onshore Izmir�Balikeshir Transfer Zone (Sozbilir et al. 2010), located between the Izmir�969 

Ankara suture zone and the Menderes Massif (pink).  970 

 971 

Fig. 7. Present�day displacements (after Nyst and Thatcher 2004) superposed to the map of 972 

Neogene basins (Yellow) showing that a major change occurred in the course of post�Middle 973 

Miocene deformation when the North Anatolian Fault (NAF) localized and connected to the 974 

North Aegean Through (NAT).  975 

 976 

Fig. 8. Change in the principal direction of stretching between Pliocene to Lower (?) 977 

Pleistocene (a) and Lower (?) Pleistocene to Present (b) related to the localization of the 978 
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North Anatolian Fault in the North Aegean (Principal directions of stretching after Lyberis 979 

1984; Bathymetry data GMRT from Carbotte et al. 2004). 980 

 981 

Fig. 9. Restoration of Aegean extension in map view at 5, 15, 30 and 45 Ma. Colours of 982 

continental blocks and suture zones same as in Figure 1.  Orange: Paleogene basins (MHT: 983 

Mid Hellenic Trough; XB: Xanthi Basin; TB: Thrace Basin). Yellow: Neogene basins; only 984 

shown in the present�day map (e). Red and white arrows (in b to e): principal direction of 985 

stretching and sense of shear related to exhumation of high�temperature (core complexes) and 986 

high�pressure metamorphic rocks, respectively (See Figs. 3 and 4). Black arrows (in a): 987 

principal direction of stretching and sense of shear related to subduction of Adria, in their 988 

position at the onset of extension at 45 Ma. Top�to�SW shear in the SRCC (Red arrows in b to 989 

e) and top�to�NE shear in blueschists (White arrows in b to e) started to develop at 45 Ma. 990 

Top�to�NE shear in the CCCC (Red arrows in c to e) started to develop prior to 20.7 Ma. All 991 

arrows, except the black ones, are represented at all stages following their initial development 992 

as their final position reflect block rotations. 993 

 994 

Fig. 10. Restoration of Aegean extension along two NE�SW trending lithosphere�scale cross�995 

sections AA’ and BB’ (see location on map). Shape of the Hellenic slab (in sections) and 996 

geometry of the slab tear (map view) from the S�wave tomographic model of Salaün (2011). 997 

The slab tear of section AA’ passes to a fold in section BB’ (See slab tear contours in red on 998 

map). At 45 Ma, the restoration shows the geometry of the thrust wedge resulting from the 999 

pilling up of Rhodopia (Brown), Pelagonia (Purple) and Adria (Blue) continental blocks 1000 

separated by the suture zones of the Vardar (Green) and the Pindos (Orange). Extension that 1001 

is a direct function of the amount of trench retreat is much larger in section AA’ than in 1002 

section BB’ where it is mostly located to the North of the Vardar suture zone. 1003 
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 1004 

Fig. 11. Rate of trench retreat along section AA’ (Fig.10) showing an acceleration by a factor 1005 

5 since Middle Miocene, from 0.6 to 3.2 cm y�1, that correlates i) with a change in the mode 1006 

of extension from localized/stage 1 (exhumation of HT and HP metamorphic rocks) to 1007 

distributed/stage 2 (segmentation of exhumed metamorphic units and deposition of Neogene 1008 

basins over the whole Aegean domain) and ii) with the strong contrast in shape and 1009 

distribution of Paleogene and Neogene basins (Fig. 2). 1010 
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