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The Two-State Implicit Filter – Recursive

Estimation for Mobile Robots
Michael Bloesch1, Michael Burri1, Hannes Sommer1, Roland Siegwart1, Marco Hutter1

Abstract—This paper deals with recursive filtering for dynamic
systems where an explicit process model is not easily devisable.
Most Bayesian filters assume the availability of such an explicit
process model and thus may require additional assumptions or
fail to properly leverage all available information. In contrast,
we propose a filter which employs a purely residual based
modeling of the available information and thus achieves higher
modeling flexibility. While this work is related to the descriptor
Kalman filter, it also represents a step towards batch optimiza-
tion and allows the integration of further techniques such as
robust weighting for outlier rejection. We derive recursive filter
equations which exhibit similar computational complexity when
compared to their Kalman filter counterpart – the extended
information filter. The applicability of the proposed approach
is experimentally confirmed on two different real mobile robotic
state estimation problems.

Index Terms—Sensor Fusion, Probability and Statistical Meth-
ods, Localization

I. INTRODUCTION

S
TATE estimation represents an essential aspect in many

engineering problems. Especially within the fast growing

and progressing field of mobile robotics, a reliable and easily

deployable state estimation is indispensable. In order to im-

prove reliability, a combination of different sensor modalities

is often desirable as it provides redundancy and avoids the use

of self-contained but expensive sensor devices. However, the

use of appropriate sensor fusion algorithms is a prerequisite in

order to obtain a consistent estimation output. This entails a

correct modeling of the individual sensors and the combination

into a unified problem formulation.

A majority of the work on Bayesian filters assume the avail-

ability of an explicit dynamic system model with process and

measurement models. Formulated as a time-discrete dynamic

system this has the following form:

xk = f(xk−1, uk, wk), (1)

zk = h(xk, nk), (2)

where wk and nk are noise terms and where, in the context of

state estimation, both uk and zk are observed quantities. For

linear and Gaussian models the well-known Kalman filter [1]

represents the optimal solution to the associated estimation

problem. Various extensions have been proposed in order
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Fig. 1. Toy example: 2D robot with global position coordinates x and
y, global orientation θ, forward velocity v and rotational rate ω. Given
measurements of the position (x and y), the velocity v, and the rotational
rate ω, a simple EKF can be used to estimate all the states (including the
heading θ). But what if no measurement is available for the rotational rate
ω? Or what if we have two independent velocity measurements?

to improve different aspects. Examples include the extended

Kalman filter (EKF) [2], the iterated extended Kalman filter

(IEKF) [3], the unscented Kalman filter (UKF) [4], the infor-

mation filter [5], or square-root filters [6].

Whether a specific sensor modality is associated with the

process (eq. (1)) or measurement (eq. (2)) model depends on

the choice of filter states. In many mobile robotic problems

a combination of both is often employed. For instance, for

the toy example depicted in fig. 1, a typical solution would

integrate the velocity and rotational rate measurements in

an odometry-driven process model and subsequently update

the state with the location measurements. Classical Kalman

filters require the formulation of an explicit process model

as described in eq. (1) and cannot deal with under- or

over-constrained situations. For under-constrained cases (e.g.

the rotational rate measurement is not available) it would

require additional assumptions on the dynamics of the heading

(e.g. a random walk (RW)) and thus potentially introduce a

bias effect. For over-constrained cases (e.g. two independent

velocity measurements are available) either a pre-processing

step is required, or the filter state can be augmented with

differential quantities such as velocities or accelerations. The

later approach would enable to include all measurements by

means of measurement models but would in turn require the

modeling of the dynamics of the introduced differential states.

In summary, the requirement for an explicit process model

restricts the flexibility during modeling and makes the design

of an estimation framework more difficult.

In the case of multiple process models, solutions have been

investigated in the field of track-to-track fusion. The goal is

to combine locally computed estimates within a decentralized
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scenario where multiple sensors exchange information by fol-

lowing a given communication pattern. In order to obtain good

performance it is important to consider the cross-correlations

between the estimates [7], [8]. In some cases different state

representations may be involved as well [9]. However, the

obtained results are typically sub-optimal when compared to

a centralized solution [10], and thus are less relevant in the

present case.

A more general treatment of under- or over-constrained

processes can be attained when employing descriptor systems,

which is a concept better known in the control community

[11]. A descriptor system typically has the following time-

discrete linear form, where in essence an implicit formulation

of the process model is employed:

Ēxk = Āxk−1 + B̄uk + wk, (3)

zk = C̄xk + nk. (4)

Skliar and Ramirez [12] show that, although the matrix Ē is

often assumed to be square and non-singular and thus classical

Kalman filtering could be applied, numerically more stable and

fast solution can be employed when directly leveraging the

descriptor system form. For general matrices, the descriptor

system yields a very high modeling flexibility. Since, in state

estimation, the control input uk and the measured output zk
are both observed quantities, the descriptor system can be

interpreted as a single implicit process model:
[
Ē
C̄

]

xk =

[
Ā
0

]

xk−1 +

[
B̄ 0
0 I

](
uk

zk

)

+

(
wk

−nk

)

. (5)

The filter proposed in this paper employs a residual interpre-

tation of this implicit process model and is closely related

to the descriptor Kalman filter introduced by Nikoukhah et

al. [13]. In their work, they derive a so-called “3-block”

form for descriptor systems with arbitrary Ē matrix and can

thus handle under- or over-constrained problems. They also

investigate detectability and discuss the issue related to non-

causal behavior that can arise in descriptor systems.

Batch optimization [14], [15] also provides means of al-

lowing for more general process models and may improve the

handling of non-linear and non-Gaussian settings. However,

recursive filters have their own set of advantages which are

mainly related to their real-time nature and a lower im-

plementation complexity. This also explains why, nowadays,

they are still widely used in mobile robotics. Also, for well-

behaved problems (moderate non-linearities and good state

observability) the difference in accuracy between filters and

batch optimization becomes negligible.

In contrast to the descriptor Kalman filter [13], the proposed

approach emphasizes a residual based perspective of the

implicit process model (eq. (5)) and takes a further step into

the direction of batch optimization. The employed residuals

depend on two consecutive states and we consequently entitle

the proposed filter “Two-State Implicit Filter” (TSIF). A

probabilistic derivation of the maximum-likelihood problem is

described and a set of recursive filtering equations is presented.

Furthermore, we exploit the link to batch optimization in order

to discuss iterative schemes as well as a robust weighting

method for a better handling of non-linear systems and out-

liers.

In comparison to classical Bayesian filtering such as the

EKF, the residual based modeling allows a more flexible

integration of sensor data and may thereby improve modeling

accuracy. The proposed approach is also not equivalent to a

Kalman filter augmented with the previous state which does

not allow to circumvent an explicit process model. In order

to demonstrate the relevance for mobile robotics the proposed

technique is first illustrated on a toy example. Then, we solve

two different real state estimation problems: Two novel filters

for fusing inertial measurement unit (IMU) data with model

based dynamic/kinematic cues are implemented and evaluated

– one for micro aerial vehicles (MAVs) and one for legged

robots.

II. PREREQUISITES

A multivariate Gaussian random variable with mean µ
and covariance P has a probability density function of the

following form:

p(x) =
1

√

2π det(P )
exp

(−(x− µ)TP−1(x− µ)

2

)

. (6)

The corresponding negative log-likelihood yields:

− log(p(x)) = log
(√

2π det(P )
)

+
1

2
‖x− µ‖2P . (7)

In the context of recursive estimation, we will denote the

estimated mean and covariance of the state at timestep k
considering the information until timestep l by xl

k and P l
k,

respectively. We also employ the abbreviation Pk = P k
k .

Two useful properties can be derived from the above

negative log-likelihood. First, the mean µ is equivalent to

the minimum of the negative log-likelihood, and second, the

covariance P can be retrieved by inverting the Hessian of the

negative log-likelihood:

µ = argmin
x

(− log(p(x))) . (8)

P−1 = − ∂2

∂x2
log(p(x)). (9)

III. TWO-STATE IMPLICIT FILTER

The keywords contained in the term “two-state implicit

filter” refer to the way measurements (or constraints) are

modeled in the proposed filter. In order to circumvent the

classical prediction-update paradigm of Kalman filters, an

implicit residual modeling scheme is employed which is

related to the implicit process model in descriptor systems

[11]. Measurements or constraints are always associated with

a residual depending on a consecutive pair of states (hence

two-state), even if the derived residuals depend on a single

state only. This improves flexibility and allows covering a

broader set of estimation problems. For instance auxiliary

states can be introduced without necessarily having to provide

corresponding dynamics (e.g. an unknown velocity dimen-

sion). Or various process models with overlapping states (e.g.

multiple odometry models) can be merged without the need

for resolving the overlap.
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xk-1 xk xk+1

zk-1 zk zk+1

xk-1 xk xk+1

zk-1 zk zk+1

hidden

observed

EKF TSIF

Fig. 2. Bayes network for the classical EKF and the proposed TSIF. In
comparison to the EKF, the TSIF does not assume any motion model but
rather extends the dependency of the observed quantities to two hidden states,
i.e., the measurement zk depends on the states xk−1 and xk .

A. Probabilistic View

We begin with a probabilistic description of the approach.

While still meeting a constraint related to the Markov property

(see eq. (11)), the employed discrete stochastic model deviates

from the classical hidden Markov model by avoiding the need

for an explicit process model. In other terms, the states of the

system at different timesteps are assumed to be independent

if no further information is provided (i.e. not considering

any measurements or constraints). To compensate for this

assumption, we employ a measurement model which depends

on two consecutive states: Instead of employing a probability

density function of the form p(zk|xk), where xk is the (hidden)

state at time tk and zk the measurements at the same time

instant, we make use of

p(zk|xk−1, xk), (10)

which represents a conditional density function on both the

previous and the current state. An illustration of the underlying

Bayesian network is given in Figure 2, and compared to the

hidden Markov model employed in classical Bayesian filters.

We require that the system fulfills the following property:

p(zk|x0, . . . , xk) = p(zk|xk−1, xk). (11)

This is similar to the well-known Markov property but exhibits

a “double support” for the conditional probability and is

expressed w.r.t. the measurements. Please note that this can

also be inverted in time which can be recognized when con-

templating the symmetry w.r.t. time of the system in Figure 2,

i.e.:

p(zk|xk−1, . . . , xN ) = p(zk|xk−1, xk). (12)

In the context of filtering, the goal is to find the probability

distribution of the current state xk given all available informa-

tion up to the time tk, i.e., we want to find p(xk|z1, . . . , zk),
which we will also write as p(xk|Zk). To this end, we

assume to know the conditional distribution of the current

measurement zk (eq. (10)) as well as the distribution of

the previous state p(xk−1|Zk−1). We begin by investigating

the joint distribution of xk−1 and xk given the available

measurements Zk. Using Bayes’ rule we get:

p(xk−1, xk|Zk) =
p(Zk|xk−1, xk)p(xk−1, xk)

p(Zk)
. (13)

Similar to other Bayesian filtering approaches we assume

conditional independence of the measurements (given the

separating states). In our setup we also have the independence

of the states and can thus factorize the above term into:

p(xk−1, xk|Zk) (14)

=
p(Zk−1|xk−1, xk)p(zk|xk−1, xk)p(xk−1)p(xk)

p(Zk)
.

Using the property p(Zk−1|xk−1, xk) = p(Zk−1|xk−1) (de-

rived from eq. (12)) and reapplying Bayes’ rule we get:

p(xk−1, xk|Zk) (15)

=
p(Zk−1)

p(Zk)
︸ ︷︷ ︸

normalization

p(xk)
︸ ︷︷ ︸

prior

p(xk−1|Zk−1)
︸ ︷︷ ︸

previous step

p(zk|xk−1, xk)
︸ ︷︷ ︸

measurement model

.

We drop the prior as it can be integrated in the measurement

model and marginalize the previous state xk−1 to get a

recursive filtering framework:

p(xk|Zk) ∼
∫

p(xk−1|Zk−1)p(zk|xk−1, xk)dxk−1. (16)

In the case where a process model p(xk|xk−1) (or a prior

p(xk)) is available we can leverage the contained information

by introducing a virtual measurement z̃k and associating it

with the following measurement model:

p(z̃k|xk−1, xk) ∼ p(xk|xk−1). (17)

If we employ this within eq. (16) we obtain

p(xk|Zk−1, z̃k) ∼
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1, (18)

which is equivalent to what is obtained from the prediction

step of a Bayesian filter with a regular hidden Markov model.

More notes on this matter are provided in the next section.

B. Gaussian Case and Negative Log-Likelihood

So far we have not made many assumptions on the type of

involved distributions. However, for computational reasons and

in analogy to many other stochastic inference techniques, we

assume multivariate Gaussian distributions. Since all employed

operations (e.g. multiplication of distributions, marginaliza-

tion) preserve Gaussian distributions, it is sufficient if the

prior p(x0) as well as the employed measurement model

p(zk|xk−1, xk) are Gaussians. As important design choice we

make use of an implicit measurement model

p(zk|xk−1, xk) ∼ exp

(

−1

2
‖r(xk−1, xk, zk)‖2

)

, (19)

using the Euclidean norm ‖ · ‖ with the linear residual

r(xk−1, xk, zk) = a+Axk−1 +Bxk + Czk. (20)

This form allows a more general and flexible encoding of the

available information and may go beyond mere sensor based

measurements. For instance, it may be used to represent other

forms of information such as stationarity assumptions or priors

which are not directly linked to any physical sensor. Please

note that the induced conditional probability density function

on zk may be non-integrable (similar to an improper prior).

However, this does not represent an issue for the proposed
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filter as zk is an observed quantity and does not need to be

estimated. For the aforementioned case where a process model

of the form

p(xk|xk−1) ∼ exp

(

−1

2
‖xk − Fxk−1‖2W

)

(21)

is available (‖·‖W is the Mahalanobis distance with covariance

W ), a virtual measurement can be introduced as:

r(xk−1, xk, zk) = W−1/2(xx − Fxk−1). (22)

Because this residual is independent of zk, this induces a non-

integrable Gaussian but nonetheless allows a neat inclusion of

the process model. This concept is also employed in batch

optimization based approaches [14], [15].

The relations in Section II motivate the use of the negative

log-likelihood for computing mean and covariance of the joint

distribution p(xk−1, xk|Zk) before applying a marginalization

step in order to obtain p(xk|Zk). To this end, we contemplate

the involved terms in eq. (15). The first term is constant and

can be ignored. The second term can be modeled as part of

the last term and is therefore also dropped. The third term

represents the solution of the previous filter step and thus has

a Gaussian distribution with mean xk−1

k−1
and covariance Pk−1.

The last term represents our measurement model (eq. (19))

where we embed the measurement zk into the term bk = a+
Czk since it is not part of the subsequent minimization. We

thus obtain the following negative log-likelihood (ignoring the

additive constant):

L(xk
k−1

, xk
k) = (23)

‖xk
k−1

− xk−1

k−1
‖2Pk−1

︸ ︷︷ ︸

pervious step

+ ‖bk +Axk
k−1

+Bxk
k‖2

︸ ︷︷ ︸

residuals

,

where the state is n dimensional and the residual is m
dimensional.

Please note that a similar derivation scheme can be used

to derive the Kalman filter equations, whereas the negative

log-likelihood has the following form:

L(xk
k−1

, xk
k) = (24)

‖xk
k−1

− xk−1

k−1
‖2Pk−1

︸ ︷︷ ︸

pervious step

+ ‖Fxk
k−1

− xk
k‖2Q

︸ ︷︷ ︸

prediction

+ ‖Hxk
k − zk‖2R

︸ ︷︷ ︸

update

.

By choosing an appropriate residual vector bk and matrices A
and B, the Kalman filter case can be shown to be covered by

the proposed approach.

C. Filter Equations

Based on the previously derived negative log-likelihood

the goal is to derive a set of recursive filter equations. The

posterior of the state is associated with the minimum of

the negative log-likelihood and consequently we differentiate

eq. (23) w.r.t. xk
k and xk

k−1
and equate it to zero. This yields

the following system of equations:
[
P−1

k−1
+ATA ATB

BTA BTB

]

︸ ︷︷ ︸

Hessian

(
xk
k−1

xk
k

)

=

(
P−1

k−1
xk−1

k−1
−AT bk

−BT bk

)

.

(25)

The posterior covariance of the joint distribution can be re-

trieved by inverting the Hessian of the negative log-likelihood

(see eq. (9)). However, the present Hessian is associated with

the joint posterior over the previous and current state and thus

we have to marginalize the previous step in order to retrieve

the covariance of the current state. This can be achieved by

employing Schur’s complement:

P−1

k = BTB −BTA(P−1

k−1
+ATA)−1ATB. (26)

Similarly, this can also be used to find the mean of the

posterior of the current state:

P−1

k xk
k

= BT
(
A(P−1

k−1
+ATA)−1

(
AT bk − P−1

k−1
xk−1

k−1

)
− bk

)

= −BT (I −A(P−1

k−1
+ATA)−1AT )(Axk−1

k−1
+ bk). (27)

By introducing some intermediary terms the following re-

cursive filter equations can be derived:

Dk = Yk−1 +ATA, (28)

Sk = BT (I −AD−1

k AT ), (29)

Yk = SkB, (30)

Ykx
k
k = −Sk(Axk−1

k−1
+ bk), (31)

where Yk = P−1

k is the information matrix. Other forms

of recursive filter equations may be derived but are not in

the scope of this paper. Overall, the proposed information

form is relatively efficient and is comparable to the classical

information filter [5]. It scales linearly with the number of

residuals. Also, due to the usually sparse Jacobians, the costs

are dictated by the matrix inversion which can (theoretically)

be solved in O(n2.4). The computational costs of the algorithm

depend on the selected order of the matrix multiplication and

on the employed decompositions/solvers.

Note that the matrix B needs to have full column rank

for the equations to be solvable. A detailed discussion of the

stability and convergence of the filter is not in the scope of

this paper and interested readers are referred to the related

detectability and stabilizability discussion in [13].

D. Non-Linear Case

For non-linear residuals r(xk−1, xk, zk), and consequently

non-Gaussian measurement models, a simple linearization

of the residual provides us with a Gaussian approximation.

This is in analogy to the linearization step employed by the

EKF. However, we may encounter non-vector space quantities

(e.g. rotations) and thus the use of boxplus ⊞ (relates to

addition) and boxminus ⊟ (relates to subtraction) operators

for introducing a local perturbation δxi
k = xi

k ⊟ x̄i
k around a

linearization point x̄i
k becomes indispensable [16], [17]. The

residual itself is assumed to be member of a vector space

in order to guarantee a meaningful metric for the associated

density function (eq. (19)). By carrying out a change of
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variable and linearizing by means of Jacobians (J⊟, Jxk
k−1

,

Jxk
k
) we get:

L(δxk
k−1

, δxk
k) = ‖x̄k

k−1
⊟ xk−1

k−1
(32)

+ J⊟(x̄
k
k−1

, xk−1

k−1
)

︸ ︷︷ ︸

Jk

δxk
k−1

)‖2Pk−1
+ ‖ r(x̄k

k−1
, x̄k

k, zk)
︸ ︷︷ ︸

bk

+ Jxk
k−1

(x̄k
k−1

, x̄k
k, zk)

︸ ︷︷ ︸

Ak

δxk
k−1

+ Jxk
k
(x̄k

k−1
, x̄k

k, zk)
︸ ︷︷ ︸

Bk

δxk
k‖2.

This results in the following adapted filter equations:

Dk = JT
k Yk−1Jk +AT

kAk, (33)

Sk = BT
k (I −AkD

−1

k AT
k ), (34)

Yk = SkBk, (35)

Ykδx
k
k = Sk(AJ−1

k (x̄k
k−1

⊟ xk−1

k−1
)− bk), (36)

xk
k = x̄k

k ⊞ δxk
k. (37)

In summary, when compared to the linear case, we have to

compute the Jacobians and work with local perturbation in

order to handle non-vector space quantities.

One important aspect is the selection of linearization points.

For the linearization point of the previous state x̄k
k−1

the prior

xk−1

k−1
is often a good choice. This also simplifies the filter

equations since the matrix Jk reduces to the identity matrix

and x̄k
k−1

⊟xk−1

k−1
= 0. For the current state, finding a suitable

linearization point x̄k
k may be more involved. For cases with

small incremental changes the prior xk−1

k−1
could be employed

again. In other cases, scenario specific prediction models may

be applied. Optionally, the chosen linearization points can also

be refined iteratively, where a vanishing update δxk
k < ǫ could

serve as termination condition [3]. For the presented approach

there are two options: Either the iteration is only performed

on the current state xk
k (partial form) or both, the previous

state and the current state, are refined during the iterations

(full form). In the later case, the full two-state-window batch

optimization in eq. (32) has to be solved every step. Whether

an iterations scheme should be used depends on the level of

nonlinearity within the range of estimation uncertainty.

One notable advantage of the present formulation is that

robust cost functions can be embedded into the residuals. This

allows to increase the robustness w.r.t. to bad data or constraint

violations. In comparison to classical Kalman filters, this can

easily be applied on every residual, notably also on prediction-

related residuals. This means that robustness against outliers

can be incorporated, both, for update-related residuals as

well as for prediction-related residuals. The simplest approach

would be to apply a simple weighting scheme (e.g. Huber

weighting).

IV. EXPERIMENTS AND RESULTS

Within the scope of this experimental section we discuss

the application of the filter to 3 estimation problems:

• The fusion of odometry and absolute location data for the

toy example in fig. 1.

• The fusion of IMU data with barometer based height

measurements as well as rotor speed measurements on

a MAV with known aerodynamic model.

• The fusion of IMU data with model-based kinematic and

dynamic cues on a quadrupedal robot.

We thereby illustrate the type of models that can be employed

and show the benefits of the TSIF for mobile robotics. While

for the first experiment simulated data is employed, real

data is used for the experiments involving the MAV and the

quadruped. The presented filters, especially the one for the

quadrupedal robot, bring some novelty on their own. Due to

limited space, a selected subset of the results is presented.

A. Toy Example

We first investigate the applicability of the presented ap-

proach to a simple toy example: a 2D robot with global

position coordinates xk and yk, heading θk, forward velocity

vk (speed), and rotational rate ωk (see fig. 1). Given measure-

ments of the speed ṽk and the rotational rate ω̃k, a simple

process model can be formulated:

xk = xk−1 + dt cos(θk−1) ṽk−1 + wx,k, (38)

yk = yk−1 + dt sin(θk−1) ṽk−1 + wy,k, (39)

θk = θk−1 + dt ω̃k−1 + wθ,k, (40)

with time increments dt and discrete Gaussian noise w∗,k.

This can be completed with the following measurement model

(including discrete Gaussian noise n∗,k):

x̃k = xk + nx,k, ỹk = yk + ny,k, (41)

and leveraged into a simple EKF in order to estimate the global

position and the heading of the robot.

However, if the rotational rate is not measured the problem

is less straightforward to solve since the term ω̃k−1 is unknown

in eq. (40). Possible solutions are:

• Make an assumption on the distribution of ω̃k−1 and

use an EKF based on eqs. (38) to (41). The quality of

this solution strongly depends on how well the unknown

rotational rates fit the chosen distribution.

• Solve analytically for the heading θk−1 using eqs. (38)

and (39). This approach struggles with properly integrat-

ing the noise properties of the system.

• Formulate a large maximum likelihood problem over

N subsequent states. This becomes a full-scale batch

optimization and looses any filter related properties.

• Formulate a maximum likelihood problem over two sub-

sequent states. This is basically the solution we propose,

whereas we derived a set of recursive filter equations for

doing so (including marginalization of the old state).

In the following we will compare the EKF where the heading

is modeled as RW (with various noise magnitudes) against the

proposed TSIF.

Table I illustrates the TSIF setup in form of a residual-state

dependency table. The state is represented twice in the table:

the previous state on the left and the current state on the right.

Each row represents a single residual (with its dimension in

brackets) and illustrates the sub-state dependencies: a cell is

colored if the residual depends on a specific sub-state. This

corresponds to the sparsity pattern of the matrices A (left) and

B (right) of section III-C. This table can be used to visualize



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2017

TABLE I
TSIF FOR TOY EXAMPLE
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the overall structure of the filter and obtain a qualitative

impression of how the residuals and sub-states influence one-

another. For the toy example, the top two rows (gray) relate

to the original process equations eqs. (38) and (39), whereas

a Euler-Backward discretization scheme is used in order to

obtain a stronger dependency on the current state and thereby

get a full column rank matrix B. The three bottom rows

(green) represent the simple relation between the sub-states

and their measurements. The speed vk is included into the filter

state in order to allow a proper inference from the different

sources of information. The (unweighted) residual equations

would be simply as follows:

rvx = xk − dt cos(θk) vk − xk−1, (42)

rvy
= yk − dt sin(θk) vk − yk−1, (43)

rx = xk − x̃k, ry = yk − ỹk, rv = vk − ṽk (44)

Figure 3 shows the obtained location and heading estimates.

The TSIF is compared against the EKF with a well-tuned co-

variance for the heading RW. In the middle of the experiment a

faulty speed measurement is injected. While both approaches

yield good results and are able to estimate the not directly

measured heading, the TSIF exhibits a better handling of the

outlier due to a Huber weighting on speed measurements –

whereas the EKF does not allow the integration of a robust

kernel during prediction. Also, any change of the underlying

distribution of the rotational rate could deteriorate the per-

formance of the EKF, while the TSIF is agnostic to such

a prior. To further illustrate this dependency we plotted the

RMS error of the heading estimates against the covariance

parameter of the heading RW in fig. 4 in an outlier-free setting.

In case this covariance is too small (overconfident) the RMS

will increase for the EKF. On the other hand a very large

covariance can lead to numerical issues. The TSIF does not

use any prior on the heading dynamics and thus is not affected

by this parameter. Whether the minimum for the EKF (around

0.9 rad/
√
s) achieves a lower RMS then the TSIF depends on

how well the dynamics of the heading match a RW.

B. Blind MAV Filter

A common problem in MAV state estimation is the limited

availability of proprioceptive sensors. In this blind MAV

example we combine the data from on-board IMU and pres-

sure sensors with the rotor speed measurements by using an

aerodynamic model. The employed MAV model is based on
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Fig. 3. Estimated location and heading for the toy example in fig. 1 and
their 3-sigma bounds. Both the TSIF and the EKF show good performance
and manage to estimate the heading of the robot. However, the TSIF does so
without relying on a RW prior on the heading dynamics, which is required
by the EKF in order to get an explicit process model.
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Fig. 4. RMS error of the heading estimate for the toy example in fig. 1
for different values of covariance parameters for the heading RW. While the
TSIF is agnostic to the heading RW, the EKF relies on a well tuned covariance
parameter. If either the covariance is too low (over-confident) or too large (risk
of numerical issues) its performance will degrade.

a point mass model and a simple aerodynamic model which

takes into account the generated thrust and drag forces, and

the torque of the rotors. Both, the IMU measurements and

the aerodynamic model relate to the accelerations of the robot

body and thus represent two different process models which

cannot easily be incorporated in a traditional filter. Burri et al.

[18] did so within an EKF, but had to extend the filter state

with rotor speeds in order to integrate the aerodynamic cues

and accelerometer biases simultaneously. In comparison, the

flexibility of the TSIF allows a more modular integration of

both information sources.

The residual-state dependency is given in Table II, where

“Pose FD” is the finite difference (FD) of position and attitude,

“IMU” refers to the IMU measurements, and “IMU bias RW”

represents the RW on accelerometer and gyroscope biases. The

“Dynamics FD” residual relies on the aerodynamic model to

compute linear and rotational accelerations and relates them

to the FD of the velocities. The inclusion of the barometer

measurements requires the augmentation of the state with a

reference height in order to be able to handle reference changes

(modeled as RW).

Figures 5 and 6 show the estimated attitude and linear veloc-

ities, which are both crucial quantities in MAV control. Please
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TABLE II
BLIND MAV FILTER
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Fig. 5. Attitude estimates of the blind MAV filter and their 3-sigma bounds.
Relying on IMU, barometer, and rotor speed measurements only, the filter
is able to estimate the inclination angles very accurately and in a consistent
manner (the oscillations are part of the robot motion). The yaw angle is
unobservable and drifts.

note that no exteroceptive sensor modality is employed and

thus the position and yaw angle are intrinsically unobservable.

However, as can be observed at hand of the bound uncertainty

in both plots, the inclination angles and robocentric velocity

are observable and track the groundtruth. This would not be

achievable in an IMU-only setup without further assumption.

The dynamic model is subject to large uncertainties and

affected by noisy motor speeds, and thus the weighting of the

corresponding residual is kept low. Still, it provides enough

information to estimate inclination angles and velocities and

could represent an interesting back-up solution for autonomous

MAVs. The accumulated drift over 2 min amounts to 15 m.

C. Blind Quadruped Filter

In our final example we derive a filter for fusing IMU

data with kinematic and dynamic cues on a torque controlled

and fully-actuated quadrupedal robot [19]. In comparison

to established approaches [20], [21], [22], the inclusion of

dynamics increases the redundancy and may allow the co-

estimation of certain model parameters (e.g. the mass). The

IMU is integrated in the same way as in the Blind MAV

Filter (section IV-B). The kinematic measurements from the

joint encoders are leveraged as relative measurements between

foot contact points and main body. This can be achieved by

augmenting the filter state with robocentric foot locations [21].

Instead of an aerodynamic model, we leverage the rigid

body equations of motion. Dynamic quantities have been
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Fig. 6. Velocity estimates of the blind MAV filter and their 3-sigma bounds.
The filter successfully estimates the robocentric velocity of the MAV and could
for instance be applied to bridge outages of exteroceptive sensing capabilities.

TABLE III
BLIND QUADRUPED FILTER
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applied to legged robot state estimation previously [23], but,

to the best of our knowledge, they have never been tightly

fused with inertial data in a consistent manner. While the

joint torques are measured, the foot-ground contact forces

are unknown and are eliminated by means of a null-space

projection [24]. The remaining set of equations is sufficient to

predict the linear and rotational acceleration of the main body

and is thus formulated as a dynamic FD residual. Additionally,

the mass of the main body and its offset are included into the

state. Both represent important quantities for control and may

be subject to change when the payload is altered. The residual-

state dependency is given in Table III.

Figures 7 and 8 depict the position of the robot and its

linear velocity. For moving around the rectangular shape the

quadrupedal robot employed a trotting gait (with a significant

amount of two-stance phases). In relation to the long trajectory

(∼75 m) the position estimates exhibit only little drift (mainly

due to the drifting yaw angle). Tests have also been carried

out without IMU data (again demonstrating the modularity

of the approach), where the state estimation only relied on

model-based kinematics and dynamics. Even though the dy-

namic cues are affected by significant noise and subject to

high modeling inaccuracies, the obtained estimates are still

reasonable and could be used to handle IMU failures. The

velocity estimates of both filters also show an accurate and

consistent tracking. The mass was in both cases estimated to

be around 18.2 kg (a coarse reference around 20 kg) and its

center near the middle of the robot.
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Fig. 7. Position estimates of the blind quadruped filter while the robot
is trotting around a rectangular shape. For a dead-reckoning approach the
achieved accuracy is good. If the IMU data is neglected the drift becomes
more significant, especially around the yaw angle.
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Fig. 8. Velocity estimates of the blind quadruped filter. Except for the velocity
along the z-axis which exhibits a slight offset, the estimates track the motion
capture derived references. When disabling the IMU the estimate get more
noisy but still manage to track the reference. The 3-sigma bounds of the
IMU-free case are very large and not depicted in the above plots.

V. CONCLUSION

We presented a novel recursive estimation algorithm which

can be seen as generalization of classical Kalman filtering in

that it handles a broader range of system models. It also takes

a step into the direction of batch optimization by modeling all

available information as collection of residuals. This makes the

filter implementation more flexible and modular and allows the

use of further techniques such as robust weighting. A detailed

derivation is provided for the corresponding set of recursive

filter equations, which is then applied in three different mobile

robotic sensor fusion problems.

The authors are currently working on an open-source fil-

tering library which should provide researchers with a plug-

n-play filter library. Consequently, future work will include

implementation related topics such as automatic measure-

ment handling, numerical stability, observability constraints,

or square root forms.
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