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SUMMARY
The type I interferon (IFN) response is a strong and crucial moderator for the control of viral infections. The strength of this
system is illustrated by the fact that, despite some temporary discomfort like a common cold or diarrhea, most viral
infections will not cause major harm to the healthy immunocompetent host. To achieve this, the immune system is
equipped with a wide array of pattern recognition receptors and the subsequent coordinated type I IFN response
orchestrated by plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs). The production of type I
IFN subtypes by dendritic cells (DCs), but also other cells is crucial for the execution of many antiviral processes.
Despite this coordinated response, morbidity and mortality are still common in viral disease due to the ability of viruses
to exploit the weaknesses of the immune system. Viruses successfully evade immunity and infection can result in
aberrant immune responses. However, these weaknesses also open opportunities for improvement via clinical
interventions as can be seen in current vaccination and antiviral treatment programs. The application of IFNs, Toll-like re-
ceptor ligands, DCs, and antiviral proteins is now being investigated to further limit viral infections. Unfortunately, a
common threat during stimulation of immunity is the possible initiation or aggravation of autoimmunity. Also the
translation from animal models to the human situation remains difficult. With a Strengths–Weaknesses–Opportunities–
Threats (“SWOT”) analysis, we discuss the interaction between host and virus as well as (future) therapeutic options, related
to the type I IFN system. Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION
For centuries, infectious diseases have been the
most common cause of morbidity and mortality
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worldwide. Due to achievements like vaccination
and antimicrobial drugs, many infectious diseases
can now be prevented or controlled. Most striking
in this respect is the development of a vaccine
against smallpox, a lethal virus that globally
claimed millions of lives. Although the vaccination
procedure was already developed in the 18th
century, it lasted until the end of the 20th century
before the world was declared smallpox-free. Based
on this success, there was great confidence that
viral infections could be conquered definitely, either
by vaccination or by antiviral drug treatment.
Inspired by these successes, the US Surgeon General
William Stewart stated in 1967 that “The time has
come to close the book on infectious diseases”.
Unfortunately, the future has shown otherwise.

In 1983, the HIVwas discovered as the AIDS caus-
ing agent. Despitemassive efforts, HIV is still amajor
problemworldwide [1,2]. In addition, the rise of new
(variants of) viruses like influenza A strains [3,4] and
severe acute respiratory syndrome corona virus
(SARS CoV) and their potential pandemic threat is
a general and realistic concern [5]. Furthermore,
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seasonal respiratory viral infections and various
other viruses can cause major inconvenience in
healthy people and can be life-threatening in the im-
munocompromised [5,6]. Thus, despite vaccines and
antiviral drugs, viral disease is still common and
requires development of additional therapeutics.
In this review, we apply a Strengths–Weaknesses–

Opportunities–Threats (SWOT) analysis to discuss
virus-immune interactions and speculate on (im)
possibilities how to use these interactions in view
of new treatment options.

STRENGTHS
Once the virus has been able to cross first barriers
like the skin or mucosa, the strength of the host’s
natural defense system will determine the outcome
of the infection. In the succeeding text, we will
briefly discuss some of the initial key steps
involved in the antiviral response (see also Figure 1).
Figure 1. Schematic overview of different signal transduction pathw
conventional dendritic cell (cDCs) following viral encounters. In genera
(TLR7) and/or TLR9 is stimulated. Interferon response factor 7 (IRF7) i
of many antiviral functions, autocrine signaling via the interferon a/b rec
infection of or endocytosis by cDCs results in activation of the cytoplasm
and nuclear factor-kB (NF-kB) facilitate transcription of IFNb and proi
production of type IFNa/b. Red indicates major routes, dotted arrows in

Copyright © 2011 John Wiley & Sons, Ltd.
Recognition: pattern recognition receptors
Before an appropriate immune response can be
generated, the virus needs to be recognized. For
this, immune cells are equipped with different
groups of receptors, which are able to sense micro-
bial intruders including viruses. These pattern
recognition receptors (PRRs) recognize pathogen-
associated molecular patterns (PAMPs), which are
fundamentally different from host structures. One
of the first discovered and best characterized PRRs
are the Toll-like receptors (TLRs) [7–10], which are
mostly present on antigen-presenting cells like
macrophages and dendritic cells (DCs) [8,9], but also
on non-immune cells like fibroblasts and epithelial
cells [10]. These transmembrane receptors are located
on the cell surface or at the endosome [7,9–11]. The cell
surface-located TLRs recognize mainly lipids and
proteins from bacteria and yeasts [10]. Viruses, on
the other hand, are intracellular parasites, which
ays that are activated in plasmacytoid dendritic cells (pDCs) and
l, pDCs endocytose the virus and subsequently Toll-like receptor 7
s activated and induces transcription of IFNa/b. Besides execution
eptor (IFNAR) also induces more type I IFN production. In contrast,
ic pattern recognition receptors, TLR3, and TLR8. Accordingly, IRF3
nflammatory cytokines. Via IFNAR, IRF7 is activated and induces
dicate minor routes
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may explain the endosomal localization of the viral
nucleic acid-recognizing TLR3, TLR7, TLR8, and
TLR9 (Figure 1) [11–19]. Also, this endosomal location
of the TLRs probably serves to ensure tolerance for
“self” molecules and to promote ligand accessibility
[10,14]. Interestingly, in addition to the well-known
lipopolysaccharides fromGram-negative bacteria, cell
surface TLRs have also been associated with viral
recognition. TLR4 has been shown to recognize the
fusion protein of RSV [10,20]. Likewise, next to the
recognition of Gram-positive bacteria, TLR2 is
involved in detection of various DNA viruses
like HSV1 and 2, measles virus, vaccinia virus, and
CMV [21–23]. Interstingly, this TLR2-dependent
detection seems to be regulated especially by mono-
cytes [21,22,24].
In addition to the well-described TLRs, other

PRRs also play an important role in viral recognition.
The cytoplasmic PRRs, such as retinoic acid-
inducible gene I (RIG-I), melanoma differentiation-
associated gene 5 (MDA5), and DNA-dependent
activator of IFN-regulatory factors (DAI), recognize
viral nucleic acids [25,26] and are, in contrast to
TLRs, expressed in all cells. RNA viruses are
differentially recognized by RIG-I and MDA5,
but activate similar pathways (Figure 1) [26–28].
Although RIG-I can respond to both positive
and negative strand RNA viruses, MDA5 senses
mainly picornaviruses like rhinovirus and polio-
virus [29,30]. Earlier data suggested that MDA5
preferentially binds long dsRNA (picornaviruses),
whereas shorter fragments of dsRNA and other
specific nucleotide sequences are sensed by RIG-I
[30,31]. However, some viruses can be detected by
both receptors [29]. Also, the recently discovered
receptor DAI is important for intracellular detection
of viral DNA [32,33].
C-type lectin receptors (CLRs) and NOD-like

receptors (NLRs) also belong to the large family of
PRRs. CLRs are present on DCs and recognize
carbohydrate structures present on pathogens
[34,35] and are especially important for induction
of antigen presentation to T cells, but also in
modulating TLR responses [36]. NLRs, a group of
cytoplasmic proteins formerly thought to detect
only bacterial PAMPs, also sense RNA [37–39]
and DNA viruses [33,40,41]. This induces the pro-
duction of the proinflammatory cytokines IL-1b
and IL-18 via the inflammasome, a complex
composed of NLRs, and leads to the recruitment
of immune cells to the site of infection [42,43].
Copyright © 2011 John Wiley & Sons, Ltd.
Taken together, the innate immune system is
equipped with a large variety of PRRs and this
extended array is essential to sense the various
microbial components and to prevent or limit viral
spread as much as possible [7,44,45].
Implementation of antiviral immunity:
conventional and plasmacytoid
dendritic cells
After recognition of a virus, a cell-dependent
signaling cascade will be initiated. Infection of
non-immune cells usually results in detection of
viral DNA/RNA or their intermediates by the
cytoplasmic PRRs and the production of IFNb,
which is required to limit the infection. This
antiviral cytokine also primes cells to produce other
type I IFNs, which comprise all IFNa subtypes,
IFNb, and various other IFN types, essential to
initiate production of antiviral proteins [46].

Dendritic cells are better equipped than non-
immune cells for the initiation of an antiviral
response. Conventional dendritic cells (cDCs) recog-
nize viral invaders with both extracellular (TLR 4
and CLRs) and intracellular PRR (TLR3, 8, RIG-I,
MDA5), which are highly expressed on cDCs
(Figure 1) [11,12,47,48]. As in infection of non-
immune cells, viral nucleic acids need to be detected
before IFNb and other type I IFNs can be produced.

For the successful eradication or control of the
virus, the intervention of plasmacytoid dendritic
cells (pDCs) is indispensable. The pDC is one
of the few cells that express both TLR7 and TLR9
(Figure 1), allowing detection of an extended reper-
toire of viruses. To initiate the antiviral response,
viruses or virus-infected cells are first internalized
by endocytosis or phagocytosis, respectively, and
subsequently recruited to the endolysosomes of
the pDC [49]. The acidic environment disassembles
the virus, and viral nucleic acids are subsequently
recognized by TLR7 or TLR9 [50,51]. Ultimately,
massive amounts of type I IFN are produced. In
contrast to cDCs and non-immune cells, in pDCs
the TLRs contribute significantly more to viral
recognition than the cytoplasmic PRRs RIG-I and
MDA5 [26,52,53]. Consequently, pDCs are less
dependent on steps in the viral life cycle for recog-
nition, which significantly accelerates the response
to an infection in these DCs.

The difference in response time between pDC
and cDC is also because of marked differences in
Rev. Med. Virol. 2012; 22: 122–137.
DOI: 10.1002/rmv
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intracellular signaling cascades that are activated
following PRR stimulation. In cDCs, viral compo-
nents stimulate the TLRs (apart from the cytoplasmic
PRRs) resulting in phosphorylation of interferon-
regulatory factor 3 (IRF3). IRF3 is essential for the
production of proinflammatory cytokines and IFNb
(the first wave IFN) and is constitutively expressed,
not only in cDCs but in most cell types [10,54]. Next,
because of autocrine or paracrine signaling through
the interferon-a/b receptor (IFNAR), IRF7 is acti-
vated, leading to the production of all type I IFNs
including the various IFNa subtypes (the second
wave IFN) [55,56]. Alternatively, in pDCs IRF7 is
constitutively expressed and activated immediately
after stimulation of TLR7 or TLR9, and thus no
prior phosphorylation of IRF3 or autocrine/para-
crine signaling is required (Figure 1) [48,52,57–60].
Accordingly, a robust antiviral response is initiated
that, in contrast to the response seen in cDCs, is rapid
and characterized by the production of high
amounts of type I IFNs [61,62].
Consequently, the pDC is clearly the major anti-

viral cell type due to its rapid and abundant IFNa
production. Yet, the cDC is indispensable for clear-
ance of a viral infection. This can be illustrated by
the function of TLR8 expressed by cDCs. This recep-
tor is similar to TLR7 in pDCs and also recognizes
viral ssRNA. Interestingly, stimulation of TLR8 on
cDCs and TLR7 on pDCs results in entirely different
responses [63]. Although the pDC produces mainly
IFNa, the cDC induces a pro-inflammatory profile
in which nuclear factor-kB (NF-kB) is activated for
the production of TNF-a and IL-6 [64]. More impor-
tantly, IL-12 is produced (Figure 1). This cytokine
augments the cytolytic activity of natural killer
(NK) cells and also induces the production of the
immunoregulatory cytokine IFNg by Tand NK cells
[65]. Thus, although both DC subsets use different
antiviral pathways, they are certainly not mutually
exclusive in their response to viral infection. Because
of their different cytokine patterns, pDCs and cDCs
respond collaboratively to viral infection and connect
innate and adaptive immunity [66]. Communication
and cooperation between these two DC subsets are
vital to induce appropriate immune responses
towards invading pathogens.
Effector: Type I interferon
The type I IFNs are key effector molecules of the
innate immune system and are essential for the
Copyright © 2011 John Wiley & Sons, Ltd.
antiviral response towards a plethora of viruses.
In humans, the type I IFN family comprises 13
IFNa subtypes, IFNb, IFNk, IFNe, IFNο, IFNt,
and IFNd, and all these molecules engage the ubiq-
uitously expressed IFNAR. Binding to IFNAR then
stimulates more than 300 interferon-stimulated
genes (ISGs) [67,68], which subsequently induce
an antiviral state. The antiviral state is a collective
term for limitation of viral replication, viral resis-
tance of neighboring cells, and apoptosis of virally
infected cells.

Although IFNAR signaling induces the transcrip-
tion of more than 300 ISGs, surprisingly, few of these
genes encode proteins with direct antiviral effects
[69]. Those proteins target viruses in many different
ways (Figure 1). For example, the protein ISG15
(IFN-stimulated protein of Mr 15 000) has been
reported to prevent virus-mediated degradation of
IRF3 [70], to enhance NF-kB signaling [71], and to
modulate the immune response [72]. Myxovirus
resistance 1 (Mx1) proteins target viral nucleocapsid-
like structures [73] and mediate vesicle trafficking in
the ER to effectively trap essential viral components
and subsequently degrade them [74,75]. The enzyme
2′,5′-oligoadenylate synthetase 1 (OAS1) accumulates
after signaling through the IFNAR by type I IFN.
When exposed to dsRNA, this enzyme gains activity
that eventually leads to the activation of ribonuclease
L (RNAseL), concomitantly enabling cleavage of cel-
lular and viral RNAs [69,76]. Protein kinase R (PKR)
is also initially inactive. Type I IFN induces accumula-
tion of PKR and dsRNA activates PKR to inhibit
translation [77]. For a more detailed overview of the
ISG function, we would like to refer to the excellent
review recently published by Sadler et al. [69].

Interferons also induce antiviral proteins termed
restriction factors. A good example is the bone
marrow stromal antigen-2 (BST-2) protein, which
restricts the release of fully formed progeny virions
from infected cells. This tetherin protein showed
activity against various viruses, including HIV
[78–80]. Another restriction factor is apolipoprotein
B mRNA-editing enzyme-catalytic polypeptide-like
3G (APOBEC3G), which leads to degradation of
HIV DNA [81,82]. The restriction factor tripartite
motif (TRIM) 5a seems to counteract capsid forma-
tion by HIV (reviewed by Sastri et al.) [83].

In addition, many proteins stimulated by type I
IFN are involved in IFN signaling (IRF7, RIG-I,
MDA5, TLRs), thereby amplifying the IFN response
(positive feedback). IFNs also induce or modulate
Rev. Med. Virol. 2012; 22: 122–137.
DOI: 10.1002/rmv
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adaptive immune responses by upregulating MHC
class I and II, to facilitate T and B cell stimulation
[84,85]. Finally, IFNs promote leukocyte accumula-
tion at sites of infection by promoting vascular
adhesion molecule expression and induction of
chemokines, which are essential in leukocyte recruit-
ment [86].
Recently, a new type I IFN-dependent antiviral

pathway has been suggested. Pedersen et al.
demonstrated that IFNb rapidly induced the
expression of several microRNAs (miRNAs) both in
a hepatocarcinoma cell line (Huh cells) and primary
hepatocytes [87]. These small non-coding RNA
molecules are post-transcriptional regulators that
inhibit gene expression by translational repression,
mRNA cleavage and deadenylation [87,88]. Intrigu-
ingly, eight of these IFNb-induced miRNAs showed
sequence-predicted targets within the HCV genomic
RNA. Moreover, application of synthetic miRNA-
mimics resulted in antiviral effects similar to those
induced by IFNb, whereas anti-miRNA markedly
reduced the IFNb-mediated antiviral effect [87]. In
addition, it has recently been shown that hepatic
miRNA expressionmight be a useful tool for predict-
ing the therapeutic outcome of a pegylated IFN/
ribavirin combination therapy, further emphasizing
the potential role of miRNAs in IFN-mediated
antiviral effects [89].
In conclusion, the presence of a wide variety of

PRRs enables the detection of multiple viral ligands
present during infection. Activation of the PRR-
DC-type I IFN axis (and especially the TLR7/9-
pDC-IFNa axis) induces a rapid response to the
virus. The many ISGs and the diversity of the type
I IFNs that can be stimulated or produced, res-
pectively, enables a coordinated response to the
various viral infections, leading to control or elimi-
nation of the viral intruder.
Table 1. Viral inhibition of the type I IFN pathw

General target Specific target

PRR signaling almost all proteins
Transcription IRF3, IRF7,
Cytokine receptors IFNAR
ISGs ISG15, mx1, OAS1, PKR, for ex

PRR, pattern recognition receptor; ISGs, interferon-stimulated
a/b receptor; SARS, severe acute respiratory syndrome.

Copyright © 2011 John Wiley & Sons, Ltd.
WEAKNESSES
In the previous section, we described how well-
equipped the immune system is to protect the host
against viral infections. Nevertheless, viruses can
evade or influence the immune response by target-
ing certain weaknesses of the immune system
resulting in (severe) disease.
Modulation of the type I interferon response
by viruses
Because of the strong antiviral and immuno-
regulatory role of type I IFN, viruses developed a
large variety of anti-type I IFN mechanisms. Conse-
quently, nearly all steps of the type I IFN pathway
can be blocked or manipulated by different viruses
for their own benefit (Table 1) [90,91]. For example,
PRR signaling can be suppressed by inhibition of
downstream signaling or by sequestration of
typical viral nucleic acids like dsRNA [90]. In this
way, viral recognition is inhibited. Alternatively,
viruses interfere with the production of type I IFN
by targeting the transcription factors IRF3 and
IRF7. The proteins involved in IRF activation are
inactivated or IRF mimics are synthesized, which
compete with the host IRFs [90,92,93]. Also, binding
of IFN to IFNAR can be prevented by a virally-
encoded type I IFN receptor, as observed during
vaccinia virus infection [94,95]. Finally, the antiviral
or immuno-regulatory effects of type I IFN are
inhibited by targeting various ISGs and thereby
facilitating viral replication and preventing immune
recognition [96–99].

Alternatively, virus-related morbidity and
mortality are not only due to virus-induced
immune evasion, which facilitates extensive viral
replication, but may also result from a concomitant,
an inappropriate, and an exaggerated response of
ay

Virus examples References

Ebola, influenza, HCV [90,91]
Paramyxoviruses, Rabies [90,92,93]
Vaccinia [94,95]

ample SARS, influenza, HCV [96–99]

genes; IRF, interferon response factor; IFNAR, interferon

Rev. Med. Virol. 2012; 22: 122–137.
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Figure 2. Antiviral therapy options. Current therapy involves anti-
viral drugs, vaccination, and IFNa therapy for treatment of HCV
patients. In addition to these therapies, treatment with type I and
III IFNs can counteract acute and local infections, TLR ligands have
shown to be beneficial in various viral infections, and DC transfer
could be attractive where dysfunctional or limited numbers of
DCs contribute to the pathogenesis
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the immune system with devastating consequences
for the host. A typical example of a combination of
efficient inhibition of the type I IFN response
together with an exaggerated immune response is
provided by the highly pathogenic avian H5N1
influenza strain. The non-structural 1 (NS1) protein
of H5N1 is an effective antagonist of the type I IFN
pathway [100–102]. This results not only in high
viral replication but also in an inflammatory
response characterized by high levels of cytokines
like TNFa [103]. This “hypercytokinemia” or
“cytokine storm” results in excessive infiltration of
inflammatory cells into the lungs [103–106]. Also,
higher plasma levels of inflammatory mediators
were detected in deceased H5N1 patients compared
with survivors [107]. The deregulation of type I IFN
by H5N1 is also observed in the highly virulent
1918 H1N1 influenza strain and the Ebola and
Marburg viruses [108–112], in which both viral and
immune pathology result in severe disease [6]. Thus,
the increased resistance to the antiviral effects of IFN
enhances viral replication and evokes an aberrant
proinflammatory response characterized by high
levels of cytokines and chemokines, which induces
the pulmonary injury observed in H5N1 patients.
Likewise, the devastating effects of anHIVinfection

may also results from such a combination. HIV
infection results in progressive immune deficiency,
impaired adaptive responses, low CD4 T cell counts
and increases susceptibility to opportunistic infec-
tions. One of the earliest findings during the AIDS
epidemic was a deficient IFNa production in HIV-
infected patients. Next to a lower number of IFN-
producing cells, also each cell produced less IFNa in
response to HIV [113,114]. The decrease in IFNa can
be due to the Vpr protein of HIV, which strongly inhi-
bits type I IFN production by pDCs [115]. In addition,
the effects of IFNa are antagonized by theHIVprotein
Vpu, which induces degradation of the restriction
factor BST2 [79,116]. However, during the chronic
phase of HIV infection, it is hypothesized that IFNa
contributes to the decline of the immune system by
inducing apoptosis of CD4 T cells. Because of the
non-infectious interaction between the HIV-bound
gp120 protein and the CD4 receptor on pDCs, IFNa
is produced and this results in killing (possibly by
pDCs) of uninfected CD4 T cells [114–117]. Thus,
although apoptosis of infected cells is usually a pro-
tective mechanism to prevent viral spread [118,119],
here, it results in a distinct advantage for the virus
due to the decreased immune control by CD4 Tcells.
Copyright © 2011 John Wiley & Sons, Ltd.
Thus, despite the strength of the type I IFN
system, viruses have evolved mechanisms to evade
or manipulate the system to guarantee their
survival. Among others, this is predominantly
accomplished through interfering with PRR signal-
ing, inhibition of IRF3 and IRF7 activation and
targeting ISGs.
OPPORTUNITIES
The search for therapies has led to the development
of vaccines and antiviral drugs, which resulted in
an impressive reduction in virus-related morbidity
and mortality. Unfortunately, both vaccination
and antiviral drugs are not sufficient to prevent
or control all viral infections, which make it
imperative to develop novel therapies. As a result,
immune-based therapies are currently under
development as new treatment methods. This
may provide new opportunities for the treatment
of acute or chronic viral infections (Figure 2).
Rev. Med. Virol. 2012; 22: 122–137.
DOI: 10.1002/rmv
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Interferon therapy revisited
A plausible approach to treat virally infected
patients is the administration of type I IFN. Indeed,
pegylated IFNa in combination with the antiviral
drug ribavirin is commonly used in treating
patients with a chronic HCV infection. Although
this therapy is effective in nearly 50% of the cases,
the administration of pegylated IFNa is associated
with severe side effects [120–122]. Normally,
during viral infections, type I IFN gives the “sick-
signal” that results in fever. Patients treated with
type I IFN have to endure these feverish periods
for prolonged periods of time. In addition, hemato-
logic and psychological problems have been
frequently reported during treatment periods. Also
with respect to HIV, positive effects of IFN-treatment
have been reported both in vitro [123,124], as in clin-
ical trials [125–129]. On the other hand, (excessive)
IFNa can contribute to the immunopathogenesis
(reviewed byHerbeuval et al.) [117]. Thus, it remains
controversial whether IFNa is beneficial or detri-
mental in HIV, because both underproduction and
overproduction of IFNa can induce severe effects
in the host.
Nonetheless, because of their strong antiviral

effects, type I IFNs remain attractive drugs for anti-
viral therapy. In particular during acute (respiratory)
infections, IFNs may be an interesting therapy. This
requires no systemic and chronic application of IFNs
as observed in HCV patients, which may, therefore,
significantly reduce the observed side effects. Local
application, for example, by a nasal spray, has been
shown to be effective in the prevention of seasonal
respiratory infections without causing severe side
effects [86,130]. This administration route might
be, particularly, attractive for the prevention of
virus-induced exacerbations in chronic obstructive
pulmonary disease and asthmatic patients in which
impaired IFN productionmay be an important mech-
anism contributing to virus-induced exacerbations
[131,132]. IFNa also showed promising effects in
severe acute respiratory syndrome (SARS) [133–135]
and can be very important to induce an adequate
immune response and possibly suppress excessive
inflammatory responses observed in SARS [136–139].
Interestingly, also other members of the IFN family
can be used to prevent or treat viral respiratory infec-
tions. The recently discovered type III IFNs (or IFNl1
and IFNl2/3) show strong antiviral effects against
respiratory viral infections [131,140–142], especially
when given prophylactically [142,143].
Copyright © 2011 John Wiley & Sons, Ltd.
Toll-like receptor ligands
Because stimulation of TLRs by antigenic microbial
epitopes is sufficient to induce a full-blown
immune response, TLRs seem a likely target for
antimicrobial therapy. Indeed, synthetic variants
of the microbial structures have been shown to
induce natural responses without the need for
infection, and this quality has been used extensively
to improve the efficacy of vaccines. For example,
vaccines composed of a mixture of TLR ligand and
antigens have been shown to be more effective than
antigens alone [144–148]. Moreover, TLR ligands
covalently linked to peptides are even superior in
their ability to induce specific CD8+ T cells [149].

When a direct antiviral response is required, the
use of synthetic TLR3, TLR7, TLR8, or TLR9 ligands
can be considered. Both in vitro and in vivo studies
have shown that prophylactic treatment with the
dsRNA mimic polyinosinic:polycytidylic acid (poly
(I:C)) and CpG oligodeoxynucleotides (CpG ODNs)
specific for TLR3 and TLR9, respectively, is
protective during viral infection [150–153]. Depend-
ing on virus and cell type, different types of CpG
ODNs can be applied to initiate an appropriate
response [154–156]. Also, TLR7 and TLR8 may be
therapeutic targets. For stimulation of these TLRs,
imidazoquinolones (e.g. resiquimod and imiquimod)
are the best known ligands, and these smallmolecular
weight compounds have indeed been shown to
possess antiviral properties [15,16,157–160], although
their immunostimulatory and antiviral effect may be
limited compared with poly (I:C) and CpG ODNs
[161]. Interestingly, the use of imiquimod as a cream
to treat human papillomavirus-induced genital warts
has already been approved [16,145,162]. TLR ligands
can also reduce HCV viremia [163–165] and even
HIV could be targeted [166]. Besides stimulation of
type I IFN production, TLR ligands also initiate
immunoregulatory mechanisms [167]. This is particu-
larly important for the generation of the adaptive
immune response and immunological memory.
Nonetheless, at this time, few TLR ligands have
been approved for clinical application in treating viral
disease [13,148].

Dendritic cell transfer
During various viral infections, pDCs (and cDCs)
are less functional or are present in lower numbers
[168–170]. This is, for example, observed in HCV-
infected [171,172] and HIV-infected patients, where
the number of pDCs (partially) predicts the clinical
Rev. Med. Virol. 2012; 22: 122–137.
DOI: 10.1002/rmv
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outcome [173–175]. Therefore, adoptive transfer of
pDCs (and cDCs) can be used to reach the required
level of pDCs and the subsequent initiation of the
type I IFN response. Moreover, this will increase
the efficacy of TLR ligands as they require their
appropriate receptors that are predominantly pres-
ent on DCs. As shown by Wang et al., adoptive
transfer of pDCs was used to successfully activate
the antiviral response and limit RSV replication
[176]. Thus, the administration of (stimulated)
pDCs (in concert with cDCs) to restore DC function
and/or numbers can activate the innate immune
system to reach the required level of immune
activation to control the viral infection, but this is
probably dependent on the individual, the type of
viral infection (chronic) and the stage of infection.

Other options
As observed in many viral infections, the (con-
comitant) proinflammatory response can cont-
ribute significantly to the disease. Therefore,
anti-inflammatory drugs [177] are attractive to sup-
press symptoms during viral disease. Also, the use
of antiviral drugs for specific inhibition of viral
replication remains attractive as therapy, especially
in combination with other treatments (like IFNa
treatment and ribavirin in HCV patients). Further-
more, although TLR ligands and IFNs can induce
production of restriction factors, these might also
be applied directly to limit viral replication. On
the other hand, IFN-inhibitor proteins of viruses
can be targeted to restore immune functions [178]
and make additional restriction factors or immu-
notherapy more effective.
Taken together, although viruses are well able to

subvert or manipulate the type I IFN response, the
IFN system can also be used or stimulated to
strengthen the response towards viral infections.
IFNs themselves are already used in HCV treat-
ment, and promising effects have been shown in
respiratory viral infections. Moreover, the thera-
peutic use of TLR ligands is currently under intense
investigation as they have shown to have great
potency to stimulate those immune cells critically
involved in the antiviral immune response. This
stimulates the production of antiviral proteins or
inhibitors of viral evasion proteins, which can also
be used independently of TLR stimulation or IFN
application. Finally, the transfer of (stimulated)
pDCs for gradual production of type I IFN and
other cytokines (in combination with cDCs for
Copyright © 2011 John Wiley & Sons, Ltd.
induction of adaptive immunity) might be an
option to limit symptoms or even control virus
replication.

THREATS
In the previous section, we revealed among others
the opportunities related to TLR ligands as poten-
tial antiviral drugs. Yet, although promising results
with TLR ligands have been reported during the
last decade, there are also several threats.

Autoimmunity
Endosomal TLRs usually only respond to DNA/
RNA derived from pathogens while immune
responses to host genetic material are prevented
in different ways. First, DNA (and RNA) from
apoptotic or necrotic host cells is removed by
DNAses (and RNAses, respectively). Second, the
nucleic acids from microbes are fundamentally
different from host nucleic acids. Viral and bacterial
DNA contain unmethylated CpG motifs, whereas
in host DNA heavy methylation and fewer CpG
motifs are common [179]. Furthermore, the TLRs
that bind (microbial) nucleic acids are endosomally
located [7,14]. Because of this intracellular localiza-
tion, self-nucleic acids cannot stimulate these TLRs.
Finally, regulatory receptors are present on pDCs,
which limit type I IFN responses [180].

Sometimes, however, these barriers are not
sufficient, and aberrant immune responses arise
ultimately resulting in autoimmune diseases like
systemic lupus erythematosus (SLE) [181–183], an
autoimmune disorder that especially affects the
skin. In SLE, it is assumed that apoptotic or necrotic
material containing nucleic acids are phagocytosed
by pDCs and cDCs. The pDCs respond with
production of type I IFN and other cytokines result-
ing in activation of the cDCs, which then stimulate
autoreactive T and B cells. After differentiation of B
cells into plasma cells, autoantibodies are produced
and complex with the nucleic acids from necrotic
cells. Subsequent binding to the Fc receptor for
IgG (FcgRIIa) on pDCs [184] and cDCs results in
further type I IFN production and B-cell stimula-
tion [185]. This vicious cycle can be evoked or
aggravated by the administration of TLR ligands.
The reason why these pDCs respond to the host-
derived nucleic acids is still unclear.

Thus, concerns about instigating or enhancing
autoimmune diseases are important reason why
TLR ligands are not extensively administered in
Rev. Med. Virol. 2012; 22: 122–137.
DOI: 10.1002/rmv
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the clinic. Despite promising results in the last
decade with these ligands in antiviral therapy, pre-
cautionary measures to prevent induced autoim-
mune responses are definitely necessary.

Species differences
Much of what we know comes from animal experi-
ments, but translating experimental results from
laboratory animals to humans is often problematic.
This is also the case with the translation of our
knowledge from the immune response of well-
studied mouse models to humans. For example,
the response to certain viruses can be entirely
different in both hosts, due to adaption of the virus
to its host [186]. Moreover, important differences in
antiviral mechanisms between mice and humans
have been observed.
First, there are differences in the TLR-induced

response. Studies indicate that murine pDCs are
able to produce IL-12p70 in addition to IFNa
post-TLR9 stimulation, whereas human pDCs do
not [60,62,63]. Secondly, the location of TLR9 is dif-
ferent in mice than in humans. In humans, TLR9 is
exclusively expressed in pDCs and B cells [187]
while mice express TLR9 on cDCs, B-cells, macro-
phages, and monocytes [188]. Thus, a TLR9 ligand
can induce entirely different responses in both spe-
cies. Another major difference is the function of
TLR8. TLR8 stimulation induces IL-12 production
in humans [189], but this receptor appears to be
non-functional in mice, although this is still a mat-
ter of debate [190]. Finally, the cytokine flt-3 ligand
is used to differentiate murine hematopoietic stem
cells into DCs with a relatively high percentage of
pDCs [191,192]. This does not reflect the human
situation in which most experiments are performed
with PBMCs, containing a very low number of
pDCs [154–156,193] that are probably at a different
stage of maturation.
Copyright © 2011 John Wiley & Sons, Ltd.
Hence, as stimulation of the type I IFN response
can improve immunity toward viral infection, it
can also evoke or aggravate aberrant immune
responses (autoimmunity), thereby limiting clinical
application of TLR ligands and IFNs. Furthermore,
although animal experiments have been extremely
helpful in deciphering antiviral responses, these
are not an exact representation of the human type
I IFN response, further hindering clinical
application.
CONCLUSION
In this review, we provided a condensed overview
of the molecular pathways involved in the most
potent antiviral part of the innate immune system,
the type I IFN response. Moreover, we reviewed
the cells and receptors that are intimately involved
in this type I IFN system. Also, we evaluated the
(im)possibilities of new ways to modulate the type
I IFN response, for example, by TLR ligands or
adoptive DC transfer, as promising future antiviral
therapies. Nonetheless, although strong antiviral
effects of IFNs, TLR ligands, DCs, and restriction
factors have been shown by many studies, the clin-
ical application of these immune-based therapies is
unfortunately still limited, which might be related
to concern for eventual undesired side effects like
autoimmune diseases. Therefore, to be clinically
successful, perhaps a more personalized approach
is required. The application of these immune-based
therapies can then be considered based on the
individual, virus, stage of infection, and symptoms,
thereby fine-tuning the type I IFN response and
preventing side effects as much as possible.
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