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THE TWO WELL PROBLEM WITH SURFACE ENERGY

ANDREW LORENT
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Abstract. Let Ω be a bounded Lipschitz domain in IR2, let H be a 2 × 2 diagonal matrix
with det (H) = 1. Let ǫ > 0 and consider the functional

Iǫ (u) :=

Z

Ω

dist (Du (z) , SO (2) ∪ SO (2) H) + ǫ
˛

˛D2u (z)
˛

˛ dL2z

over AF ∩ W 2,1 (Ω) where AF is the class of functions from Ω satisfying affine boundary
condition F . It can be shown by convex integration that there exists F �∈ SO (2)∪SO (2) H

and u ∈ AF with I0 (u) = 0. Let 0 < ζ1 < 1 < ζ2 < ∞,

BF :=
n

u ∈ AF : u is C1, bilipschitz with Lip (u) < ζ2, Lip
`

u−1
´

< ζ−1

1

o

.

In this paper we begin the study of the asymptotics of mǫ := infBF ∩W2,1 Iǫ for such F .
This is one of the simplest minimisation problems involving surface energy for which we can
hope to see the effects of convex integration solutions. The only known lower bounds are

lim infǫ→0
mǫ

ǫ
= ∞.

We link the behavior of mǫ to the minimum of I0 over a suitable class of piecewise affine
functions. Let {τi} be a triangulation of Ω by triangles of diameter less than h and let Ah

F

denote the class of continuous functions that are piecewise affine on a triangulation {τi}.
For function u ∈ BF let ũ ∈ Ah

F be the interpolant, i.e. the function we obtain by defining
ũ⌊τi

to be the affine interpolation of u on the corners of τi. We show that if for some small

ω > 0 there exists u ∈ BF ∩ W 2,1 with

Iǫ (u)

ǫ
≤ ǫ−ω

then for h = ǫ
1+6399ω

3201 the interpolant ũ ∈ Ah
F

satisfies I0 (ũ) ≤ h1−cω .
Note that it is trivial that inf

v∈Ah
F

I0 (v) ≥ c0h so we reduce the problem of non-trivial

(scaling) lower bounds on mǫ

ǫ
to the problem of non-trivial lower bounds on inf

v∈Ah
F

I0 (v).
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1. Introduction

In the 1980’s from the work of Ball, James [1], [2] and Chipot, Kinderlehrer [4] a well known
model for solid-solid phase transformations arose. In the model, microstructures observed in
phase mixtures were explained in terms of energy minimisation of deformations of the material.

Let u : Ω → IR3 be a deformation of the material which occupies a reference configuration
Ω, the total free energy of this deformation is given by

I (u) =

∫

Ω

φ (Du (z) , θ) dL3z (1)
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2 ANDREW LORENT

where φ (·, θ) is the free energy per unit volume in Ω at temperature θ. We fix θ and we
normalize φ such that infF φ (F, θ) = 0.

Formation of microstructure was shown to be closely related to the behavior of minimis-
ing sequences of I. Many features of minimising sequences can be understood from the set
{F : φ (F ) = 0}. This set is known as the energy wells of the functional I.

Certain natural assumptions on the behavior of φ, in particular frame indifference, imply
that K has to be of the form

K = {SO (3)Ai : i = 1, 2, . . .m} (2)

where the Ai are symmetry related and depend on the action of the phase transition.
Given F ∈ Mn×n let AF denote the set of functions u : Ω → IRn satisfying u (z) = F (z) for

all z ∈ ∂Ω. The set of F for which infu∈AF
I (u) = 0 turns out to agree with the quasiconvex

hull Kqc (see [22] for the relevant notions). For any F ∈ int (Kqc) it is possible to lower the
energy of functional I with a relatively simple function u ∈ AF that is built up from a simple
(finite) layering of regions on which Du is made to be affine, these functions are known as
laminates .

Mathematically speaking, the first real surprise in this theory is the existence of exact min-
imisers of functional I for certain sets K of the form (2). Formally; given F ∈ Kqc there exists
a function u ∈ AF such that

Du (z) ∈ K for a.e. z ∈ Ω. (3)

Even though the functional I is not quasiconvex (by the very existence of such exact solutions)
and therefore not lower semicontinuous with respect to weak convergence, absolute minimisers
exist and can be constructed.

Following the work of Dacorogna and Marcellini [7], Müller and Šverák [20], [21], and later
by Sychev [24] and Kirchheim [13] there now exist a wide variety of methods to prove the
existence of such solutions. However all these methods start with a delicate construction of an
approximating sequence of set Kn → K. The methods of [20] and [24] are in some sense more
constructive and related to the approach developed by Gromov [11], which is known as convex
integration.

Exact minimisers of functional I are only possible due to the fact that I takes no account of
the “cost” of oscillations. This is physically unrealistic. The oscillation term

∫
Ω

∣∣D2u (z)
∣∣ dL2z

is known as the surface energy . The bulk energy is the
∫
Ω φ (Du (z)) dL2z part of the functional.

Functional I was designed to model situations for which the surface energy is small. From
the mathematical perspective the most natural adaption of the functional that takes account
of surface energy is:

Iǫ (u) =

∫

Ω

φ (Du (z)) + ǫ
∣∣D2u (z)

∣∣ dL2z. (4)

This functional is minimised over functions u ∈ W 2,1 (Ω) ∩ AF .

1.1. The question: How does Iǫ scale ? The question we are interested in is whether the
existence of exact solutions to inclusion (3) having affine boundary condition has any effect
on the scaling of infW 2,1∩AF

Iǫ as ǫ → 0. In some sense this could be expected, in words; as
ǫ → 0 surface energy becomes arbitrarily cheap, we can concern ourselves less and less with
oscillations and just concentrate on minimising the bulk part of the functional. It may there
for be reasonable to expect that minimisers for sufficiently small ǫ are something like slightly
smoothed out solutions of (3).

Let K = SO (2) ∪ SO (2)H , F ∈ int (Kqc). The differential inclusion

Du ∈ K a.e. (5)

for function u ∈ AF is the simplest convex integration result. And the minimisation problem

inf
u∈AF ∩W 2,1

Iǫ (u) (6)

is the simplest “physical” situation where we could hope to see the effect of the existence of solu-

tions to differential inclusion (3). The only known lower bounds on (6) are infu∈AF ∩W 2,1
Iǫ(u)

ǫ
→
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∞ which follows from the result of Dolzmann, Müller [8] (also see Kirchheim [12]) that if u

satisfies (5) and Du is BV then u is a laminate. For the special case of a functional whose wells
are given by two rank-1 connected matrices a complete understanding of the scaling has been
achieved in [15], [6].

Our main tool for studying this question is a two well Liouville Theorem proved in [17]
(see Theorem 1.1). In order to use it we will have to minimise over a subset of AF . Let
0 < ζ1 < 1 < ζ2 < ∞ and let

BF :=
{
u ∈ AF : u is C1, bilipschitz with Lip (u) < ζ2, Lip

(
u−1

)
< ζ−1

1

}
. (7)

From [21] it is clear we can find a sequence uk ∈ BF with uk
W 1,1

−→ u where u solves (5). So
it is valid to study the scaling of Iǫ over this subset.

Let

mǫ := inf
u∈BF ∩W 2,1

Iǫ (u) .

As a consequence of Šverák’s characterization of the wells K, [23] (namely that the quasi-
convex hull is in the second laminate convex hull) it is not hard (see figure 1) to obtain the
upper bound

mǫ

ǫ
< cǫ−

2
3 .

1/3

e 1

e 2

ε
2/3

ε

Figure 1

If something like exact solutions to differential inclusion (3) start having an effect on our

functional for sufficiently small ǫ then we can expect to be able to “beat” the scaling cǫ−
2
3 .

Conversely if it could be shown that mǫ

ǫ
≥ c′ǫ−

2
3 this would say that these solutions do not

affect functional Iǫ. The ultimate goal of the research is to prove optimal (scaling) lower bounds

on mǫ

ǫ
. We conjecture these lower bounds are given by c′ǫ−

2
3 .

Now we state the theorem that will be our main tool for studying this question, [17].

Theorem 1.1. Let 0 < ζ1 < 1 < ζ2 < ∞. Let K := SO (2) ∪ SO (2)H where H =
(

σ 0
0 σ−1

)
.

Let u ∈ W 2,1 (Q1 (0)) be a C1 bilipschitz function with Lip (u) < ζ1, Lip
(
u−1

)
< ζ−1

2 . There
exists positive constants c1, c3, c4 < 1 and c2, c5 > 1 depending only on σ, ζ1, ζ2 such that if



4 ANDREW LORENT

κ ∈ (0, c1] and u satisfies the following inequalities
∫

Q1(0)

d (Du (z) , K) dL2z ≤ κ (8)

∫

Q1(0)

∣∣D2u (z)
∣∣ dL2z ≤ c3, (9)

then there exists J ∈ {Id, H} and R ∈ SO (2) such that
∫

Qc4
(0)

|Du (z) − RJ |dL2z ≤ c5κ
1

800 .

By applying Theorem 1.1 we reduce the problem of non-trivial (scaling) lower bounds on Iǫ

to the problem of non-trivial lower bounds on the finite element approximation to I0. As we
will explain, this is a genuine reduction, the later problem is a minimisation problem involving
competition between surface and bulk energies without an ǫ weighting on the surface energy.
The only parameter in the finite element approximation to I0 is the grid size h. Before going
into details, we need some preliminaries.

1.1.1. Finite element approximations. As is standard in finite element approximations, we will
say a triangulation (denoted △h) of Ω of size h is a collection of pairwise disjoint triangles {τi}
all of diameter h such that

Ω ⊂
⋃

τi∈△h

τi.

Given a function u, we can approximate u uniformly by a function ũ that is piecewise affine
on the triangles of △h by letting ũ⌊τi

be the affine map we obtain from interpolating u on the
corners of τi. We will call ũ the interpolant of u. Given a minimisation problem for functional
J over a function class with certain boundary data, if we replace the function class by functions
that are piecewise affine on {τi} and have the same boundary data, this is known as the finite
element approximation to J .

Finite element approximations of functionals such as I have received much interest, for ex-
ample see [19],[5], [3]. As stated our interest in these approximations comes mainly from the
fact that they provide a convenient intermediary step for the study of surface energy problems:
Given a triangulation for which the edges of the triangles are not parallel to the rank-1 connec-
tions of the wells K, every time the interpolant of a function jumps from one well to another,
there must be at least one triangle which is nowhere near the wells. In this way, F.E. approxi-
mations reflect a competition between “surface energy” as given by the error contributed from
jumps in the derivative, and bulk energy.

F.E. approximations of a three well functional Ĩ of the form I0, over a function class having
affine boundary condition in the second laminate convex hull of the wells have been studied
by Chipot [3] and the author [16]. If △h denotes a triangulation of size h and Ah

F denotes the
set of functions that are piecewise affine on △h satisfying the affine boundary condition F . It
has been shown infu∈Ah

F
Ĩ (u) ∼ h

1
3 . From Šverák’s characterization [23] we know the exact

arrangement of rank-1 connections between the wells SO (2) ∪ SO (2)H and a matrix in the
interior of the quasiconvex hull. The finite well functional studied in [16] precisely mimics these
rank-1 connections. We conjecture.

Conjecture 1.2. Let K = SO (2) ∪ SO (2)H, H =
(

σ 0
0 σ−1

)
. Let △h be a triangulation of Ω

of grid size h with the directions of the edges of the triangles some uniform distance away from
the set of rank-1 directions of K.

Let Ah
F denote the set of functions with affine boundary condition F ∈ int (Kqc) that are

piecewise affine on the triangulation △h. Let I (u) :=
∫
Ω d (Du (z) , K)dL2z. Then we have

inf
u∈Ah

F

I (u) ≥ ch
1
3 .
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It is relatively elementary to see 2 that there exists some small constant c > 0 such that

inf
u∈Ah

F

I (u) ≥ ch.

The following theorem reduces the problem of non trivial (scaling) lower bounds on the scaling
of mǫ

ǫ
to the problem of non trivial lower bounds on infu∈Ah

F
I (u).

Theorem 1.3. Let Ω be a Lipschitz domain in IR2. Let K = SO (2) ∪ SO (2)H where H =(
σ 0
0 σ−1

)
. Let F ∈ int (Kqc). Let BF be defined by (7). Suppose u ∈ W 2,1 (Ω) ∩ BF satisfies

Iǫ (u)

ǫ
≤ ǫ−ω

for some small ω.

Let h = ǫ
1+6399ω

3201 and β = 3201ω
1+6399ω

. Given a triangulation {τi} of Ω with triangle size h we

let ũ be the interpolation of u on {τi}, then we have

I (ũ) ≤ ch1−2β

where c depends only on σ, ζ1, ζ2.

So informally speaking, we replace the question of scaling with respect to parameter ǫ in
the minimisation problem infu∈BF ∩W 1,2(Ω) Iǫ (u) with parameter h in minimisation problem
infu∈Ah

F
I (u). Note that in the first problem, ǫ is a factor only of the surface energy, so the

surface energy becomes arbitrarily cheap for small ǫ. In the second problem, for very small h

it does not become advantageous to concentrate on minimising of the bulk energy.
The reduction achieved by Theorem 1.3 is far from optimal, this is partly due to the subop-

timality of Theorem 1.1. After this paper was submitted, an optimal version of Theorem 1.1
has been achieved by Conti and Schweizer [9], using this theorem a (scaling) optimal version
of Theorem 1.3 has been proved, [18]. In addition [18] contains a version of the (optimised)
Theorem 1.3 for functionals with Lq norm on the second derivative, which is established using
an Lq version of Theorem 1.1.

2. Proof of Theorem 1.3

The proof can easily be seen to work for any Lipschitz domain Ω but to simplify technical
details we let Ω = Q1 (0).

Suppose we have triangulation T :=
{
τi : i = 1, 2, . . .

[
2
h2

]}
of Q1 (0) with triangles of side

length h.
Let κ := h3200−6400β , α := 3201 − 6400β. Suppose we have inequalities

∫

Q1(0)

d (Du (z) , K)dL2z ≤ hα (10)

∫

Q1(0)

∣∣D2u (z)
∣∣ dL2z ≤ h−β. (11)

Step 1. We will show that there exists a subcollection of triangles G ⊂ T with the following
properties. Let γ := 2

c4
.

• For each τi ∈ G if oi denotes the center of the triangle, then Qγh (oi) ⊂ Q1 (0).
• ∫

Qγh(oi)

d (Du (z) , K) dL2z ≤ κ (γh)2 . (12)

2Given a triangulation {τi} of Ω, suppose we have a function u ∈ Ah
F

such that I (u) ≤ ch for some small c.

Then letting B :=
n

τi :
R

τi
d (Du (z) , K) dL2z ≥ √

ch2

o

its immediate from the fact that I (u) ≤ ch that there

must exist a complete column of triangles
˘

τk1
, τk2

, . . . τkm

¯

running through Ω such that
˘

τk1
, τk2

, . . . τkm

¯

⊂
{τi} \B. Hence the derivative of the function u must remain close to either SO (2) or SO (2) H and thus by
integration along the column we will have two points b1, b2 at the top and bottom of the column for which
u (b1) − u (b1) ≈ RJ (b1 − b2) with R ∈ SO (2), J ∈ {H, Id} and this is incompatible with the boundary
conditions. Contradiction
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• ∫

Qγh(oi)

∣∣D2u (z)
∣∣ dL2z ≤ c3γh. (13)

•

Card (T \G) ≤ κ−1γ−2hα−2 +
h−1−β

c3γ
+ 8γh−1. (14)

Proof of Step 1.
Let G1 := {τi ∈ T : Qγh (oi) ⊂ Q1 (0)}. It is easy to see that

Card (T \G1) ≤ 8γh−1. (15)

Let

B1 :=

{
τi ∈ G1 :

∫

Q
hγ(oi)

d (Du (z) , K) dL2z ≥ κ (γh)2
}

.

Let

B2 :=

{
τi ∈ G1 :

∫

Q
hγ(oi)

∣∣D2u (z)
∣∣ dL2z ≥ c3γh

}
.

So Card (B1)κ (γh)
2
≤ hα which implies

Card (B1) ≤ hα−2γ−2κ−1. (16)

Similarly Card (B2) c3γh ≤ h−β which implies

Card (B2) ≤
h−1−β

c3γ
. (17)

Let G := G1\ (B1 ∪ B2). By (16),(17), (15) G satisfies (14) and by definition of B1, B2 any
τ ∈ G satisfies (12), (13), this completes the proof of Step 1.

Step 2. We will show there exists a positive constant c6 (depending on σ, ζ1, ζ2) such that
for any τi ∈ G we have

d (Dũ (oi) , K) ≤ 4c6γκ
1

3200 . (18)

Proof of Step 2. Let v : Q1 (0) → IR2 be defined by

v (z) :=
u (γhz + oi)

γh
. (19)

By scaling of inequality (12)
∫

Q1(0)

d (Dv (z) , K)dL2z ≤ κ.

Similarly, by scaling of (13) we have
∫

Q1(0)

∣∣D2v (z)
∣∣ dL2z ≤ c3.

So by Theorem 1.1 there exists R ∈ SO (2), J ∈ {Id, H} such that
∫

Qc4
(0) |Dv (z) − RJ |dL2z ≤

c5κ
1

800 . As v is ζ2-Lipschitz we have
∫

Qc4
(0)

|Dv (z) − RJ |
4
dL2z ≤ 8ζ3

2

∫

Qc4
(0)

|Dv (z) − RJ |dL2z

≤ 8c5ζ
3
2κ

1
800 .

Let ψ (z) := v (0) + RJz. Using Morrey’s inequality, (see Theorem 3, Section 4.5.3 [10]) we see
there exists some constant c6 (depending on σ, ζ1, ζ2) such that

‖v − ψ‖
L∞(Qc4

(0)) ≤ c6κ
1

3200 . (20)
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So from (19) we have u (z) = γhv
(

z−oi

γh

)
. Let ψ̃ : Qγh (oi) → IR2 be defined by ψ̃ (z) :=

γhψ
(

z−oi

γh

)
. So Dψ̃ (oi) = Dψ (0). Now

‖u − ψ̃‖
L∞(Qc4γh(oi)) = sup

{∣∣∣u (z) − ψ̃ (z)
∣∣∣ : z ∈ Qc4γh (oi)

}

= sup

{
γh

∣∣∣∣v
(

z − oi

γh

)
− ψ

(
z − oi

γh

)∣∣∣∣ : z ∈ Qc4γh (oi)

}

= γh‖v − ψ‖
L∞(Qc4

(0))

(20)

≤ c6γhκ
1

3200 . (21)

Now note τi ⊂ Qc4γh (oi). Let t1, t2, t3 denote the corners of the triangle τi with t2 being
the point at the right angle corner of the triangle. The function ũ on τi is equal to the affine
map given by the interpolation of {u (t1) , u (t2) , u (t3)} and so Dũ on τi is the linear part of
this affine map. By choice of triangulation, e1 = ± t1−t2

|t1−t2|
and e2 = ± t3−t2

|t3−t2|
. Assume without

loss of generality e1 = t1−t2
|t1−t2|

and e2 = t3−t2
|t3−t2|

.

Now u (t1) − u (t2) = |t1 − t2|Dũ (oi) e1 so from (21) we have

h |(Dũ (oi) − RJ) e1| = ||t1 − t2|Dũ (oi) e1 − |t1 − t2|RJe1|

=
∣∣∣(u (t1) − u (t2)) −

(
ψ̃ (t1) − ψ̃ (t2)

)∣∣∣
(21)

≤ 2c6γhκ
1

3200 .

Which implies

|Dũ (oi) e1 − RJe1| ≤ 2γc6κ
1

3200 .

In the same way we can see

|Dũ (oi) e2 − RJe2| ≤ 2γc6κ
1

3200 .

which implies (18). This completes the proof of Step 2.

Proof of Theorem 1.3 continued.
By Step 1 and Step 2 we know that

∫

Q1(0)

d (Dũ (z) , K)dL2z ≤
∑

τi∈T

L2 (τi) d (Dũ (oi) , K) + 8ζ2h

≤
∑

τi∈G

L2 (τi) d (Dũ (oi) , K) +
∑

τi∈T\G

2ζ2L
2 (τi) + 8ζ2h

(14),(18)

≤ 4c6γκ
1

3200 + 2ζ2h
2

(
κ−1γ−2hα−2 +

h−1−β

c3γ
+ 12γh−1

)
.

(22)

Now recall κ = h3200−6400β and α = 3201 − 6400β. So note κ−1hα = h. Note also that
κ

1
3200 = h1−2β. Thus from (22) we have

∫

Q1(0)

d (Dũ (z) , K) dL2z ≤ ch1−2β (23)

where constant c depends only on σ, ζ1, ζ2.

Now we will rewrite initial conditions in form of (10), (11). Recall, our initial hypotheses on
u were Iǫ

ǫ
(u) ≤ ǫ−ω which implies

∫

Q1(0)

d (Du (z) , K)dL2z ≤ ǫ1−ω (24)
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and ∫

Q1(0)

∣∣D2u (z)
∣∣ dL2z ≤ ǫ−ω. (25)

Now from the statement of Theorem 1.3 we know β = 3201ω
1+6399ω

and h = ǫ
1+6399ω

3201 . So ω =

β
3201−6399β

. Now ǫ−ω =
(
h

3201
1+6399ω

)−ω

. So from (25) we have for this value of h we have (11).

Now we will use (24) to show (10), note ǫ1−ω =
(
h

3201
1+6399ω

)1−ω

. And

3201 (1 − ω)

1 + 6399ω
=

3201
(
1 − β

3201−6399β

)

1 + 6399β
3201−6399β

=
3201

(
3201−6400β
3201−6399β

)

3201
3201−6399β

= 3201− 6400β

= α.

So from (24) for this value of h we have (10). Recall, the interpolant of u on a triangulation T

(whose triangles have side length h) is given by ũ, so we have that ũ satisfies (22), hence ũ also
satisfies (23) and this completes the proof. ✷
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